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Summary.

This Report gives a description of an extension to wings oscillating at general frequencies of Multhopp’s
lifting-surface theory for wings in steady subsonic flow.

This particular variant of the ‘kernel function’ method is published here because it has been used for
many years in Aerodynamics Division, N.P.L., and has been the method used to provide results in a
number of papers already published.
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1. Introduction.

This Report contains a description of a method of calculating the aecrodynamic forces on a wing
oscillating in a subsonic stream. The method, which has been used for some years in the Aerodynamics
Division of the National Physical Laboratory, is of the ‘collocation’ or ‘kernel function’ type, involving
a numerical solution of the integral equation of linearised theory connecting the lift and upwash distri-
butions. It is in principle the same as the collocation methods of tackling the same problem which have
been put forward by other authors both in this country and elsewhere, and have been much used in
government establishments and the aircraft industry. (See, for example, Refs. 1 to 3.) Nevertheless it
was thought worthwhile to publish the details of this particular variation since it has a few distinctive
features, and moreover values calculated by it have been quoted elsewhere (Refs. 4 and 5).

The method is essentially an extension to frequency parameters which are not small of that proposed
for steady flight by Multhopp® and extended to oscillating flight at small frequency parameters by
Garner!. The distifbution of solving points is the same as that in Multhopp’s original treatment ; although
this distribution was developed for steady flow at low Mach numbers it seems to apply satisfactorily to
high frequency oscillations in high subsonic flow. The use of an electronic computer is essential for
routine application. '

In the examples given below, the wings are performing simple rigid oscillations; this is because most
of the calculations were performed for comparison with wind-tunnel experiments in which the model
had this sort of motion. In fact simple modes of distortion could easily be treated, but modes, such as
aileron rotation, which involve discontinuities in the boundary condition are not included.

2. The Integral Equation.

This Section, for the sake of completeness, contains a derivation of the integral equation which connects
the load distribution on an oscillating wing with the perturbation velocity caused by its oscillatory
motion. It is assumed that the thickness and camber of the wing, and the amplitude of its oscillation
are all sufficiently small for inviscid linearised flow theory to be applicable.



" 2.1. Derivation of the Integral Equation. '
Let (x,, y;, z,) be rectangular co-ordinates arranged so that the undisturbed flow has velocity U in
the direction of x, increasing. Then ®, the perturbation velocity potential caused by the small oscillatory
motion of the wing, satisfies the equation

(1~M2)6_29+@+92£_—2M2 ____.62q) __Mi @
oxz  oy? 0z2 U ox, 00 U* ot

=0, (1)
that is, the equation of sound in moving co-ordinates.

A fundamental solution of equation (1) is the oscillating source of angular frequency w, whose velocity
potential is

. i M? io M
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where
R =[x}+p*yi+p 1] €)

The flow represented by equation (2) has outgoing waves far from the origin.

The function d®,/dz, then represents an oscillating doublet at the origin. Consider the total potential
of a distribution of such doublets over the plane z; = 0; the resulting expression for @ is
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where now

R = [(x;— x>+ B2 (v —y)* + 8% 21T, (5)

and f'is a function representing the strength of the doublet distribution. The region of integration is the
plane z; = 0.
Now put

Xy = x4+ fr; cosf }

) (6)
Yy =y +r sinf

then from equation (4)
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Consider the limit of ® as z, tends to zero while x,, y, and ¢ remain constant. Divide the plane into
two parts by an ellipse r; = 6. When z, — 0 the contribution from the part outside r; = 8 tends to zero.

If fis continuous at (x,, y,) (and in all the following applications it is continuous) then equation (7) may
be rewritten
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where
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Now by integration by parts
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or, since A may be made arbitrarily small by taking 6 small enough,
D(x, y, +0,8) = —2nf(xy, p,) €. )

Thus equation (4) becomes
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The boundary condition in lifting-surface theory is the fact that the vertical velocity, w = 0®/dz,, is known
on the part of the plane z; = 0 occupied by the wing planform. A possible integral equation is therefore

ioM?*(x,—x7) iwMR)} 1 |
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(11)

where the region of integration is the wing planform § and the wake W,

For small disturbance flow it is known that

= _a_f‘_)_|_U oo 12
P=Pe = —Pu | 3TV (12)

