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Summary 

Stream surfaces from the flow through a plane shock wave are used as compression surfaces to obtain 
high lift to drag ratios. The inviscid performance of these compression surfaces is known exactly, and at 
given values of Moo and CL, higher values of L/D can be achieved than the two-dimensional wedge value. 
The improvement that can be obtained over this value depends on the similarity parameter C[ M~/fi~o 
and is large when this parameter is small. 

Two such compression surfaces can be combined into a W-Nonweiler shape, which gives in effect a 
central body below a swept wing. The viscous drag tends to be high, because the shapes have a large 
ratio of wetted area to plan area. For hypersonic speeds (M > 5) where the inviscid improvement over a 
two-dimensional wedge is small, the high viscous drag puts the W-wings at a disadvantage compared 
with fiat-bottomed configurations (though not as compared with caret wings). At high supersonic speeds 
(3 < M < 5) the inviscid improvement is more marked and a gain in performance, including viscosity, 
over that of the two-dimensional wedge, and hence over that of fiat-bottomed shapes can be shown. 
Such conclusions do not take into account the relative problems of converting idealised shapes into 
practical aircraft configurations. 

For best performance the trailing edge of the W-wing is swept and its pressure drag and viscous drag 
are approximately equal. 

*Replaces R.A.E. Technical Report 66 127--A.R.CI 28 452. 



Section 

1. 

LIST OF CONTENTS 

Introduction 

2. Compression Surfaces Based on the Flow Through an Oblique Shock Wave 

3. The Geometry of Wings with their Trailing Edges Lying in a Plane 

3.1. Theory 

3.2. Examples 

4. Optimum Wings Neglecting Viscous Drag 

5. Small Disturbance Expressions 

6. Performance Including Viscosity 

7. The Ratio of Wetted Area to Plan Area 

8. Optimum Wings Including Viscous Drag 

9. Conclusions 

Appendix A The trailing-edge surface 

Appendix B The volume coefficient 

List of Symbols 

References 

Illustrations--Figs. 1 to 20 

Detachable Abstract Cards 



1. bitroduction 

Caret wings t,2 have been used as typical non-slender or 'waverider' shapes for aerodynamic calculations 
at high supersonic and hypersonic speeds a. The caret wing (Fig. l(a)) is a wing of delta planform the 
undersurface of which conforms to streamlines of the flow behind a plane inclined shock wave. Assuming 
a streamwise upper surface and neglecting base drag, the inviscid performance (i.e. lift/drag ratio) is the 
same as that of a plane two-dimension wedge and hence it depends only on two variables, say the free 
stream Mach number and pressure coefficient. Even when more general planforms are included, the 
performance is still that of the wedge provided the leading edge remains in the plane shock wave, and 
the trailing edge is not so highly swept as to cause breakdown in the parallel flow over the surface. 

The caret wing has a plane shock wave which is inclined in the flow so as to deflect the air vertically 
downwards. This same shock wave with a different orientation can give the deflected air a sideways 
component of velocity. Shapes the same as caret wings, associated with these skew shock waves, are 
called 'V'-wings in this Report. It is shown that with the correct trailing edge, the V-wing can have a 
very much better performance than the caret wing. 

Two V-wings can be joined along part of their leading edges to form a 'W-Nonweiler' wing or 'W'-wing. 
A W-wing of gothic planform is shown in Fig. lb. The consideration of viscous drag calls for W-wings 
with curved leading edges. These are referred to as generalised W-wings. Their performance, including 
an estimate for viscous drag, is compared with that of a two-dimensional wedge at the same lift coefficient. 

A special case of the W-wing has been investigated by Roe 4. He compares the 'direct' lift of a caret 
wing, with the 'interference' lift of a vertical unswept wedge below a plane wing of particular planform. 
The direct lift of the caret may be compared immediately with the lift due to incidence of a two-dimensional 
wedge, the flow adjacent to the surface in both cases having been deflected vertically down by the shock 
wave (Fig. 2a). The lift of the interference wing is the result of the pressure field of the vertical wedge 
acting on the plane wing. The flow adjacent to the wing is deflected horizontally by the shock wave 
(Fig. 2b). For values of a parameter M ~  CrJfl 2 < 0.65 the interference arrangement has better per- 
formance than the caret wing, and vice-versa above this value 4. A performance better than either could 
possibly be produced by a combination of 'direct' and 'interference' lift. A way of obtaining this with a 
wing based on the flow through a plane shock wave, is to orientate the shock wave so that the flow deflec- 
tion lies in a plane between the vertical and horizontal. This can give a W-wing as shown in Fig. 2c. 
The ratio of interference to direct lift may then be conveniently defined as the tangent of the angle that 
this plane makes with the vertical. 

A previous paper on caret and W-wings has been presented by Keldysh 5. He uses a different approach, 
applicable only to wings with straight leading edges. Unfortunately he omits to restrict the trailing edge 
to maintain the 'local' flow direction over the whole surface, and thereby, it is considered, obtains an 
over-estimate of the optimum performance. 

The use of inclined shock waves can produce a variety of configurations with straight and curved 
surfaces. It emerges that those of 'optimum' performance have a deep central body beneath an arrow 
wing. The improvement in inviscid performance over that of the caret wing at high supersonic speeds 
(3 < M < 5 say) is considerable, and even at hypersonic speeds as M ~ oo it can be as much as 8 per 
cent. The inclusion of viscous drag reduces the advantage these wings have over the two-dimensional 
wedge, so that at hypersonic speeds it is no longer advantageous to use interference methods. It is shown 
that the optimum LID at high supersonic speeds is obtained when the viscous drag is of about the same 
magnitude as the pressure drag. 

The shapes evolved here do not have sufficient latitude to allow practical aircraft configurations to 
be specified in detail. However it is hoped that they provide a guide to the arrangement and shape of 
wing and fuselage necessary to obtain the advantages of favourable interference at high supersonic 
speeds. 

