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Summary. 
In two-dimensional potential flow the combination of a source and a free vortex produces an axis- 

symmetric flow with streamlines in the form of equiangular spirals. Calculations have been made of the 
turbulent boundary layer developing beneath such a flow and the results have been compared with 
measurements made elsewhere. 

The method of calculation used is essentially that described earlier by Cumpsty and Head, integral 
equations of momentum and entrainment being satisfied in a streamline co-ordinate system. 
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1. Introduction. 

In two-dimensional potential flow, the combination of a source and a vortex produces streamlines 
which take the form of equiangular spirals, the angle being determined by the ratio of the strengths of the 
source and the vortex. Such a flow is approximated in practice by that occurring in a so-called vaneless 
diffuser. The boundary layer that develops on the diffuser wall is fully three-dimensional, being affected 
both by divergence and by the crossflow which results from the curvature of the external streamlines. 
The development of the boundary layer has a great effect on the efficiency of the diffuser, and if the pressure 
rise is large separation may occur. The present calculations therefore deal with a case of some practical 
significance. 

This problem was selected for study because the mainstream imposes an adverse pressure gradient on 
the boundary layer and large crossflows are generated. Moreover, experiments by Gardow 1 provide 
several sets of measurements with which the results of the calculations can be compared. 

Gardow investigated the three-dimensional turbulent boundary layer on the wall ofa  vaneless diffuser 
with different values of the swirl angle at inlet. This was controlled by varying the rate of rotation of a 
cylindrical wire screen at inlet, as indicated in Fig. 1. Jansen 2 continued Gardow's work but with the 
interest extended to the whole regime of flow between the diffuser walls. His theoretical analysis of the 
problem assumed fixed power laws for the mean velocity profiles and was so closely adapted to this 
particular problem that it is difficult to see how it could be applied to a general three-dimensional turbulent 
boundary layer. 

The method used in the present calculation is similar to that of Cumpsty and Head 3. It makes use of 



two momentum integral equations, One in the streamwise and one in the crossflow direction, and an 
equation of entrainment, 

2. Co-ordinate System. 
2.1. Preliminary. 

In three-dimensional boundary-layer problems, it is important to choose the co-ordinate system best 
suited to the case under consideration. Sometimes considerable simplification of the analysis can be 
achieved by considering the geometry of the body or that of the external flow. 

In general, the most convenient co-ordinate system is that related to the external streamlines. Such 
a choice leads to simple boundary conditions and has other advantages, as pointed out by Cumpsty and 
Head a. However, it does mean that an initial calculation of the external streamlines and their orthogonal 
trajectories is necessary. In principle, this can be carried out by 'measuring' distances along streamlines, 
curvatures and divergence of streamlines, etc., but considerable time and effort can be saved if reasonably 
simple analytical expressions can be found for the external streamlines and their orthogonal family. The 
required information can then be easily extracted. 

2.2. Co-ordinate System based on Logarithmic Spirals and their Orthogonal Family. 

The combination of a free vortex flow, vo = C2/r, and a source flow, vr = C1/r, is a logarithmic spiral 
flow where v~ and Vo are the radial velocity and tangential velocity respectively, r is the radius and C1, C2 
are constants. The resultant velocity vector makes a constant angle e with the circumferential direction, 
where tan e = C~/C2, as shown in Figure 1. 

The differential equation of a ~treamline is 

1 dr 

r dO 
- - -  = tan c~ = constant (a, say). 

On integration, r = C exp (a0), where C is the integration constant. 
By choosing different values for the constant C, a family of logarithmic spirals is generated. It can then 

be deduced that the family of orthogonal trajectories to these spirals is 

r = D exp ( -  O/a), 

where D is the family parameter. It may be noted that the constant a depends on the swirl angle for the 
particular case considered. 

To define the co-ordinate system fully, a radial reference line must be chosen for 0 = 0. Referring to 
Figure 2, the streamline t /can then be identified as the spiral which meets this reference line at a radial 
distance t/. Similarly, the potential l~ne ~ can be defined as the trajectory orthogonal to the spirals which 
meets 0 = 0 at r = 4. By defining ~ as the actual distance measured perpendicular to the plane of (4, q), 
a right-hand orthogonal curvilinear co-ordinate system is formed. It may be noted that by such a definition 
of the co-ordinate system, ~ and t/have dimensions of length. 

