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Summary. 
The energy spectrum of atmospheric turbulence is used to predict the normal acceleration response 

of a rigid aircraft. Particular reference is made to spanwise variations of gust velocity and this effect is 
described in terms of a general input spectrum which is applicable to any wing with a particular spanwise 
loading distribution operating under a wide range of conditions. Tables of the gust response factor and 
the number of zero crossings are presented for a range of parameters. 

*Replaces RAE Tech Report No. 69271--A.R.C. 32 139. 
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1. Introduction. 
The loads imposed on an aircraft by atmospheric turbulence are often predicted by comparison with 

the loads measured on another aircraft. This procedure requires that it must be possible to derive from 
the measurements of an aircraft response, such as the normal acceleration at the centre of gravity, the 
characteristics of the assumed turbulence model producing it and then to determine the response of 
the second aircraft to the same disturbances. 

When comparing aircraft of a generally similar type under the same conditions adequate results may 
be obtained with simple representations of the atmospheric turbulence and the aircraft dynamics. For 
many years the discrete gust method 1 has been used, which assumes that observed loads may be referred 
to isolated gusts, and more recently spectral techniques have become established. These require that 
the turbulence is continuous and possesses a mathematically defined uniformity. When an aircraft is 
within a particular patch of turbulence it is commonly encountering disturbances that satisfy these 
conditions. 

The continuous approach has been described in many papers, for example Refs. 2-7, which have 
made similar assumptions to those used here for the dynamics (basically that the aircraft and its motion 
form a linear system). In this study the spanwise variations of gust velocities are incorporated in the 
atmospheric turbulence model and this has an appreciable effect on the response at high frequencies. 
The number of times that a value of a response is crossed per unit distance is sensitive to the high fre- 
quency part of the spectrum and so the inclusion of spanwise variations facilitates the study of this 
concept. The crossings of a particular value may be described by reference to the parameter (zero cros- 
sings) defined by the number of times that the mean value is crossed in each direction per unit distance. 

The model proposed by Von Kfirmfin is considered to give a good general description of atmospheric 
turbulence, and various functions associated with it are given in Section 2, together with the corresponding 
expressions for the Dryden model which has often been used. In Section 3 forms of the transfer function 
are developed to relate the turbulence input to the aircraft acceleration response. The gust response 
and zero crossings factors may then be found and Section 4 contains a description of the methods used 
to calculate the results presented in the tables. 

2. Mathematical Model of Turbulence. 
In order to derive the responses of an aircraft to atmospheric turbulence it is necessary to make some 

basic assumptions on the nature of the atmospheric motions to be considered in the analysis. These are 
that the turbulence is a stationary random process which is both homogeneous in the horizontal plane 
containing the flight path and symmetrical about a vertical axis. These conditions imply that the statistical 
characteristics of the turbulence are invariant under a rotation of co-ordinates about a vertical axis and 
a horizontal translation of the origin. A time displacement t is equivalent to a distance displacement x 
in the direction of motion 

x = u t  (1)  

subject to the restrictions that the aircraft speed remains approximately constant with mean U during 
' this time and is much larger than the magnitude of the gust velocity component along the x axis. 

It is also assumed that the forces produced by the motion and the disturbances are linear and hence 
superposable. 

2.1. Statistical Functions in One-Dimension. 
Functions are defined by reference to co-ordinate axes Oxyz moving with the aircraft, the Ox axis 

being directed along the mean flight path, the Oz axis along the upward vertical and the origin O on the 
aircraft centreline at the position of the leading edge of the wing at its root. Perturbation velocities 
in the x, y, z directions are denoted by u, v, w respectivelY. 



Relationships for a one-dimensional random process are demonstrated here in terms of the vertical 
component w(x) of gust velocity along any horizontal axis Ox. 

The correlation function is defined by 

fw(x) = w(r) w(x + r) (2) 

where the mean is defined by the space average of this product over all positions r on the x axis, i.e. 

R 

w(r) w(x+ r) = R~oolim 2R1 f w(r) w(x+ r) dr. 

- R  

2 the mean square of w. In particularfw(O) equals aw, 
The Fourier transform of the autocorrelation function is given by 

oo 

Sw(k) = j fw(x) e- ik~ dx 
- o o  

(3) 

with the corresponding inverse 

fw(x) = 2nn Sw(k) e ikx dk, 
- c o  

(4) 

this arrangement of the constant being used for all one-dimensional Fourier transforms in this paper. 
Sw(k) is the one-dimensional spectrum of lateral turbulence energy per unit mass. The spectrum is real, 
positive and an even function of the wave number k. The total turbulence energy per unit mass ( = ½ a 2) 
is given by 

oo 

1 2  dk 
2 O ' w  w • 

0 

(5) 

The spectrum has been defined in terms of the wave number k rather than inverse wavelength ( = k/(2n)) 
or circular frequency ( = k U) or frequency ( = k U/(2n)) for convenience in the analysis. 

An analytical measure of the scale of the turbulence, L, is derived from the correlation function : 

oo 

O'w 3 
0 

(6) 

The spectrum defines the energy density at all wave numbers but this is not directly related to the 
frequency with which a particular velocity will occur. If it is assumed that the distribution of velocities 
is a normal distribution then Rice 8 has shown that the number of times that different velocities are 
crossed has also a normal distribution, which is given by 



Nw = No exp ( 2 2 - w  /2 a,,,) (7) 

where N~ is the number per unit distance of crossings in each direction of velocity w and No is the number 
of times the zero value is crossed in each direction in unit distance. No is related to the energy spectrum by 

cO 

f k 2 Sw(k) dk 

1 o 
No 

sw (k) dk 
d 
0 (8) 

This result may be applied to any random process for which the random variable and its first derivative 
are independent and each have a Gaussian distribution. However, its usefulness is dependent upon the 
high frequency behaviour of the spectrum being such that the integral converges. While No has been 
defined using the turbulence spectrum as an example zero crossings are only evaluated for responses, 
since for most mathematical forms of atmospheric turbulence spectra the integral does not converge. 
This is because the expressions used do not adequately describe the behaviour of the spectrum in the 
viscous range. Aircraft responses to these small eddies with low wavelengths are negligible and so equation 
(8) can be used to evaluate the response number of crossings. 

2.2. TWo-Dimensional Spectra. 
If the aircraft being considered was small compared with the scale of the turbulence in which it was 

flying the gust velocity at all points on its surface at any instant would be approximately the same. The 
one-dimensional spectrum Sw(k) describes the properties of the vertical component of this velocity. 