For an isolated plane wing @ is an odd function of z,, and it follows from equation (12) and the fact
that there can be no pressure difference across the wake, that in W

iw
O(x1, y1, £0,1) = O(x ,, ¥, £0,1) exp[*?{X’l—X’lT(y’l)}], (13)

where the suffix Tindicates the value at the trailing edge. Thus, by equations (11) and (13) w is determined
by the distribution of ® over S.
The integral equation (11) has been much used for both steady and oscillating wings, but in this report
another will be used, easily derived from equations (10) and (11), which involves integration over S only.
It may be observed that equation (10) holds not only when @ is the perturbation potential but also if it
is any function, simple harmonic in time, satisfying equation (1) and dying away in outgoing waves at
infinity. In particular ® may be replaced by the acceleration potentlal ¥, defined by

o0 oD
V= 0x; ox, o ot’
i (14)
oo |
= Us—+iwd.
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It follows that ’
—lwxllU ¥
j OSIUE L, 1, 21) dE (15)
since both @ and ¥ tend to zero as x; » — co.
On z; = 0,y is in fact proportional to the wing loading, [, defined by
[ gt — pressure difference 4y (x4, y,, +0, t). (16)
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When ¢ replaces @ in equation (10), and equations (15) and (16) are applied, the following expression
for @ is obtained
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where now
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Now let K be any large positive number, and x,,,, the greatest value of x, in S, then
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Thus the integral from —co to — K may be made arbitrarily small for K large enough.
Hence
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since the integral with respect to &, from — oo to — K may again be made arbitrarily small for sufficiently
large K.

A more convenient form is obtained by changing the variable £, to &, where £, = £+ x). Then
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where
R = {48y, —y)*+ B 21} (20)

The perturbation velocity caused by ! is now obtained as the gradient of ® as given by equation (19).
In particular

U imt . a ] ’
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The cross-stream velocity component, v, may be obtained by differentiating with respect to y;.

Alternatively, provided w is not zero, equation (21) may be written

W(xla Vi O’ t) eimt

= — Hxy, yy) Kixy —xY, y1 —y1)dxy dy', (22)
U 8n
s

where the kernel function, K, is given by

(x1—x1)
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K(x1 _xll, Vi __yfl) = lim — J e~ iot = xD/U ewoé/Uﬂ2 X €Xp (—%—)E df R (23)
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where R is as in equation (20).

The changes in the positions of the differentiation and the limit operation between equations (21) and
(23) may be justified by the uniform convergence of the infinite integral in equation (21) and the con-
vergence of that in equation (23), and by observing that we may suppose that the only singularities in [ are
along the leading edge and may be removed by a simple change of streamwise variable (e.g. as in equation
61)). _

If w = 0 the infinite integral in equation (21) is easily integrated. (See, for example, Ref. 1.)

It may be observed that, unless @ = 0, the two-dimensional forms of equations (10) and (23) may be
obtained by spanwise integration with respect to y}, using the formula
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(Ref. 7, p. 80)

2.2. Transformation of the Integral Equation.

There appears to be no method of expressing the kernel K, as given by equation (23), as a simple
combination of known functions. It is possible to calculate K numerically from equation (23), but the
process is expedited by using a transformed equation for K, due to Watkins, Woolston and Cunningham?,
which requires numerical integration over only a finite range. The following method of deriving the
altered form of K appears somewhat simpler than that used in Ref. 2.

It is first convenient to change to non-dimensional co-ordinates by division by a typical length, d.

Thus

X1=xd, ylzyd:v lezd,

(24)
x; =xd, ¥y =yd.
It is also convenient to define v, the frequency parameter, by
v =wd/U, (25)
and to put
Xo = XxX—Xx',
(26)
Yo=y—)
Then equations (22) and (23) become .
it
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s
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d z—=0 0z J \/§2+ﬁ2y(2)+5222

Now consider the part of K involving integration over an infinite range, and change the variable to
3 by putting

BY = E—M JE2+ B y3+ B2 22, (28)



so that

£=/1;[9+M AP R (29)

Then
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Now from Ref. 7 (p. 172)

J‘cos (i/\{}__f‘c) dr = Ko (v /¥3+29), (31)
T
0

and from Ref. 7 (p. 332)

«©
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when I, and K, are Bessel functions in the usual notation, and L, is the modified Struve function (Ref. 7,
p. 329)

2 x X x’
Ly(x) = (X+32+3252+325272+...), (33)
2 4 xG
Iyx) = 1+22+2242+m+ er (34)

A useful transformation may be obtained by considering the integral of the function ¢ \/1— +22
round a closed contour in the complex z-plane consisting of the positive real axis, the positive imaginary
axis indented at z = i and quadrant of an indefinitely large circle. It follows that



J‘ cos Ax ix =f e dy, (39)
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and

(36)

© 1
sin Ax dx =
14+ %2

) )

Equation (35) is merely a well known alternative expression for K(x) (cf. equation (31)). Equation (36)
leads to the alternative form for equation (32)

o+Z y
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When the terms are collected together it is found that
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2
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The remaining part of the kernel K is
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K is found by adding equations (40) and (46):

—ivxo
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Equation (47) is the expression for K given by Watkins et al?>. An alternative form, suitable for use
when M is small or zero may be obtained by adding equations (39) and (45). For steady wings

d? K(x, Vo) = _y_lg [ 1+——ﬁ——] ; (48)

Vx5+B% 5

this follows from equations (47), (42) and (44) and the fact that xK,(x) tends to unity as x tends to zero,
(or, alternatively, directly from the non-dimensionalised form of equation (21) with @ = 0).