2. Compression Surfaces Based on the Flow Through an Oblique Shock Wave. 

The compression surface of a generalised V-wing (e.g. Fig. 3) possesses the following properties : 
(a) the leading edge lies on a plane inclined shock wave; 



(b) the surface is formed from straight generators, parallel to the flow immediately behind the shock 
wave (i.e. the surface has single curvature); 

(c) the trailing edge is supersonic. 
These properties imply that the leading edge is supersonic, and that between the surface and the shock 

wave, (neglecting viscous effects), the flow is parallel and the pressure and other flow parameters are 
constant. A supersonic trailing edge requires that the influence of any point on the trailing edge should 
not affect the flow at any other trailing-edge point. Hence the trailing edge remains in the region of 
parallel flow. With supersonic leading and trailing edges the flow over the compression surface is inde- 
pendent of the other surfaces which form the wing. Hence its performance may be considered 
independently from the other surfaces, or taken to represent that of a wing with a streamwise upper 
surface and zero base drag. 

For the caret wing, the deflection through the shock wave is vertical. For V-wings the deflection is 
allowed to take place in other planes and two or more such compression surfaces may be joined with a 
common leading edge to give a more complex wing shape. Generalised W-wings are formed from a 
mirror image pair of these compression surfaces (e.g. Fig. lb). The performance is, of course, the same as 
that of either of the pair, and hence W-wings are included in the following analysis on generalised V-wings. 

Let x, y, z be stream axes (Fig. la), where x is in the free stream flow direction and z is vertically down- 
wards. Also let the reference area of the force coefficients be the plan area, shown in Fig. 4, 
i.e. 

f, Az = Zo. dS 
$ 

(1) 

where S is the compression surface, dS an element of S with its normal into the flow behind the shock 
wave, and z is unit vector parallel to the z axis. The pressure is constant over S, hence the lift coefficient 
based on A~o is 

CL = Cp (2) 

where Cp is the pressure coefficient behind the shock wave. This implies that the centre of pressure is 
coincident with the centre of area. 

If we define the free stream Mach number and,lift-coefficient, equation (2) gives Cp, and the oblique 
shock wave relationships 6 are sufficient to give the shock wave inclination to the x-axis (tr), the flow 
deflection through the shock wave (6) and all other flow parameters in the region of parallel flow. 

Throughout Sections 2 to 5 of this Report CL and M~ will be taken as fundamental and specified. 
Although a and 6 are then prescribed, their orientation to the y and z-axes is still arbitrary. One further 
parameter is necessary to fix the orientation. This is defined by letting the flow deflection take place in a' 
plane which makes an angle 2 with the x, z-plane. This plane is perpendicular to the shock wave, and the 
shock wave equation can be written as 

z cos 2 + y sin 2 = x tan a .  (3) 

With this notation, the ratio of "direct" lift to 'interference' lift proposed in the introduction is given 
by tan 2. With 2 = n/2 the lift is all interference lift and the wings become 'wedge-interference' wings 4. 
With 2 = 0 the lift is all 'direct', and the inviscid performance is equivalent to that of the caret wing. 

If (Cop, Cs, C,) are the inviscid force coefficients in the x, y, - z directions, and if suffix ( )o refers to the 
wing with 2 = 0, then 
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Cop o = Cp tan 6 

Cso = Cp tan 
where 

tan ~ = - Ayo/Azo 

CLo = Cp 

where Azo is Az for the wing when 2 = 0 (as in Fig. 4), and Ayo is defined similarly to Azo i.e. by 

f y .  dS with 2 = 0.  Aro 
Q/ 
S 

(4) 

(5) 

Hence tan ~ depends only on the geometry of the surface. As the pressure over the surface is constant ¢ is 
related to the force coefficients by equations (4) 
i.e. 

tan ~ = Cso/CLo. (6) 

The angle ~ is also the angle between the vectors y Cs+z CL and the vertical z-axis. The value of ~ is 
restricted physically to lie between certain limits which will be determined in the next Section. 

The lift to drag ratio can be obtained from equation (4) and the oblique shock wave relationships 6. 
For 2 = 0, 

(g) 2-c. 
L o = c ° t 6 = C p c o t o "  (7) 

_2--CL( 4+(~'+I) CLM~ )*=. 

This is shown as C2/CDpo versus CL in Fig. 5. 
For 2 :~ 0 the force coefficients are obtained in terms of those of equations (4) by 

(8) 

AZO 
CDp -- --Zz CDp° (9a) 

Cs = - ~  (Cso cos 2 -  Czo sin 2) (9b) 

ZZ~t 
CL = ~ (CLo COS 2 + Cso sin 2). 

Combining equati6ns (2), (4) and (9c): 

(9c) 

AZO 
Az 

1 COS 

cos 2 + t a n  ~ sin 2 - cos (~ -2 )  (10) 



and equations (9) may be rewritten 

cos 4 
Cop = Cp tan 5 

cos ( ~ -  ;t). 

Cs = Cp tan (~ - 2) 

e L = Cp.  

(11) 

These equations are the force coefficients of the generalised V-wing. Assuming that Moo and CL are given, 
they depend on 2 and 4 only. The function of these which appears in the drag is fundamental to the per- 
formance, for 

cos~ _ Cop _ CDv _ (L/Dp)o (12) 
cos (4 - 2) C v tan 5 Copo L/Dp 

This is plotted against tan 4 for various ~, in Fig. 6. CL is a constant for the Figure and cos 4/cos (4 - 2) 
represents an increase or decrease in Co compared with the caret wing value (2 = 0). The envelope of 
the curves gives the minimum value of Co/CDo. Hence only when 4 = 0 does 2 = 0 give the most efficient 
wing. 4 = 0 is equivalent to Aro = 0 and hence is the value of 4 for an unswept trailing edge* (x = constant). 
For  ~ + 0, L/D > (L/D)o when 0 < 2 < 24. Further 2 = 4 gives the maximum value of L/Dp 
i.e. 