The effect of variations of gust velocity over the aircraft surface is now studied, this being required for 
all aircraft of a size that is not negligible compared with the turbulence scale. Since the largest dimensions 

~fn aircraft are in the horizontal plane and the only deviations from the flight path to be examined here 
are comparatively small perturbations in the vertical direction, the turbulence spectrum is required in 
a form relating vertical components of gusts at different points in a horizontal plane. The spectrum is 
expressed in terms of a two-dimensional wave number vector with components k~ and k2 in the x and 
y directions respectively. Under the assumption of axisymmetry the correlation functionfv(x,y) associated 
with this spectrum is the same as that for one dimension along a horizontal axis in the appropriate 

direction, i.e. f,~ ( ~ .  
The spectrum and correlation function are related by a Fourier transform in two dimensions cor- 

responding to equations (3) and (4): 

Sw(k,,k2)=fie-'kx+ 'fw(x,y)dxdy, 2 
- - 0 3  --CO 

1 f e ~(k'x+k2y) S w (kl, k2) dkl dk2. fw (x, y) = 4--~ 
- - 0 0  - - 0 0  

(9) 

(lo) 

2.3. Specific Turbulence Energy Spectra. 
Taylor 5 gives expressions for the energy distributions and correlation functions in one and two dimen- 

sions in terms of a general longitudinal correlation function involving shape and scale parameters. By 
choosing particular values of these the atmospheric turbulence models proposed by Dryden and Von 
Kfirmfin are obtained. 



For the Von Kfirmfin model the lateral correlation function is 

f~(r)---(4r/L,)~/aa2~[K~/3(r/L,)-½(r/Lt)K_2/3(r/L1)]/F(~) 

and the lateral spectra are 

Sw(k) = aw L 1+ (k LO 2 

(11) 

(i2) 

6 4 2 2 Sw(k,, k2) = a% ~ L, (kt + k2) / [1 + L 2 (ka z + k22)] 7/3, (13) 

where L~ = 1.339L. 

The corresponding functions for the Dryden model are 

fw(r) = %2 ( 1 - ½ 1 r ] / L ) e x p ( -  [r l /L)  

2 L[l+3 (kL) 2]/[l+(kL)2] 2 Sw(k) = aw 

Sw(kl,k2) 3 2 L4(k2+k2)/[l+L2(kZ1+k2)15/2 = O'wT~ 2J / • 

ne energy clensay gwen by the Von Kfirmfin model varies with the - 5 / 3  power of frequency at 
high frequencies while the corresponding power for the Dryden model is - 2 .  Practical and theoretical 
studies, as summarised by Taylor 5 and Tatarski 9 for example, indicate that the - 5 / 3  power law at 
high frequencies is a close representation of atmospheric turbulence. In analytic studies' the simpler 
form of the Dryden model favours the use of these functions but the more accurate model is used here 
in conjunction with numerical methods. 

3. Calculation of Frequency Response Function. 
3.1. Response Factors. 

The aircraft response with which this Report is directly concerned is the normal acceleration at the 
centre of gravity, which is studied throughout under the assumptions that the aircraft is rigid and responds 
only in heave. A statistical description of this acceleration is given by its root mean square a, and the 
number of zero crossings per unit distance, which values may be obtained by integration of the normal 
acceleration spectrum S,(k). It is convenient to refer to these quantities in terms of the gust response 
factor K and a zero crossings factor Mo defined by 

K = (~ ~IU) ad~w (14) 

M 0 = ~ K No (15) 

and by analogy with equations (5) and (8) the factors are related to the spectrum S,(k) by 

K 2 = kUaw/( I~ ~21~ i So(k)dk 
0 

(16) 



0 

(17) 

2W 
where # = S p 9 c a" 

Under this definition M o divided by K equals the number of zero crossings in each direction per mean 
chord length. By studying the parameter M o instead of No it is possible to separate the effect on K and 
Mo of different terms in the acceler ' Jn spectrum. For example, while the gust response factor is found 
to vary greatly with the mass parameter the zero crossings factor is almost independent of it, and so the 
effects of changes in this parameter need only be studied closely in the former case. 

3.2. Simple Response Function. 
The normal acceleration at any instant is related to the gust velocity through the equation of motion. 

From this equation the frequency response, or transfer function must be derived in order to relate the 
spectra of these random variables. Generally, if rx(x) and r2(x ) are the input and output functions of 
some linear system then the output spectrum S2(k ) is connected to the input spectrum Sl(k ) by 

S2(k) = I T12(k)12 S,(k) (18) 

where the transfer function T12(k ) is the response of the system to a unit sinusoidal input and is the ratio 
of the Fourier transforms of the appropriate variables, 

Tt2(k ) = F{rz(x)}/F{rt(x)}. (19) 

The transfer function for the simplest form of the equation of motion is found in this Section and in 
the following Sections it is extended to more precise representations of the physical system. 

In addition to the assumptions made throughout this Report the following simplifications are made 
in this section. The aircraft is considered to be sufficiently small compared with the scale of turbulence 
for the gust velocity at any instant to be the same at all points on the surface and it is assumed that this 
gust velocity produces corresponding lift changes instantaneously. For this system the lift of the wing 
at any instant is ½ p U S a ( w -  wr) where w, wr are the instantaneous values of the vertical gust velocity 
and the vertical response velocity of the aircraft. The equation of motion is thus 

d~- w~ = 1 (20) 

where kt is the mass parameter and the lift parameter I is a function of x describing the variation of that 
part of the lift due to the vertical component of gust velocity. This lift force equals (UW/g)l, where the 
factor UW/9 is taken to be constant for the duration of a turbulence encounter. The transformation (1) 
is used to replace time by distance as the variable of the differential in this equation. 

Application of equation (19) yields the transfer function from the lift parameter to normal acceleration: 

i kU  
Talk) - i k +  1/(~e) (21) 

and by (18) 



• k 2 U 2 
S,,(k) - k2 + 1/(/~)2 St(k). (22) 

Under the approximations of this section the lift parameter is directly proportional to the vertical 
component of gust velocity, l = w/(#~) and so 

Sz(k) = Sw(k)/(#~) 2 (23) 

giving the transfer function from gust velocity to normal acceleration and the required spectrum as" 

i k U  
Tw,(k) = - -  (24) 

i k # ~ + l  

k 2 U 2 
S,(k) = (k /t~) 2 + 1 Sw(k). (25) 

The factors that have been neglected in deriving this result all tend to reduce the predicted acceleration 
response to the high frequency part of the input spectrum and, since this part dominates the integral 
for the zero crossings factor, no useful information can be obtained about this quantity. It is possible 
to calculate an approximate gust response factor and for some turbulence models this may be carried 
out analytically by contour integration or other methods, such as that given by Huntley 6. 

