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Summary.

An oscillatory lifting-surface theory for subsonic flow (Ref. 1) is used to calculate the aerodynamic
forces on an oscillating arrowhead wing of aspect ratio 2 with trailing-edge control surfaces of varying
span. The collocation method is outlined for simple harmonic motion of arbitrary mode and frequency
and is applied for modes of plunging, pitching and control rotation. The discontinuous upwash in the
control-surface problem is replaced by a smooth equivalent function. An alternative treatment for total
forces, such as lift and pitching moment, is provided by the reverse-flow theorem with collocation solutions
calculated for the ‘reversed wing’ in appropriate modes.

Values of the aerodynamic derivative coefficients are presented for a range of frequency at the Mach
numbers 0-781 and 0-927. The variation of the pitching derivatives with frequency, Mach number and
pitching axis is illustrated and shows good agreement with the results obtained by other collocation
theories and by low-frequency wind-tunnel measurements. For the control-rotation mode, the calculated
values of the indirect control derivatives indicate the good comparisons between the various methods of
constructing equivalent upwashes and also the satisfactory comparison with the other collocation
theories. Values of the direct control derivatives appear more sensitive and large variations in magnitude
are associated with the different collocation methods and equivalent upwash treatments.
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1. Introduction.

This investigation considers linearized theoretical methods of evaluating flutter derivatives for general
wing and control-surface configurations in subsonic flow. Although the methods are applicable to elastic
modes of deformation, rigid modes are chosen for the purposes of direct comparison with experimental
aerodynamic data. The present application is to the calculation of derivatives for simple harmonic
plunging, pitching and control rotation of an arrowhead wing with trailing-edge controls of arbitrary
span. The planform of aspect ratio 2 with a leading-edge sweepback of 60° is illustrated in Fig. 1a with
half-span outboard controls.

The calculations are based on the subsonic lifting-surface theory developed by Acum (Ref. 1) for
oscillating wings of finite aspect ratio. This method is an extension to general frequency of Multhopp’s
methods for steady flow? and low-frequency motion®. Acum’s method of obtaining collocation solutions
for the load distribution over the wing is outlined in Section 2.1. The subsequent calculation of generalized
forces for arbitrary modes is considered briefly in Section 2.2. The application to plunging and pitching
modes is formulated in Section 3.1. The reverse-flow theorem due to Flax* provides an alternative way
of determining the lift and pitching-moment derivatives (Ref. 5). Reverse-flow relations for these deriva-
tives in terms of the plunging and pitching derivatives for the ‘reversed wing’ are given in Section 3.2.

Methods of evaluating control-surface derivatives by means of collocation solutions are considered
in detail in Section 4. The reverse-flow approach can be applied to continuous force modes such as lift
and pitching moment (Section 4.1). On the other hand, it is an advantage if the forces corresponding to
the wing oscillations and to the control-surface oscillations can be computed from direct-flow solutions.
The control-surface problem is therefore transformed to one with a continuous boundary condition.
On a general reverse-flow basis, Davies® has constructed smooth equivalent upwashes for oscillating
part-span controls; this three-dimensional approach, dealing simultaneously with the chordwise and
spanwise discontinuities in upwash, is applied in Section 4.2 with a modification consistent with Acum’s
lifting-surface theory. This treatment leads to the rather complicated formulation given in Appendix A.
Values of the equivalent upwashes appropriate to solutions for the arrowhead wing with controls are




discussed in Section 6.1 and are compared with values by the simpler methods formulated in Appendices

B, Cand D.
The reverse-flow basis of constructing equivalent upwashes depends upon the assumption that the

force modes are smooth. In the case of forces such as hinge moment, no lifting-surface method deals
rigorously with the discontinuities in both the upwash and force modes. Some methods use a distinct
construction for equivalent upwashes appropriate to hinge moment, as for example in Ref. 7 for low-
frequency oscillations where chordwise and spanwise discontinuities are treated separately. It is important
to investigate and assess the merits of available treatments in the determination of the direct control-
surface derivatives (Sections 4.3 and 6.3).

Various collocation solutions for plunging, pitching and control-rotation oscillations have previously
been evaluated for the arrowhead planform. For low frequency, results by the Multhopp-Garner method
(Refs. 3 and 7) are available for the wing with control surfaces of different spans. For general frequencies,
Davies’® lifting-surface method has been applied for the particular control span shown in Fig. 1a and
Woodcock® has investigated the accuracy of the solutions by considering various combinations of the
chordwise and spanwise collocation positions. A link between low-frequency and general-frequency
results is provided by the formulae from Ref. 9, that express the rate of change of a damping derivative
with frequency in terms of appropriate quasi-steady stiffness derivatives for the same planform and
Mach number. A limited number of results from wind-tunnel tests are available for subsonic flow.
Derivatives for pitching oscillations at small frequencies have been measured at M = 0-8 and'M = 09
(Ref. 10) and for M > 0-5 (Ref. 11). The calculated and measured derivatives from all these sources are
discussed in relation to those presented in this report for plunging and pitching motion in Section 5 and
for control-surface oscillations in Sections 6.2 and 6.3.

2. Acum’s Lifting-Surface Theory.

The method of Ref. 1 is valid within the limitations of linearized theory for a thin wing describing
simple harmonic oscillations of small amplitude in a uniform subsonic free-stream. The integral equation
between the load and upwash distributions is made tractable in Ref. 1 by an extension of the Multhopp
lifting-surface methods of Refs. 2 and 3. Section 2.1 sets out the basic equations required to calculate the
load distribution over a wing oscillating in an arbitrary mode. The calculation of the generalized forces
is outlined in Section 2.2.

2.1. Collocation Solutions for the Load Distribution.

The integral equation relates the complex upwash distribution w(x,y)e””* and the non-dimensional
load distribution I(x,y)e** over the wing planform assumed to lie in the plane z = 0. In the present
notation equation (25) of Ref. 1 becomes

M) _51;” i) K(xowo) dx' dy O

where
| Xo = X=X, yo=y-y,
l(x,y) = lift per unit area/3pU?,
U = free-stream velocity

and § is the area of the wing planform. The kernel function is defined by
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where
ro = [Lo® +B% yo? + 2 22]*,

M = Mach number of the free-stream,
B =[1-Mt.
The use of a modified upwash W and a modified loading 1, defined by

wlx,y) = w(x,y) exp (—iwx/U) €)
and

l(x,y) = 1(x.y) exp (—iwx/U), 4)

simplifies the integral equation (1). This equation is then reduced to a practical form for computation
by extending to general frequency Multhopp’s® ‘influence function” approach for low frequency. The
particular features of this approach are the use of N chordwise terms in the load distribution, with their
corresponding ‘influence functions’, and the N chordwise and m spanwise collocation positions on the
planform where the upwash is evaluated.

Acum specifies the load distribution by equation (4) with an assumed series for the modified loading
I(x,y). In general,

1(x,y) = [85/7: cy) ] [Z‘Pq(@ rq()’):| (%)

in terms of the chordwise functions

() = [c"s‘q‘”‘b““qﬂ cot

1+cos ¢ otz ¢

_ [ cos (g— 1)¢p+cos q¢

sin o } 4= 1N, (6)

where the chordwise parameter ¢ is defined by
x = x(y)+3¢(y) [1~cos ¢] (7

and x(y), c(y) are respectively the ordinate of the leading-edge and the local chord at the spanwise section

y. In equation (5), I'(v) are the unknown spanwise functions to be determined by a collocation solution
of equation (1).

For the load distribution i(x’,y), each chordwise term ¥ (¢’) has an ‘influence function’ defined as

3

Fyeny) =~ H—y&exp(%) K(xo,yo) ] [cos(q—1)¢'+cosq¢']d¢’ ®
0



where the kernel function K(x,, yo) is given by equation {2) and xo = x—x', yo = y—V.
The evaluation of equation (8) is reduced to a practical computation by means of an expression derived

in Ref. 12 for the kernel function K(x,,y,). The influence functions can be expressed in terms of four

non-dimensional parameters:
the Mach number M,
the local frequency parameter [ c(y')/U],

co-ordinates [x —x, (¥)]/c(v') and [B(y—y)}/c(y)-
The substitution of equations (2) to (7) into equation (1) leads to an equation for the modified upwash
W(x,y) that is expressed in terms of the influence functions F,(x,y,y’) of equation (8). Hence

s N
W(X,Y) _ S 1 ) l I
22 [ ) T Exs by o

-S

q=1

The spanwise integration with respect to )’ in equation (9) is effected by the Multhopp interpolation
technique of Ref. 2. The unknown spanwise functions I'(y') are represented by polynomials in terms of

their values I'j, at the m spanwise stations y’, defined by

o 1— m—1
Y',./S=f7n=sm[nn/(m+1)],n= (——2m><1><—-——2 ) (10)
where m is an odd integer. Thus, ’
n=%(m—1) "

N (—1y** ! sin(m+ 1)8 sin 6

(V) = (— 1)Fm+D) n
W) = (=1 ™ (m+1)(cosf—cosf,) an

n=-—%(m—1)

where y/s = n = cos 6 and #,, = cos 8,.
The modified upwash W(x,y) of equation (9) is now calculated at each collocation position (x,,,y,) where
the chordwise positions are defined by
Xpy = xlv+712'cv [l—COS¢ :l
’ “hp=10N, (12)

¢, = [2pm/2N+1)]

and the spanwise positions are
1— —1
yv/s=m=sin[nv/(m+1)],v= (T’”)(Q(—’%—) (13)

By equations (9) to (13), the modified upwash #w(x,,.y,) is obtained in terms of the influence functions
F (x,,,y.)",) corresponding to the spanwise station y’, and the collocation position. Thus,

N
M = Z { qu|: _bvv Fq(xpvayvaylv):| +

U
n=gm—1)
+ | I [bvn Fq(xpv!yv’yln)] }, (14)
n="Tlm-1)



where the dash on the summation signz indicates that the term n = v is omitted from the summation.

n

In equation (14),

by, = 1 (m+1)/(1—n}?

by = (1=n2)*/[(m+1) (1,—n,)],

=0 ,|V““n|=2,4,6...

v—n|=13,5... (15)

~

Furthermore, F (x,,,.,.¥,) denotes the particular form of influence function when n = v, which includes
an additional contribution from the integration of equation (9) through the logarithmic singularity at
¥ = y as described in Ref. 1.

The evaluation of #(x,,,y,) for a swept wing is modified by using the ‘Multhopp interpolated wing’
(Ref. 2, Section 5.3). For example, the kinked centre section of the arrowhead wing in Fig. 1a is replaced
by the rounded planform shown in Fig. 1b; the actual values at the spanwise station y = 0,

1e.,
x(0) = and ¢(0) = ,,

are replaced respectively by

- 1
X10 = & X11

(16)

in terms of the values x,, and c, at the spanwise station y/s = sin [n/(m+1)].

Equation (14) for w(x,,,y,) at the mN collocation positions, defined by equations (12) and (13), gives a
set of linear simultaneous equations in the unknown coefficients

I, for ¢ = (N, n= (#)(1)(272_—1)

These coefficients are determined for any oscillatory motion by satisfying the corresponding boundary
condition at the positions (x,,,y,). Assume a mode of oscillation j such that the upward deflection of a
point (x,y) on the wing is, in complex notation ,

2(x.p,8) = zj{x,y) b; e (17)
where b; is the non-dimensional amplitude of the oscillation with angular frequency w. The corresponding
upwash must satisfy the tangential flow condition given by

w(x.y) € = w(x,y) b, e
(18)

wiey) [ 2
U [ U +ax]zf(x’”



Hence, W(x,,.y,) of equation (14) must satisfy the boundary conditions given by equations (3) and (18)
at the collocation positions (x,,,,) of equations (12) and (13). The loading coefficients I'{) corresponding
to mode j are thereby determined and the spanwise load distribution I'Y” is then defined by the interpola-
tion polynomial of equation (11). With equations (4) to (6), the required load distribution over the wing
is obtained in the form

Ix,y) € = Ifx,y) b; " . (19)
2.2. Calculation of Generalized Forces.