( L / O p ) m a  x = (Z/Dp) o sec 4 = cot 5 sec ~ (13) 

and 
Cs = 0. (14) 

Thus for a given geometry (i.e. given ~) the optimum non-viscous performance is obtained by arranging 
for a ratio of interference lift to direct lift equal to tan 4. The overall force on the surface then acts in the 
vertical x, z-plane (Cs = 0). This implies that the overall momentum change also takes place vertically. 
The local momentum change through the shock wave (due to 5), takes place at angle 2 to the vertical. 
It is converted to a vertical momentum change by the flow in the wake. Roe 4 using his particular 'W'-wings 
noted that 'near field' momentum considerations, used for example by Eggers and Syvertson 7, could 
be misleading. They assume that the near-field momentum change for an efficient wing should be vertical. 
This, as applied to W-wings (b) putting 2 = 0), only gives the most efficient wing when 4 = 0; that is 
when there are no prospects of improving the performance by interference. 

3. The Geometry of Wings with their Trailing Edges Lying in a Plane. 
3.1. Theory. 

A natural set of axes with which to investigate the geometry of generalised V-wings (i.e. with shock 
wave skew) are rectangular axes (X, Y, Z) with X streamwise behind the shock wave, Y in the plane of the 
shock wave and Z on the free stream side of the wave (see Fig. 3). When 2 = 0 these axes (i.e. Xo, Yo, Zo) 
are related to the (x, y, z) axes by a rotation 5 about the y = Yo axis 

i.e. 
x = Xo cos 5 -  Zo sin 5 ] 

Y Yo 

z = Xo sin 5 + Zo cos 5. 

(15) 

"4 is zero also for any wing where the trailing edge projects onto a single line in a plane perpendicular 
to the shock wave containing the x-axis. 
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The X. Y, Z axes are fixed with respect to the shock wave, hence for 2 ~ 0 a rotation 2 about the x-axis 
followed t~3 a rotation 6 about the y-axis relates to two sets of axes. Hence 

x = X cos 6 - Z  sin 6 -] 

) y = X sin 6 sin 2 + Y cos 2 + Z cos 6 sin 2 

z = X sin 6 cos 2 - Y sin 2 + Z cos 6 cos 2. 

(16) 

The equation of the general compression surface in X, Y, Z co-ordinates is given by 

f ( Y , Z )  = 0. (17) 

It is bounded upstream by the shock wave with equation 

X = BZ where B = cot ( a -  6) (18) 

and downstream by the trailing edge. The trailing edge is for simplicity restricted to lie in a plane, hereafter 
called the trailing-edge plane, with equation 

X + a Y + b Z  = c (19) 

where a, b and c are constants. For any trailing edge on a particular trailing-edge plane the value of 
is constant. This can be seen to be true by considering an elemental streamtube, when the relative con- 
tributions to Ayo ( = At)  and Azo ( = Az sec 6) are independent of the streamtube chosen. Hence the 
proportions are constant for any bundle of such streamtubes, that is for any wing. The result is derived 
in Appendix A, along with the further result that the maximum value of ~ can be obtained using a plane 
trailing-edge surface. 

To aid the discussion we define the nose (see Fig. 7) as P1 (0, 0, 0), the wing tips as Pz (X2, Y2, Z2) 
and P3 (X3, Ya, Za) on the intersection of the trailing-edge plane and shock wave, and the intersection 
of the nose streamline with the trailing-edge plane as P4 (X4, 0, 0). The trailing-edge plane is fully deter- 
mined by Pz, P3 and P4- Hence given these, the value of~ is fixed, and so it may be evaluated by considering 
any wing with its trailing edge on this plane. In particular we choose the wing with straight leading and 
trailing edges through P1, P2, Pa and P4 as shown in Fig. 7. It can be seen that 

tan ¢ = ___Ay° = Z a -  Z2 
Azo (Y3-- Y2) COS 6" (20) 

Using equation (18) this becomes 

tan ~ = Xa - X2 
(Ya - Y2) B cos'6 (21) 

Hence ~ depends on P2 and Pa only, and is therefore constant for any trailing edge on any trailing-edge 
plane through P2, Pa. 

In the previous section the trailing edge was required to be supersonic (condition 'c' of the generalised 
V-wing). We shall restrict the trailing-edge plane such that any trailing edge on it will be supersonic. 
This requires that the downstream Mach cone from any point on the trailing-edge plane shall not intersect 
the plane, 
i.e. 

~-~)  + ~ -  /> • (22) 



Hence, using equation (19) 

a 2 + b 2 >/f12. (23) 

Substituting the co-ordinates of P4 (X4, 0, 0) in equation (19) we have 

X4 = c (24) 

hence equation (23) will restrict the value of X 4 as follows. P2 and Pa satisfy equation (19) hence 

(X3--X2)+a (Y3 - Y2)+b (Za - Z 2 )  = 0. (25) 

Then using equation (20) and (21) to substitute for (Z3 - Z 2 )  and ( X 3 -  X2) this becomes 

/ a + b tan ~ cos & + B tan ~ cos 6 = 0. 

Further using equations (18) and (19) with c = X4 (equation (24)) we have 

- a b X 4  (26)  
B tan ~ cos 6 = 1 + ~  = X 2 -  Y2 B tan ~ cos 6" 

Equation (23) can then be written 

a ) 2 /~2 
a 2 + B -F tan ~ cos ~ ~> " 

Hence, 'a' lies between the roots Pl, P2 of the quadratic equation 

p2 (1 + tan 2 ~ cos 2 ~5) + 2 p B tan ~ cos fi + (B 2 - f12) tan 2 ~ cos 2 ~ = 0. 

That is between the values 

- B t a n ~ c o s f i  I 1 +  [ 1 +  
1 + tan 2 ~ C O S  2 t~ - -  - -  

From equation (26), limits on Xz are given by 
t 

X2_Y2Btan~cos6t l ( f12)( )l~;t 
l + t a n  2¢c0s  26 1_+ 1 -  1-~--~ l + t a n  2~cos  26 . 

(27) 

(28) 

(29) 

X = BZ = b+B\a J" (31) 

i.e. 

Hence the range of X4 is restricted for a particular P2 and ~ (or P3 using equation (21)). X4 influences 
the sweep of the trailing edge (see Fig. 7). The minimum trailing-edge sweep for a W-wing is given by the 
upper limiting value of X4. 