3.3. Response Function Including Unsteady Eft. 
The transfer function represents the physical system more closely, particularly for high frequencies, 

when unsteady lift is included in the equation of motion. These aerodynamic effects occur in two forms, 
the Kfissner function describing the variation in lift following a change in vertical gust velocity and the 
Wagner effect representing that variation after a change in aircraft vertical velocity. 

These functions have been approximated by exponential terms for various aspect ratios and planforms. 
For example, Zbrozek i has tabulated them for aspect ratios of 3 and 6 and for the two-dimensional case, 
with compressibility included in the latter case for Mach numbers up to 0-7. In the form given these 
functions describe the transient response to unit step change in the corresponding vertical velocity so 
that a transformation is required for use in this analysis. The Ktissner function qJ(x) and the impulse 
response function h(x) represent the lift when the leading edge has moved a distance x after encountering, 
respectively, a step and an impulsive increase in vertical gust velocity. Since H(k), the Fourier transform 
of h(x), is given by 

H(k) = 1 + i k i e-ikx (~(X)-- 1) dx 
iI 
0 

and the unsteady lift functions have been approximated in the form 

~b(x) = 1 - ~_aA; e -nJx/~ 

J 

it follows that the corresponding H(k) takes the form 

H(k) = 1 - i . i k + Bi/g 
J 

(26) 

(27) 



[ H(k) [ 2 tends to zero like k-  2 for high wave numbers if the constants Aj are such that Y.Aj = 1. This 
implies that ~(0) = O, which is in fact satisfied by the exact Ktissner function; for some approximations, 
such as those given by Jones ~° and by Zbrozek for finite aspect ratios the curves are not fitted through 
the origin (since this was not important in the uses for which they were derived). It is found here that 
sets of Aj values which do not satisfy this condition produce considerable error in determining the zero 
crossings factor but have less effect on the gust response factor. For the evaluations in this Report the 
function quoted by Zbrozek with two terms and applicable to the two-dimensional case has been used, 
this being 

~(X) = 1 --0"5 e-°'26x/~--0"5 e -2x /~  

the Wagner function 

q~(x) = 1-0"458 e -0"265x/~ 

The effect of compressibility has been studied using the constants given in Table 1 for a maximum 
Mach number of 0.7. The three term function for incompressible two-dimensional flow does not satisfy 
the required condition for x = 0 but the gust response factors obtained with it are found to be very 
close to those for the function quoted above. Drischler 11 summarises these functions and also some 
that have been obtained for supersonic flow over various wing planforms. 

The value of the lift parameter is a function of the gust velocities at all previous points on the flight 
path : 

1 i w(xOh(x-x l )  dxl t ( x )  = 

- - o 0  

which with a change of origin becomes 

l(x) = -'~ w(x-x l )h(x l )dx  1 

o 

and so 

(28) 

F{l(x)} = H(k) F{w(x)/(#O)} . 

Thus the relation between the lift and gust spectra (i.e. the unsteady lift form of equation (23)) is 

St(k) = SJk) [H(k)] 2/(#~)2 (29) 

Both velocity terms in the equation of motion are modified in this way and the improved form of equation 
(24) is 

T~,~,(k) = i k U H~(k) (30) 
i k #6 + H2(k) 

Hi(k) and H2(k) are the Fourier transforms corresponding to the Kfissner and Wagner functions and 
may be evaluated using (27) for appropriate values of the summation constants Aj and Bj. 



3.4. Spanwise Variation of Gust Velocity. 
In this Section a transfer flmction is derived that is applicable to an aircrafl flying through turbulence 

of a scale such that the spanwise variations of the gust velocity may not be neglected. The general assump- 
tions that have been used above are retained but the vertical component of turbulence energy is now 
represented by its two-dimensional spectrum.. 

The gust velocity varies with both the spanwise position y and the distance x along the flight path 
and is thus denoted by w(x, y). Neglecting unsteady aerodynamic effects the instantaneous lift due to 
this gust velocity acting on an elementary strip (width ay) of the wing is 

½ p U a ~ y(y) w(x, y) 6y 

and with unsteady effects included the lift force when the leading edge of the wing is at x is 

½ p U a ~ 7(Y) 6y i h(xa' y) w(x- x 1, yt dx t 
0 

(31) 

where h(x, y) is the local unsteady lift function giving the fractional value of the lift of this element when 
its leading edge has moved a distance x after encountering a gust velocity impulse, y(y) is the spanwise 
loading coefficient, defined as the ratio of the local value of chord times lift coefficient to the mean value 
for the whole wing. 

If the wing has negligible sweep the local unsteady lift functions at all points across the span may 
be referred to the same origin on the x-axis and the lift of the whole wing is given by 

b[2 

UWI(x)= f ½pUa~?(y) f h(xl,y)w(x-xl, (32)  

- b / 2  0 

This defines the lift parameter of equation (20) as a function of position along the flight path; it is an 
extended form of (28). To obtain the statistical description of the response of the aircraft the spectrum 
of l(x) must be related to the two-dimensional lateral turbulence energy spectrum. 

The correlation function is obtained by the definition given in equation (2), 

bJ2b/2 i i  
f~(x) = ~ ~,(yO ~(y~l h(x~, YO x 

-b[2-b[2 0 0 

X h(x2,  Y2) w(r-xl, Yl) w(r+x--x2, Y2) dxl d x  2 dyl dy2 

If the turbulence is a stationary random process the correlation function depends only upon the difference 
of the space co-ordinates and so 

w(r  - -  X1, Yl)  w(r  + x - -  x2,  Y2) = fw( X + x1 -- x2, Y2 -- Yl) 

and by using equation (10) 

1 i ieiklxsw(kl, k2)[F2(kl, kE)[2dkldk 2 f,(x) - (2~ ~ ~)~ 
-oo -oo 

10 



where 

°,2 i 1 f 7(y) h(x, y)e-itk,x + k2Y) dx dy. F2(kl, k2) = 

- b / 2  - co 

Hence the spectrum of the lift parameter is 

co 

0 

(33) 

(34) 

this being the generalisation of (29) to include spanwise variation of gust velocity. 
Drischler ~2 has shown that for a wing experiencing a sudden change in vertical velocity (corresponding 

to the Wagner effect) the spanwise loading distribution remains almost constant, except possibly for a 
short distance after the change. It seems reasonable to assume that the same applies for the Ktissner 
effect, that is, the spanwise lift distribution remains constant after an unswept wing has entered a vertical 
gust of constant velocity over the entire span. This implies that the local unsteady lift function introduced 
in equation (31) is independent of spanwise position. Denoting the Fourier transform of this function 
of x by H(k), equation (33) may be rewritten as 