The generalized aerodynamic force corresponding to a non-dimensional force mode f{x,y) and the
load distribution of equation (19) is defined as

FORCE = }pU?b; e j jfi(x,y) l{x,y)dx dy = pU? $Q;; b; " . (20)
S

When the series for I(x,y) from equations (4) to (6) is inserted, the non-dimensional force coefficient

Q;;is

N

0= f J ﬁ(x,y)[Z‘Pq(rb)Ff;”(y)} [exp(_iwx/m} (c%) (ﬂ>

By equations (6) and (7), the transformation to co-ordinates ¢ and n = y/s gives

Qi,-=§;J ffi(qﬁ,n)[z {COS(q—l)d)+cosq¢} F&"’(n)] X

X I: exp (il cos ¢ —ik) ] do dn, 21

where

A= cuzc[(]y ) LK = %[x,(y)—}—% c(y) :| and A is the aspect ratio of the wing.

The arbitrary force mode i can be expressed as

R
fi= z BY () cos (r—1)¢ over area C
=1 , (22)
-0 over area (S-C)

where the area C can be defined by ¢, () < ¢ < ¢, (1) and 7, <7 < 5,. Then, equation (21) becomes

N R 1
Qij = %lz Z J l: CcxXp (_ iIC) rfii) (’1) Bﬁi) (’77] Trq (/L(]5 1a¢2) d” (23)

g=1r=1m



where
A= wcy)2U,

k= A[1+{2x)/c}],
and

2

2
LA .02)= ;J [{cos (g—1) ¢ +cos ¢} cos (r— 1) ¢] [exp (i cos ¢)] d¢. (24)

b1

It is assumed that the spanwise loading Ff{’ () is determined as a smooth continuous function of ¥
whether the mode j is continuous or discontinuous. The evaluation of the spanwise integral in equation
(23) is effected by using the values of the integrand at the positions # = #, with Y (n,) = T from the
solution of Section 2.1. Any discontinuities that might arise from the wing parameters such as x,, or
¢, are removed by using a rounded planform as defined by equation (16) and illustrated in F ig. 1b for the
centreline kink on the arrowhead planform. For a full-span control surface however, the kink in the
hinge line at y = 0 should be retained in the calculation of hinge moment. In general, the integration
with respect to # can be reduced to a summation with respect to n by means of integration factors PY
appropriate to the force mode f;. Then, the force coefficient Q;; of equation (23) can be expressed in the
form

l: exXp (_ iK:n) Féjn) Pili) Bs'ln) T;q (lna¢1n>¢2n) :| (25)

where the subscript n denotes a value at # = #, and the parameters R, ¢; and ¢, are specified by the
particular mode f; of equation (22). The functions T,, are evaluated from equation (24) by means of a
KDF 9 programme for the integral

@
H(A,¢) = J cosk ¢ exp (iA cos @) de. (26)
[4]

In the case of total wing forces such as lift and pitching moment, to be denoted as modes i = 1,2
respectively, f; of equation (22) is a smooth, continuous function over the area C = S defined by ¢, = 0,
¢, = m, 1, = —1,1, = 1. Thus, equation (24) reduces to

’I;q()“voaﬁ) = [ i { Jq—r()V)—i_i Jq—r+ 1(/1) }
+iq+r—2 {Jq+r—2(l)+i']q+r—1(i) } :I 3 (27)
where J,(4) is the Bessel function of the first kind and i = . /—1 . Since the integrand of equation (23) is

a smooth function, Multhopp’s interpolation polynomial in equation (11) may be applied to the integrand
over the range —1 <# < 1 to give integration factors



PO = r cos [ —=_ ) for modes i = 1 and 2. 28)
m+1 m+1

As an example, the lift force is defined by f; = 1, R = 1 and B, = 1 in equation (22). Then, equations
(25) with (28) give

n=4(m-1)

N
A i . nw
QU = 4(7;_—1—) z z [ l"fi,f exp (— lK',,) COS (m_—l-l) qu(lmo,n) ] (29)

n=—4m—-1) q=1
with T ,(4,,0,m) defined by equation (27) with r = 1. Similarly, for the pitching moment about x = 0
when f, = x/c,

n=%4m-1) N

, nm
Z |:Ff{,?exp(—-m,,)cos(m+1> X

n=—4m-1)g=1

X { ( xln -;% cn > qu (lnaopn)_ (%ﬂ ) T2q (in’o’n) } } * (30)

For a discontinuous force mode f;, as implied by equation (22) when the area C +# S, the integral of

Arn
(m+1)

Q2j=4

2 m+1
are at equally spaced intervals. To determine the integration factors P{?, the integrand is assumed to be
a quadratic function of @ over each double interval 8, < 0 < 6,.,. In general, the spanwise limits of
integration #, and #,, in equation (23), do not coincide with positions 8, For the particular case of the
hinge moment on a full-span control, when 5, = —1 and #, = 1, the procedure reduces to Simpson’s
rule over the whole wing span.

. . . . n
equation (23) is transformed to the variable 8 = cos ™!  where the positions 8, = cos™ ' 7, = ( r_nm )

3. Plunging and Pitching Oscillations.

In the case of a smooth continuous mode j, the load distribution /{x,y) over the wing and the generalized
forces Q;; are calculated by a straightforward application of Acum’s theory as outlined in Section 2.
When the force mode i is also a smooth continuous function of (x,y), an alternative evaluation of Q;;
can be made by applying the reverse-flow theorem*. Such a calculation can be expressed in terms of
collocation solutions for the ‘reversed wing’ oscillating in appropriate smooth modes®. For plunging
and pitching oscillations, relations for the lift and the pitching moment are formulated in terms of the
same force coefficients for the reversed wing (Section 3.2).

3.1. Formulation of Upwash and Force Modes.
In the modes of plunging (j = 1) and pitching about an axis x = 0(j = 2), the wing deflection is defined
by equation (17) with

Zl = —C, bl = Zo/é
’ €29

Zy = —X, b, = 8

where z, and 6, are respectively the amplitudes of the plunging and pitching oscillations and ¢ is the
geometric mean chord of the wing. Then, by equation (18), the upwash distributions corresponding to
these modes

wy = U[—i¥]
; (32)
wy, = U[—1—i¥ (x/0)]



where the frequency parameter v = wé/U.

The corresponding loading I(x,y) for j = 1 and 2 are determined as outlined in Section 2.1 with an
appropriate choice of m(N). The required total forces are the lift, the pitching moment about x = 0 and
the hinge moment on the symmetrical outboard control surfaces (Fig. 1a). These forces are defined in
terms of the non-dimensional force coefficients Q;; by equation (20) with i = 1, 2 and I respectively where
the non-dimensional force modes f; are given by

f 1 = 1
over area S (33)
fo=x/c
and
fr = [x—x,(y]/e over area C
) (34)
=0 over area (S—C)

where S and C are respectively the area of the wing and the area of the control surfaces. It then follows
from equations (31), (33) and (34) that the forces for plunging and pitching are determined in the form

Lift = L = pU?S[Qy, (zo/0)+ 01, 8,] € )

Pitching moment about x = 0
=M =—pU?S [0, (20/)+Q5, 0] & > (35)
Hinge moment about x = x,(y)

=H = —pU*S¢[Q (20/0)+ Q15 0] &

~

The evaluation of the force coefficients Q;; from equation (25) is discussed in Section 2.2; in the particular
cases | = 1 and 2 this formula reduces to equations (29) and (30) respectively. The forces in equation (35)
are expressed as aerodynamic derivative coefficients by means of equations (57) in the Definitions with
xo = 0. Furthermore, the derivatives for plunging and pitching oscillations about an arbitrary pitching
axis x = x, can be determined by using equations (58) in the Definitions.

3.2. Reverse-Flow Relations for Lift and Pitching Moment.

For smooth continuous modes f(x,y) the force coefficients Q, ; ¢an be evaluated by use of the reverse-
flow theorem®. By equation (11) of Ref. 5, the general reverse-flow relation for all modes i and j is

1
Q= (g ) f J F(x,y) L{x,p)dx dy, (36)

where
Fix.y) = wixy)/U,

Li(x,y) e is the loading over the wing in reverse flow due to an upwash distribution

Wi(xay) eiwt = U.f;(xay) eiwt .

In the application of equation (36), the frequency of oscillation w and the free-stream Mach number M
are the same in the direct-flow and reverse-flow problems. In the present application, the modes f; are

10



defined for i = 1and 2 by equation (33) and the distributions w; are determined for j = 1 and 2 by equation
(32). The corresponding forces Q;; from equation (36) can be interpreted in terms of the same total forces
on the ‘reversed wing’ in direct flow. As in Section 4.2 of Ref. 5, this conveniently leads to relations for
the lift and pitching-moment derivatives for plunging and pitching about the axis x = 0 in terms of the
same derivatives for the reversed wing in plunging and pitching about an axis X = 0. The co-ordinates
(x,y,2) of the actual wing are related to the co-ordinates (X.3,2) of the reversed wing by

x=¢—X y=—y, z2=2Z2.

Therefore, by equations (39) and (40) of Ref. 5 with k = ¢, xo, = 0 and X, = 0, the reverse-flow relations
for the derivatives are

L (3%)
19 = mz + (C,_/E) 7z + 7z

lé = YT12+(Cr/E) 72_(1/v2) 72
and
m,+1ly = M+ 1, 7

(39)
Mo+ (c,/8) g+ 1y = Mg+(c,/8) Ty + 1 ( '

my+(c,/2) ls— (1/7%) Iy = iy +(c,/0) 1~ (1/7%) 1y
The bar used over the derivative coefficients on the right-hand sides of equations (38) and (39) indicates
that these quantities relate to the ‘reversed wing’ with pitching axis X = 0. Hence, if the plunging and
pitching derivatives for the ‘reversed wing’ in direct flow are evaluated by the collocation method of
Section 2, then the lift and pitching moment on the actual wing with pitching axis x = 0 are determined
. by equations (38) and (39).

4. Control-Surface Oscillations.

In the case of oscillating part-span control-surfaces, denoted by the mode j = J, the upwash distribution
w,(x,y) is discontinuous along the hinge line and at the spanwise sections y = =+, The corresponding
loading [,(x,y) over the wing would have similar singularities and these cannot be determined by the
collocation method. However, for a smooth continuous force mode fi(x,y) the total force coefficient
0,; can be estimated by means of the reverse-flow theorem (Section 4.1). Alternatively, the problem of
determining Q,, can be converted to one in direct flow with a smooth equivalent upwash wj(x,y) replacing
the discontinuous upwash w(x,y) in the collocation solution. A basis of constructing the function wj
for arbitrary planforms is considered in Section 4.2. Although not strictly valid for the discontinuous
force mode fi{(x,y), this approach might also provide a useful approximate estimate of hinge moment
(Section 4.3).

The wing deflection for control surfaces oscillating symmetrically is given by equation (17) with

zy = —[x—x,)] over area C
= 0 over area (S-C) ( > (40)

bJ=€0

11



where &, is the amplitude of the oscillation and C is the area of the control surfaces. For outboard trailing-
edge controls, the area C is defined by

x(y) S x < x{y)and y, < |y| < s, (41)

where x;(y) is the leading edge and hinge line of the controls. By equations (18) and (40), the upwash
distribution w(x,y) is

wix,y) = U[—1-iv {x—x,(»)}/¢] over area C
. (42)
=0 over area (S-C)

where w; has chordwise and spanwise discontinuities respectively along the line x = x,(y) and at the
sections y = +y,. The required total forces are the lift, the pitching moment about x = 0 and the hinge
moment as defined by the force modes f; in equations (33) and (34) fori = 1,2and I respectively. Expressed
in terms of the non-dimensional force coefficients Q,, by equation (20) with j = J, these forces are

Llft =L = pU2 SQIJ éo eiwt
Pitching moment about x = 0
=M = —pU?SCQ,, &, e L 43)

Hinge moment about x = x,(y)

=H= "PUZ S¢Qpy&o e

These forces can be expressed as aerodynamic derivative coefficients by equations (59) and (60) in the
Definitions.