The equation of P2 P3 is given by the intersection of the trailing-edge plane (equation (19)) with the 
shock wave (equation (18)), 

(30) 



This line is used in constructing configurations to have specified values of ~ and 2, that is with a particular 
performance. In x, y, z co-orinates it becomes. 

Y3 - Y2 = ian a -  tan 6 cos 2 + tan tr sin 2 (32) 
x3 - x2 tan 

z3 - z2 = tan a cos 2 -  sin 2 tan t r -  tan 6 (33) 
x3 - x2 tan 

When 2 = 2opt = ~ these reduce to 

Y3 - - Y 2  

X 3 - - X  2 

tan a -  cos 2 ~ tan 6 

sin 
(34) 

Z 3 --Z 2 
= cos ~ tan 6. (35) 

X 3 - - X  2 

As the left hand sides of these equations (32) to (35) depend on differences between x2, Y2, z2 and x3, 
Y3, z3 respectively, only the relative positions of P2 and P3 are determined. Hence it is always possible 
to arrange for Y2 = 0, the condition, along with P1 P2 being a straight line, that a mirror image pair 
will form a W-wing. Hence equations (34) and (35) enable W-wings with a particular CL (giving a and 
6 through equations (7) and (8)) and a particular L/D (giving ¢ from equation (11)) to be constructed 
easily. If 2 :~ ~ equations (32) and (33) should be used. 

3.2. Examples. 
Some examples of W-wings are shown in Fig. 8. Those of Fig. 8a and 8b are wings at M = 2 with the 

same shock wave and trailing-edge surface, such that 2 = ~ = n/4. X4 is at its maximum limit in both 
cases. Other values of X4 would shorten the distance P1 P4, giving greater trailing-edge sweep and a 
relatively deeper body. 

Although the wings of Figs. 8a and 8b look very different, their only real difference is in scale and the 
position of P3 on the line given by equations (34) and (35). By varying the position of P3 on this line, 
intermediate values of trailing-edge sweep can be obtained at intermediate values of anhedral. The 
anhedral can be varied with little difference to the performance by varying 2 such that cos (~-2)  (see 
equation 11)) is little different from unity. 

The equation of the leading edge of the body is given by putting y = 0 in equation (3), 

i.e. z cos 2 = x tan a .  (36) 
Hence the inclination to the free stream increases with 2 and with a. At higher Mach numbers the body 
will tend to be more highly swept. 

In Fig. 8c a W-wing at M = 4 is shown, with the same value of 2 = ~ = n/4. The body is more highly 
swept, and compared with Fig. 8b so are the leading and trailing edges. 

A compression surface at M = 10 is shown in Fig. 8d. 
More interesting shapes can be obtained with curved leading edges. Fig. 9a shows a wing with turned 

down tips and Fig. 9b a wing with a curved surface. 
The examples given in Figs. 8 and 9 are in themselves far removed from being realistic shapes for 

aircraft. However by introducing some modifications, progress can be made towards more practical 
configurations. Two possibilities are presented in Figs. 10 and 11. In Fig. 10 two compression surfaces 
similar to those of Fig. 9a are arranged astride a long thin fuselage. The effect of the nose shock wave 
from the fuselage will be small and make little difference to the performance of the compression surfaces. 
The wing tips can be modified as in Fig. 10, with only a small change in the performance. The compression 
surfaces CL remains the same, but the CD is increased (3 per cent in Fig. 10) owing to the change in reference 
area. A more significant change is of course the inclusion of a large viscous drag term from the body. 
Viscous effects are considered in Section 6. 



r 

To introduce the examples shown in Fig. 11 it is recalled that the trailing edges of all these W-wings 
have been restricted to lie within the region of known flow. If the trailing edge is modified so as to permit 
a region over which the pressures are not precisely known, then the body length can be extended or the 
trailing-edge sweep reduced to produce a more realistic configuration. A first example is included in 
Fig. 8c where an extension to the body (the dashed line) increases the volume while making little difference 
to the performance excluding viscosity, (for evaluation of the volume see Appendix 2). 

In Fig. 11, a more extensive region has been added, constituting 30 per cent of the plan area. The design 
Mach number is 4 and the Cb for the known part is 0.0691. Hence the known part contributes 0.0484 to 
the overall lift coefficient. The inviscid drag from this lift is 80 per cent of that from a similar C~ on a caret 
wing. The lift and drag of the added region are not known. The Cp must be expected to beless than the 
known value, and the efficiency less than that of the caret wing. However a useful contribution to the 
performance can obviously be obtained from the region. For the performance quoted in Fig. 11, the 
pessimistic value of Cp = 0 has been used. It might be noted that the centre of pressure must be expected 
to be forward of the centre of area. 

Some further variation of the surface shapes could be achieved by using wings based on the flow about 
curved two-dimensional wedges. The line P1 P4 then no longer remains straight, but may be curved to 
give more body volume forward. (L/Dp)o is no longer related to C~ by equation (8), but W wings may 
be formed in the same way from V wings. The performance of V wings from slightly curved wedges will 
be little different from those of plane wedges, but significantly curved wedges will tend to give inferior 
performance s . 

4. Optimum Wings Neglecting Viscous Drag. 
Consider now wings with maximum L/Dp, with respect to £ and g. From equation (12) it can be seen 

that we require £ to be a maximum and g to equal £. As the class of plane trailing-edge surfaces includes 
the optimum surface (see Appendix A) we may restrict ourselves to plane surfaces. From equation (21), 
maximum ~ is given by maximum (X3-X2)/(Y3-Y2). P2 and P3 lie on the shock wave, and for the 
maximum value of (X3-X2)/(Y3-Y2), P3 will lie on the down stream Mach cone of P2. Then, using 
Fig. 12 

I X 3 - X 2 ~  • ~B  
Y3 - Y2 J m a x  (B 2 _/~2)~ 

(37) 

and from equation (21) 

P 
tan = COS 6 (B z -  p2)½" (38) 

Then 

B 2 
1 + tan z ~ cos z 6 = B2 _ f l - - - -~ .  ( 3 9 )  

From equation (29) the value of 'a' is unique arid is given by 

- B tan ~m~, cos t$ 
a = 1 + cos z J tan z ~max (40) 
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Then the trailing edge plane from equations (19), (24), (26), (27), (38) and (41) is sonic and has equation 