The properties of K are discussed in Ref. 2. In particular it is shown that

; 1 X
d? K(xg, yo) = e~ % [ - { 1+—~——0——}
e Y3 X8+ B ¥8

1o
Jaip R 28T M-

iy 7 1 oe L/ X6+ B y5—xo)

-+ (terms which remain finite when x, or y, tend to zero):| . 49)

The strongly singular nature of K is apparent from the first term in equation (49). Apart from the factor
e’ this singular term is the same as for the steady wing and is treated in the same way. (See Section
3.2, below.) The next two terms in equation (49) are also singular but less strongly so, and complicate the
integration only through the logarithmic terms in the spanwise integration.

2.3. Boundary Conditions.
If the wing surface vibrates according to the equation

2y = Q(xph)eimta (50)

then the boundary condition on the planform is
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that is

XV__ a__ g : 51 it
U-|: 6x<d>+wd:|e . (51)

In the particular case of rigid pitching about an axis x,d downstream of the origin

z = —og(x; —Xxod) ", (52)
so that
w . . )
o= % et [1+iv (x—x)]. (53)

If g, in equation (50) is real the wing is performing oscillations of the standing wave type, but travelling
waves may also be treated by taking g to be complex.

3. Extension of Multhopp’s Lifting-Surface Theory.

In Ref 6 Multhopp described a lifting-surface theory for wings in steady flight at subsonic speeds,
in which the kernel of the integral equation was simply that given by equation (48). The distinguishing
features of the method are the use of particular chordwise distributions of lift with their corresponding
influence functions and the chordwise and spanwise locations of the points at which the upwash is evalua-
ted. Garner? (1952) described an extension of this to wings oscillating with low frequency parameter by
retaining terms linear in frequency, thus introducing additional influence functions. In this Section a
further extension using the complete kernel is described. Multhopp’s basic ideas of obtaining influence
functions and choice of solving points remain unchanged.

3.1. Calculation of Influence Functions.
The integral equation is

W(anaOst) _ fﬁt_ VA 2 ' ’
0= T I(x', y') {d* K(xo, yo)} dx’ dy (54)

where the kernel K may be expressed by equations (27) or (47) (or in other ways, some of which may be
found in Ref. 2). In this report equation (47) will be used.
It is convenient to write
Ww(x, y, 0) e = ™% (wx, y,0,1), (55)
and
I(x, y) = €™ I(x, y), (56)
and also to take the origin of co-ordinates so that the wing tips are in the planes y, = =s. (This does

not imply that the planform is assumed to be symmetrical.)
Then equation (54) may be re-written

14



y= +2 X' =xr ()
" ! 69 s i .
ﬁ(x,y,O) = _S_ﬁf J 7 [v3 d? e*0 K(xq,y0)] dx' dy’ . (57
y = ~% X=Xy ()
It is also convenient to change the spanwise cc-ordinates by putting
n=yi/s=ydfs, (58)
n' = yi/s =ydfs, (59
so that
3
Yo =5-1), (60)

and to change the chordwise variable of integration to ¢ by the relation

xy = x1, (y1) +3c(v1) (1 —cos @), (61)
that is
. "L )
X = xL(y)+ﬂ—(l—cos ?), (62)

so that ¢ = 0 on the leading edge and ¢ = = on the trailing edge. Then equation (57) becomes
+1

__ta | 1
~ 8ms n—n)?
¢

7’=-—1

T0¢./) [¥3 42 € Kixg, yo)] 2 sin i (63)

gk_—wta

| =

In accordance with Multhopp’s approach the loading is now assumed to be of the form

<«

) = o5 ) T2 (64

g=1

where the function I") are unknown, and
¥ (¢) = cot 3¢, 1
Wy($) = cot3¢p—2sin @,
L (65)

¥,($) = cot %¢—-2Z sinrg  (g=2).

r=1
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It follows that 1 ®

W 1 1 , ; (66)
T (x,y,0) = P sz T F,dn,
w1 =
where
1 . .
Fo-1 j[—y% 42 % K(xo, yo)] ¥,l) sin 6 d. @
$=0

The functions F, are the ‘influence functions’; they express the upwash at the point (x,y,0) due to the
part of the lift distribution on the elementary strip 4’ < < #’+dp’. The choice of the points (x,y) and
the values of # are discussed in Section 3.2. The integral in equation (66) has a strong singularity aty” =y
which has to be accounted for by taking the principal part as in the theory for steady flow.