4.1. Reverse-Flow Treatment of Lift and Pitching Moment.

The force coefficients Q,; for i = 1 and 2 in equation (43) can be evaluated by using the reverse-flow
relation of equation (36) with F(x,y) = w,(x,y)/U determined by equation (42). Thus

1 _
Q= <§§> J‘J‘ l:“l—i“’(x—?'()i)) ]Li(x,y)dxdy, 44)
c

where the load distributions L(x,y), i = 1 and 2, over the wing in reverse flow correspond respectively
to the upwash distributions W; = Ufi(x,y) defined by the functions f1 and f, of equation (33). That is,

W, =U
(45)
W, = U(x/é)

As in Section 4.2 of Ref. 5, the distributions W, and L; can be expressed in terms of solutions for the

‘reversed wing’. Transform equation (45) to co-ordinates (%,J) of the reversed wing as defined by equation
(37). Then

Wi = (i/v) w,(%.5)

’ (46)
Wy = (= i) [y(%.9)+{(i/7)—(c,/0)} 1(%.)]

12



where W,(x,y) and W,(X,5), analogous to equations (32), are the respective upwash distributions on the
reversed wing for oscillations in plunging and pitching about an axis X = 0. The corresponding load
distributions 1,(x,y) and 1,(%,7) on the reversed wing can then be combined linearly to give the distribution
Lix,y) for i = 1 and 2. When equation (44) is transformed to the co-ordinates (%,j), it is evident that the
evaluation of Q;; depends largely on the values I{X,¥) over the area C near the leading edge of the reversed
wing. This is the region where the collocation solution for I(X,7) is least reliable, and it seems likely that
the reverse~flow estimates of Q,, and Q,, will lose accuracy as the control-surface area C is reduced.
It is noted also that the use of plunging and pitching solutions for the reversed wing introduces terms of
order 1/%* in equation (46). For small values of 7 it is preferable to use equation (36) with L, and L,
from ‘reversed wing’ solutions for the upwash distributions of equation (45) with x = ¢, — X.

4.2. Construction of Equivalent Upwash Function.

Using a three-dimensional approach, Davies® constructs equivalent upwashes for an arbitrary wing-
control configuration, that give the same total forces on the wing in reverse flow as the discontinuous
upwash w;(x,y). In general, an equivalent upwash function wj(x,y) can be chosen to give the same general-
ized force Q;; as the reverse-flow relation of equation (36). Thus, for the upwash w;(x,y) of equation (42).

~

(28] Qus

I

J J [—1—i¥ {x—x,(1)}/¢] Lix,y) dx dy
¢

= @

f f D | 5. dx dy
S

J

where the load distribution Ly(x,y) over the wing in reverse flow corresponds to the upwash distribution
Wix,y) = Uf{x,y). To determine w§(x,y) from the identity in equation (47) it is necessary to assume that
W; and L; are smooth continuous functions of x and y. The loading Ly(x,y) can then be represented by
a series of polynomial functions with singularities appropriate to the leading and trailing edges in reverse
flow.

The equivalent upwash function wj(x,y) is now constructed by the treatment, suggested in Section
4.3 of Ref. 5, as being the most appropriate for a swept planform and for application with Acum’s lifting-
surface theory. It is assumed that

g T

wilx,y) = U ZEJst g5(x/c) (n), (48)

s=11t=1

where the ¢ chordwise and t spanwise polynomials are defined as

g:x/e) = [x/e]~ 1,
(49)

Qn) = [sin t 8/sin 8] where y = y/s = cos 0

The unknown coefficients E,,, in equation (48) are determined by using the identity from equation (47)
with the loading L;(x,y) represented by the series

F T

Lix,y) = [exp (iwox/UY] [s /1 —=1?/c(y)] [ Z Z Gigo V(W) Q) :I ; (50)

g=1v=1
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where

[1+cos ] = 2[x—x()]/ec(y).

The factor exp (icwx/U) in equation (50) is consistent with an application of Acum’s theory of Section 2.1
to a free-stream velocity — U in the direction of the positive x axis. The chordwise functions ¥ () ap-
propriate to the loading in reverse flow are defined by equation (6) with ¢ replaced by i ; the functions
W (%) give the correct singularities in loading at the planform edges, with x = x,(y) acting as a trailing
edge and x = x(y) as a leading edge because {y = (n— ¢). The spanwise polynomials Q,(#) in equation
(50) are defined similarly to those in equation (49). When equations (48) to (50) are inserted into the
identity of equation (47), a set of g7 simultaneous equations is obtained for the unknown coefficients
E,,, of equation (48). The solution of these equations and the evaluation of w%(x,) is outlined in Appendix
A; it depends upon the geometry of the wing-control configuration and the frequency of oscillation but
is independent of the free-stream Mach number.

It is apparent from equations (A.1) to (A.5) of Appendix A that the inclusion of the exponential factor
in the load distribution L(x,y) of equation (50) does lead to a complicated calculation for w¥(x,y). Some
simpler forms for the reverse-flow construction of the equivalent upwash function are formulated in
Appendices B and C. Values of these different equivalent upwashes, appropriate to a solution for the
arrowhead wing of Fig. 1, are compared and discussed in Section 6.1.

4.3. Direct-Flow Treatment of Hinge Moment.

By applying the reverse-flow theorem® to the second line of equation (47), it follows that the force
coefficient Q,; can be determined from

1
Qi = (ﬁ) j jfi(x,y) 5(x,y)dx dy, (51)
A

where [5(x,)) is the load distribution over the wing in direct flow due to the equivalent upwash distribution
w5(x,y) of equation (48). The evaluation of I(x,y) and Q,; is therefore effected by applying the collocation
method of Sections 2.1 and 2.2 respectively. In particular, the distribution /5(x,y) is determined in the
form of equations (4) and (5) by solving the modified upwashes in equation (14) for the boundary con-
ditions as given by the equivalent upwashes w5(x,,.y,) and equation (3). That is, equation (14) is solved
at the collocation positions (x,,,y,) for the conditions

wl(xpwyv) = [Ws(xpv’yv) eXp (lﬁ va/é)] ’

p=1DN,v = (I‘mel)(fg—l) (52)

The construction of the equivalent upwash function w%(x,y) in Section 4.2, relies on the assumption
that the upwash and load distributions in reverse flow,

ie., W, = U f{x.,y) and L(x,y) in equation (47),

are smooth continuous functions of x and y. Thus, equation (51) is valid for forces in continuous modes
f» such as lift and pitching moment, but it is not strictly applicable to a discontinuous mode, as is the
case for hinge moment defined in equation (43) with f; from equation (34). For part-span controls, the
mode f; has spanwise discontinuities at y = +y, that persist into reverse flow, even though it has a
chordwise singularity less severe than that of w;. However, the evaluation of the generalized force Q;;
by the collocation method of Section 2 does require some approximate representation by smooth
equivalent upwashes. It is thought that the calculation of Q;; by equation (51) could give a useful estimate
of hinge moment. On the other hand, a direct treatment for equivalent upwashes is provided in Appendix
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D by the modifications to the exact upwash wj(x,,.,y,). The different values obtained for the direct control
derivatives, from the solutions for w§(x,,,.y,) computed by Appendices A, B, C and D, are discussed in
Section 6.3.

5. Results for Plunging and Pitching Derivatives.

Acum’s theory! as outlined in Section 2 is applied with collocation solutions m(N) = 15(3) to the
arrowhead wing in Fig. 1. For plunging and pitching oscillations about the axis x = 0, the aerodynamic
derivative coefficients are calculated for the Mach number M = 0-781 at the frequency parameters
¥ = 025, 0:50, 1-0 and for M = (0-927 at v = 1-0. The derivatives for lift, pitching moment about x = 0
and hinge moment on the outboard control surfaces of span (s— y,) are defined according to the formu-
lation in Section 3.1 and equations (57) in the Definitions. These lift and pitching-moment derivatives
are presented as Solution (1) in Tables 1 and 2 for the plunging and pitching modes respectively; the
hinge moment derivatives for both modes are listed in Table 3 for values of the control-span parameter
V4/s = 1, = 0,025, 0-50 and 0-75. Alternative theoretical results, tabulated in Tables 1 and 2 as Solutions
(2) and (3), are determined respectively by Acum’s theory with the reverse-flow relations of Section 3.2
and by Davies’ theory®. Various aspects of the results are illustrated in Figs. 2 to 9 and are discussed in
conjunction with the pitching derivative values obtained from wind-tunnel measurements at low fre-
quencies*®!1,

Comparison of the direct-flow and reverse-flow solutions in Tables 1 and 2, indicates only small
discrepancies between the lift and pitching-moment derivatives obtained by the two methods of calcula-
tion. Satisfactory agreement does not establish the accuracy of either solution as has been discussed in
detail in Section 6.1 of Ref. 5. The present collocation solutions m(N) = 15(3) probably give reasonable
accuracy, although the discrepancies, and hence possibly the inaccuracies, increase with frequency
parameter ¥ and also with Mach number M.

The results given for ¥ — 0 in Tables 1 to 3 are calculated to first order in frequency by the Multhopp-
Garner theory® with m(N) = 15(3). The distinction between the theories of Refs. 1 and 3 when ¥ >0
arises from the treatment of the kernel function K(x—x’,y —y') of equation (2), when different forms of
modified upwash and loading are taken, and this affects the numerical evaluation of the damping
derivatives. However, it is seen from Tables 1 to 3 that the results for ¥ — 0 by Ref. 3 do correlate satis-
factorily with those for finite ¥ by Ref. 1 in both the direct-flow and reverse-flow solutions.

The values of the plunging and pitching derivatives obtained by Woodcock®*? from Davies’ theory®
with solutions m(N) = 12(4), are tabulated in Tables 1 and 2 for v = 0-01, 0-25, 0:5 and 1-0, the frequency
parameter 7 = 0-01 being denoted as ¥ — 0. The theories of Acum' and Davies® are both developed
from the Multhopp steady theory?, but there are distinct differences in the two collocation methods.
In particular, the number of spanwise collocation sections (m) is odd in Ref. 1 but even in Ref. 6. In the
latter method, collocation positions do not occur at the centre section of a wing and it is therefore un-
necessary to modify the arrowhead planform at the kinked section y = 0 by means of equation (16) as
is required in Acum’s theory. It is noted also that the total forces in Ref. 6 are evaluated by applying an
interpolation technique to both the chordwise and spanwise integrations of the load distribution; the
forces could be more affected by the choice of N than in Acum’s theory where the chordwise integration
is exact by equations (24) and (25). Comparison of the lift and pitching-moment derivative values, given
as Solutions (1) and (3) in Tables 1 and 2, does show significant differences between the two methods
particularly for the pitching damping derivatives I, and —mj, in Table 2; both solutions for M = 0781
indicate a small effect of frequency for 0 < v < 1.

The variation of the plunging and pitching derivatives with the frequency parameter ¥, the Mach
number M and the pitching axis x = x, is illustrated in Figs. 2 to 9. Unless otherwise stated, the results
plotted are from the direct-flow solutions by Acum’s theory [Solution (1)]. The derivatives for arbitrary
pitching axis x = x, are calculated by using equations (58) in the Definitions with derivatives for x, = 0
from Tables 1 to 3. In Fig. 2, the lift derivatives I, and I, and the pitching-moment derivatives —m, and
—m; for plunging motion at M = 0-781 are plotted against ¥; for ¥ < 1, the damping derivatives remain
within about 2 per cent of the constant values for small ¥ that follow from Ref. 9 with the low-frequency
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solution. In Fig. 3, the stiffness derivative I, for pitching about the axis x, = ¢, is plotted against M.
Here, the ¥ — 0 solutions provide a curve for 0 < M < 0927, whilst the values of lp for v =05 and 1
indicate a small but increasing frequency effect as M increases from 0-781 to 0-927. Similarly, Fig. 4
gives the damping derivative I, against M ; for both axis positions x, = ic, and Xo¢ = ¢,, the small effect
of increasing v from 0 to 1 is of opposite sign at the two Mach numbers M = 0-781 and M = 0-927.
For these values of M, the direct pitching derivatives —m, and —m, for the axes x, = ic, and Xg =€,
are plotted in Figs. 5 and 6 against frequency parameter over the range 0 < v < 1. Again, the frequency
effect is small but the results indicate a larger variation of —m, with ¥ at the higher Mach number
M = 0:927. The damping derivatives for small 7 are estimated from the # — 0 solution by using equations
(18) and (19) of Ref. 9 which give the slopes as

0 _A
g\ ) T1e\M ) .
2 A (,
alu) =% (e) .,

By contrast, the slope of the stiffness derivative dm,/07 is zero as ¥ — 0. The corresponding dashed lines
of —my and —m, for small ¥ < 0-4 are shown in Figs. 5 and 6 respectively, and these correlate very satis-
factorily with the curves for ¥ > 0-2 from Acum’s theory at M = 0-781.