2.3. Properties of the Streamline Co-ordinate System. 
For any general orthogonal curvilinear co-ordinate system 4, q on the surface of a body, the distance 

between adjacent lines of constant ~ or q will vary fi'om point to point. The actual distance measured 
along the surface relating to incrementals in ~ and q is given by 

ds 2 = h 2 d ~2+h2 dr/2 

where s is the actual distance on the surface, and hi and h 2 a r e  the Lam6 coefficients (which in this case 
are dimensionless). 



It is necessary to determine h~ and h 2 as functions of ~ and ~/. To evaluate h~, integration is carried 
out on the streamline t/to obtain the distance along the path between (4, t/) and (4 + d~, q). 

The equation of the streamline is r = q exp (aOI. and since 

= _+ x/ r  ~ + (d~/d0) ~ d0,  

the elemental length hid ~ = x/rl 2 e2"° + a2 rl 2 e ~-"° dO 
,)0~ 

where 01 and 02 are the angles corresponding to points (£, t/) and (~ + d~, q). 
The details of the integration are given in the Appendix. 

,  sshown  ath  

To evaluate h2, the integration is carried out along the potential line 

f 
03 

h2drl = x / r  2 + (dr~dO) 2 dO 
ol 

where 0 3 n o w  "corresponds to the position (4, t/+ dtt). As shown in the Appendix 

hE a ~ \ r / )  " 

As h~ and h2 are explicitly functions of~ and q, the convergence and curvatures are simply the appropri- 
ate partial differentials. It may also be noted that this method of evaluating hi and h2 is different in details 
from that of Cumpsty and Head 3, and is more convenient for this particular case. 

The expression for the external velocity U can also be simply obtained in terms of~ and q. 

Since U = x/(C~ + C~)/r = C2 x /1  +aZ/r ,  

it can be shown that on a streamline, 

U = C 2 ~/1 +a  z (q)- 1/(.2+ t)(~)_a2/t~2+ 1). 

Two useful expressions are then 

1 ~U a 2 
U ~ -  a 2 + 1 ( 0 - 1  

and 
1 BU 1 (~)-~. ~ '  ~ -  = - a 2 +-----]- 

2.4. Simplification of  Analysis due to Radial Symmetry. 

Consider a functionf(~, r/) of the flow. By definition 

• f =  Limit I f ({ ,  t/+ Aq)-f(~,  d) ] 
~ A~ --~ 0 A~ " 



If the flow has radial symmetry, it is true that f(4o, qo 4-dr/) = f(4o + d4, t/o) provided that the points 
(~o, t/o + dt/) and (4o + d4, t/o) are at the same radial distance from the origin. 

Referring to Fig. 2, it is easily seen that points B and D are equidistant from the origin provided angle 
BDA is equal to a, the swirl angle. 

Therefore, the condition is 
h2 dr/ 

- tan a, from which 
hi d4 

d4 i 

Hence, with radial symmetry, 

Of Limit F f(4 + d4, t / )-f(4,  t/) A~ ] 
O~ = At/---> 0 L ~ "~-q~ J • 

But as At/-.  0, A4 -* 0 if the ratio ~ t / =  ~-g is kept. constant. 

Hence 0 t / - a -2  ~ 0--~" (1) 

Thus, all the crossflow derivatives can be transformed to streamwise derivatives by the use of the above 
equation. It may be noted theft it is entirely a geometrical property, the exact form of which is det~rmined 
by the manner in which the co-ordinate system is destined. 

3. Basic Equations. 
3.1. Momentum Equations. 

By similar arguments to those employed in two dimensions, the turbulent boundary-layer equations 
a r e  the same as the laminar equations with the addition of Reynolds shear stresses and the steady velocities 
replaced by time-means. If u, v, w are to represent the meafi velocities in the directions 4, t/, ~, respectively, 
the equations of motion are (see Cooke and Hall 4) 

u Ou v Ou Ou 1 1 Op 1 Ozl 
t-7_ -~2+w~-~-K2uv+nl v 2 = F-- - -  (2) 

hi O~ p hi 04 p 8C n2 vq o~ 

u Ov v 8v 8v 
hi 0¢ ~-h2 N + w - ~  - K l  uv+K2u2 = 

1 1 3p 1 O'C 2 
I-- - -  (3 )  

p h 2 Oq p 0( 

where K1 and K 2 a re  the geodesic curvatures. 