The expression for [ —v§ d? e™ K(x,, yo)], which follows from equation (47) falls naturally, from an

algebraic point of view, into four parts.

[—y§d* ™™ K(xg, yo)] = G+ G,+G3+G, (68)

where

i
G, = VIYO[ Kx(VlJ’OD"“Z‘ V‘J’o[ {1 (v|y0|)—L1 (V|J’ol)}

iM vlyo|+ B ( iM V|J’o|>
—_——£X - ) 69 :
g P\ T p ©)
Mg
G, =v*y5 j 2V 1+ exp (—iv |J’0| 1) dt, . (70)
1 Mx, } [iv s } |
Gy=— | 14——=0— | exp | =5 (Xo—M /x3+ )
R M[ g P | gz o o+ B° o) (71)
iv iv ‘
Go=—1; -[exp [F(t_M t2+/32y%)] dt . (72)
0

An alternative form for G, may be obtained by changing the variable of integration by putting

B3 =t—M  Jt2+ B2,
After some manipulation it appears that

_ iMool +B ( _M) )

G =""pm ;
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_{ _;Z-q-%[./x%—i-ﬁz yE—Mx,] }exp [%(xO—MJx%—I—ﬁf%j]
M/p

—v? yZ fexp(—iv|y0l1)~/1+r2dr. (73)

—xo-M /5515 y3) ] B Iyl

 This form is more suitable for small M since the terms in G, and G5 which become infinite as M tends
to zero are cancelled by terms in G,.

The influence functions F, depend on the position of the point (x,y) relative to the stripy’ <5 < (n'+dy’),
x(y") < x < %7(y"). The parameters X and Y are therefore defined by

X =%, (1) _ d

=" T "

=Bl py L (79

so that | = E%’Q [_I; (76)
and Xo = X—X = x—xL(y’)—c—;}g(l—-cos )

= Vx4 icosg]. ()

In terms of these new parameters G,, G,, G5 and G, are given by

G, = ‘YKI(?)#;—"?{IA?)——LI(?)}—M—M’;ﬂexp (JM ?> , (78)
Mg '
G,=7Y? J',/1+tzexp(—i7t)dr, (79)
1 M (X ~1+%cos¢) :|
G.=—11
’ M[ _I_\/(X——%—f—%cosqb)2+Y2
xexp[%—c‘j—“ {(X—%Jr%cos - M X T+ Tcos P+ 72 }] (80)

D) t4ic0sg)

G4=—%f _exp [%(t—M\/t2+<c(y2Y>2)Jdt, ' (81)
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where
< VY c(y)
Y=7 (82)

The influence functions may now be written

1 . 83
=;z-J(GI+G2+G3+G4)‘qum¢d¢, (83)
4]
or, by equation (65)
1 B

F(X)Y) = - j(G1+G2+G3+G4) (cos(g—1)d+cos gd) dg . (84)

0

Since G, and G, do not depend on ¢
) ‘
F, =G1+G2+EJ (G3+G4)(1+cosd)dg, (85)
0

Fq=—71;J(Gs+G4)(COS(q—1)¢+cosq¢)d¢, (@=2). (86)

0

The repeated integrals in the terms in G, may be avoided by integration by parts. Thus for F,

JG4(1+cos ) dop
0

qim

%[(msmqs)ca]: ;ltf<¢+sm¢> * i

0

€O x 1y

ey

]i\; 71Z c;)c/l')J (¢ +sin @) exp [% %y) {(X—%-i—%cosd))—M \/(Xf%+%cos¢)2+yz}:|
0

xsingdp, (87)
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and similarly for F,, F5,...

The calculation of the influence functions is a straightforward task, requiring only standard methods
of numerical analysis. The functions K,, I, and L, which occur in G, have been tabulated, but for -
use in a computer it may well be more convenient to use expressions for them as infinite series or as
integrals. For example I, — L, may be calculated from the series in equation (42) and (44) or from an
integral expression such as

/2

2
Ii(x)—Ly(x) = p { 1— Je‘“"“’cos(?dﬂ } , (88)
- 0
which follows from equation (37). Expressions for K, may be found, for example, in Ref. 7. The function
G, requires only simple numerical integration. The only complication arises from the fact that when
Y is small G changes rapidly when cos ¢ is near to (1 —2X), and a close spacing of values of the variable
of integration may be necessary.

