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Summary. 
Apart from some earlier experimental work by Henderson and Swalley, there does not appear to be 

available in the literature an analysis of the effects of small amounts of air contamination on the flow of 
helium in a hypersonic nozzle. The main difference between this and the more common problem of 
condensation of water vapour in air or of a condensing diatomic gas alone, is that the mass fraction of the 
contaminant cannot be ignored. 

In this Report a brief analysis of the problem is outlined and the more important points discussed. 
The theoretical and experimental results are compared with those of Henderson and Swalley. 

*Replaces NPL Aero Report 1316--A.R.C. 32 118. 
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1. Introduction. 
Condensation in supersonic and hypersonic wind-tunnel nozzles has been investigated in great detail 

(at one reckoning there were well over three hundred references available in the literature 1), and of course 
this interest arose because of the adverse effects on the test flow which result from the energy released. 
By far the majority of papers deal with the condensation of water vapour in air, or with the condensation 
of a diatomic gas in a hypersonic nozzle. The present problem, i.e., the effects of air or nitrogen con- 
densation on helium flow, differs from these because the mass fraction of the small percentage of con- 
taminant (the air or nitrogen) cannot be ignored. For example, if the percentage by pressure of the con- 
taminant is 5 per cent, the mass fraction is about 27 per cent. 

From our literature survey only one paper on this particular aspect was found 2, and this paper gave 
empirical equations for the variation in flow properties as a function of the amount of contamination 
present. The aims of the present Report are therefore to extend the well-known analyses of condensation 
in nozzles to cover the case of a light gas with a heavy-gas contaminant, and to compare our theoretical 
and experimental results with those of Henderson and Swalley z. 

As regards the theoretical approach for an exact analysis of this problem it is necessary to consider 
in detail spontaneous nucleation and droplet growth rate in the nozzle. Into this analysis will come the 
effects of nozzle shape, i.e., contoured, or conical, to account for the difference in expansion rates (see 
Daum and Gyarmarthy, Ref. 3). In the present analysis however we make use of the concept of the con- 
densation shock, where the droplet formation process is completed in a very short distance, and assume 
that the mixture of test gas and contaminant expands isentropically in thermal equilibrium up to the 
critical cross section, where the condensation shock occurs, and that after the shock the mi_xture of test 
gas and droplets expand isentropically in equilibrium into the working section. At the shock we also 
assume that all the contaminant condenses out. 

Using this technique it is found, as has been found previously in the case of water vapour, etc., that 
reasonably good estimates of the variation in flow properties can be made. 

In the following sections we shall describe the nature of the contamination in the NPL helium tunnel, 
and follow this with an outline of the theoretical analysis of the condensation effects. Finally we shall 
compare our theoretical and experimental results and discuss the comparison between these data and the 
experimental results obtained by Henderson and Swalley a. In the Appendices the derivation of the 
various formulae are given in detail. 

2. Nature of  the Contaminant. 
In routine operation contamination of helium-tunnel test gas is unavoidable. The major component 

is air, but a small amount of lubricating oil is also found to be present. It is therefore normal practice 
to incorporate a purifying plant into the circuit and this, operating on the molecular sieve principle, 
removes most of the contaminant. 

The components of the contaminant are identified by using a gas chromatograph, and it is found that 
the proportions change from run to run. Immediately after purification the small amount of residual 
contaminant contains about 90 per cent nitrogen and 10 per cent oxygen. (The predominance of nitrogen 
is probably related to the fact that the molecular sieve operates at liquid nitrogen temperature and 
therefore favours the removal of oxygen with its higher liquefaction temperature.) Alter several runs 
however the ratio of nitrogen to oxygen tends towards the air value. 

In order to eliminate the possibility of contamination pure helium could be used for each run and then 
discarded, but for economic reasons this is of course unrealistic. Or the gas could be purified after each 
r~n, but this would increase the time between each operation of the tunnel. A reasonable alternative is 
to run several times before purifying. The exact number of runs is determined by the amount of contamin- 
ation of each run and by the maximum allowable contamination level. The latter restriction depends on 
the effect of contamination on the flow properties, and this is discussed in the next section. 