The variation of the pitching moment derivatives with axis position x, is illustrated in Figs. 7 and 8
respectively by the values of —m, and —m, at M = 0-781 plotted against x,/¢ where the geometric mean
chord ¢ = 0-619 c,. Apart from the ¥ — 0 solution?, the results plotted are for ¥ = 0-5 and these show the
comparison between the direct-flow and reverse-flow solutions by Acum’s theory and the solution from
Ref. 13 by Davies’ theory®. Agreement is regarded as satisfactory in view of the differences in these
collocation solutions as discussed above. The results show a similar rate of change of the derivatives
with axis position, and —mjy in Fig. 8 gives positive damping for all axes.

Measurements of the pitching derivatives for the arrowhead wing have been made in wind-tunnel
tests for small values of the frequency parameter ¥ < 0-14 and subsonic Mach number (Refs. 10 and 11).
For [, and Iy, in Figs. 3 and 4 respectively, the values ‘experiment ¥ ~ 0:085” at M = 0-8 and M = 09
are obtained by taking an optimum average over the measured range 0 < ¥ <011 of the results for
‘Wing E’ in Ref. 10. Comparison of the values for I, shows that theory is about 7 per cent higher than
experiment but both give a similar variation with M. Likewise, for I, in Fig. 4, low-frequency theory
and ‘experiment ¥ & 0-085° show a similar variation with M, but here the theoretical values are some
25 per cent higher. For the direct pitching derivatives against # in Figs. 5 and 6, the measured values
from Ref. 10 are plotted for ¥ <0-11 and M = 0-8. While for —mjy in Fig. 5 the comparison with theory
is good for both pitching axes, only for the axis x, = c, is there satisfactory correlation for — m, in Fig. 6.
The measured values of —m, for the axis x, = 4c, show a rather large decrease in damping over the
small range of 7, a variation that seems unreliable. Discussion in Ref. 10 of the measurements for the
damping derivatives suggests that 1, and —m, could be subject to tunnel interference effects, the degree
of which is not established. Wind-tunnel data from two sources, Refs. 10 and 11, provide experimental
values of —m, and —my at four axis positions in Figs. 7 and 8 respectively; the values from Ref. 10 are
an optimum average over 0 < ¥ < 0-113 of the measured values at M = -8, whereas the measured values
from Ref. 11 correspond to ¥ = 0-138 at M = 0-781. In Fig. 7, these values of —m, indicate a smaller
rate of change with axis x,/c, than the calculated derivatives, but this is compatible with the lower ex-

“perimental value for I, at M = 08 in Fig. 3. In Fig. 8, the experimental and theoretical values for —m,
are in fairly good agreement, except for the axis position x, = 0-808¢ = 1c, as already illustrated by the
results from Ref. 10 in Fig. 6.

A final diagram for the pitching mode at M = 0-781, in Fig. 9, shows the theoretical values of the
hinge-moment derivatives —hy and —h, plotted against ¥ for part-span control surfaces #, = y,/s = 0,
0-25, 0-50 and 0-75 as defined in Fig. 1. The curves for — hy show a similar frequency effect when 5, < 0-5,
but less variation with ¥ for the smallest outboard controls #, = 0-75. The damping derivative —hy

(53)

16



increases less rapidly with ¥ as #, increases. For small frequencies, the hinge-moment derivatives are
estimated from the #—0 solution * with the following formulae derived from equations (12) and (17)
of Ref. 9,

he = (ho)v—»o (54)

A _
hy = (hg)s—so +E V(I heds~o

These results are shown by the lines of small-dashes for —hy when 7 < 02 and for —h, when 7V < 04 in
Fig. 9, which give fairly good first approximations for each value #,. Also shown in Fig. 9 are curves of —5,
and — h, against ¥ for 7, = 0-5, calculated in Refs. 8 and 13 by Davies’ theory®. These results are slightly
lower than the values by Acum’s theory, the largest differences occurring at ¥ = 1.

6. Resuits for Control-Surface Rotation.

For the arrowhead wing with oscillating control surfaces of span (s— y,) defined by Fig. 1a, the control
derivatives are evaluated for #, = y,/s = 0, 0-:25, 0-50 and 0-75 with the same combinations of frequency
parameter ¥ and Mach number as used for the plunging and pitching derivatives in Section 5. The colloca-
tion solutions m(N) = 15(3) by Acum’s theory of Section 2 are obtained for the rounded planform shown
in Fig. 1b. In the case of the full-span control #, = 0, the straight hinge line is retained in the calculations.
Each collocation solution is determined by equating the modified upwashes w(x,,,y,) of equation (14)
to those obtained from equation (3)'er an equivalent upwash function wj(x.y) appropriate to the values
of #, and v. v '

The construction of the function w§(x,y) by the reverse-flow treatment appropriate to Acum’s theory,
is independent of Mach number but is non-linear in frequency (Section 4.2 and Appendix A). In Section
6.1, this function is compared with the different w$(x,y) obtained as linear functions of ¥ by the simpler
procedures of Appendices B, C and D. The discussion of the corresponding solutions for the indirect
control derivatives in Section 6.2, includes the correlation with low-frequency solutions by the method
from Refs. 3 and 7 and the comparison with results from Refs. 8 and 13 by Davies’ theory®. Furthermore,
alternative solutions for the lift and pitching-moment derivatives, by the reverse-flow relations of Section
4.1 with Acum’s theory, provide results that do not rely on any equivalent upwash procedure. The
usefulness of determining the direct control derivatives by means of functions w$(x,y) is discussed in
Section 6.3, comparison being made of the values calculated for finite ¥ according to Section 4.3 and for
7— 0 by a distinct treatment appropriate to hinge moment’.

6.1. Comparison of Equivalent Upwashes.

The particular case (1, = 0-5, ¥ = 1) is selected to illustrate the equivalent upwashes Wi(X,,,y,) used
in the collocation solutions for part-span control surfaces on the arrowhead wing. In the reverse-flow
approach of Section 4.2, w§(x,y) is defined as the double series in equations (48) and (49) in terms of ¢
chordwise and 7 spanwise polynomials and the unknown coefficients E 1 8 = 1(1o, t = 1(1)r; the
coefficients are determined by means of equation (47) with the loading L{x,y) represented by a series
with o7 terms, as for example in equation (50). The choice of the integers o and t is arbitrary, but it seems
appropriate to take 1 = m = 15and ¢ = N = 3 to correspond to the number of terms in the collocation
solutions.

Values of w§(x,,,y,) at the collocation positions (x,wy,) defined by equations (12) and (13) with
m(N) = 15(3), are evaluated as detailed in Appendix A. The values obtained with 7(¢) = 15(3)are tabulated
in Table 4 as method (a). In Fig. 10, the values of R1{wj(x3,,y,)]/U and Im[w%(xs,,y,)]/U? are plotted
against the spanwise parameter # = #,, v = 0(1)7, to show the variation of w$ along the line p = 3 that
defines the collocation positions closest to the trailing edge and downstream of the hinge line in Fig. 1b.
For comparison, values of the exact upwash wy(x,y) from equation (42) along the line p = 3 are plotted
for 0 <# <1 in Fig. 10. It is seen that the high order polynomial series for w%(x,y) when 7 = 15, gives
a marked drop across the discontinuity in w; at 4 = 5, = 0-5, but leads to some fluctuations in the values
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w5(x3,,p,) at the outboard collocation positions. On the other hand, if only © = 7 spanwise polynomials
are used in equation (48), the corresponding spanwise distributions are very smooth, as shown by the
curves in Fig. 10, but these give a poorer representation in the neighbourhood of # = #, and elsewhere.
It seems therefore that the values wj(x,,.y,) given by © = 15 are the better choice.

The equivalent upwash functions w§(x.y) constructed according to the methods (b), (c) and (d) of
Appendices B, C and D respectively, are illustrated by the other sets of values w5(x,,.y,) in Table 4 for
the case (1, = 05, ¥ = 1) with m(N) = 15(3). The methods (b) and (c) are based on simplified forms of
the reverse-flow approach in Section 4.2 and give w5(x,y) as a linear function of the frequency parameter
v. Although method (b) is the limiting form of method (a) as ¥ — 0, comparison of the corresponding
values in Table 4 indicates the fairly small effect of neglecting terms of 0(v?) in method (b), even at v = 1.
In method (c), a simplified load distribution is assumed for Ly(x,y) in equation (47), similar to that in
Davies’ procedure®, and this gives the same R1[w$] as method (b) but a distinct formud. for Im[w§].
As seen from Table 4, the differences between the values Im[w5(x,,,,)]/U by methods (b) and (c) are
small for p = 3 and relatively larger at the forward chordwise positions p = 1 and 2. As an alternative
approach, method (d) retains the exact upwash w,(x,y) of equation (42) at all collocation positions
(X p1-y,) €xcept those nearest to the chordwise and spanwise discontinuities in w,. At each of those positions,
a value wi(x,,,y,) is determined by modifying w; to be a simple continuous function of control-surface
geometry (Appendix D). The values of w§(x,,,,y,) from method (d) are the easiest to compute and essentially
different from those of the other methods in Table 4. In Fig. 11, the four methods are illustrated by the
values of

RI1[w5(x,y.4)] / U and Im[w§(x,y,)]/U ¥

at the collocation section y,/s = 1, = 07071, plotted against the chordwise parameter ¢ =
[x—x(v4)]/c(p,). The curves for methods (a), (b) and (c) show that the series from equation (48) with
7(0) = 15(3) does not resemble the exact discontinuous upwash w,(x,y,), but serves to determine the
total forces of lift, first and second pitching moments as implied by the reverse-flow construction. At the
collocation positions (x,,y,), p = 1(1)3, corresponding to ¢ = 0-188, 0-611 and 0-950 in Fig. 11, the values
wj from method (d) are identical to the exact upwash w; except for the value R1[w$] at ¢ = 0:611; at
this position, the Im[w5] is taken equal to the exact value because the distribution Im[w,] is continuous
across the hinge line.

From the point of view of computation, the major part of method (a) is programmed but the calculation
of input data is laborious and must be repeated for each value of ¥. Method (b) requires less initial computa-
tion but requires the solution of simultaneous equations to first order in frequency. Method (c) is the
simplest to programme with a fairly simple calculation for the input data. The choice between these
three reverse-flow constructions of w$(x,y) depends finally on the analysis of the corresponding solutions
for the control derivatives. The simplest construction for w¢ is by the direct-flow method (d). It is likely
to be less accurate for lift and pitching moment than methods (a), (b) or (c), but these have little advantage
over method (d) for the evaluation of hinge moment (Section 6.3).