When Y = 0, and 0 < X < 1, the influence functions are easily evaluated by observing that

G1+G,+G3+G, = 2for ¢ <cos™t (1-2X),
| } )
= Ofor ¢ >cos™* (1-2X).
Thus, by equation (84)
cos”1(1-2X)
2
F(X,0) = - (cos(g—1) p+cosqd)dd . (90)
[i]
In particular
2 4 )
Fi(X0) = —cos (1—2X)+;X* 1-X)*
8 3/2 L
FZ(Xao) = ;X% (1"X) >
1)
8
Fi3(X,0) = —X*(I—X)m( l—S—X—) ,
n 3
and in general, for g > 2
FX.0) = %{ sin [(q-—1)2<f;1(1-2X)]+sin |j‘qcos—q1 (1-2X)] } . ©2)

IfY = 0and X < 0then(G, +G,+G3+G,) = 0,whileif Y = 0and X > 1then(G,+G,+G3+G,) = 2,
but in practice these cases are not required.

3.2. The Solving Points and Simultaneous Equations.

The distribution of solving points was taken to be the same as that used by Multhopp® for steady
flight, and by Garner® for low frequency oscillations. It seemed reasonable to suppose that the satis-
factory nature of this distribution would carry over into part of the finite frequency range and in fact no
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difficulty attributable to the selection of solving points has been encountered.
According to Multhopp’s scheme the unknown lift distributions are assumed to be defined by their
values at the spanwise stations defined by

yi __ _sinnzn
s T =TT (93)

where m is an odd integer, and takes the integral values from —% (m—1) to +3 (m—1). In practice the
smallest possible value of m seems to be 7. In effect taking this dlstrlbutlon is equivalent to assuming
a change of spanwise variable to 6, defined by

n=cos@(0<O<m), (99

and taking equal intervals in 9.

The unknowns are then the values of ', (equation (64)), and we may define T, as the value of I' ()
at n = 7,. Since it is assumed that the I';’s are zero at the wing tips there are m unknowns for each I,

The points at which the upwash is to be evaluated are taken to lie in the spanwise positions spec1ﬁed
by equation (93). In a calculation it is necessary to include only a finite number of terms, N say, in the
lift distribution as postulated in equation (64), and the number of points at each spanwise position is
also taken to be N. There are therefore mN solving points and mN unknowns Twl<g<N, -3(m-1)
< n < +34 (m—1). Thus the solving points are taken to lie on the lines

for 95)

The positions of the N solving points on each line # = 5, are defined as

2n
X, = xl;_(nv)—l_%c(nv) { 1 —cos 2N‘|l‘)1 }5 p= 172’N

which may also be written

@r—-1=n
Xy = x1,(n,)+% () 1+cosm . r=12...N (96)

In practice N is taken to be small, usually 2, 3 or 4.
For N = 2, there are 2 points on each chord

x1 = x1,(1,)+09045 c(,) , ‘ ©7)

and

X1 = x;,(n,)+03455c(n,) . (98)

If N = 3 the two numbers 0-9045 and 0-3455 are replaced by the three numbers 09505, 0-6113, and
0-1883, and so on.

In calculations non-dimensional co-ordinates are used, and the positions are defined by
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- c(n,) @r—=n
x = x0 = x;(n,)+3 Z {1+cos—2—ﬁ+—1 . r=12,...N (99)

The corresponding values of X and Y to be used in calculating the influence functions are thus by
equations (74) and (75)

d .
) — ) _
Xv,n C(ﬂn) [xv xL(nn)] S (100)
and
B
Yv,n - C(T]n) |nv ﬂnl . (101)

The suffix v denotes the spanwise position at which the upwash is to be evaluated ; the suffix n denotes
the spanwise position of the lifting elements which cause the upwash.

Now it is shown in Appendix 1 of Ref. 6 that the singular integral in equation (66) has to be evaluated
by a principal value by the formula

+1 n—e 1 '
1 S 1y { f) j‘ )] 2 (n)
— _dy = — lim —dn’ + —dn’ — 102
2w ) =2 T 2memo U ) =2 M ) e } 102
-1 -1 nt+e
where f(n) represents the numerator in the integrand of equation (66).
If the variable of integration is changed by putting
n =cost, (103)
and it is assumed that in equation (102)

for) = Zap sin pf (104)

1

where the a,’s are constants, then it follows after some analysis that equation (102) may be evaluated
numerically according to the formula
+(m—l)
+1 2

[
3 | G bwf(m)+zbvn £t
i _n-y

n=

where e
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bv,,-( N ' P (|v—n| even)
m+1) | sin —— ~—sin o

=0 [v—n| odd. (105)