B ( X -  X , ) -  ~(B 2 -  l~2) ~ r -  l ~2 Z = O. (42) 

The lift to drag ratio from equations (11) is 

L cot 6 cos (4-)l) .  
D p COS (43) 

Using equation (38), for ~ = ~ m,xin equation (43) 

L cos ~. (B 2 - fl2)t- "l- sin 2 p see 5 
Dp tan 6 (B 2 -/{2)* (44) 

With optimum 2 also (i.e. 2 = ~ = ~,~x) 

(D~) (B2+f12 tan2 6) * 
m x =  cot 6 B 2 __ f12  • (45) 

Equations (7), (8) and (45) are used to plot (C~/Cap)~x for various free stream Math numbers in Fig. 13. 
The caret wing value 

( - -~  ) = = Cz cot (46) 
C______z 2 

6 
D o CDpo 

shown in Fig. 5, is also included for comparison. The optimum value is noticeably greater than the caret 
wing value at all CL and M~o, but strikingly so for small CL and low M~o together. The singularity in 
C~/Co (4 = ~ma~) as CL ~ 0 is investigated by small disturbance theories in the next Section. 

Keldysh in his paper 5 on V and W-wings with straight leading and trailing edges, in effect failed to 
consider the limits on 4. Thus taking the equivalent of ~m~, = 1r/2 instead of the value given by equation 
(38), he obtained (L/Dp)m~x = oo. 

5. Small Disturbance ExpressDns. 
From Ref. 6 

Hence, to first order 

cp ,~ ( 
T = fl--~- 1 

~-{-1 M 2 ~  6 2 3 

4 ,6~ } ~ + ° ( ' ~ )  

o = cot,~ = c,. ~----~, x - 5 -  ~ 8 t~  cL 

(47) 

(48) 
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i.e. 

2 \Cop o =  1+ 8fl 2 ?+ 1 - ~ - ~  (49), 

From equations (45) and (38), 

D max = c ° t 6  Be_B2 (50) 

tan ~max cos ~ (B 2 - f12)~" 
(51) 

From Ref. 4, or putting ~ small in the, oblique shock wave relationships 

M2 (l+~-M2 )~ 
B - Z o o  - ~ (52) 

and 

B-floo= ( 1  ?+IM~'~M~ 
4 ~ )  • 

(53) 

Hence, from equation (50) 

max = ~ M~o (?+ 1) fi 
(54) 

*This equation is misquoted in Ref. 4. 
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and from (51) 

\ (55) 

Equations (47) and (54) give 

~ ( C 2  I = (  4 )~/M2C~, 
,,C,,,,,m. \7-4- J I (56) 

\ 
and equation (55) shows ~,,x (= 2) ~ re/2. The parameter M 2 C~/floo appeared in a logarithmic form in 
the performance of the wedge-interference wings (2 = r~/2) of Ref. 4. Equation (56) gives the optimum 
small disturbance performance for wedge-interference wings, with a supersonic trailing edge. The exact 
performance, can of course be obtained by putting 2 = zc/2 in equations (43) and (44). 

In Fig. 14, with M 2 C~/fl~o as abscissa exact values of (floo/2) (C2/CDp) are compared with the small 
disturbance theory values. Agreement is good for small values of M 2 C~/flo~. At larger values the exact 
performances are better than those predicted by small disturbance theory. As Cp = CL for all wings, the 
non-linearity in CL can be removed by relating the performance to that of the caret wing (2 = 0). This is 
shown in Fig. 15, where the values of(L/Dp)mJ(L/DI,)O for M = 2, 4 and 10, are in remarkable agreement 
at equivalent values of M~ C~/floo. This obviously permits evaluation of the possible improvement in 
performance at other Mach numbers. 

For M 2 b large and b small, the oblique shock wave relationships or Ref. 9 give 

Cp = (~-t-1) ~ 2 ] 

2 
B 0'-" 1) b 

? " 

(57) 

13 



Hence, substituting as before, we can obta'm 

(CL/CD,,)o = (~,+ 1)~ c t  ] 

(c~/c~).., = (2~)*  ct  

(L/Ov)max/(L/D,).= ~ ' ~  

(58) 

and 

f (7 -1 ) l .~  
tan ~m~ = L ~ J 

For y > 1, the improvement in performance does not disappear, as M~ --, ~ .  For example x~ith 7 = 1.4. 
(L/D)..x/(L/D)o has a value of 1"08 and ~m,x = 2 ",, 22 °. Hence the optimum ratio of 'interference' to 
'direct' lift does not become zero even as M~o --, oo. These limit values for large M~ C ~ o o  are shown on 
Figs. 14 and 15. 

6. Performance Including Viscosity. 

Let Cf be an average skin-friction coefficient and Sw the wetted area of the lower surface, then 

Cx = Cf S , /Az  

Cr = Cp tan ~ cos 6 

Cz = - C v 

(59) 

where Cx, Cy, Cz are force coefficients with Az as reference area. Since Az, = A z  cos 6, from equation 
(10) it follows that 

A= = Az cos 6 cos ( ~ - 2 )  
cos ~ (60) 

14 



• Hence, using equations (16), (59) and (60), we can write 

f C~ = CFcos(~_2 ) tan &+~-~p A--z (61) 

cos~ . ~ + C f ~ c o s $  = C~ cos ( 4 -  ;t) tan (62) 

S~ 
Cs = Cp tan (4 -  A) + sin 2 sin ~ Cf-~z (63) 

SW 
CL = Cp- C$ -~ sin J cos 2. (64) 

SW 
When C I = 0 these reduce to equations (11). Now Cy ~ sin & cos 2 < Cp and is neglected. 

Then for the lower surface 

L cos (4-2)  scc 
D C s sw 

tan &-I Cp A= 
(65) 

and 

tan t$+C~ A~S--~" 
(66) 

This may also be written as 

L CL 
D C~p + CDf (67) 

cos 
where CDp = CDo 

cos ( 4 -  4) 
SIC 

and CDf = CS-7-. 
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Equations (65) to (67) hold for the complete wing when streamwise upper surfaces are added, if Sw is 
interpreted as the combined surface area of the upper and lower surfaces. 