6.2. Indirect Control Derivatives.

Values of the lift derivatives, I; and I, and the pitching-moment derivatives, —my, and —m,, defined
according to equations (59) in the Definitions, are given in Tables 5, 6 and 7 for the various combinations
of the parameters #,,. ¥ and M. The results presented as Solutions (1a), (1b). (tc) and (1d) are the direct-flow
solutions corresponding respectively to the equivalent upwashes wi(x,,.y,) from methods (a), (b), (c)
and (d); solution (2) is calculated according to the reverse-flow treatment of Section 4.1. These solutions
for the particular case (4, = 0-5, ¥ = 1, M = 0-781) are tabulated in Table 5 together with some results
from Ref. 8. For the various combinations (4, ¥), Table 6 gives the Solutions (1a), (1c), (1d) and (2) for
M = 0-781, whilst Table 7 gives the Solutions (1a) and (2) for M = 0-927. The variation of the indirect
control derivatives with the frequency parameter ¥, the Mach number M and the control-span parameter
3, is illustrated in Figs. 12 to 17 by the results from Solutions (1a) and (2).
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The similarity in the equivalent upwashes w(x,,,y,) of methods (a) and (b) for (4, = 05, ¥ = 1,
M = 0-781) is reflected in the good agreement between the corresponding values for the indirect control
derivatives in Table 5. On the other hand, the quite large differences between w¥(x,..y,) from method (a)
and the simpler method (c), in Table 4, have only a small effect on the corresponding derivative values
of Table 5. Thus, Solution (Ic) gives indirect control derivatives comparable with those determined in
Solutions (1a) and (1b) from the more complicated functions w$ of methods (a) and (b). The equivalent
upwashes w5(x,,.,) of method (d), however, give the rather different derivative values of Solution (1d)
although these are of the same order of magnitude as the other direct-flow solutions. The alternative
reverse-flow calculations, Solution (2) in Table 5, show noticeably lower values for the stiffness derivatives
I, and —m, but similar values for the damping derivatives l; and —m;. '

Inspection of the results presented in Table 6 indicates that the above comparisons for (y, = 05,
¥ = 1) apply for all combinations of #, and v at M = 0-781. Thus, the indirect derivative values from
Solutions (1a) and (1c) are very close, whilst Solution (1d) gives consistently lower values for the stiffness
derivatives and higher or less negative values for the damping derivatives. However, there are larger
discrepancies for I and —m, between these solutions and the Solution (2); the latter values are lower
by from 2 to 4 per cent as the parameters (y,, ¥) increase. In contrast, the values of I; and —m; from
Solution (2) fall within the scatter produced by the other solutions. The damping derivatives are numeric-
ally small giving a large percentage scatter, but the maximum numerical discrepancies are rather smaller
in magnitude than those for the stiffness derivatives. For M = (-927 in Table 7, comparison of the indirect
control derivatives from Solutions (1a) and (2), shows discrepancies of similar magnitudes at this higher
Mach number.

The accuracy of a collocation solution depends upon the theoretical method adopted and upon the
number and location of the collocation terms and positions used in the solution. In Ref. 8, Woodcock
compares various solutions m(N) by Davies’ theory® and tentatively indicates that this method with
m = 8 and N = 4 gives the generalized forces for rigid modes to within 10 per cent accuracy for wings of
moderate aspect ratio. Control derivatives in Ref. 8 are determined by using equivalent upwashes based
on the separate treatment of the chordwise and spanwise discontinuities by means of two-dimensional
and slender-body theories respectively. Values of the indirect control derivatives from Ref. 8, tabulated
as Solution (3) in Table 5, show the fairly small effect of changing m(N) from 12(4) to 20(4) in the solution
for (n, = 05, ¥ = 1, M = 0-781). The collocation method and equivalent upwash treatment of Ref. 8
are different to those of this report, and it is encouraging to find that all the direct-flow solutions in
Table 5, i.e. Solutions (1) and (3), give similar results for the indirect derivatives. Values of the stiffness
derivatives are [, = 0-27 and —~m, = 047, implying a maximum variation of 4 and 2 per cent respectively.
Comparisons for the damping derivatives appear less consistent, but these values are numerically much
smaller with variations of similar magnitude to those for the stiffness derivatives.

The dependence of the indirect control derivatives upon Mach number M and frequency parameter
v is illustrated in Figs. 12 to 14 for the outboard controls defined by #, = 0-5. The values denoted as
‘method of Section 4.2” are the results of Solution (1a) in Tables 6 and 7; those plotted as “Woodcock’
are the solutions m(N) = 12(4) for Wing E from Refs. 8 and 13. The low-frequency (¥ — 0) results are
obtained from solutions by the theory of Ref. 3 with equivalent upwashes’ determined by two-dimensianal
theory with spanwise factors to allow for part-span controls. In Figs. 12 and 13 respectively, the values
l: and I; plotted against M show the variation of the lift derivatives for the range 0 < M < 0:927 at particu-
lar values ¥ < 1. The curves through Woodcock’s values indicate a qualitative change in frequency
effect for the higher Mach numbers. The different methods show similar effects of ¥ and M but the corre-
lation is not entirely satisfactory. In Fig. 14, the pitching-moment derivatives for M = 0-781 are plotted
against v < 1. Here, the lines for ¥ < 0-2 are determined similarly to equations (54) by the method of
Ref. 9 from the ¥ — 0 solutions; that is,

mg = (mg)v—'o
(55)

. A
ms = (Mo "f'E V(e mg)sao
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This estimate correlates satisfactorily with the present method at higher frequencies. Woodcock’s values
for —m; give a different frequency effect for ¥ > 0-4. These numerically small variations are probably
explained by a change in accuracy of the solutions as ¥ increases (cf. Solutions 3 in Table 5).

The dependence of the indirect derivatives on the control-span parameter 0 < na < 1 is illustrated
in Figs. 15 to 17 for the various values of # at M = 0-781. The derivatives l: and —m, have a fairly small
variation with frequency for all controls 5,, as shown in Fig. 15 by the reverse-flow solutions of Section
4.1. The direct-flow results are slightly larger and cannot readily be shown on the same diagram since
the discrepancies are similar in magnitude to the variations with 7. On the other hand, for the derivatives
l:and —m; in Figs. 16 and 17 respectively, it is seen that the direct-flow results, by Section 4.2, are system-
atically lower than the curves of the reverse-flow values and the discrepancies are small. For 7 — 0, the
corresponding solutions by the theory of Ref. 3 are obtained from the direct-flow treatment of Ref. 7
or the reverse-flow method in Ref. 5; the discrepancies are similar except for the full-span control 5, = 0.
The distinctive frequency effect on I; and —m, becomes larger as the control span increases, that is as
n, decreases.

6.3. Direct Control Derivatives.

The hinge-moment derivatives —h, and — h,, defined according to equations (60) in the Definitions,
are calculated from the direct-flow solutions with equivalent upwashes determined by methods (a),
(c) and (d). Corresponding to these Solutions (1a), (1c) and (1d) respectively, derivative values are tabula-
ted in Table 5 for the case (7, = 0:5, ¥ = 1, M = 0-781) and in Table 6 for the various combinations
(n.»¥v) at M = 0-781; values by Solution (1a) are presented in Table 7 for ¥ = 1 and M = 0-927. The
variation of the direct control derivatives with the control-span parameter, frequency parameter and
Mach number is illustrated in Figs. 18 to 20.

Comparison of the different solutions for M = 0-781 in Tables 5 and 6, shows maximum variations
less than 3 per cent for the values of —h, and less than 10 per cent for the values of — h for all values
of #, and v. The differences between Solutions (1a) and (1c) are negligible for — h, but show the maximum
variation for —h;. By contrast, the direct method in Solution (1d) gives the largest values of — h, whilst
the values of — h; are approximately an average of those from Solutions (1a) and (Ic). For the particular
case (1, = 05, ¥ = 1), Table 5 also gives Solution (1b) and this is virtually the same as Solution (1a).
These comparisons suggest that each of the equivalent upwash methods could give an acceptable theo-
retical estimate of the direct control derivatives, providing the collocation solution is sufficiently accurate.
Woodcock’s investigation® of the accuracy of various solutions m(N) by the collocation theory of Ref. 6,
isinstructive. His results for (7, = 0-5,7 = 1, M = 0-781) by solutions with m(N) = 12(4) and m(N) = 20(4)
are given in Table 5 as Solutions (3). These solutions give very similar values for —h; and —h, but the
stiffness derivatives are smaller and the damping derivatives much larger than the values obtained by
the present methods. It is noted again that the method of Ref. 8 uses a direct construction for equivalent
upwashes and also an evaluation procedure for hinge moment based on equivalent displacements at
the N chordwise loading positions. The poor comparison between the hinge moments from Solutions
(1) and (3) suggests that the direct control derivatives are more sensitive to the method of calculation
than the indirect derivatives in Section 6.2.

The variation of —h, and — h, with Mach number M and frequency parameter ¥ is illustrated in Figs.
18 and 19 for the outboard controls defined by 5, = 0-5. The values denoted as ‘method of Section 4.3’
are the Solutions (1a) of Tables 6 and 7; the results of Woodcock are the solutions m(N) = 12(4) for
‘Wing E’ from Refs. 8 and 13. Low-frequency results are calculated from solutions m(N) = 15(3) by
Ref. 3, to correspond to the two types of equivalent upwash constructed for ¥ — 0 in Ref, 7. The one based
on the two-dimensional approach to total wing forces is similar to that used in Ref. 8, whereas the other
is recommended in Ref. 7 for the calculation of hinge-moment derivatives. In the present application,
the former equivalent upwash is chosen to give the two-dimensional forces of (C,, C,, C,.), Whilst the
latter satisfies (C, C,,, Cp). The corresponding solutions for the direct control derivatives are plotted
in Figs. 18 and 19 as Ref. 7(C,,,) and Ref. 7 (Cy). In Fig. 18, these results for 7 — 0 provide curves against
Mach number for the range 0 < M < 0-927 and show dissimilar estimates for — h, but fairly good agree-
ment for —h,. For finite ¥, the results of the present method and Woodcock indicate a very small frequency
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effect, but the two methods give differing estimates of the derivatives, in particular for the damping
— h;. Neither method shows a consistent correlation with the low-frequency results. Thus, Fig. 18 reveals
again that the direct control derivatives, especially the damping at high subsonic M, vary considerably
with equivalent upwash treatment and collocation method. This is clearly shown in Fig. 19 where the
values —h, and —h; for n, = 0-5 and M = 0-781 are plotted against ¥. The best correlation for —h,
is between the ‘method of Section 4.3° and the ¥ — 0 value of Ref. 7 (C,,,), but these solutions show the
worst correlation for —h,. As already noted in Section 5, the collocation methods of Refs. 1 and 3 when
¥ — 0 are formally different for the evaluation of damping derivatives. By contrast, in Fig. 19, Woodcock’s
values for — h, are lower whereas those for — h; are quite close to Ref. 7 (C,,,). For these three methods
the equivalent upwash construction is consistent, although it varies in detail; the variations in the
derivatives probably arise mainly from the differences between the collocation methods. On the other
hand, the distinct construction for hinge moment in Ref. 7 (Cy) produces a much lower result for — &,
but a very similar result for —h; compared to Ref. 7 (C,,,). In Fig. 19, the low-frequency values of Ref. 7
(Cy) are extended to small ¥ < 0-2 by means of equations (12) and (17) of Ref. 9, that is by

(hc) = (hg)vao
) (56)
A _
() = (hyso+527 U ho)so
where the value (I;),_, is determined from the solution Ref. 7 (C,,,).

The variation of the direct derivatives with control span is illustrated in Fig. 20 by the curves of —h;
and —h; against the control-span parameter 0 <, < 1, for various ¥ at M = 0-781. The results by the
method of Section 4.3, indicate a small frequency effect that increases as the parameter #, decreases.
The rapid increase in —h, and —h; as ,—0 can be attributed to the kinked hinge line, defined for the
full-span control in Fig. 1b. For ¥—0, the distinct solutions of Ref. 7 (Cy) gives curves of —h, and —h,
that are respectively much lower and much higher than the present method. However, all the results
in Fig. 20 indicate a similar rate of change of the direct control derivatives with #,.

7. Concluding Remarks.

(1) For the arrowhead wing A = 2, the plunging and pitching solutions by Acum’s theory' with
m(N) = 15(3) are satisfactory. The derivatives show a fairly small effect of frequency over the range
¥ < 1 for subsonic flow M < 0:927. The comparison with wind-tunnel measurements'®*! for low fre-
quencies is good except for the derivative /; referred to mid-chord axis.

(2) The lift and pitching-moment derivatives calculated for plunging and pitching modes by the
reverse-flow treatment are in close agreement with the values from the direct-flow solutions.