It follows that equation (66) may be replaced by

N
T8 3,.0) = b, Z Lo XS Y,)
g=1
(m=1) ’
PEETST N
+Z bvn z rq,n Fq(Xg;za Yvn) . (106)
_ m-p =1 *
By equations (100) and (101),
" -1 @r—1m _

XV =3 <1+cos INT1 ), Y, =0. (107)

In general there are mN equations of the sort (106), one for each pair of the N values of r (1 < ¥ < N),
(m—1) <v s(mz— 1)> There are mN unknowns I’

m—1 m—1 . . oo
_{ 5 ) <n< ( 5 ) . However, most wing planforms are symmetrical and any mode of vibration may
be split into a symmetrical part and an antisymmetrical part. Thus for a symmetrical oscillation of a

symmetrical planform

since 1<g<N, and, like v,

andv ( - o

W(xg), Yvs 0) = W(x(:)va Y—vs O) (108)
U U ’

and : Fpn=Tg-u-
(109)

The number of equations and unknowns is then reduced to N(m+ 1). Similarly for an antisymmetrical
oscillation the number of equations is reduced tc 3N(m—1).

Equations (106) are an approximate form of the integral equation (66), but they were deduced on the
assumption that the influence functions behave like the right hand side of equation (104) which has
continuous derivatives for || < 1. In fact the numerator in equation (66) contains terms in (7 —#')* log
|r/—11’| which require a small (but often significant) alteration in equations (106). This correction is
discussed in the next Section (Section 3.3).

3.3. The Logarithmic Terms in the Influence Functions.
As noted at the end of Section 3.2 equations (106) have to be adjusted to account for logarithmic
terms in the influence functions. This is done by adding to F (X%, Y,,) a term proportional to the co-

hARS
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efficient of (y —#)? log [y —#'| in F,,.
In order to evaluate this coefficient it is convenient first to write
Xo=%(1—cos ¢).
Then by equation (84) )
1

F,= - J[G1+GZ+G3+G4] [cos {(g—1)cos™ 1 (1-2X,)}

0

+cos {gcos™! (1—-2X,)} } (

Thus, for example,

1 —
2 1=X
F, = j[GI+G2+G3+G4]—\/ 2ax,,
v Xo
0

1
2 1-X
F, = .j[G1+Gz+Gs+G4]—— (1-4Xg)dX,,
1 Xo
0

and so on.
Consider, therefore the expansion, for small ¥ of

1
F,= J[G1+G2+G3+G4]fq(Xo)dX0.
0

where f; is a function of X, defined by equations (111) and (110).
(i) By equation (78)

1 1
fGU;(Xo) dXo = G1 sz;(Xo) dXo-
0 0

Now
G, = BuY K (fuY)+(a power seriesin Y),
where
_ 2 )
:u - BZ d .

Then it follows from the expansion of K, Ref. 7 (p. 80), that
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(112)

(113)

(114)

(115)

(116)

(117)



. 1
G1ﬁ1(Xo)dXo = { qu(Xo)dXO} i %ﬂzﬂz YZIOgY
0

+[terms in Y*log ¥, ¥YSlog ¥ ...]

+[a power series in Y] } .
(i) From equation (79)

f G, f(Xo)dX, = a power seriesin Y.
(iii) By equation (80) ’
1

j G3f(Xo)dX,

&

(118)

(119)

3}
1 MX-X,) ,
- f £(Xo) [ i Yz} exp [in (X~ Xo)—M X=X+ V7I]dX, (120)

Jf (X —t)exp (iut) [ l+— 2+ Y?)dt

Mt
exp(—iMu
ol

1-X

1 , Mt ,
+7 jf(X+t)exp(—zut) {1—WJ exp(—iMu. /t*+Y?)dr.

]

Now the terms in Y? log Y may be found by using the following integrals

/42 2
J./t2+Y2dt ! +Y +—10g(t+«/t2—|—Y2

(— 1)" 135...(2n—1)
t2n tZ YZ dt 2n+2 2 2
Vit 368, nea) L loglth P+ Y?)

+{a polynomial in ¢, Y and ,/t2+ Y?}

Jtz"“ Vt2+Y?*dt = {apolynomialin ¢, Y and ,/t*+ Y?}

dt
j Fry: =loglt+/t?+Y?)
t? t /24 Y? Y?
- dt = + ——log(t+./t*+Y?)
J Sy 2 2

[ (1" 35...2n—

_ 1) oo —
V7T T T Tas L eBEHVEAT)

+{a polynomial in 7, Y and ,/t?+ Y2}

n

* t2"+1 o
ﬁdt = {apolynomialin¢, Y and ./t*+ ¥?}.
J S+
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By expanding the integrand of equation (121) it follows that

1

f GafXo)dXo = Y?log ¥ {2ip f(X)—f X)}
o
+{termsin Y*log Y, YSlog Y ...}
L + {a power series in Y} .
(iv) Similarly

1

1 X
lexf (Xo)dX=Y?log ¥ §2 pi* {~% Jﬂ(Xo)dXo+ fﬂ(Xo)dXo}
0 o}

0

+{termsin Y*log ¥, Y®log Y...}

+ {a power series in Y} .