F2(kl, k2) = H(kl) Fl(k2) 

where 

b / 2  

if Ft(k2) = -~ 7(y) e-ik2y dy 
- b / 2  

and for the usual case of a symmetric steady lift distribution, Fl(k2) is a real function: 

b / 2  

Fl(k2) = ~ y(y) cos k2y dy. 
0 

(36) 

With this form of F2(kl, k2) equation (34) is now of a similar form to (29), the one-dimensional spectrum 
S~,(k) in the latter being replaced by an effective spectrum gw(k) of one-dimension, related to S~,(kl, k2) by 

co 

0 

Sw(k, k2) [Fl(k2)] 2 dk2. (37) 

Since the aircraft is assumed to be rigid the effect of unsteady aerodynamics on the part of the lift 
fluctuations due to aircraft heaving is the same as that in the case neglecting spanwise gust variations. 
Hence the normal acceleration spectrum is 

k 2 U2IHI(k)[ 2 (38) 
Sa (k) = l i k ~ ~ Sw(k). 

11 



3.5. Effect of Sweep. 
For an unswept aircraft flying through a patch of turbulence giving a significant spanwise variation 

the mean square normal acceleration is lower than that with negligible variation across the span. For 
a swept wing aircraft of the same span there is a larger reduction in the magnitude of the response since 
the two-dimensional variations are now 'averaged' both laterally and longitudinally. The averaging 
of variation along the flight path occurs even when the one-dimensional spectrum is assumed and for 
aircraft of very low aspect ratio can be more significant than the spanwise variations. Little information 
is available in general form for the unsteady lift of a swept wing and so a transfer function is derived 
under the assumptions of the previous Section; in particular it is assumed that the local unsteady lift 
function of each chordwise element of the wing is independent of other elements and the same at all 
span positions (referred to the leading-edge position of the appropriate element). 

The expression corresponding to (32) for the lift of a wing with a straight leading edge swept at an 
angle A is 

b / 2  oo 

U--oWl(x)= f½pUag7(y) fh(xOw(x-xl-Jy]tanA, y)dxldy. 
- b ]2  0 

(39) 

Proceeding as in Section 3.4 leads to an equation similar to equation (34) but with the function F2(kl, k2) 
now defined by 

F2(kl, k2) = 1 f 7(y) h(x)e_i(k,x+kdyLtanA+k2Y)dxdy 
- -  b / 2  - -  co 

which for a symmetrical loading function reduces to 

b / 2  

Fz(k 1, k2)-- H(k,)2f 
0 

7(Y) cos (kty tan A) cos k2y dy. (40) 

For the particular case of constant loading this gives 

F2(k 1, k2) = H(kt) -p sin p cos q-q cos p sin q p2q2 

where 

~_ kzb 
p = t a n A ,  q - 2 

Equation (40) has replaced the function Fl(k2), defined by (36), by an expression involving both k 1 and 
k 2. This is in addition to the common factor H(kl) and thus represents the additional reduction in the 
response to a swept wing. 

A form of the effective spectrum ~w(k) has now been obtained that includes the effect of sweep but to 
obtain the transfer function to normal acceleration the Wagner function must be modified. In the absence 
of general functions for such a planform some indication of the effect of sweep is found by assuming a 
constant spanwise loading in addition to the other simplifications used in this section. The Fourier 

12 



transform of the Wagner function is then equal to the transform for the corresponding unswept wing 
multiplied by a factor [1 - exp ( -  i k ~ t/)]/(i k ~ r/) where t / =  ½ b tan A/~. 

4. Evaluation of Response Factors. 
4.1. Calculation of Effective Spectrum. 

It was decided to evaluate numerically the integrals for gust response and zero crossings factors. 
For some forms of spectrum and transfer function it is possible to use analytical methods but by using 
one basic computer programme any combination of spectrum and transfer function may be used. The 
numerical calculations would take a prohibitive time if it were necessary to carry out a double integration 
for every condition under which the response factors of an aircraft were required. The methods by which 
this is avoided are outlined below, the mathematical details being given in Appendix A. 

The only parameters involved in the evaluation of Sw(k) by equation (37) are the loading distribution, 
wing span and turbulence scale, with the last two being combined in the non-dimensional variable of 
span-scale ratio. In particular ~w(k) is independent of both the chord-scale ratio and the mass parameter 
so that the response factors can be calculated simultaneously for a range of # and C values using only 
one evaluation of $~(k) for each step of the variable k. Thus it would appear that a complete range of 
the integrated two-dimensional spectrum is required to be calculated for each scale of turbulence through 
which a particular aircraft flies (i.e. for a given span-scale ratio for a prescribed span-wise loading dis- 
tribution); however a further large reduction in the numerical integration required can be made by 
relating the values of Sw(k) at higher frequencies to a general spectrum. The results of the integrations 
for the general spectrum for a particular loading are expressed in tabular form and $~(k) is determined 
from these values by multiplying by a simple power of the required span-scale ratio. 

This Table of values need be calculated only once for each loading distribution and thus it is feasible 
to use a longer, more accurate method than would be possible if it was necessary to incorporate more 
variables. For small k values S~(k) must still be found by integration for each span-scale ratio but this 
typically represents only one fifth of the total number of k values which must be used to find the gust 
response factor and a still lower proportion of the total required to find the slower converging zero 
crossings factor. At these lower frequencies the response reduction due to span effect is less significant 
and all spectra then approach the one-dimensional form. Fig. 2 shows the ratio of the effective spectrum 
to the one-dimensional spectrum for various fl values, with constant loading. 

Most of the commonly occurring spanwise loading distributions fall between the constant and the 
triangular cases which thus correspond to the maximum and minimum reduction in response that may 
be expected. The difference between these two cases is much smaller than that between the spectrum 
for triangular loading and the one-dimensional spectrum; this is demonstrated in Fig. 3 for the value 
of fi = 0.2. Thus it is only necessary to use a very simple approximation to the loading function in order 
to obtain a spectrum of much greater accuracy than the one-dimensional one. 

4.2. Response Factors. 
Evaluation of equations (16) and (17) gives the value of the required gust response and zero crossings 

factors. With the effective spectrum calculated as described in the previous Section and using a particular 
transfer function (equation (38)) the integrals are evaluated by the numerical method described earlier. 