To the list of parameters which determine the inviscid performance (M, CL, 2 and ~) have now been 
added C r and Sw/Az to account for the effects of viscosity. A value of C:, the average skin-friction co- 
efficient, is difficult to assess accurately. However in many cases it is sufficient to assume a constant value. 
With this assumption the reduction of CD: depends on reducing Sw/Az. For a caret wing the value of 
Sw/Az depends on the ratio of semi-span to length (s/l). In the next Section, using this as a parameter, 
values of Sw/A~ for the caret wing and W-wing are compared. 

7. The Ratio of Wetted Area to Plan Area. 
For the caret wing from Ref. 3, 

Sw 2 Azo E / tan a'~ + E  ( t a n  a - t a n  6 = 1 + ~ - - ~ - ) 2 ]  ~ l + t a n 2 6 +  s/l ) ]½ (68) 

where Sw is the surface area excluding the base. For ~ small this reduces to 

Sw/A~o = 2 sec q~o (69) 

where tan q~o = z3 /Y3,  and ~bo is usually referred'to as the anhedral angle of the wing. Also for the caret 
wing 

s tan tr 
= tan ~bo" (70) 

For the conical W-wing with 6 small 

S__~ = 2 sec ~b +z2 .  (71) 
A~ Y3 

The first term comes from the 'wing' at anhedral ~, as in equation (69); the z2/y 3 term comes from the 
extra area of the body. The value ofs/l can be written, using equation (3), as 

s Y3 Y3 tan a 
. . . .  (72) 
l x3 z3 c o s 2 + y 3  sin 2 

i.e. 

s tgn tr 
l cos 2 tan ~b + sin 2 

tan a cos q~ 
sin (~b + 2 )  " 

('73) 

For equal s/1 from equations (70) and (73) 

tan q~ sin ~b 
tan q~o = sin (~b + 2)" (74) 

Hence the anhedral of the caret wing for a particular s/l, will be more extreme than that of the W-wing. 
This compensates in part for the extra surface area of the body, given by the z2/y3 term of equation (71). 
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For-example, the W-wings of figures 8a, b and c have Sw/Az values of 2.30, 3"70 and 3.65 respectively. 
The equivalent caret values are 2.28, 3.46 and 3-46. Hence for the W-wings shown in Fig. 8, with X4 a 
maximum, the values of Sw/A= are only slightly larger than the caret wing values for the same s/l. 

Comparing the wings considered here with other examples of wings with theoretically known flows, 
the large Sw/A= of some W-wings (e.g. those of Figs. 8b and 8c) puts them at a disadvantage. A plane 
delta wing with an attached shock wave 1°, and some wing designs based on the flow about an unyawed 
cone 11, have Sw/A= values only slightly larger than 2.0, and inviscid performances comparable with the 
caret wing. Hence, if the superior performance of the W-wing is not to be counteracted by increased 
viscous drag, means of reducing Sw/A~ need to be investigated. 

So far, the ratio Sw/A= has been considered for conical W-wings because of their simplicity. For a 
particular s/I there is nothing to suggest that either the caret wing or the conical W-wing gives a minimum 
value of S~/A~. Consider the caret wing for example. The local value of wetted area to plan area is constant 
over the surface and equal to sec ~bo. Sw/A~ could obviously be reduced if the local anhedral were decreased 
where the chord is longest near the ridge line, and were progressively increased towards the tips, as shown 
in Fig. 3. The variation of~b across the span for minimum Sw/A~ cannot easily be expressed as an analytical 
function. However a half-elliptic section through the tips may be expected to give a variation of q~ which 
is close to optimum. For s/1 = tan a, ~bo is equal to zd/4 and the ellipse is a circle. Then for unswept trailing 
edges 

(S~z z ) _ 8 2"55 (75) 
P L L I P S E  

and 



a maximum at about CL = 0'04. For values of~ = 2 = constant (> 0), larger values of L/D are obtainable 
at higher CL. 

The maximum value of L/D is given by 

dCL = O. (77) 

From equation (67), 

D Coo cos ¢ Coy (78) 
= CL cos (4-- 4) ~ CL 

Hence the maximum L/D is given by 

cos,  oo,( cos, 
cos(~-~) d~,. c,. ) + c~ dc,. cos(~-~)) +~C-;~ ~ )  = o. (79) 

The equation can be simplified when its second term is small. The magnitudes of the terms are investi- 
gated successively. From equation (8), 

d-CL ~ CL \ 1-~ 
C.t, 2 r 2  2 

2--CL 4f l2-@+I) CLM 2-t 4+(~+I) CL M2 ) (80)  

CDo 
= --~L f(CL)" (81) 

The funct ionfis  plotted in Fig. 17 for various Mach numbers. 
Let the variation of Coy with C z be written as a Taylor series 

i.e. 

Then 

o ~ ~,-zcT:)o + . . . .  

(82)  

d (Co:'~ CD:(O) ~_I(d~CD:'~ 
dC L \ ~ , }  = C2z \ dC~ J o + .... (83) 

~ co:(o) (84)  
c~ 

- -  = o .  (85)  

for the values of CL of interest. Then equation (79) can be written 

cos~ ~ _ d f cos 
co~-~):+c'~-;~ co~=~)) cof(O)coo 
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If the variation of 2 and ¢ with CL is not large, the second term (with CL equal to 0"1 or less) is small 
COS 

compared with f and hence 
cos (~ -  2) 

cos ¢ -~  Cos- (0) 
cos ( 4 -  2) f ~ CDo 

i.e. 