When all the terms are collected together it is found that

1
Fq = J'(G1+G2+G3+G4)f;1(X0)dX0
0

X
= Y2logY { B u? fﬂl(Xo) dXo+2ipf(Xo)—f'(X)}
0

+{termsin Y*log Y, Y log ¥,...}
+ {a power series in Y} .
Then for small Y
FX,Y) = F(X,0)+K(X) Y?log Y
+{termsin Y*log Y, Y®log Y ...}
+ {a power series in Y},

" where
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X
K(X) = p*p? J‘f;} (X o) dXo+2inf(X)—f(X).
0

(127)
In particular
M\ 2 “li-2x) 2
K(X) = (”(y)) [°°S ( )+—«/X(1—X)]
gd T T
4 ive(y) N-X o1 :
= 1
N \/ X "X (I-x" (128)
I 2
Ky(X) = (Vc(y )> 4 x - xpe
pgd T
4ivey)[ T—X 1 (1+4X-8X%)
- -4./X(1- e 1
x P d [ x v X):l+7r X {I—X)7 (129)
. ve(y) 24 12 3
= - 1—X)32(3—
K4(X) ( Bd ) T (1-X)"*(3-8X)
4 ive(y) [1-X 2
+7r Bd (1-12X+16X7)
1 1 s s
and so on.
Then it is shown in Ref. 8 that equations (106) have to be modified by replacing
Fq (ngr\?a va) = Fq (Xg‘\?a 0)
by
Fo(xt ® ps
Fq(XV\zaO):Fq(erWO) +Kq(X£)r\? GV’
v c(n,)
‘where
n_m-—l
T2
G, = —2 cos? —— log|sin o sin— |
Y (m+1)? m+1 B 1 m+1
(m-1) '
T : ‘ +———m+1 lo 4—{—cos—2wr

Numerical values of the quantities G, are given in Ref. 1, form = 7, 11 and 15.
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34. Kinked Leading and Trailing Edges.

" Many of the planforms encountered in practice have sudden changes in direction in their leading and
trailing edges. The commongst is perhaps the centre section of a swept wing; a more extreme example
is treated in Ref. 4. These kinks violate the assumptions in the spanwise integration formula. Those
calculations described in Section 4 which related to such planforms have therefore been carried out for
‘smoothed’ planforms, obtained by the rule suggested by Multhopp for steady flight,

It is assumed that the kink in the leading or trailing edge occurs at a spanwise solving station = 7,.
(In practice kinks rarely occur except at the centre section.) Then the equivalent planform is calculated
by the rules

1 5 1
xr(n,) = D Xp(fy—1) +g xg(n,)+ D) Xi(ty+1) s (133)

1 5 1 1 '
xrlh,) = l_z“xr(ﬂv— 1)+g xT(nv)+ExT(nv—1) ) (134)

where the quantities in the right hand sides are those obtained from the original geometry of the planform.

The value of m should obviously be taken large enough to ensure that the alterations to the geometry
are small. The number of solving points may also have to be large if the mode of vibration is one in
which the altered areas of the planform are specially significant. The obvious method of deciding whether
the number of solving points is big enough is by performing calculations for a sequence of increasing
values of m, but the amount of computation required may be prohibitive.

3.5. Calculation of Lift Distributions and Solving Points.

The solution of equations (106) gives values of the function I',, for —4 (m—1)<n <% (m—1). Then
according to equations (56) and (64)

N
oy,) = e"f“x%qzrq(m Vi$), (135)

on

n=tf,= sinm”—L, (136)
tﬁat is on

y=yn=§%%§, (137)
where

x = xL(n,,)+%c(Z”) (1—cos ¢). , (138)

Thus I may be calculated on any of the lines # = #,. Provided m is large enough the lift at any point of
the wing may be found by interpolation.
The overall generalised forces may be regarded as weighted integrals of ! over the planform. Consider
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F = J‘ JW(quM) Ap(xy,y1) dx; dy, (139)
s

where W is the weighting function.