The gust response and zero crossings factors for constant loading are given in Table 4 for aspect 
ratios from 2 to 16 and span-scale ratios from 0"025 to 0.4. The relationships between the factors and 
these parameters are illustrated in Figs. 5 to 8. The corresponding values for an elliptical loading distri- 
bution are given in Table 5 for a less extensive range of variables and show that there is very little dif- 
ference between the two cases. The zero crossings factor converges rapidly to its limiting value for large 
#, which can be seen in the tables of M0. For an aircraft flying in turbulence of a given scale length it 
will often be sufficiently accurate to evaluate M0 for just one # value, the variation of the actual number 
of zero crossings N o with changing # being entirely due to changes in K (from equation (15)). 

For Tables 4 and 5 the Kiissner and Wagner unsteady lift functions for two-dimensional flow were 
used, as given in the first line of Table 1. The magnitudes of K obtained using these values and those 
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appropriate to finite aspect ratios of 3 and 6 are compared in Fig. 4; the curves are seen to be similar 
with less difference for the higher aspect ratio, as would be expected. If the Wagner effect is neglected 
K is underestimated and while M 0 retains the same limiting value for high/~, convergence is slower. 
Neglecting the effect of aspect ratio on the unsteady lift functions means that the response factors depend 
on this quantity only through its influence on the effective spectrum (i.e. for a given C,/~ is proportional 
to aspect ratio); since this in turn has a more powerful effect at high frequencies, M o has a higher per- 
centage variation with aspect ratio than K. This slight variation of K is shown to be approximately 
linear in Fig. 5 whereas Fig. 6 demonstrates the nearly linear dependence of Mo on the logarithm of 
aspect ratio. Figs. 7 and 8 show the same quantities plotted against chord-scale ratio. All of these illu- 
strations are for the constant loading case. 

Calculations have been made using unsteady lift functions for two-dimensional compressible flow 
given in Table 1. These cause only a very small fractional decrease in K but the variation of the zero 
crossings factor with Mach number is more pronounced, as shown in Fig. 9. 

5. Conclusions. 

The calculation of the root mean square of aircraft normal acceleration response to turbulence by 
an elementary spectral method is described which is similar to many simple general methods that have 
been used in the past. 

This approach is extended to include the spanwise variations of the gust velocity when flying through 
turbulence that is homogenous in the horizontal plane. This reduces the predicted response at high 
frequencies and enables studies of the numbers of crossings of response levels to be made, which is of 
direct application to the interpretation of observations. 

A general effective spectrum is derived for any given spanwise loading distribution that is applicable 
to all but the lowest frequencies; the spectrum of turbulence energy averaged across the span is found 
from this by inserting an appropriate scaling factor (/~, the ratio of span to turbulence scale length). 
In this way a full double integration is avoided and only a little more numerical work is involved than 
in a method neglecting spanwise variations completely. 

Numerical results are expressed in terms of the gust response factor and a zero crossings factor, the 
latter being defined such that it is almost independent of the mass parameter and eliminating the need 
for repeated evaluations for different weights of an aircraft. The factors are tabulated for a range of 
parameler values using two-dimensional unsteady lift functions which have been found to be an accept- 
able simplification. The effect of compressibility on these functions is illustrated. The tables are suitable 
for interpolating values of the response factors between the given part, rectors and curves are drawn 
to denlonslrate the relationships between these. 

APPENDIX 

Derivation of General Spectrum 

The possible simplifications in the determination of the effective one-dimensional spectrum that 
were described in Section 4.1 are developed here using as an example the Von Kfirmfin spectrum and 
an aircraft having negligible sweep and a constant spanwise loading distribution. 

The non-dimensional variables #. (= kL), [~( = h/L) and C(= UL) are used. 
k~lk2) may be evaluated from (36) for a particular loading distribution and expressions are given in 

sin (/~ 4/2) 
Table 2 for various distributions. For  the example used here it is 

(/~ 4/2) 
From (13) the two-dimensional spectrum is 

Sw(4 t/L, ~2/L) = (1"3392. 16/9) a 2 g L 2 1"3392 (42 + 42) 
[1 + 1.3392 (42+42)] 7/3. 
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For this example equation (37) becomes 

co 

f 1"3392 (42 + 42) Vsin(fl 42/2)-12 
g~(4/L) = 3"1874tr2L [1+1.3392(42 + 2 j 42)77/3 L - ~  J d42 (41) 

0 

For values of 4 sufficiently large that 1.3392 42 is much greater than unity this may be simplified to give 

gw(4/L) = fl5/3 SG(fl 4) (42) 

where 

co 

f 2 2 -4/a sin(r/2) 2 S~(f14)=g'1874a~L [1"3392{(fl4) + r  }] ( ~ )  dr. 

0 

(43) 

The general spectrum (So(fl 4) need be calculated only once for any particular loading distribution 
and equation (42) can then be used to find the effective spectrum for all values of fl, for sufficiently large 
4. For small values of 4 it is necessary to evaluate '~w(4/L) directly from equation (41) for each value of ft. 

For use in the calculation of the gust response factors, So(fl 4) was tabulated at values of fl 4 that were 
evenly spaced on a logarithmic scale. This spacing was chosen such that during the integration over 
4 (to calculate the response factors) it did not exceed the step length that was required to give sufficient 
accuracy of the response factor results. The numerical scheme used to evaluate the integrals of equations 
(42) and (43) employed a variable interval to keep accuracy within a prescribed limit and the integration 
was continued until the truncation error come within another specified limit. 

Table 3 gives the general spectra for rectangular, elliptical and triangular loading distributions on a 
coarsely spaced set of fl 4 values. Fig. 1 shows the constant loading averaged spectra for a number of 
fi values, plotted against fi 4; the inclusion of the factor fl-s/3 demonstrates the approach of these spectra 
to the general spectrum. 
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TABLE 1 

Unsteady Lift Functions. 

Aspect Mach At A 2 A 3 B 1 B 2 B3 
ratio No. 

Kiissner effect 

O 0  

6 
3 
09 

oo 

co 

6 
3 

OO 

oo 

oo 

0 

0 
0 
0 
0.5 
0.6 
0.7 

0 
0 
0 
0 
0.5 
0.6 
0.7 

0"5 

0.48 
0'679 
0"236 
0.390 
0.328 
0.402 

0.458 
0.361 
0.283 
0.165 
0.352 
0.362 
0.364 

0'5 
0.334 
0.227 
0.513 
0.407 
0.430 
0.461 

0-335 
0.216 
0-504 
0.405 

0.171 
0.203 
0.242 
0.137 

Wagner effect 

-0"670 
-0.715 
-0.419 

0'26 
0"588 
1"16 
0'116 
0"1432 
0"1090 
0"1084 

0"265 
0-762 
1-080 
0"090 
0-1508 
0-1292 
0-1072 

2"0 
1"93 
6"4 
0"728 
0'748 
0"514 
0'625 

0"600 
0"744 
0"962 
0'714 

4"84 
4"33 
2.922 
2-948 

3'780 
1"916 
1.804 

= k2 L  

TABI,F 2 

Spanwise Loading Distributions and Associated Functions. 