1 0 h  2 1 0hi 
K1 - K2 = 

h 1 h 2 O~ ' hi  h2 Or/ " 

The equation in the ( direction is of little interest as, by the boundary layer approximation, it merely 
states that the pressure difference across the boundary-layer is negligible. 

The continuity equation is 

?~.~ (h2 u)+0~(hl  v)+~-~(hl h2w) = 0. (4) 



By integrating (2) and (3) from 0 to h, where h t> 5, and using equation (4), the momentum integral 
equations for a three-dimensional boundary layer are obtained. 

The integral equations are (see Cooke and Hall 4) 

1 c~ 1 0 1 8 U  1 OU 
h l U  20~  ( O ~ ' u 2 ) q h 2 u  ~ ~ (012U2)~ h l U  03 5"~ h2U ~,762 

- K  1 ( 0 1 1 + 0 2 2 ) - K 2 ( 0 1 2 - 0 2 1  ) - zot pU 2 (5) 

hi U 2 8~ 
(021 U 2) 

1 0 
he U 2 (~/'] (022 U 2 ) - K 1  (012--021--62) 

+ K2 (O22 q_011+ 61) - "~o2 pU 2 (6) 

where 

.1io 61 = ~ (U-u)d~ 52 = -~ v d~ 

011 = U 77~z (U - u)u d~ 021 = ~ VU d~ 

1 F 012 = U 77~2 ( U -  u)v d( 022 = v 2 d~ 

and %1 and Zo2 are the wall shear stresses in the streamwise and crossflow direction respectively. 
On substituting the relevant expressions obtained previously and putting b 2 = a 2 + l, the momentum 

integral equations can be simplified to 

~011 2 0012 ab 2 ~ - + b  ~ ~ - + a  3 ( 0 2 2 - 0 1 1 - 6 1 ) + a  2 (52-012-021)  = (t/) 1/b2 (0 "2/b2 a2b 72°1 pU 2 (7) 

and 

(~022 3 - a b  2 ~ ~---0021 b 2 ~--~-q-a (021q-O12-62)-Fa 2 (022--011--61) = (~)l/b2 (~) a2]b2 a2b P U2"%2 (8) 

It may be noted that equations (7) and (8) contain derivatives in the streamwise direction only. (See 
translbrmation equation (1)). 

3.2. Entrainment Equation. 
The momentum integral equations are not of course sufficient to determine the development of the 

turbulent boundary layer and an auxiliary equation is required. The one used here is an extension of 
Head's entrainment equation for the two-dimensional case to one of three dimensions. 

Consider the control volume making up the boundary layer between streamlines q and r/+ dr/ and 
between potential lines ~ and ~ + d~, as shown in Fig. 2. Let Q1 be  the volume flow pet unit width of 
the boundary layer in the streamwise direction at (4, ~/) and Q2 be the quantity in the crossflow direction. 

Applying continuity consideration to the control volume, the volume of fluid entrained, dQ, is given by 



[_~t 1 1 [~_B 1 3hl -1 
d Q = h 2 d t  1 a¢+o,l~-E ?-~d~ +htd~ d t l + Q e ~ - ~ - a t l J .  

It may be noted that, of the four terms on the right-hand side, the first is due to the change in flow rate 
O,1 with 4, the second is due to streamline divergence, the third represents the change in flow rate Qz with 
t/, and the fourth is due to streamline curvature. 

For a three-dimensional boundary layer, 

Q1 = u ( 6 -  6*0 and = v d ; =  u G .  