(3) For the control-surface mode, different equivalent upwash functions are determined by a reverse-
flow construction and these vary considerably according to the representation adopted. The corre-
sponding solutions by Acum’s theory show very small variations in the magnitude of the indirect deriva-
tives and somewhat larger differences between the values of the direct control derivatives.

(4) Damping derivatives for small values of ¥ are estimated by applying an expansion theory® to the
solutions for ¥— 0. For the lift and pitching moment due to plunging, pitching and control rotation,
the frequency effect indicated by this method correlates very well with that by Acum’s theory.

(5) Comparisons with the results by other theories reveal that the direct control derivatives vary
considerably according to collocation method and equivalent upwash treatment. Although the frequency
effect is consistently small, these derivatives show large variations (Figs. 19 and 20) and no assessment of
accuracy is possible.

(6) A further investigation considering solutions for various m(N) would give useful information on
accuracy. This would be facilitated by a single KDF 9 programme incorporating all stages of the com-
putation.

(7) Further to the wind-tunnel tests for pitching oscillations in Ref. 10, the measurements for control
derivatives will provide data for the hinge moment due to pitching motion and the direct and indirect
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derivatives for control-surface oscillations. When these results are available, the need for further theo-
retical work may arise.
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NOTATION

Aspect ratio of wing planform [ = 4s%/S]

Amplitude of oscillation of wing for mode j
Polynomial function representing fi(x,y), equation (22)
Local wing chord

Geometric mean chord of wing [ = S/2s]

Local chord of control surface

Geometric mean chord of control surface

Root chord of wing

Tip chord of wing

Area defining force mode, equation (22); area of both control surfaces in case of
hinge moment

Force coefficients of lift, first and second pitching moments, hinge moment
respectively, for 2-dimensional control oscillating at v— 0

Coefficients determining equivalent upwash function, equation (48)
Non-dimensional displacement of force mode i

Non-dimensional displacement of mode j for wing in reverse flow
‘Influence function’ corresponding to ¥ (¢’), equation (8)

Values of influence functions in collocation solution, equation (14)
Particular form of influence function when n = v

Chordwise polynomial of degree s, equations (48) and (49)
Hinge-moment derivatives for plunging mode

See
Hinge-moment derivatives for pitching mode

Definitions
Hinge-moment derivatives for control rotation

Tail-down hinge moment about x = x,(y)

Chordwise integral defined by equation (26)

Kernel function defined by equation (2)

Complex load distribution over wing, lift per unit area/s pU?

Modified load distribution by equation (4)

Load distribution corresponding to an upwash w;(x,y)

Load distribution corresponding to the equivalent upwashes w5(x,,.y,)
Complex load distributions on ‘reversed wing’ corresponding to the upwash
Wi(X,5)

Lift derivatives for plunging mode

} See Definitions
Lift derivatives for pitching mode
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Il

Li(x:Y)

mq,m,
Mg,y

mé,m{

T A¢1.92)
U

w(x,y)
W(x,y)
wi(x.y)
wi(x,y)

Wi(X.y)

Wix,y)
X0,z
xy
X0.Yo
(xpn1)
X, ¥,z
Xo
xu(y)

x{y)
x(y)

Lift derivatives for control rotation. See Definitions.
Lift force on wing

Complex load distribution on wing in reverse flow, corresponding to upwash
Wix,y)

Number of spanwise terms or collocation stations
Pitching-moment derivatives for plunging mode

See

Pitching-moment derivatives for pitching mode Definitions

Pitching-moment derivatives for control rotation
Mach number of free stream [ = U/speed of sound]
Nose-up pitching moment about axis x = x,
Number of chordwise terms or collocation positions

Spanwise integration factors appropriate to mode i, for the evaluation of 0;; by
equation (25)

Generalized aerodynamic force coefficient, equation (20)

Semi-span of wing

Area of wing planform

Time

Chordwise integral of equation (22) required for the evaluation of Q, ;
Free-stream velocity

Complex upwash distribution on wing

Modified upwash distribution by equation (3)

Upwash distribution for wing oscillating in mode j, equation (18)

A smooth equivalent upwash function for mode j = J

Complex upwash distributions on ‘reversed wing’ where i = 1, 2, correspond
respectively to plunging and pitching oscillations with axis X = 0

Complex upwash distribution on wing in reverse flow [ = Uf{x, 1
Rectangular co-ordinates defined in Fig. 1a

Variables of integration in Section 2.1

(x—x"), (y—y) in Section 2.1

Upwash positions in collocation solution, equations (12) and (13)
Rectangular co-ordinates for ‘reversed wing’, equation (37)
Location of pitching axis x = x, (Fig. 1a)

Hinge line and leading edge of control surfaces

Leading edge of wing
Trailing edge of wing
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Q,(1).Q2,(n)

Subscript i

Ordinate defining span of outboard control surfaces (Fig. 1a)
Upward deflection of wing surface

Upward deflection of wing in mode j

Amplitude of upward deflection in plunging oscillation
Compressibility factor = (1—M?2)?

Function representing the spanwise distribution of the g term in the reduced
loading I(x,y) of equation (5)

Spanwise loading coefficient at # = #,, in solution for mode j
Non-dimensional spanwise ordinate (= y/s)

Parameter defining span of outboard control surface (= y,/s)
Parameters defining spanwise extent of area C in equations (22) to (24)
Spanwise collocation stations, defined by equation (10), (13) respectively
Angular spanwise ordinate (= cos™ '#)

Amplitude of angular deflection in pitching oscillation (nose-up)

o[ x(y)+3 cy)]/U

o oy)/2U

we/U

Non-dimensional chordwise parameter = [x— x,(y)]/c(y)

Amplitude of incidence of control, relative to wing, in control-surface oscillation
Free-stream density

Number of chordwise, spanwise polynomials in the function wj(x,y) of equation
(48)

Angular chordwise ordinate, equation (7)

Parameters defining chordwise extent of area C in equations (22) to (24)
2np/(2N +1) with p = 1(1)N

Angular chordwise ordinate for ‘reversed wing’ (= 7—¢)

Chordwise function for the g™ term of the series for I(x,y), equations (5) and (6)

Chordwise function for the g™ term of the loading L(x,y) on the wing in reverse
flow, equation (50)

Angular frequency of oscillation

Spanwise polynomials used in the construction for w5(x,y) in Section 4.2 [equations
(48) to (50)]

Denotes a force mode in direct flow and a deflection mode in reverse flow or for
‘reversed wing’

Denotes a deflection mode in direct flow, and a force mode in reverse flow or for
‘reversed wing’
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Mode i = I denotes hinge moment

J Mode j = J denotes control-surface rotation
n Denotes value at collocation station y = 7,
P Denotes value at chordwise position ¢ = ¢,
q Denotes a function or coefficient corresponding to the chordwise function ¥,
¥ Appropriate to r** term of polynomial representing f; in equation (22)
s Chordwise terms denotes value corresponding to terms
t Spanwise terms of function wj(x,y) in equation (48)
v Denotes value corresponding to the spanwise function Q,
v Denotes value at collocation station # = 7,
Superscript A bar over a derivative coefficient indicates that the symbol relates to the ‘reversed

wing’, as in equations (38) and (39).

26



DEFINITION OF DERIVATIVES

For plunging and pitching oscillations referred to an arbitrary pitching axis x = Xx,, Fig. (1a), the wing
deflection is

Z(xsyst) == [ZO + (x‘“xo) 60] eiwt .

The aerodynamic derivative coefficients for lift, nose-up pitching moment about x = x, and tail-down

hinge moment are defined respectively by
|

L = pU?S[(I,+i1,) (z0/2) +(lp+iV I5) B5] €*
M = pU? SE [(m, +i¥ my) (2o/C) + (me+i¥ my) 6] € 1. (57

H = pU? C&; [(h,+19 1) (20/&)+ (o + 15 hy) 0] €*

If the derivatives are known for the pitching axis x = 0, then the derivatives for any pitching axis x = x,
can be evaluated by using the following formulae:
For the stiffness derivatives,

1(xo) = 1(0)

lo(xq) = 1o(0)— (x0/)(0)
my(xo) = my(0)+(xo/C)! (0) L .
me(xo) = me(0)+ (xo/E)[1o(0) — m (0)] — (x0/2)* L,(0)

h.(xo) = h.(0)

(58)

ho(xo) = he(0)+(x0/€) h,(0)

J

For the damping derivatives, these formulae apply if the subscripts z,0 are replaced by 2, 6.

For the wing with control surfaces in Fig. (1a), the symmetrical outboard control surfaces are of total
area C defined by x,(y) < x < x(y), y, < |[y| < 5. The control-surface deflection mode j = J is defined by
equations (17) and (40). The corresponding forces of lift, pitching moment about x = 0 and hinge moment
are expressed as aerodynamic derivative coefficients by the formulae

L = pU? S[l;+iv Is] &y €
} (59)
M = pU? Se[m;+iv mg] &g ™
and
H = pU? Céy [he+iv he] &o €8 (60)

where ¥ = wé/U, & is the geometric mean chord of the wing, &, is the geometric mean chord of the control
surfaces.

For x, = 0, the lift L, pitching moment .# and hinge moment H are defined for deflection modes of
plunging and pitching by equation (35) of Section 3.1 and for the control-rotation mode by equation (43)
of Section 4, in terms of appropriate generalized forces Q;;.

27



No.

10

11

12

13

Author(s)
W.E. A. Acum

H. Multhopp .
H. C. Garner
A. H. Flax

. E. Lehrian and
. C. Garner

D. E. Davies

H. C. Garner and
D. E. Lehrian

D. L. Woodcock

Garner and

H.C.
R. D. Milne

G. Q. Hall and
A.

L. A. Osborne

K. J. Orlik-Riickemann and ..
J. G. Laberge

C. E. Watkins, H. L. Runyan
and D. S. Woolston

D. L. Woodcock

REFERENCES

Title, etc.
Theory of lifting surfaces oscillating at general frequencies in a
subsonic stream.
A.R.C. R. & M. 3557. February 1959.

Methods of calculating the lift distribution of wings. (Subsonic
lifting surface theory).
A.R.C. R. & M. 2884. January 1950.

Multhopp’s subsonic lifting-surface theory of wings in slow
pitching oscillations.
AR.C.R. & M. 2885. July 1952.

Reverse-flow and variational theorems for lifting surfaces in
non-stationary compressible flow.
J. Aero. Sci., Vol. 20, pp. 120-126. 1953,

Comparative numerical applications of the reverse-flow theorem
to oscillating wings and control surfaces.
AR.C. R. & M. 3488. August 1965.

Calculation of unsteady generalised airforces on a thin wing
oscillating harmonically in subsonic flow.
AR.C.R. & M. 3409. August 1963.

The theoretical treatment of slowly oscillating part-span control-
surfaces in subsonic flow. (To be written).

On the accuracy of collocation solutions of the integral equation
of linearized subsonic flow past an oscillating aerofoil.

Proceedings of the International Symposium on Analogue and
Digital Techniques Applied to Aeronautics, Li¢ge 1963, pp.
173-202. (1964).

Asymptotic expansion for transient forces from quasi-steady
subsonic wing theory.
Aeronaut. Quart. Vol. XVII1. November 1966,

Transonic and supersonic derivative measurements on the plan-
forms of the Ministry of Aviation Flutter and Vibration Com-
mittee’s first research programme.

AR.C. 26016. June 1964,

Static and dynamic longitudinal stability characteristics of a series
of delta and sweptback wings at supersonic speeds. NRC,
(Canada), NAE Aero Report LR-396. January 1966.

AR.C. 28 435. October 1966.

On the kernel function of the integral equation relating the lift
and downwash distributions of oscillating finite wings in sub-
sonic flow.

NACA Report 1234. 1955,

Unpublished M.O.A. Report, 1962.

28



APPENDIX A
Construction of Equivalent Upwash Function Appropriate to Acum’s Theory.