Loading 

Rectangular 

(constant) 

Triangular 

General 
taper 

Elliptical 

7(y) 

2(1-2y/b) 

A + 2By/b 

4 [1 - (2y/b)2]½ 
7~ 

F,(k2) 

sin(fl{/2) 

fl{/2 

2[-1 - cos(fl {/2)] 
(fi{/2) z 

(A +B) sin (fl 4/2) B[1 - c o s  (fi 4/2)] 
~)2 (fi{/2) z 

2 J1 (fl 4/2) 

fi {/2 
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T A B L E  3 

General Form of Effective Von Karman Spectra. 

loglo  (fl 4) S6(fl ~)/(aw z L) 

rectangular triangular elliptical 

0"80 
- 0 " 6 4  
- 0"48 
- 0 " 3 2  

- 0 " 1 6  
0"00 
0"16 
0"32 
0"48 
0"64 
0"80 
0"96 
1"12 
1"28 
1"44 
1"60 
1"76 
~'92 
2"08 
2"24 

0.3491 2 
0.1874 2 
0.1000 2 
0-5289 1 
0.2759 1 
0.1410 1 
0.6998 0 
0.3343 0 
0.1524 0 
0.6618 - 1 
0.2747 - 1 
0.1101 - 1 
0.4313 - 2  
0.1664 - 2  
0.6359 - 3  
0.2414 - 3  
0.9124 - 4  
0.3439 - 4  
0.1291 - 4  
0.4883 - 5  

0.3508 2 
0.1889 2 
0-1014 2 
0.5408 1 
0.2860 1 
0.1491 1 
0.7617 0 
0.3780 0 
0-1805 0 
0.8235 - 1 
0.3572 - 1 
0.1478 - 1 
0.5883 - 2 
0.2280 - 2 
0.8696 - 3 
0.3287 - 3 
0.1236 - 3  
0-4639 - 4  
0-1739 - 4  
0.6514 - 5  

0-3499 2 
0-1881 2 
0.1006 2 
0.5345 1 
0.2805 1 
0-1447 1 
0-7274 0 
0.3532 0 
0.1642 0 
0.7263 - 1 
0.3058 - 1 
0-1235 - 1 
0.4838 - 2  
0-1859 - 2  
0-7062 - 3  
0.2665 - 3  
0.1002 - 3  
0-3761 - 4  
0-1410 - 4  
0-5287 - 5  
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TABLE 4(i) 

Response Factors for Constant Loading, Aspect Ratio 2. 

0"025 0.05 0.10 0.20 0-40 

C 0.0125 0"025 0"05 0.1 0"2 

vC Gustresponse ~ctor, K 

0.0500 
0.0707 
0.1000 
0.1414 
0.2000 
0.2828 
0.4000 
0.5657 
0.8000 
1.1314 
1.6000 
2.2627 
3.2000 

0.2672 
0.3141 
0.3649 
0.4201 
0.4784 
0.5386 
0.5995 
0"6589 
0.7147 
0.7650 
0.8080 
0.8432 
0.8707 

0.2334 
0.2797 
0.3313 
0.3865 
0-4457 
0.5068 
0.5686 
0.6288 
0.6851 
0.7355 
0.7784 
0.8134 
0.8406 

0.1936 
0.2376 
0.2872 
0-3418 
0-4003 
0.4617 
0-5238 
0-5842 
0.6406 
0.6906 
0.7331 
0-7674 
0.7939 

Zero crossings, M o 

0"1507 
0.1902 
0-2358 
0.2869 
0-3427 
0-4018 
0"4622 
0.5213 
0.5764 
0.6253 
0"6664 
0"6994 
0.7247 

0'1086 
0"1413 
0'1803 
0.2252 
0"2752 
0"3289 
0-3844 
0"4392 
0.4905 
0"5361 
0"5745 
0'6051 
0"6285 

0"0500 
0"0707 
0.1000 
0.1414 
0"2000 
0"2828 
0'4000 
0"5657 
0"8000 
1"1314 
1 "6000 
2.2627 
3"2000 

0.0208 
0.0211 
0"0213 
0-0214 
0"0215 
0"0216 
0"0216 
0"0216 
0"0216 
0'0216 
0"0216 
0"0216 
0"0216 

0"0250 
0"0257 
0-0262 
0"0266 
0"0268 
0"0270 
0"0271 
0"0271 
0"0271 
0"0271 
0.0271 
0"0271 
0"0271 

0.0288 
0-0303 
0-0314 
0"0323 
0"0329 
0"0333 
0"0336 
0"0338 
0.0339 
0"0339 
0"0339 
0"0339 
0.0339 

0-0313 
0"0339 
0-0362 
0"0380 
0"0393 
0.0404 
0"0411 
0"0415 
0"0418 
0"0419 
0"0419 
0.0419 
0"0419 

0"0314 
0.0354 
0"0391 
0"0423 
0"0450 
0"0470 
0'0486 
0"0496 
0'0502 
0"0506 
0"0507 
0"0508 
0"0508 
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TABLE 4(ii) 

Response Factors for Constant Loadino, Aspect Ratio 4. 

fl 0.025 0.05 0.10 0.20 0.40 

C 0.00625 0.0125 0.025 0.05 0-1 

#C Gust response factor, K 

0.0500 
0.0707 
0-1000 
0-1414 
0.2000 
0.2828 
0.4000 
0-5657 
0.8000 
1.1314 
1.6000 
2-2627 
3.2000 

0.0500 
0.0707 
0.1000 
0.1414 
0.2000 

0.2845 
0-3314 
0.3819 
0.4365 
0.4942 
0.5540 
0.6144 
0.6735 
0.7292 
0.7795 
0.8227 
0.8580 
0-8858 

0.0142 
0.0143 
0.0144 
0.0144 
0.0144 

0.2543 
0.3016 
0.3537 
0.4089 
0.4681 
0.5288 
0.5903 
0.6505 
0.7068 
0.7574 
0.8008 
0"8362 
0.8639 