If CE is the non-dimensional entrainment coefficient, 

• dO• 
C E -- 

Uhl h2 d~ dt 1 

l r l  3u(6-61)  u(6-6~)3h2 1 0(U62) 62 3 h i ]  
~U L hi 3~ ÷ hi h2 O~ ÷ h 2 Or/ 4 hx h2 Or/ J " 

On substituting the relevant terms into the above expression, the entrainment equation becomes 

ab 2 ~ 0(6-  6"1) t- b z ~ 362 a2 62 + a 6*2 = (tl) 1/b2 (~),~/b2 aZb C~. o ~  T(- (9) 

CE is to be determined by the streamwise velocity component of the turbulent boundary layer. There- 
fore in its three-dimensional equivalent, 

cE = c~ 16-~°' ] 
4. Assumptions. 

4.1. Streamwise Profiles. 
It is assumed that the streamwise velocity profiles correspond to Thompson's 6 two-dimensional profile 

u 
u (H, Ro, y/O) the two-dimensional momentum thickness 0 being replaced by the family where ~ = 

streamwise momentum thickness 011. It has been shown by Thompson that his two-parameter family 
provides a good representation of two-dimensional turbulent boundary-layer profiles over a wide range 
of conditions. 

4.2. Crossflow Profiles. 
It is assumed that the crossflow corresponds to the form suggested by Mager 7 

v tan fl (1.~/6)z ' 
u 

where fi is the angle between the surface streamline and the projection of the external streamline upon the 
surface. The crossflow model also suggests that 

?im 
t an /?= ~ ~ O \  u J =  zo~" 



Although it has been stated (e.g. Johnston 8) that this model does not give an accurate representation of 
turbulent boundary-layer crossflow, it remains a very convenient form for use with the momentum 
integral equation, and does in fact give fair agreement with many cases of crossflow provided a proper 
choice is made of the limiting angle fl at the wall. 

4.3. Skin Friction. 

The streamwise skin friction is calculated using ThoNpson's  skin-friction relation Cf = C I (Ro, H), 
the two-dimensional momentum thickness 0 being replaced by the streamwise momentum thickness 011. 
This relationship follows from his profile family. 

4.4. Crossflow Thicknesses. 

As the crossflow using Mager's form does not depend critically on the exact streamwise velocity 
distribution, a more convenient form than Thompson's has been used for calculating the crossflow thick- 
nesses. An nth power streamwise velocity profile is chosen consistent with the shape factor H, and the 

• . g l  . . 

crossflow thus calculated is almost ldentmal with one using Thompson's velocity profile. This was also 
shown by Cumpsty and Head 3. 

4.5. Entrainment Relations. 

It is assumed that the magnitude of the crossflow has negligible effect on the rate of entrainment and 
that it is entirely determined by the velocity defect of the streamwise component of the mean velt)city. 
By this assumption, it can be argued from dimensional considerations as by Head 5 that entrainment is a 
function of Ha_a]. However, it is found that in order to obtain results having good agreement with the 
experiments, a new curve of entrainment with Ha_0~ has to be assumed, as shown in Fig. 4. The relation- 
ship between H and Ha_0, given by Head 5 has been used in the present calculation. 

5. Cases Treated. 

As the object of the theoretical analysis was to compare the calculated developments of the three- 
dimensional turbulent layers with the experimental results, the constants used in the present theory had 
been chosen such that the theoretical models were kept as close as possible to the actual experiments 
performed by Gardow 1 at M.I:T. 

The dimensions of Gardow's experimental set-up of the diffuser walls are shown in Fig. 1. The rotating 
screens had an open area ratio of approximately 50 per cent and were driven at rotational speeds of 
800 rpm to 1410 rpm. There was a series of 11 ports on the diffuser wall for the measurement of velocity 
profiles by means of a three-hole cobra-probe. 

Three sets of experimental data were used and they were renamed as Sets 1, 2 and 3 which correspond 
to Gardow's Runs A 45-2. B 50.6 and B 54.5. They were chosen for comparison because lhe measure- 
ments made were the most comprehensive. They represented different initial swirl angles and inlet veloci- 
ties, as shown in the table below. 

Set 
Inlet 

Swirl Angle 

(c0 

1 44.8 
2 39.4 
3 35"5 

Inlet Velocity 
(ft/sec) 

40.1 
43.9 
53.2 

Screen Speed 
(RPM) 

900 
900 

1000 

Volume Flow 
(CFM) 

2135 
2070 
1980 

Because of the limited distance between the two walls of the diffuser and the effect of boundary-layer 
growth, the extcrnnl flow did not  conform closelv to the ideal source-vortex flow. 