3. Derivation of Formulae. 

Several assumptions are made concerning the test gas as it passes through the nozzle. The approach to 
the problem is as follows: 

We start with the test gas in the reservoir at temperature T O and pressure Po- In the test gas there is 
a small amount of unwanted gas which we refer to as the 'contaminant'.  In order to compute the free 
stream conditions through the throat and into the nozzle we assume that the test gas plus contaminant 
behaves as one gas with mean values of the specific heats and molecular mass calculated as is usual for 
gas mixtures. The next assumption affords considerable simplification; the test mixture is assumed to 
expand isentropically in thermal equilibrium until the cross section in the nozzle is reached where the 
temperature and pressure are the critical ones for the onset of condensation of the contaminant (see 
Fig. 1). (As we have pointed out in the Introduction the flow processes are much more complex than this, 
but we shall show results obtained using this simplified model which justify this approach.) At the critical 
cross-section condensation is assumed to occur instantaneously with the formation of a condensation 
shock of effectively zero thickness, and with realease of the total latent heat of vaporization, (i.e., all the 
contaminant is turned into droplets). The variation in flow properties across this shock are computed 
using the conservation equations for mass, momentum and energy. The subsequent flow is then assumed 
to be in equilibrium and the working section conditions are obtained assuming isentropic expansion 
from the critical cross-section. The post-shock test gas is considered to be a mixture of helium plus a heavy 
gas whose molecules are the droplets (see Clark Ref. 4). 

When the flow is brought to rest, for example at the nose of a blunt body, it is assumed that the heat of 
vaporization is then taken up in reversing the effect of the condensation shock and the stagnation tempera- 
ture becomes T O . Here we assume that no droplet of condensed contaminant escapes from the stagnation 
region before vaporising (as can occur for small diameter pitot probes, for example). 

The derivation of the various formulae are given in the appendices, and only the main results are 
presented here. 

Using the equation for the conservation of mass, momentum and energy, and assuming that the 
condensation region has zero thickness, it can readily be shown that the velocity ratio across the con- 
densation shock as a function of contaminant mass fraction (x) and latent heat of vaporization (Q) is 
given by 

( ):E {( ) _ A + i A - ~ - ~  ---A C ~ . . T ,  M2(~- I ) (2A-1 )  {1) V 2 t = P ' 2  ( 2 A - l j  i ~ + (2A-1)  1 1 1 2_  2XQ 

Here A is a function of X and 7, and M~ is the Math  number upstream of the condensation shock; 7 is the 
ratio of specific heats for the mixture. 

A further assumption made in deriving this equation is that the droplets of condensed contaminant 
move with the same velocity as the test gas (see Clark 4 and Thomann 1 for example). The density ratio 
across the condensation shock is reciprocally related to the velocity ratio and the pressure ratio is given 
by the equation 

P-22 = 7M 2 (1 - V21)+ 1 (2) 
Pl 

Finally the Mach-number ratio is obtained using the relationship 

M2 
-  /t'21 (3) 

This modified flow expands isentropically into the working section. The test gas is brought to rest 
through a normal shock to a pressure related to the working section static pressure by the Rayleigh 



supersonic pitot formula and initially at a higher temperature than the equilibrium value, 7~0 . Vaporization 
then occurs and the temperature falls to To with a corresponding adjustment of pitot pressure. 

The variation of working-section static pressure and temperature and the Mach number, together with 
the pitot pressure, as ftmctions of the contamination ratio 'r' (Pair/P0) are plotted in Figures 2 to 5. Also 
plotted for comparison are the experimentally observed variation in pitot and static pressure together 
with the variation observed by Henderson and Swalley 2. These authors found from their experiments 
that the variation of static pressure with contamination ratio obeyed the relationship 

P ~  = e ' ,  (4) 
(P=)r=o 

and that the correspor~ding relation for pitot pressure was 

P~ = e mr, (5) 
(p,)r=o 

where n = 8.5 and m = -2 .  In our case we calculate n to be 7.62 and m = -0.61 (see Section 4). As can 
be seen from Figures 2 and 3 there is only a small difference between the predicted variations using the 
two sets of values. For contamination ratios of 5 per cent or less the two sets of values agree within 4 
per cent. Above this ratio the discrepancy increases considerably. Since even contaminations ratios of 
5 per cent must be considered very large, the exact choice between using the theoretical and empirical 
values in actual cases is open. 

Summarising at this stage it has been shown both experimentally and theoretically that the static and 
pitot pressures in contaminated flow are related to the uncontaminated values in terms of the contamin- 
ation ratio. Conversely, it is therefore possible to obtain some simple expressions which, for example, 
allow the uncontaminated Mach number and the contamination ratio to be computed directly from the 
reservoir, static and pitot pressure measurements. These and other formulae are derived in some detail 
in the Appendix, and the more important equations are quoted here. 