The reverse-flow basis of determining the equivalent upwash function w%(x,y) is outlined in Section
4.2. Thus, into the reverse-flow identity of equation (47) are inserted the discontinuous upwash w,(x,)
of equation (42) and the smooth upwash function w$(x,y) from equations (48) and (49). When the load
distribution L(x,y) in equation (47) is represented by the series of equation (50), the construction is
consistent with a reverse-flow application of Acum’s theory. From the resulting equation, the terms for
each arbitrary coefficient a,,, of the series for L{(x,y) are identified ; this gives a set of 67 simultaneous
linear equations that can be solved for the unknown coefficients Ej, in the function w5(x,) of equation
(48). Hence

Z E;, { f J [(x/ey~" (sin t0/sin 0)][sin v0 P () exp (icwx/U)] %}i } ]
S

s=1t=1

r (Ad)

e

- { B J J [1+i¥{x —x,00)}/2] [sin v6 '4(y) exp (icwx/U)] d_x% }
C

with
g = 1(1)o,v = 1(1)z,

where x = x[y)+4c(y)[1+cosy],
y=scosf

and

¥ ) = cos(g— gnxp ‘;— cosqy .

Transform to the variables of integration (,8) and take
D, (6) = f [{x:+7 c(1+cos y)}/c]"* [cos (g— 1)y +cos q] exp (iAcos Y+ ix)dy  (A2)
0

and

12
G0) = j [—1—ik(cosy—cos ;)] [cos (g— 1) ¥ +cos qi/] exp (i4 cos  +ix) dis (A3)

0

where
A= wc(y)2U,
= AL14+2 {x; (0)c)}],

cos thy = — 142 [x,(y)— x,(»)]/c(y) -
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Since the wing and control-surface geometry is symmetrical in y, the integrals with respect to 0 in equation
{(A.1) will be zero when (v+t) on the left-hand side of the equation or (v+1) on the right-hand side is an
odd integer. Thus, the set of equations from (A.1) reduce when t is taken as an odd integer to give

E;ju =0 for s=11)0,t=22)(x~1), (A4)
and, by equations (A.2) and (A.3),

4 T nf2
n

E Js,{ D (0) sin v sin t0 dO}

~

ot

a
m

= { G (0) sin v0 sin 6 d6 } - (A.5)
o

for

s=1lo,t = 12y
and

qg=11o,v =12 J
where

cosf, =1,

The evaluation of the integrals in equations (A.5) is effected by using Simpson’s rule with values of the
integrands at the spanwise positions 8 = (nb/32) for b = 0(1)16. The upper limit 6, does not in general
coincide with any position k = 0(2)16 and so modified integration factors are used to allow for this,
(cf. calculation of hinge moment in Section 2.2). The calculation of the integrands in (A.5) therefore
requires the values D, (b) from equation (A.2) and G (b) from equation (A.3). The integrations with respect
to ¢ in these two functions can be expressed in terms of the integrals H{(4,\), by equation (26), with
Y = m and Y = i, respectively. The values of x,(y) and ¢(y) in A,x and ¥, are evaluated for the positions
b to correspond to the rounded wing planform as defined for the collocation solution by equation (16).
For the full-span control 5, = 0, the values x,(y) in ¥, are evaluated for the straight hinge line (Fig. 1b).

A KDF 9 programme is available for the major part of the calculation of WX, 1) With the number
of terms (o,7) specified in equation (48) for w(x,y), the programme requires as input data the values
D,(b) and G(b) corresponding to the particular case (#,,7) and also the integration factors appropriate
to each side of {A.5). The programme calculates equations (A.5), forms and solves the set of simultaneous
equations for E;,. It evaluates wi(x,,,y,) at the given collocation positions (x,,,y,) and also calculates
the modified upwash w5(x,,,y,) required for the collocation solution by equations (14) and (52).
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APPENDIX B
The Function of Appendix A in the limit ¥ — 0.
It is again assumed that the equivalent upwash function is represented by the series for wé(x,y) of
equations (48) and (49). The unknown coefficients in E;, are determined to first order in frequency w
by taking the limit of the reverse-flow construction of Appendix A as ¥ = wé/U — 0. Thus, in equation

(A.1), the exponential terms are expanded and all terms O(w?) are neglected. It follows that E,_ are
determined from equations (A.5) with the functions D, (6) and G (6) defined as

D6 = j [{x;+3c(d+cosy)}/el ! [cos(g—1) ¥ +cosqy] x
[4]

X [1+ix+idcos ] dy - (B.1)

and

Vn
G(0) = f [—1—ix—id(2 cosy—cos )] [cos (g— 1) ¥+ cos qir] Ay
[}

The calculation of equations (B.1) can be effected analytically and the spanwise integrations in equations
(A.5) are then evaluated numerically as in Appendix A. The resulting set of simultaneous equations is
linear in ¥ and the solution for Ej, is obtained generally by equating the real and imaginary parts to first
order in frequency. It follows that wé(x,y) is a linear function of ¥.
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APPENDIX C
Construction of a Simplified Equivalent Upwash Function.

The basis of construction is a simplified form of that used in Appendix A. The loading L,(x,y) in the
reverse-flow identity of equation (47) is now represented by the simplified distribution obtained from
equation (50) when the exp (iwx/U) factor is replaced by unity. The corresponding simplification of the
equations in Appendix A leads to

-
T

D) = [ Libe+cos el Toos a1y cos ] a

[¢

s (€1)

Wn
G0) = | [-1—ik(cosy—cosy,)] [cos(g— 1) ¥ +cos qir] dys

It follows that the coefficients E,, are determined from equations (A.5) by a set of real simultaneous
equations with the right-hand sides expressed generally as a linear function of 7. Comparison of equations
(C.1) with (B.1)indicates that the real part of E , and hence of w$(x,y) are identical to those from the method
of Appendix B, whilst the imaginary parts are distinct linear functions of 7.
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APPENDIX D
A Direct Modification to the Exact Upwash.

This method of determining w4 is a direct procedure based on the values of the actual upwash w;(x,y)
from equation (42) in Section 4, namely

wi(x,y) = — Ul: 1+iv {x—xh(y)}/é] over area C
(D.1)

=0 over area (S—C)

where for the control surfaces in Fig. 1, the area C is defined by x,(y) < x < x(y) and y, <|y| < s. There
is a chordwise discontinuity at the hinge line x,{y) and a spanwise discontinuity across each section
y = %y, Values of wi(x,,.,»,) at the collocation positions (x,,,y,) of equations (12) and (13) are determined
by treating these discontinuities independently.

(i) Treatment of chordwise discontinuity.

At each section y,, w§ is to be determined for the chordwise collocation positions p = 1(1)N. Denote
the hinge line by p = P,, so that by equation (12)

2r Pv _ Xpy— Xpy . % .
1—cos ( INT1 ) = 2( o > ; let p*, be the integer nearest to P,. (D.2)

It is assumed that

WHX s ¥s) = Wy(x,,,0,) When p = 1(1)N excluding p = p*,, (D.3)
but that

Wi(Xpo¥) = WilXpoy)+ [p*, 23— P,] 8(P,) when p = p*,, (D4)
where the + or — sign is selected to give |p*vj_l~%—Pv| <%, and §(P,) is the increment in w, in crossing

the discontinuity from P,— to P,+. If p*, = P,, w5 is the average of the values wy(x,,.y,) at p = P,—
andp = P,+.

Applying equation (D.2) to the full-span control surface on the arrowhead wing, defined in Fig. 1b
for the collocation solution m(N) = 15(3), it is seen that p = p*, = 2 is nearest to the hinge line p = P,
for all sections 0 < v < 7. Then, by equations (D.1), (D.3) and (D.4) with

5(Pv) = _U’

W.el(xlvayv) =0
W.‘;(x2vsyv) = U(Pv_z%)

W.‘;(x3vsyv) = WJ(x3vayv) as given by (Dl)
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(ii) Treatment of spanwise discontinuity.
For the spanwise discontinuity in w; across the section y = y,, let v* be the integer nearest to

v=g= <m+1)sin'l<&>. (D.6)
T s

m—

At each spanwise section y = y,, where v = 0(1) (
forp = 1{1)N:

1Y.
)mchulcs v = v¥, evaluate wi(x,,,y,) as follows

-~

when v < a, from equation (D.3) for all values p,
when v > a, from equation (D.3) for p # p*, L . (D.7)

when v > a, from equation (D.3) for p = p*,

At v = v*, these values w5(x,,,y,) are modified by the addition of a correction term C%p,v*) that allows
for the spanwise discontinuity in w, across the section v = a. If p*, is the integer value p nearest to the
hinge-line position P, at v = a, then C5(p*,,v*) must incorporate the chordwise modification given by
equation (D.4) for the chordwise discontinuity in w; at x = x,(y,+). Thus, when v = v*, the additional
correction to wi(x,,,,) from equation (D.7) is

Wpv*) = [v* +3—a] Alp) for p # p*., (D.8)

but
Cip*ov*) = [v*+5—a] {Ap* )+ [p*, =5~ P] 8(P.)} (D.9)

where A(p) is the increment in w; in crossing the spanwise discontinuity at v = a; the + or — signs are
selected to give [v*+3—a| < and |p*, 23— P,| <. The corrections of equation (D.8) are applied when
vi >aand v*¥ <a. Ifv = v* = g, it can be shown that the value of w, is given by the average of w X e y)
at v =a— and v = g+, with the addition when p = p*, of the correction [p*,+1—P,] 8(P,.).

For an outboard control y, = § s and collocation solution m(N) = 15(3), as in Fig. 1,

equation (D.2) gives 2 < P, < 2-5 and hence p*, = 2 for all sectionsa <v<7;

by equation (D.6), a = 8/3 and therefore v* = 3.
The upwash distribution w; is defined by equation (D.1) with the area C given by (p > P,, v > 8/3). The
equivalent upwashes w9(x,,.y,) are then determined according to equation (D.7) with equations (D.8)
and (D.9). Thus, by equation (D.1),

WHXppy) = 0 ifp=1orifv<?2,

and
wix,py) = —U [1+i7(x,,—x,,)/C] ifp=3andv>4.

At the positions p = 2, by equations (D.4) and (D.1) and with P, from equation (D.2),

wilxz,,y,) = U[P,—25] ifv=4;
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with the correction from equation (D.9), for the position (p = 2,v = v¥ = 3),

W5(x23.y3) = — U [(23— P3)+(23~a) (25— P,)]
= U [P;—2472] since P, = 25.
For the position (p = 3, v = v* = 3) by equations (D.1) and (D.8),
Wi(x33,y3) = —U [1+¥ (x33—x)/c] +[—5]Ap = 3)
where

Alp = 3) = —U[1+i¥ (x3,—X)/C] with v = a = 8/3.
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Lift and Pitching-Moment Derivatives for Plunging Mode.

TABLE 1

M = 0781 M = 0927
Solu-
tion* 70 7 =025 v=05 7 =10 70 V=10
I, 1 0 ~0017 —0-081 —0371 0 ~0228
2 0 —0018 — 0085 —0388 —0245
3 0 —0:021 — 0094 — 0415 0
I, 1 1-281 1268 1-260 1294 1374 1333
2 1280 1268 1-260 1299 1368
3 1291 1281 1278 1338 1393
—m, 1 0 -0028 -0-125 —0-548 0 —0-388
2 0 —-0-029 —0-128 —0-566 —0421
3 0 —0-032 —0-141 —0-617 0
—m, 1 1-381 1-368 1-362 1413 1-516 1-532
2 1-359 1-346 1-340 1-393 1-546
3 1-352 1:342 1-342 1-429 1-472
TABLE 2
Lift and Pitching-Moment Derivatives for Pitching Mode (x, = 0).
M = 0781 M = 0927
Solu-
o™ 5.0 | s=o025 | =05 | v=10 | -0 | v=10
lg 1 1-281 1-261 1-211 1-020 1-374 1-315
2 1280 1-259 1-208 1-015 1-361
3 1-291 1-271 1-220 1-054 1-393
Iy 1 2:323 2-351 2374 2428 2:356 2272
2 2332 2:360 2-383 2445 2318
3 2-401 2431 2:457 2:538 2:502
— My 1 1-381 1-344 1-246 0-879 1-516 1333
2 1-359 1-322 1221 0-845 1-341
3 1-352 1-313 1-209 0-851 1-472
— my 1 2-927 2-959 2994 3-084 3-150 3-031
2 2910 2941 2977 3-078 3092
3 2-987 3-024 3070 3.228 .3-293

*Solution (1) = Theory of Ref. 1 with m(N) == 15(3), (Section 2).