An attempt was made to adjust the theory to fit the experimental streamlines but this proved to be too 
complicated in the subsequent analysis. Finally, it was decided to adopt the theoretical logarithmic 
spiral path for the flow at the edge of the boundary layer but to use this in conjunction with the measured 
radial pressure gradient. It was also necessary to assume the angle of swirl to be the mean of the angles 
measured at the first and last stations. As shown by the comparisons between calculated and experimental 
results (Section 7), this treatment was found to be satisfactory. 

6. Details of Calculation. 
The main equations for the calculation are the streamwise momentum integral equation (7), the cross- 

flow momentum integral equation (8), and the entrainment equation (9). 
The initial conditions (i.e. H, Roll and/3) were deduced from the experiments. The starting values of 

0T1 and 6~ were taken directly from the report, at a time when there was some uncertainty regarding the 
initial H in view of the experimental scatter. Fortunately, the calculation method is insensitive to the 
initial assumption of H, as the solutions are similar after a few step lengths downstream as shown in 
Fig. 12. The calculation of the development of the boundary layer was based on an overall iteration 
procedure. The streamwise development was first calculated using the streamwise momentum integral 
equation (7) and the entrainment equation with crossflow neglected. This first approximation to the 
streamwise development was then used to obtain a first approximation to the crossflow using equation (8). 
The crossflow was then included in equation (7) to improve the solution for the streamwise development. 
Successively improved approximations were then obtained by using the equations alternately. It was 
seldom necessary to go beyond five iterations before two successive iterations gave practically identical 
results. 

The advantage of this method of solution is the stability of the iteration procedure, as was also indicated 
by Cumpsty and Head a. Again,'by the very nature of the method of interpolating at the centre of the step 
length, the computer solution is smooth as shown in a typical computer output chart in Figs. 5 to 7, which 
are for Set 3. The step length throughout the A~ = 0"2 which is also shown in the figures for ~ between 
40 and 44. Provided the interpolation procedure is carried out properly, the step length is not critical in 
this method of solution. 

7. Comparisons with Experiment and Discussion. 
Values of the shape factor H for the streamwise velocity profile, as reported by Gardow 1, showed 

enormous scatter when plotted against radius. As a smooth variation would be expected, the experimental 
H values were recalculated from the measured velocity profiles. Care was taken to ensure that, near the 
wall, the velocity distribution was compatible with the skin friction as deduced from the combination 
o f /~  and Rol t using Thompson's skin friction chart. The recalculated H values showed a much more 
tolerable scatter as will be seen from Figs. 10, 12 and 14. 

The development of the mementum thickness in the streamwise direction for the three sets of observ- 
ations is shown in Figs. 8a and 8b. The agreement between theory and experiment can be considered 
perfect by the standards normally accepted for turbulent boundary layers. The momentum thickness 
Reynolds number Rot1 corresponding to Set 1 at the initial station was only 375. This is rather low for a 
normal turbulent layer out, possibly because of turbulence generated by the rotating screen, there is no 
doubt that the boundary layer was fully turbulent. 

Fig. 9 shows the development of the crossflow thickness 62. For Sets 1 and 2, the agreement is very 
good, and while the theory is slightly on the low side in Set 3, it can still be considered satisfactory. 

The surface yaw angle fl is a quantity that is difficult to measure accurately, partly because the velocities 
near the surface are very small but also, and more important, because the finite size of the pressure tubes 
prevents yaw measurements being taken sufficiently close to the wall tor actual surlhce values to be 
deduced. Moreover, there is no reason to suppose that the velocity vectors in the sublayer are collateral, 
as would be implied by Johnston's model 8 of the crossflow. This problem has been examined by Chain 9 
and the conclusion is reached that  substantial variations in crossflow may in fact take place through the 
sublayer. In view of the uncertainties, the theoretical calculations of the surface flow direction may be 



considered to be in satisfactory agreement with the experimental values as reported by Gardow, as shown 
in Figs. 11, 13 and 15. 