0.0172 
0-0176 
0-0178 
0.0180 
0-0181 

0.2165 
0-2627 
0.3142 
0.3703 
0.4297 
0.4917 
0.5543 
0.6153 
0.6722 
0.7231 
0.7664 
0.8017 
0.8292 

Zero crossings factor, Mo 

0.0204 
0.0211 
0.0217 
0.0221 
0.0224 

O" 1740 
0.2166 
0.2654 
0.3196 
0.3782 
0.4399 
0-5025 
0.5635 
0.6205 
0.6711 
0-7140 
0.7487 
0.7755 

0.0230 
0.0245 
0.0256 
0.0266 
0.0272 

0.2828 
0.4000 
0.5657 
0-8000 
1.1314 
1-600 
2-2627 
3.200 

0.0145 
0.0145 
0.0145 
0.0145 
0.0145 
0.0145 
0.0145 
0.0145 

0.0182 
0-0182 
0.0182 
0.0182 
0.0182 
0.0182 
0.0182 
0.0182 

0.0226 
0.0277 
0.0228 
0.0229 
0.0229 
0.0229 
0.0229 
0.0229 

0.0277 
0.0281 
0.0283 
0.0284 
0.0285 
0.0285 
0-0285 
0-0285 

0-1307 
0.1673 
0.2105 
0.2596 
0-3141 
0.3724 
0-4324 
0.49t4 
0.5466 
0.5957 
0.6370 
0-6701 
0.6956 

0.0244 
0.0268 
0.0289 
0.0306 
0.0320 
0.0331 
0.0339 
0.0344 
0.0347 
0-0348 
0-0348 
0.0348 
0.0348 
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TABLE 4(iii) 

Response Factors for Constant Loading, Aspect Ratio 8. 

fl 

C 

//C 

0.0500 
0.0707 
0-1000 
0.1414 
0.2000 
0.2828 
0-4000 
0.5657 
0.8000 
1.1314 
1.6000 
2.2627 
3.2000 

0.0500 
0.0707 
0-1000 
0.1414 
0.2000 
0-2828 
0.4000 
0-5657 
0-8000 
1.1314 
1.6000 
2.2627 
3.2000 

0.04 0.025 0.05 0-10 0.20 

0.003125 0-00625 0.0125 0.025 0.05 

Gust  response Nctor, K 

0.2951 
0.3417 
0.3919 
0.4461 
0.5031 
0-5628 
0.6228 
0-6819 
0-7377 
0.7878 
0.8310 
0.8664 
0.8942 

0.0092 
0.0093 
0.0093 
0.0094 
0.0094 
0.0094 
0.0094 
0.0094 
0.0094 
0.0094 
0.0094 
0.0094 
0.0094 

0.2683 
0.3157 
0.3675 
0-4225 
0-4813 
0.5417 
0.6030 
0.6630 
0.7193 
0.7701 
0.8136 
0.8493 
0.8773 

0.2330 
0-2802 
0.3326 
0-3887 
0-4481 
0.5101 
0.5727 
0.6337 
0.6908 
0.7421 
0.7860 
0.8218 
0.8498 

0.1915 
0.2362 
0.2868 
0.3425 
0-4022 
0.4646 
0.5280 
0.5897 
0.6475 
0.6991 
0.7431 
0.7788 
0-8066 

0.1479 
0.1873 
0.2333 
0.2852 
0.3424 
0-4023 
0-4656 
0.5267 
0.5840 
0.6350 
0.6783 
0.7133 
0.7403 

Zero crossings factor, M 0 

0"0114 
0'0116 
0.0117 
0.0118 
0.0118 
0-0118 
0-0118 
0.0119 
0.0119 
0.0119 
0-0119 
0.0119 
0-0119 

0-0137 
0'0141 
0.0144 
0'0146 
0-0147 
0.0148 
0"0148 
0.0149 
0.0149 
0.0149 
0"0149 
0-0149 
0-0149 

0.0159 
0.0166 
0"0173 
0"0177 
0-0181 
0-0183 
0"0185 
0"0186 
0"0186 
0'0186 
0"0186 
0"0186 
0-0186 

0-0176 
0'0189 
0'0200 
0"0209 
0"0216 
0.0221 
0-0225 
0"0228 
0'0229 
0'0230 
0"0230 
0"0230 
0'0230 
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TABLE 4(iv) 

Response Factors for Constant Loading, Aspect Ratio 16. 

fl 0.025 0.05 0.10 0-20 0.40 

C 0.0015625 0.003125 0.00625 0.0125 0-025 

~C Gustresponsefactor, K 

0.0500 
0.0707 
0.1000 
0.1414 
0-2000 
0-2828 
0-4000 
0-5657 
0-8000 
1.1314 
1.6000 
2.2627 
3.2000 

0.0500 
0.0707 
0.1000 
0.1414 
0.2000 
0.2828 
0.4000 
0.5657 
0-8000 
1.1314 
1-6000 
2-2627 
3-2000 

0.3009 
0.3472 
0.3971 
0.4512 
0-5079 
0-5674 
0.6274 
0.6863 
0.7421 
0.7922 
0.8354 
0.8709 
0.8970 

0.0059 
0.0059 
0.0059 
0.0059 
0.0059 
0-0059 
0.0059 
0.0059 
0-0O59 
0-0059 
0.0059 
0.0059 
0.0059 

0"2760 
0.3234 
0.3745 
0.4299 
0.4882 
0.5485 
0.6096 
0.6695 
0.7259 
0.7767 
0-8204 
0.8562 
0-8843 

0.0073 
0.0074 
0.0074 
0.0074 
0.0075 
0.0075 
0.0075 
0.0075 
0.0075 
0.0075 
0.0075 
O.OO75 
0.0075 

0.2430 
0.2903 
0.3423 
0.3986 
0.4579 
0.5197 
0.5822 
0-6433 
0.7006 
0.7521 
0-7963 
0.8325 
0.8608 

Zero crossings factor, Mo 

0.0089 
0.0091 
0.0092 
0.0093 
0'0093 
0.0094 
0.0094 
0.0094 
0.0094 
0.0094 
0.0094 
0.0094 
0.0094 

0.2032 
0.2486 
0.2998 
0.3558 
0.4156 
0-4782 
0.5416 
0-6037 
0-6619 
0.7141 
0.7587 
0.7951 
0.8236 

0.0105 
0.0109 
0.0112 
0.0114 
0.0115 
0.0117 
0.0118 
0.0118 
0.0118 
0-0118 
0-0118 
0-0118 
0"0118 

0.1603 
0.2011 
0.2486 
0.3017 
0.3600 
0.4216 
0-4847 
0.5466 
0.6049 
0.6570 
0.7015 
0.7377 
0.7659 

0.0119 
0.0126 
0.0132 
0.0136 
0.0140 
0.0143 
0.0145 
0.0146 
0.0147 
0.0147 
0.0147 
0-0147 
0.0147 
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TABLE 5(i) 

Response Factors for Elliptical Loading, Aspect Ratio 2. 