Coy "~ Coy (0) (86) 
f 

Then substituting this in equation (67) 

L )  L 1 

max = -~p 1 +f  Coy~Cos (0)" 
(87) 

The value of Cos~Coy (0) for a turbulent boundary layer on the compression surface of an inclined 
flat plate, has been calculated assuming no heat transfer 13 and a typical Reynolds number (see Fig. 18). 
For a W-wing with a streamwise upper surface, Coy~Coy (0) for the wing will differ from unity by 1/2 to 
2/3 of the values of Fig. 19. Hence the factor f Cos~Coy (0) of equation (87), is usually close to unity, 
and we can write 

( : )  , ,  
max ~ 2 Dv 

with 

Coy ~" Cos'. (89) 

This is similar to the well known result that, when Co can be expressed as 

Co = C1 + C2 C~ (90) 

with C 1 and C2 constant, then (L/D)max is given by C1 = C2 C~. 
From equation (67) Cop can be expressed as 

c o s  

Cvp = K cos (4--2) (91) 

where K --- - -  , (see Fig. 5). Then 
CDpo 

( L )  ( K  cos (~ -2 )~  ~ 

max = 4Coy  cos¢  J 
(92) 

and is plotted against C9¢ at M = 4, for various ~ = ,~ in Fig. 19. The maximum value of(L/D)m,, is also 
shown using the upper allowable limit of ~ given in Fig. 15. This is an upper limit to the performance 
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that can be obtained with W-wings at M = 4. 
If we write Cos as C~ Sw/A=, then if 2 = 3, 

\4Cy ] \Sw/A:] (93) 

Fig. 19 can now be given a different interpretation by replacing Col along the abscissa by C~, and the 
constant parameter along the curves (sec 3) by sec ~/(Sw/A~). Then for given C I, to improve the performance 
it is necessary to increase sec ~ more than the wetted area to planform ratio. This gives a quantitative 
estimate of the prospects of improving the performance. 

9. Conclusions. 

The flow through a plane inclined shock wave can be used to produce a lifting surface with an exactly 
known inviscid flow, and better inviscid performance than that of the two-dimensional wedge. The 
shock wave must be skew to the flow; the compression surface has single curvature and no vertical 
plane of symmetry. 

A complete analysis of shapes supporting plane skew shock waves is presented. It is found that the 
optimum performance of such compression surfaces with supersonic trailing edges depends on a similarity 
parameter C~ M2/~oo (Fig. 15). Small values of the parameter give much larger values of lift to drag 
ratio than that of the two-dimensional wedge (which is the value given by a caret wing). 

A relatively simple configuration, here termed a W-wing, can be formed from a pair of these compression 
surfaces with a partly common leading edge. The shape has in effect a central body below a swept wing 
and demonstrates an advantageous interference of the body on the wing. Restrictions on compression- 
surface shape from the single curvature of the surface can be relaxed by using the two-dimensional flow 
about curved wedges. Although these wings are not immediately representative of practical aircraft 
configurations, they can be used to indicate the distribution of volume and wing position for obtaining 
favourable interference when the wing supports an attached shock wave. 

Viscous dra~ tends to be hi~h, because the shapes have a large ratio of wetted area to plan area. For 
hypersonic speeds (M > 5) where the inviscid improvement over a two-dimensional wedge is small, 
the high viscous drag puts the W-wings at a disadvantage as compared with flat-bottomed configurations 
(though not as compared with caret wings). At high supersonic speeds (3 < M < 5) the inviscid improve- 
ment is more marked and a gain in performance, including viscosity, over that of the two-dimensional 
wedge, and hence over that of flat-bottomed shapes, can be shown. 

The optimum lift to drag is found to be obtained when the pressure drag is approximately equal 
to the viscous drag. 
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LIST OF SYMBOLS 

Defined in equation (19) 

I y .  d S  

8 

Plan area defined by equation (1) 

Cot (or- ,~) 

Force coefficients, with Az as reference area, in the x, y and z directions 

Pressure drag 

Pressure coefficient behind shock wave 

Defined in equation (81) 

C2L/CDpo 
Free-stream Mach number 

A point in the flow 

The compression surface 

Wetted area 

Semi-span to length ratio 

Free-stream axes, shown in Fig. 1. 

X, Y, Z axes with 2 = 0 

Rectangular axes, positive X streamwise behind the shock wave, Y in the shock wave, 
and positive Z in the free stream (see Fig. 3) 

Unit vector in y direction 

Unit vector in z direction 

1 behind the shock wave 

Angle of flow deflection on passing through the shock wave 

Angle between a streamwise plane perpendicular to the shock wave, and the x, z plane 

tan- 1 (Ayo/AJ (equation (4)) 

Shock wave inclination to free stream 

Anhedral angle tan- l(zJy3) 

2 = 0  

Nose, co-ordinates (0, 0, 0) 

Wing tips 

Point of intersection of nose streamline with trailing edge 

Viscous term included 

Skin friction 

21 



No. Author(s) 
1 T.R.F.  Nonweilcr 

2 T.R.F.  Nonweiler 

3 D. Kuchemann 

4 P.L. Roe .. 

5 V.V. Keldvsh 

6 Ames Research Staff 

A. J. Eggers and 
C. A. Syvertson 

8 J. Pike . . . .  

9 G.L. Grodzovskii 

10 D.A. Babeav .. 

11 J.G. Jones and 
B. A. Woods 

12 J.V. Becker .. 

13 K.G. Smith .. 

REFERENCES 

Title, etc. 
Aerodynamic problems of space vehicles. 
Jl. R. Aeronaut. Soc. 63 (585) Sept. 1959. 

Delta wings of shapes amenable to exact shock wave theory. 
A.R.C. 22,644 March 1961. 
JI. R. Aeronaut Soc. 67 (625) Jan. 1963. 

Hypersonic aircraft and their aerodynamic problems. 
Advances in Aeronautical Science Vol. 6 1965. 

Some exact calculations of the lift and drag produced by a wedge 
in supersonic flow, either directh or bv interference. 

A.R.C.R. & M. 3478, Aug. 1964. 

F_xacl solutions for wings having one and two plane shock waves. 
lnzhenernyi Zhurnal 1 (1961) 3, pp 22-39. 
R.A.E. Lib. Trans. No. 1044 Sept. 1963. 

Equations, Tables, and Charts for compressible flow. 
N.A.C.A. Report 1135, 1953. 

Aircraft configurations developing high lift-drag ratios at high 
supersonic speeds. 
N.A.C.A./T.I.B. 5007. 
N.A.C.A.R.M. A55 L.O.S., 1956, A.R.C. 18632. 