Some comparisons between calculated and experimental velocity profiles are shown in Figs. 17 to 21. 
It will be seen that the theoretical streamwise velocity profiles, as represented by Thompson's two- 
dimensional profile family, fit the experimental results very well, in spite of the large yaw angles. The 
theoretical crossflow velocity profiles based on a Mager model also give good overall agreement with the 
measurements. These results substantially justify the assumptions made for representing streamwise and 
crossflow velocity profiles, and support the principle of working in terms of these component velocities. 

An attempt was made to compare the calculated skin-friction component in the streamwise direction 
with experimental values. Unfortunately, no direct measurements of the wall shear stress had been made, 
and the values reported by Gardow were deduced from a Clauser 1° plot with modification by Johnston s. 
The comparison for Sets 2 and 3 are shown in Fig. 16. Considering the uncertainties not only in the 
experimental skin-friction values but also in the surface yaw angles, the agreement must be considered 
satisfactory. 

With the assumed CE, H~_~, curve the calculations appear to give a good account, in fact of every 
aspect of the development of the turbulent boundary layer in the diffuser. 

8. Conclusions. 

An analytical method has been found convenient for calculating the streamline co-ordinate system for 
the three-dimensional boundary-layer problem of flow in a free-vortex diffuser. The use of an entrainment 
equation together with the streamwise and the crossflow momentum integral equations enabled the 
development of the turbulent boundary layer to be simply calculated. 

Based on the assumption that the entrainment rate depends only on the streamwise component of the 
velocity profile, increased rates of entrainment compared with those given by Head's curve for two 
dimensions were required to give the best agreement between theory and experiment. When this adjust- 
ment was made, the developments of the shape factor H, the streamwise momentum thickness 011 and the 
crossflow thickness 62 all showed good agreements with the experimental values. 

The streamwise and crossflow velocity profiles were found to be well represented by Thompson's 
two parameter profile family and Mager's crossflow model respectively. 

Although the external streamlines in the experiments were not perfect logarithmic spirals, it was still 
possible to carry out the calculation using this as an approximation, but with measured pressure gradients 
replacing the theoretical values. Where the difference between the experimental inlet and outlet swirl 
angles was large, a mean swirl angle was assumed for the calculation. 

The good overall agreement between the calculations and experiment justifies many of the assumptions 
that are essential to the theory, but the problem of making a suitable a priori choice of entrainment curve 
remains to be solved. 

9. Additional Note. 

Since the foregoing was written an improved version of the original entrainment method has been 
1 d(UO) 

developed ~1. This introduces a dependence of C E on the parameter U d ~  ' or more precisely, on the 

l d(UO) I I  d~x0)]eq, wherethedenominatorrepresentsthevalueof 1 d(UO) f o r t h e e q u i l i b  - ratio U dx U U dx 

rium layer having the same values of H and R o. This dependence results in an increase of entrainment 
when the rate of growth of the layer is small and a decrease when it is large. 

It will be recalled that the original curve relating CE to H~_~, was obtained empirically from two sets of 
measurements for layers proceeding to separation. Thus in two-dimensional flow the original method 
gives reasonably accurate predictions of H development in strong adverse pressure gradients, where H is 
increasing more or less rapidly, but fails to do so where H is either substantially constant (except in the 
flat-plate case) or decreasing. In these circumstances, values of CE given by the original curve are appreci- 
ably too low. In the recent version of the method, the additional dependence of C'~ on rate of growth has 

10 



eliminated this defect, and numerous comparisons with experiment show uniformly satisfactory agree- 
ment with measurements in separating layers, equilibrium layers and relaxing layers. 

In the three-dimensional case treated in the present report we should in fact expect the original Ce, H~_ ~, 
curve to underestimate the entrainment very considerably, first because we are dealing with an equilibrium 

1 d(UO) 
flow and second, because divergence of the external streamlines leads to a further reduction in 

U dx 
There is thus every reason to expect that, in this case, the more recent version of the method would give 
satisfactory agreement with experiment, without the necessity for arbitrary adjustments of the entrain- 
ment. 