Using equations (4) and (5) for static pressure and pitot pressure in terms of their uncontaminated 
values, and the free-stream Mach numbers obtained from these expressions, we arrive at the following 
expression which relates the static, pitot and reservoir pressures (measured) with the contamination ratio 
(unknown). 

~bea~(~-~)- - (p~)° '4eb"+l  = 0  (6) 

where a = (m + n)/2 

b = (m/r) ( ?ne- l / 

~b = (0.227). 

From this equation a value for the contamination ratio can be computed, and using the expression, 
slightly modified from Henderson and Swalley, 

/ \ 
(M~)r=0 = Mo~e ar = 0.825 [ P t  ] e a, (7) 

\ P ~  / 

the true Mach number for the nozzle may be obtained. 
If the true Mach number is known then the contamination ratio can be computed from the equation 



r = 1-1nn Po ( o0)r=o +1  (8) 

4. Results and Discussion. 

In order to compute the variation of free-stream conditions with contamination ratio, it is necessary to 
determine the temperature and pressure in the nozzle at which condensation will occur. In this connection 
the paper by Daum and Gyamar thy  3 is most useful. The condensation temperature is of course dependent 
on the air partial pressure and therefore will vary with r, the contamination ratio. As a consequence the 
value ofn or m which is computed will not be constant over the range, as is indicated below. 

We arbitrarily chose the r = 0.05 contamination ratio conditions for an initial calculation of n and m. 
For these conditions it is found by Daum and Gyarmar thy  from experiment that the relevant nozzle 
temperature for the onset of condensation is that indicated by the nitrogen saturation value. In Figure 1 
the intersection of the r = 0.05 isentrope with the nitrogen and air saturation curves is shown. If we use 
these condensation data, then the value of n we obtain for these specific conditions is 7.62, and this is 
the value we have used in Figures 2 to 5 to represent the whole of the range of contamination ratios. 
However if we use the temperature and pressure appropriate to r < 0-01, large degrees of supercooling 
occur because of the small air pressure and the value of n rises (typically to about 9-6 for r = 0"01). The 
conclusion is therefore that n is not a constant for all r, as has been suggested by the data of Henderson 
and Swalley 2, but varies continuously with r. 

The practical consequences are that the free-stream static pressures related to the low values of con- 
tamination ratio ( < 0'01 say) should lie above any mean line chosen to fit higher r values, and that the 
experimental curve should intersect the empirical one at some r. Subsequently the empirical equation 
should increasingly over-estimate the measured pressures with increasing r. Unfortunately this hypothesis 
is not readily tested, for two reasons. Firstly it is not possible to perform the experiments to the accuracy 
which would be required, and this is linked to the second reason, namely that over the range 0 < r < 0"01, 
any value of n from say 7.5 to 9.5 would fairly represent the experimental data with sufficient accuracy. 
As a rough guide a 10 per cent variation in m would represent only about a 4 per cent variation in static 
pressure. In order that the results be meaningful we should require an accuracy of about _ 1 per cent, 
and neither the data of Henderson and Swalley z nor our own results appear to be able to meet this 
requirement. 

In Figures 2 and 3, where the static to reservoir and pitot to reservoir pressure ratios are plotted 
respectively, it is seen that our experimental data could be reasonably well represented by either Hender- 
son and Swalley's curves or our own theoretical curves. In Figure 4 the 'actual '  variation of working 
section Mach number is compared with the variation which might be inferred from the ratio of static or 
pitot pressure to reservoir pressure. In Figure 5 the continuous increase in free-stream static temperature 
with r is indicated. 

As regards the maximum allowable contamination ratio, Henderson and Swailey have shown that to 
ensure no more than ~ per cent error in free stream Mach number, 

211] r ~< ~ log~ - - e  

1-1-66 

When expanded in a series, for 
8 

0.02e 

(m+n)" 



5. Conclusions. 

From this brief analysis of the effects of air contamination on the flow in a hypersonic helium tunnel we 
find that : 

(i) The static and pitot pressure variations are simply related to the contamination ratio, as was found 
empirically by Henderson and Swalley 2. 