C 

#C 

0"05 
0"10 

0"05 

0.025 

0.2358 
0.3333 

0-1 

0.05 

Gust response factor, K 

0.1967 
0.2904 

0.2 

0.1 

0.1542 
0.2399 

0.20 
0.40 
0.80 
1.60 
3"20 

0.05 
0.10 
0.20 
0.40 
0.80 
1.60 
3.20 

0.4478 
0.5706 
0.6869 
0.7800 
0.8421 

0.4035 
0-5267 
0.6432 
0.7356 
0.7964 

Zero crossings factor, M o 

0"0259 
0.0271 
0.0277 
0.0279 
0-0280 
0-0280 
0.0280 

0.0299 
0"0325 
0.0340 
0"0347 
0-0349 
0"0349 
0"0349 

0.3470 
0"4665 
0"5806 
0.6705 
0"7287 

0"0327 
0"0376 
0.0408 
0.0424 
0-0434 
0"0433 
0"0433 
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TABLE 5(ii) 

Response Factors for Elliptical Loadin#, Aspect Ratio 4. 

/~ 0'05 0.1 0.2 

C 0.0125 0.025 0.05 

#C Gust response factor, K 

0-05 
0.10 
0"20 
0-40 
0'80 
1-60 
3-20 

0-05 
0.10 
0-20 
0.40 
0.80 
1.60 
3.20 

0.2575 
0.3564 
0.4707 
0.5929 
0.7091 
0-8028 
0.8658 

0.2206 
0.3183 
0.4339 
0-5581 
0.6756 
0.7696 
0.8322 

0.1786 
0.2707 
0"3839 
0"5080 
0.6258 
0.7191 
0.7805 

Zero crossings factor, Mo 

0.0179 
0.0185 
0.0188 
0.0t89 
0.0189 
0.0189 
0.0189 

0.0213 
0.0226 
0.0233 
0.0236 
0-0237 
0.0237 
0.0237 

0.0241 
0"0268 
0.0284 
0-0291 
0.0294 
0-0295 
0.0295 
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TABLE 5(iii) 

Response Factors for Elliptical Loading, Aspect Ratio 8. 

fl 0.5 0.1 0-2 

C 0-00625 0-0125 0-025 

pC Gust response factor, K 

0.05 
0.10 
0.20 
0.40 
0.80 
1.60 
3.20 

0.2723 
0-3710 
0-4846 
0-6061 
0-7221 
0.8161 
0.8796 

0-2380 
0.3374 
0.4531 
0"5772 
0.6950 
0.7898 
0.8535 

Zero crossings factor, Mo 

0.1972 
0-2933 
0.4091 
0.5347 
0.6539 
0.7492 
0.8126 

0.05 
0.10 
0.20 
0-40 
0-80 
1.60 
3.20 

0.0119 
0"0122 
0.0123 
0"0123 
0.0123 
0.0123 
0.0123 

0.0143 
0.0150 
0.0153 
0.0154 
0"0155 
0"0155 
0-0155 

0"0167 
0-0181 
0.0189 
0.0192 
0.0194 
0-0194 
0-0194 
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TABLE 5(iv) 

Response Factors for Elliptical Loading, Aspect Ratio 16. 

fl 0"05 0.1 0"2 

C . 0.003125 0"00625 

#C Gust response factor, K 

0.05 
0.10 
0.20 
0.40 
0.80 
1.60 
3.20 

0-05 
0-10 
0.20 
0.40 
0.80 
1.60 
3.20 

0.2808 
0-3790 
0.4920 
0-6132 
0-7291 
0.8233 
0-8871 

0.0072 
0.0076 
0.0078 
0.0078 
0.0078 
0.0078 
0.0078 

0.2488 
0.3483 
0.4637 
0.5874 
0.7053 
0.8007 
0.8651 

Zero crossings factor, Mo 

0.0093 
0.0096 
0.0098 
0-0098 
0.0098 
0.0098 
0.0098 

0-2098 
0-3073 
0-4235 
0.5494 
0-6692 
0.7657 
0.8304 

0.0010 
0.0117 
0.0121 
0.0123 
0.0123 
0.0123 
0.0123 

2~5 



A j  

a 

Bj 

b 

C 

Fl(k), F2(kl, k2) 

.fix, y) 

H(k) 

h(x) 

h(x, y) 

K 

k, kl, k2 

L 

1 

Mo 

No 

R,r 

S 

So(k) 

sdflO 

S~(k) 

S~(k) 

Sw(kl,  k2) 

~w(k) 
T(k) 

t 

U 

13, V~ W 

W 

x 

Y 

LIST OF SYMBOLS 

Constants in unsteady lift function approximations 

Aircraft lift slope 

Constants in unsteady lift function approximations. 

Wing span 

= ~/L, chord-scale ratio 

Mean chord 

Functions in averaged spectrum 

One-dimensional correlation function 

Two-dimensional correlation function 

Fourier transform of h(x) 

Impulsive lift response function of wing 

Local impulsive lift response function of a section of wing at position y 

Gust response factor, equation (14) 

Wave numbers 

Scale of turbulence 

Lift parameter (= g/WU times lift force due to vertical gust velocity) 

Zero crossings factor, equation (15) 

Number of times that zero value is crossed in each direction per unit distance 

Distance along x axis 

Wing area 

Normal acceleration spectrum 

General spectrum, equation (43) 

Lift parameter spectrum 

One-dimensional lateral turbulence energy spectrum 

Two-dimensional lateral turbulence energy spectrum 

Effective one-dimensional turbulence spectrum 

Transfer function 

Time 

Mean horizontal velocity 

Components of gust velocity along x, y, z axes 

Aircraft weight 

Distance along flight path 

Horizontal distance normal to flight path 
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g 

~(y) 
A 

P 

O" a 

O" w 

~(X) 

~p(X) 

Vertical distance normal to flight path 

Span-scale ratio = b/L 

Spanwise loading distribution 

Angle of sweep 

Mass parameter = 2W/(p S ~ O a) 

= kL  

Air density 

Root mean square normal acceleration 

Root mean square vertical gust velocity 

Wagner function 

Kiissner function 
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