If we consider the results for other rotating flows (see Fig. 22) which have been treated in the same way 
as the present one (i.e. by the use of the original entrainment method with an adjusted Ce curve), we may 
reasonably conclude that the increased entrainment on the rotating cylinder at high values of the rotation 
parameter is adequately accounted for by centrifugal effects~ and in Ref. 12 it is shown in fact that this 
increase can be reasonably well predicted. At low rates of rotation the flow is only trivially different from 
that on a flat plate (so long as the boundary layer is thin) and both the original and more recent versions 
of the entrainment method should give equally satisfactory results. 

When we come to the rotating-disc case x3, however, where it is necessary to reduce the flat-plate CE 
values by about one-third to secure complete agreement with experiment, we must consider the physical 

basis for the dependence of C~ upon 1 d(UO) that has been introduced in the more recent version of the 
, dx 

entrainment method. This is discussed at some length in ref. 11, but here we may briefly point out that a 
high rate of growth, due to either a rapid retardation of the flow or strong flow convergence, will lead to 
a crowding-up of the large eddies of turbulence and consequently to a decrease in entrainment (as com- 
pared to the corresponding equilibrium case), while a low rate of growth, due to either a reduced pressure 
gradient or divergence of the flow will result in a separation of the large eddies, a more irregular outer 
boundary and an increase in entrainment. 

Now, in the rotating-disc case, although there is no boundary-layer growth in the direction of the 
external streamlines, and no convergence, since the external streamlines are concentric circles, the large 
eddies will nonetheless be closely packed, because they will (presumably)be continuously formed in 
much the same way as in flat-plate flow, but instead of being swept downstream at something like stream 
velocity, will now be convected away radially at only a small fraction of the circumferential velocity. Thus 
we may expect on physical grounds that the entrainment should be reduced, as in fact it is, but the growth 

1 d(UO) 
parameter U d ~  now has no relevance, since in this particular problem it is in no way related to the 

closeness of packing of the large eddies. Thus there is no reason to expect that the more recent method 
should give an improved solution in this rather special case. 
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LIST OF SYMBOLS 

Tangential velocity 

Radial velocity 

Constants specifying the external flow 

Swirl angle (see Fig. 1) 
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Distance measured on the surface 
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Plane polar co-ordinates 
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Geodesic curvatures 

Components of shear stress in ~ and q directions 

Mean velocity components within the boundary layer in the 4, 7, ~ directions 

Pressure 

Density 

Three-dimensional boundary-layer thicknesses defined in Section 3.1 

Volume flow rates 

Free-stream velocity 

Entrainment coefficient 

Shape parameter of streamwise velocity profile (= 3]/01a) 

Reynolds number based on streamwise momentum thickness 

Angle between surface streamline and external streamline directions 

Components of wall shear stress in ~ and r/directions 

Coefficients of wall shear stress component in the streamwise direction 

Form parameter (= (6 - 3])/011). 
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APPENDIX 

Details o f  Integrations to Obtain the Lama Coefficients hl and h2. 

To  evaluate h 1 : 

On streamline q, the elemental length h 1 d~ is given by 

I) h i d  ~ = +_ ~/rl2 e2a°--Fa2rl2 e2a° dO, 
1 

where 0 ~, 02 are the angles subtended by (~, r/) and (~ + de, q). 
Since the radial distance at (¢, ~/) can be given either by ~ e -°/" or by ~/e °/a, it is easily deduced that 

01 = ---~--1 log ~-. Similarly, 02 - 1 log ~+d___~ 
a +  1/a ~1 a +  1/a ~1 

Therefore, 

~102 h 1 d~ = 11 e "° ~ - ~  a 2 dO 
1 

_ ./ +a=Fe.ol 
a L JO~ 

-rl~/la+aa[exp{a(az+~log#+-qd~)] 
- exp( a (a-T~+ 1 l°g ~)}  ] 

- a ~ 1 +  

a a 2 + l  ~ ~- . . . . . . . .  

Hence hi - a t/ ~-z~+l. 

To evaluate hE : 

For this purpose, the path of integration is along the potential line ~. 

fi~3 ,,4/ - 2O Y~2 20 h2 d~l = 4- ~2 e " + e " dO 
1 

where 0 3 is now for the point (~, t /+ dr/). 
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