Minimum drag surfaces of a given lift 
dimensional flow fields 

A.R.C.R. & M. 3543, Sept. 1966. 

which support two- 

Useful interference of a wing fuselage at hypersonic speeds 
Izv. a. n. SSSR. Otd. Tekh. n. Mechanika i. 
Mashinstroeme No. 1 pp 170-173, 1959. 

Numerical solution of the problem of supersonic flow past the 
lower surface of a delta wing. 
Zhurnal Vyehislitel 'noi Mathematiki i Mathematicheskoi Fiziki 

2, No. 6. 1086-1101, Nov. 1962. 
A.A.1.A. Journal, Vol. l, No. 9, Sept. 1963. 

The design of compression surfaces for high supersonic speeds 
using conical flow fields 

A.R.C.R. & M. 3539 March 1963. 

Studies of high lift/drag ratio hypersonic "configurations. 
U.S.A.A.I.A.A. Paper 64-551, 1964.8. 

Methods and charts for estimating skin-friction drag in wind- 
tunnel tests with zero heat transfer. 

A.R.C.C.P. 824. Aug. 1964. 

22 



APPENDIX A 

The Trailing-Edge Surface 

Angle ¢ represents an important parameter in the performance of generalised Nonweiler wings. 
It is purely a geometrical parameter depending on the trailing-edge shape (see equations (4) and Fig. 4). 
In order to find simple classes of wings with constant ~, the concept of a trailing-edge surface is introduced. 
This is a curved surface which passes through the downstream limit (i.e. the trailing edge) of the stream 
surface (Fig. 20). More exactly, it is a semi-infinite surface with a boundary P2 P3 in the shock wave, 
such that it prescribes a trailing edge to any stream surface with a leading edge which ends in this boundary. 
The supersonic trailing-edge condition can be given as a property of the trailing-edge surface. Consider 
a trailing-edge surface such that no streamline crosses it more than once, and the surface is everywhere 
locally supersonic. Then no downstream influence can propagate across the surface and any trailing 
edge on such a surface must necessarily be supersonic. Further any supersonic trailing edge will have 
at least one such surface through it, for the upstream limit of influence of the downstream Mach cones 
from trailing-edge points form such a surface. Hence all supersonic trailing edges are defined by the 
class of trailing-edge surfaces which are locally supersonic. 

A parallel region of flow such as Px P2 P3 P4 (e.g. in Fig. 7) is bounded upstream by the shock wave 
downstream by the supersonic trailing-edge surface, and elsewhere by the stream surface. Consider 
this parallel flow region divided into n streamtubes such that the trailing edge surface may be considered 
plane for any one of them, then 

r = B  

A,o = 2(a,o), 
r = l  

(94) 

r = B  

Ayo = 2(Aro) ,  
r = l  

(95) 

Hence 

n = y  

tan ~ = Ayo = 2 (A~o), A~--~ ~ tan 
n = l  

(96) 

where 
r = n  

(Ago), = 1 .  

Azo (97) 
r = l  

The maximum of tan ~r with only a locally supersonic trailing edge restriction, will give an orientation 
of the trailing-edge surface. The 'locally supersonic' condition depends on flow properties. These are 
constant over the trailing-edge surface. Hence for any r, tan ¢, has the same maximum value at the same 
orientation. Hence from equations (96) and (97), tan ~ has this same maximum, with a surface of constant 
orientation. Hence plane trailing-edge surfaces include a surface which gives the maximum value of tan 4. 

For a particular plane trailing-edge surface the ratio of (Ayo), to (Azo), (i.e. tan ~r) is a constant. Hence 
from equations (96) and (97), ~ is constant for any compression surface with its trailing edge of this trailing- 
edge surface. Hence given a plane shock wave and a plane trailing-edge surface the inviscid performance 
is independent of the shape of the compression surface. 
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APPENDIX B 

The Volume Coefficient 

In Section 8 it is indicated how a CL may be obtained for optimum lift to drag ratio. Via equation 
(2) and the oblique shock wave relationships 6 CL determines the angle of flow deflection (5). For 5 constant 
over the compression surface, the volume for any wing with a streamwise upper surface may easily be 
evaluated 
i.e. 

Y3 

V = Vo - tan 6 f x2 dY (98) 

Y2 

where x is the chord at any Y value. 
This volume may not be as large as the volume required for the configuration. It is of interest then to 

compare the volume of the W-wing with that of the caret wing. 
For the conical wing with a plane trailing-edge surface (e.g. Fig. 7), x is linear with Y. and 

v - t a n f x 2 (  Y3-Y2  ) 3  ~- . (99) 

For the caret wing this reduces to 

Vo - t a n  5 x 2  s .  (100) 
3 

Introducing a non-dimensionalised volume 

i.e. 

Then 

V 
"C - -  A3/2 (101) 

V 
z - s3/2 x3/2. (102) 

tan 5 1 
% -  ~ sx/@-~4 • (103) 

For the W-wing, 

Y 3 -  Y 2  _ Y 3 -  Y 2  x4  _ A~o _ c o s  

S Y3-Y2 x4 Az cos(~-2)"  
(104) 
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Hence from equations (102) and (104) 

tan ~ cos ~ 1 
- - -  (105) 

3 

From equations (11), (103) and (105), for either a caret wing or a W-wing 

z L  ( L )  1 
o-3 " (lo6) 

Hence for wings of the same L/Dp, and s/x4 the z is constant. 
The spanwise distribution of volume is very dependent on 2 (e.g. Fig. 8), so that a large proportion 

of the volume can be concentrated in a central body. The volume can easily be increased by extending 
this body downstream, as is shown in Fig. 8c, to give a larger value of ~ while making little difference 
to the performance. 
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FIG. 2C. 

"•R FREE 
EAM 

; ~ ~ a .  A ca ~ o ~  

FIG. lb. A generalised 'W'-Nonweiler wing. 

FIG. 2a. Caret wing. 
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FIG. 2b. Interference wing. 

FIG. 1 A caret wing and a 'W'-Nonweiler wing. FIG. 2. Front view of various wings based on 
two-dimensional flow fields showing 'local' flow 

direction. 
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