(ii) Using a simplified theoretical model which assumes that the test gas flow is in thermal equilibrium 
before and after the condensation shock, and that all the contaminant condenses at the shock, it is 
possible to compute with a fair degree of accuracy the actual experimental variation in free stream 
conditions. 
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APPENDIX I 

In this Appendix we shall derive, or quote where well known formulae are used, the equations which 
have been used in analysis of the contaminated flow in the helium tunnel. Firstly the properties of the 
mixture of test gas plus contaminant will be obtained, then the equations for the flow in the nozzle are 
given and the critical cross-section at which the condensation shock forms is determined. The conservation 
equations for mass and momentum will be used together with the appropriate form of the energy equation, 
to compute the change in flow conditions across the condensation shock. Lastly the equations for the 
isentropic expansion of the flow into the working section following the critical cross-section are quoted. 

(i) Reservoir conditions. 
In the reservoir we have helium at a partial pressure Pile, and contaminant at partial pressure Pc, the 

total pressure of the mixture has value Po say. The contaminant pressure fraction r, which we shall term 
the 'contamination ratio', is equal to Pc/Po. If, as in the present case, the contaminant is air, then its 
molecular weight is 28-96 and using the molecular weight of helium (4) the mean molecular weight (~o) 
for the mixture is obtained using the equation 

4(1 - r) + 28.96r = m0 (I.1) 

The mass fraction of the contaminant is X = 28.96.r/N o. 
The mean specific heat at constant pressure (Cvo), and at constant volume (Coo), can be obtained from 

the following equations : 

Cpo = (1 - X) Cp~ + XCpA,~ (I.2) 

and 

Coo = (l--x) Cvne+XCvAtr (i.3) 

The mean value of their ratio ~o, is given by ~7o = Cvo/Co o. 
The flow properties in the nozzle, in particular the variation of static pressure and temperature and 

free stream Mach number are then computed from the following equations: 

70 

T ( 1 - t . ( ~ ° - I ) M ~ ) - l P ( 1 - F ( ~ ° - I ) M 2 ) I - %  (I.4) 
To 2 P o  2 

where Mi is obtained in terms of the area ratio A/A, from 

A. M1 

(ii) Conditions across the condensation shock. 

2 JJ  

?Q+ I 
2{~o-1) 

0.5) 

In deriving the equations for the variation in flow properties resulting from condensation of the small 
amount of contaminant in the helium we make the following assumptions: The droplets of condensed 
contaminant may be considered as the molecules of a heavy gas (see Clark), diffusion and heat transfer are 
neglected, the droplets are assumed to move with the same velocity as the helium, and all gases are thermal- 
ly perfect. 

The energy equation is as follows : 

(1 - X)dhn~ + X {(1 - #)dho~ + 12dhL~ + pdQ} + VdV = 0 (I.6) 

1 i  



i 

where X is the mass fraction of contaminant, # is the amount of contaminant condensed measured as a 
fraction of the uncondensed contaminant gas, dhne is the helium enthalpy, dhgc is the enthalpy of the 
gaseous contaminant dhLc is the enthalpy of the condensed contaminant and Q is the specific latent heat 
of vaporisation. If we assume that all the contaminant is condensed at the shock then # = 1 and equation 
1.6 can be integrated to give the following expression : 

V 2 
(1 - X)hne + XhL¢ + X Q + - ~  = Constant- (I.7) 

Using the concept of the heavy gas molecules described above, then we have 

(1 - X)hHe + XhLc = h,, = mixture enthalpy (I.8) 

we now solve equation (1.7) for V2/Va (=  V21) using the appropriate equations for conservation of mass 
and momentum, 

Mass . . .  Pl  V2 = P2 VZ (I.9) 

M o m e n t u m . . .  Pl VZ +Pl  = P2 VZ +p2 (I.10) 

Here conditions (1) are upstream and (2) downstream of the shock respectively. The two roots obtained 
are : 

V 2 1  - _ _  

where 

A 1 1 , 2 

A = ((1 -X)+X/3.12)7/ (y-  1) 

2XQ )~ 
Cp~oT1M2(7 - 1)(2A- 1) 

(I.11) 

In order to decide which root is the appropriate one in the present case we put X = 0, and obtain the 
following two values for V 21 

+ve sign V 2 1  = 1 

- ve sign V21 - 
( y - a ) M 2 + 2  

(v + 1) t (I.12) 

The case usually considered trivial for conventional compression shocks, viz V21 = 1, is the one we must 
adopt because when there is no contamination no velocity change occurs. The density ratio across the 
shock is the reciprocal of the velocity ratio, and the pressure ratio is obtained from the equation : 

P21 --- P2 = ~M 2 (1 - V 2 0 +  1 (I.13) 
Pl 

Finally the Mach number ratio across the condensation shock is given by 

u2 /v21 
Mx - x/p21 (14) 

(iii) Working-section conditions. 