Solution (2) = Reverse-flow solutions by Sections 4.1 and 2.

Solution (3) = Theory of Ref. 6 with m(N) = 12(4).
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TABLE 3

Hinge-Moment Derivatives on Control Surfaces of Various Span 1,, due to Plunging and Pitching Modes

(xo0 = 0).
M = 0781 M = 0927
Ha
V0% v = 025 =05 =10 v—0* ¥y=10
—h, 0 0 —0-020 —0-083 —0332 0 —0-302
025 0 —0:016 —0-067 —-0-278 0 —0-291
0-50 0 —0-012 —0-051 —0216 0 —0-270
075 0 —0-008 —0-033 v —0-139 0 —0-197
—h, 0 0158 0161 0173 0240 0194 0-346
025 0122 0123 0129 0-168 0-137 0-264
0-50 0-087 0-087 0-088 0-102 0-079 0-164
075 0034 0:033 0033 0034 0-008 0-036
—hg 0 0158 0132 0060 —-0-179 0-194 0-057
0-25 0122 0-097 0025 —0-236 0-137 —0-095
0-50 0-087 0-065 —0-001 —0-256 0079 —0-247
075 0034 0-018 —0030 —0-222 0-008 —0-314
—hy 0 0-825 0-856 0-889 1-004 1-060 1-140
025 0-654 0676 0-699 0791 0-815 0-985
0-50 0487 0-501 0514 0-568 0-562 0-768
075 0282 0-287 0-291 0-310 0-276 0-404

*Method of Ref. 3 for v 0.
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TABLE 4

Equivalent Upwashes w5(x,,,y,) Calculated by the Methods of Appendices A, B,-<C and D for the Control-
Rotation Solution of the Arrowhead Planform when (5, = 0-5, % = 1) and m(N) = () = 15(3).

p=1 p=2 p=3
Method v
R1 Im R1 Im R1 Im

a 0 001518 0-04985 —0-02512 —0-00283 —0-01996 —0-01532
1 —0-00039 —0-03747 +0-02956 +0-00571 +0-01874 +0-01502
2 —0-01684 002452 —0-03445 —0-00918 —0-01977 —0-01555
3 008690 0-00342 —0-13597 —0-00016 077177 —0-12346
4 0-04987 0-03010 —0-30366 —0:03170 | —1-09548 —0-17415
5 013713 0-02125 —0-23955 —0-00375 —0-95712 —0-10685
6 0-06348 0-02049 —0-38534 —0-03627 —1-07564 —0-12976
7 016694 0-02624 —0-32984 —0-00495 —0-98152 — 008360

b 0 0-04192 005551 —0-02076 —0-00161 —0-02237 —0-01537
1 —0-02108 ~0-04088 +0-02591 +0-00472 +0-02072 +0-01494
2 —0-00103 0-02647 —0-03145 —-0-00834 | —002142 —0-01536
3 0-07693 000269 —0-13647 —0-00086 | —0-77200 —0-12354
4 006143 003082 —0-29999 —0-03109 —1-09819 —0-17376
5 0-13180 002128 —0-24038 —0-00422 — 095706 —0-10708
6 0-07109 0-02047 —0-38313 —0-03585,| —1:07731 —0-12944
7 016302 0-02652 —0-33087 —0-00530 | —098119 ~0-08385

c 0 004192 0-02785 -0-02076 —-000174 | —0-02237 —0-00795
1 —-0-02108 —0-01922 +0-02591 0-00443 +002072 | +0-00813
2 —0-00103 0-00982 —0-03145 —-000720 | —0-02142 —0-00894
3 0-07693 —0-00891 —0-13647 001389 —077200 | —0-13552
4 0-06143 —0-00938 —0-29999 - 000738 —1-09819 —0-17561
5 0-13180 0-00300 | —0-24038 001070 | —0-95706 —-0-1189%4
6 0-07109 —0-01128 —0-38313 —0-01493 — 107731 —0-13041
7 0-16302 0-00940 —0-33087 0-00691 —098119 —0-09468

d 0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 —0-14777 0 —0-83333 —0-15657
4 0 0 —0-20774 0 —1-00000 —016134
5 0 0 —0-24863 0 —1-00000 —0-13784
6 0 0 —0-29511 0 —1-00000 —0-12037
7 0 0 —0-33594 0 —100000 | —0-10962
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TABLE 5

1

Various Solutions for the Derivatives of the Control Surfaces n, = % Oscillating at ¥ = 1 when M = 0-781.

m(N) | Solu- Iy le —m, — Mg ~h, —h;
tion*

15(3) la 02767 —0-0244 04718 0-0037 04104 01182
1b 02768 —0:0249 04724 0-0033 04118 01178
1c 02770 —0-0252 04732 00032 04148 01292
1d 0:2745 -0:0212 04662 0-0084 04222 0-1252
2 02665 —0-0226 04570 0-0037 —_ —

12(4) 3 02712 —0-0250 0-4681 —00032 03716 0:1994

20(4) 3 02673 —00279 04652 0-0070 03697 01953

*Solution (1a) = w§ of method (a) in Appendix A )
Solution (1b) = w$ of method (b) in Appendix B Applied with the theory of Ref. 1 from
Solution (1c) = w§ of method (c) in Appendix C g Section 2.1

Solution (1d) = w5 of method (d) in Appendix D

Solution (2) =

Reverse-flow solutions in Section 4.1

7

Solution (3) = Collocation method of Ref. 8 (equivalent upwashes in solutions by Davies’ theory of

Ref. 6).
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TABLE 6

Effect of Control-Span Parameter n, and Frequency Parameter v on the Derivatives for Control-Surface
Oscillations at M = 0-781.

Ha v Solu- le le —m | —m —h; —h;
tion*
0 0-25 la 09314 | —0-0599 1-3460 00670 0-6116 02117
1c 09318 | —0-0589 1-3467 00712 0-6124 0-2289
1d 09250 | —0-0457 1-3357 0-0833 0-6300 02192
2 09160 | —0-0513 1-3191 0-0715 — —
0-50 la 09184 | —00273 1-3342 0-0996 0-6206 0-2074
Ic 09198 | —00274 1-3371 0-1025 0-6239 0-2237
1d 09129 | —0:0143 13254 0-1147 0-6396 0-2148
2 09022 | —0-0211 13082 0-1028 — —
1-00 la 0-9034 0-0161 1-3206 0-1358 0-6485 0-1834
lc 09075 00125 1-3303 0-1339 0-6608 0-1956
1d 0-9005 0-0265 13163 0-1479 06699 0-1898
2 0-8865 0-0169 12984 0-1382 — —
0-25 025 la 0-5791 | —0-0714 0-8905 00023 | 04655 0-1485
1c 05792 | —0-0705 0-8906 0-0032 0-4660 0-1618
1d 05736 | —0-0634 0-8795 00122 0-4768 0-1522
2 05667 | —0-0637 0-8676 0-0055 — —
0-50 la 05696 | —0-0520 0-8830 00212 0-4703 0-1466
1c 05701 | —0-0520 0-8840 00224 0-4721 01592
1d 05646 | —0-0445 0-8728 0-0306 0-4820 0-1503
2 05562 | —0-0462 0-8602 00230 — —
1-00 la 05536 | —0-0254 0-8710 00424 0-4864 0-1347
Ic 05546 | —0-0267 0-8743 00417 0-4934 0-1456
1d 0-5501 |—00192 0-8631 00502 0-5000 0-1380
2 0-5372 | —0-0243 0-8488 00417 — —
0-50 025 la 0-2984 | —0-0485 04901 | —-00159 0-4016 0-1227
Ic 02985 | —0-0486 04902 | —0-0156 04018 0-1348
1d 02947 | —0-0442 04821 | —0-0102 04120 0-1300
2 0-2908 |—00433 04755 | —0-0133 — —
0-50 la 02919 | —-0-0389 04849 | —0-0070 0-4034 0-1222
1c 02921 | ~-0-0392 0-4854 | —0-0069 0-4045 0-1340
1d 0-2886 | —0-0348 04774 | —0-0016 04141 01294
2 02837 |—0-0347 04703 | —0-0053 — —
1-00 la 02767 |—0-0244 04718 0-0037 0-4104 0-1182
lc 02770 | —0-0252 0-4732 00032 0-4148 01292
1d 02745 | —0-0212 0-4662 0-0084 0-4222 0-1252
2 02665 |—0-0226 0-4570 0-0037 — —

*Solutions (1a), (1¢), (1d) and (2) as defined in Table 5.
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TABLE 6—continued

Ha V Solu- lé: lé —mé —mé —_ hé - h§
tion*

075 025 la 00989 { —0-0175 01739 | —0-0090 0-3048 00883
1Ic 00989 | —0-0175 0-1740 | —0-0090 0-3049 00990
1d 00986 | —0-0162 01719 | —0-0069 0-3091 00943

2 00962 | —0-0156 0-1685 | —0-0078 — —
0-50 la 00961 | —0-0143 0-1715 | —0-0062 0-3049 00881
lc 00961 | —00144 01716 | —0-0063 0-3056 00987
1d 00959 | —0-0131 0-1697 | —0-0042 0-3095 00941

2 00932 | —0-0127 01661 | —0-0053 — —
100 1a 0-0886 | —0-0085 0-1640 | —0-0018 03055 0-0875
1c 0-0886 | —0-0087 0-1643 | —0:0019 0-3081 0-0978
1d 0-0888 | —0-0076 0-1630 | —0-0001 03112 00934

2 0-0851 | —0-0075 0-1583 | —00014 — —

*Solutions (1a), (1¢), (1d) and (2) as defined in Table 5.

TABLE 7
Effect of Control-Span Parameter v, on the Derivatives for Control-Surface Oscillations at vV = 1 and
M = 0927,
r]a SOlu- le l§ - mé - mé - h{ - hé
tion*
0 la 0-8635 —0-1142 13371 - 00576 0-7366 0-0838
2 0-8459 —-0-1296 1-3311 —0-0788 — —
0-25 la 0-5040 —0-0919 0-8443 —0-0703 0-5584 0-0808
2 0-4833 —0-0974 0-8263 —0-0861 — —
0-50 la 0-2419 —0-0390 0-4388 —0-0330 0-4748 0-1046
2 0-2280 —0-0378 0-4223 —0-0392 — —
075 1a 0-0791 —0-0051 0-1526 —0-0026 0-3453 00955
2 00750 —0-0031 0-1459 —0:0026 — —

*Solution (1a) = Theory of Ref. 1 with m(N) = 15(3) is applied with w$ of method (a) from Appendix A.

Solution (2) = Theory of Ref. 1 with m(N) = 15(3) applied to the reverse-flow solutions in Section 4.1.
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FI1G. 16. Variation of damping derivative I; with

control-span parameter , and frequency parameter

vat M = 0-781.
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F1G. 17. Variation of damping derivative —m;
with control-span parameter 7, and frequency
parameter v at M = 0-781.

-0

0-5 _

0-4 Z
7
-hg T &

/// S
03 — = i
—————— - /
_—’—""‘//
0-2
0 02 04 M 06 08 0
a 7=0.5

a F=I'0} Method of section 4.3
¥—0, Ret. 7 (based on Cpp)
———— ¥-—*0, Ref 7 (based on <H)

—_— ¥ <]
- 5= }Woodcock (Refs. 3 &IS)

0-4

0-3
0-0!
-hg // Zos
o
0-2 /4/
="

|
|
.\.

0

¢ 0-2 04 v 06 o8 10

FiG. 18. Hinge-moment derivatives —h; and —h;
against Mach number M for the control -span
parameter 4, = 0-5.
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F1G.19. Hinge-moment derivatives —h;and —h;
for controls #, = 0-5 against frequency parameter
vat M = 0-781.
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F1G6.20. Hinge-moment derivatives — h;and —h;
against the control-span parameter 7, for

M = 0781.
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