The conditions in the working section are obtained by assuming that the test gas after condensation 

12 



expands isentropically. The appropriate equations are 

Ao~ M2 _~+1 _ ~2(~,-1), T~ =lfi-1, 
ACRIT M~ T 2 

( 2 + ( ' -  1)M2~ ) 
where i f =  2 + ( 7 - 1 )  M2 

(A~ = nozzle exit cross-sectional area. 

p___~ = ~ 1L~, (1.14) 
P2 

AcRrr  = cross-sectional area in nozzle where condensation shock occurs, and condition 'c~' are those 
in the working section.) 

The values computed using the above theory are presented in Figures 2, 3, 4, 5 and are discussed fully 
in the main body of the text in the section headed 'Results and discussion'. 
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A P P E N D I X  1I 

In this Appendix we shall examine the equations relating to the flow properties in the working section, 
which have been obtained empirically, and compare them with the analytical values. Initially we shall 
derive some simple expressions which allow the contamination ratio and ' t rue '  free-stream Mach number  
to be calculated using measured pressures. 

(i) D e t e r m i n a t i o n  o f  r and  (Mo~)r = o f r o m  pressure  measuremen t s .  

The 'pure '  and 'contaminated '  values of working section pressures and Mach numbers are related to the 
contamination ratio by the following equations. 

(Po3 
= e "r ( I I . 1 )  

6v~) 
= e " r  ( I I . 2 )  

(P,),=o 

(Mo~)r=o=e ( -~ ) ,  M ~ = e  2 0.825 (II.3) 

The values of m and n are as follows: 

Empirical (Henderson and Swalley) . . . . . .  n = 8.5 

m -  - 2  

Analytical (Present report) . . . . . . . . . . . . . .  n = 7.6 

for r = 0.05 m = -0 .61  

In terms of the ratio of static to reservoir pressure, and the contamination ratio the uncontaminated 
free-stream Mach number is given by the equation 

(Mo~)r=o = 2 Po~ . e - "  1' _ 1 (II.4) 

This equivalent free-stream Mach number is also related to the ratio of pitot to static pressure and the 
contamination ratio by equation (II.3). 
Therefore from equations II.3 and II.4 we have 

(7.~- 1) [\ P0 / = (0"825)z 

and with some simple manipulation we arrive at the following equation 

I) ( (0.825)z P~ _ e~.-m)~_ _ P_Ro en~ + 1 = 0. (II.6) 
2 po~ / \ p~ 

This equation is quoted in the text (equation 6) and allows the contamination ratio to be computed from 
the measured pitot, static and reservoir pressures, (without a prior knowledge of the uncontaminated 
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value of the free-stream Mach number), and thereby the 'pure helium" Mach number is oblained using 
equation II.3. 

If the true Mach number is known, then the contamination ratio can be computed readily from the 
ratio of the static to reservoir pressure as follows: 

Solving for r in equation II.4 we have : 

(ii) Choosin9 values for m and n. 

In order to relate the free-stream conditions to their uncontaminated levels it is necessary to decide 
which values ofm and n to use. Both pairs of values have been used in computing the pressure variations 
with contamination ratio, and it is found that for contamination ratios less than 5 per cent the difference 
in static pressure computed using 8.5 or 7.62 is less than 4 per cent, and this difference falls to about 
0.82 per cent for a contamination ratio of 1 per cent. The percentage difference is roughly 0'8 times the 
contamination ratio. Similar results are obtained for the pitot pressure, which is much less affected by 
contamination as a result of vaporisation in the stagnation region and where the percentage difference 
is roughly 1.4 times the contamination ratio. 

If the contamination ratio is low, say less than 1 per cent, then the choice is open. Henderson and 
Swalley's experimental data in this region could be fitted with a range of values of m and so 7.62 is as 
likely to be correct as 8-5. It is also observed that for high values of r, (about 0"65), three out of four of 
the values of static to reservoir pressure ratio would favour the lower value of m, i.e., 7"62. 

The conclusion is therefore that under practical conditions where the value of r would be less than 
0.01, the choice of m between the analytical and empirical values, is arbitrary. Similar observations apply 
to the pitot pressure. 

15 
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