Then
N X140
F= %Pw U? j J‘ W(x1,y1) i(x1,y1) dx; dyy (140)
yi=-s Xy =x1,_(y1)
that is
+1
F=3%p,U? W(x1,p1) lx1,91)5 s c(n) sin ¢ dep dy (141)
p=-1
where
X1, = X1, (M) +3 () (1—cos ), (142)
yi =91, (143)
and
N
_ 8 ; 1o
l= Z e exp [ — v (XL(H)+2 7 (1—cos cb)) ] Z Ty Pyl (144)

g=1

Hence equation (141) may be rewritten

+1 T
2
Feto vt [ | wowien | < (un+1%a-cosp ) |
n=—1¢=0
N
erq(n) {cos(g—1)p+cosqp}dp dn. (145)
g=1

If W is a polynomial in (x,,y,) it may also be expressed in the form

P

W=ZA,,(17)cosp¢, 0L<p<m, (146)

p=0

so that the integration with respect to ¢ depends on integrals of the type
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T

Jcos ne exp { ich‘—;—’l)cosqb }dqb =mi"J, (%) (147)

0

(Ref. 7, pp. 20, 21).
The spanwise integration may then be carried out by the formula

+1
ffn=m2ﬁcos (148)
-1

In the examples given in Section 4 the forces evaluated are the overall lift, for which W = 1, and the
pitching moment, for which W = —x,.

By equation (145)

+1

Lift = %poo UZSA J‘ €xXp l: —iy (XL(ﬂ) C;Z)) :| X

g=-1

) |
XE T () {i‘?"?Jq-l (”;S”) +itJ, <v§f1”)) dn } (149)

q=1

Pitching moment (about x, = 0, positive nose up)

+1

= —4p,U?Sd A f exp {—iv [n(ﬂ)-#%f?] }x

n=-1

N
| [omest] S [ (52) o (5)]

g=1

N
_ 1 em) - vem\ | .- v c(n)
)t [ (58 ) e (5F)

g=1
+it, (%)Hﬁuﬁl (vggﬂ) ]} dn.  (150)

The spanwise integration is now to be carried out by equation (148).

3.6. Low Frequency Theory.

When the frequency parameter v is very small a low-frequency theory may be constructed in which
terms of order v are neglected.

From equations (78) to (81) it follows that when v is small
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X~%+4coso

R [ &= F vy o

v cy) Y?
B d [(X—f+icos ¢y +Y7]

++0(v* logv). (151)

The influence functions are then obtained by using equation (151) in equation (85).
When v = 0 these influence functions reduce to those of Ref. 6, but for low frequency they are not

! )
the same as those of Ref. 1. This arises from the fact that in Ref. 1 the ratio% = z—is not e~ "* as defined

in equations (55) and (56), but exp(ivM? x/B?). In view of the theory contained in Ref. 1 it appears un-
necessary to describe the present low-frequency theory further. There appears to be no analytical method
of deciding which is the more accurate.

3.7. Method of Calculation.

The following is an outline of the steps which have to be carried out to compute aerodynamic forces
by the method described in the preceding Section. The procedure is described as for an asymmetric
wing in an asymmetric mode of oscillation, but in most practical examples the calculation is greatly
shortened by considerations of symmetry.

Data.

The following information is assumed to have been given:

(i) Geometry of the planform.

(ii) Mode of vibration, g(x,,y,) in equation (50).

(iii) Angular frequency, w.

(iv) Mach number M.

It is also assumed that the following have been chosen:

(v) m the number of spanwise solving stations (m odd).

(vi) N the number of solving points on each chord.

(Some consideration is given to the choice of m and N in Section 5.)

(vii) A representative length d. (Usually either the mean chord, ¢, or the root chord c,.)
(viii) The origin, taken to be midway between the wing tips, and at any convenient streamwise position.

Calculation.

m=D Lm=D

(a) Calculate the following quantities for n = — 5 5

. . nw
= Sin .
(@) 9, il

(i) c(gn)

{from the wing geometry).
(i) x.(y,) (from the wing geometry).

(iv) x(n,) (from the wing geometry).

(v) Values of (ii), (iii) and (iv) modified using equations (133} and (134) to account for any kinks in the
leading or trailing edges.

(vi) x¥, from equation (99) for r = 1,2,... N.

(b) Calculate the following quantities for all combinations of

(m—1) (m—1)
- 3 to + 7
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(m—1) (m-=1)
) to + 7

and
r=12,...N,

excluding those for which |v—n| is an even positive number.

r d r}y __ ’
) X9 = c—(n_n) [x$ x ()]
s d
(ll) Yv,n = B a _0(71—,-,.)_ |nv _nnl

(c) Calculate the influence function F,.
(i) FAXV), Y,

for all combinations of

g=12,...N
r=12,...N

_ (m—1) m—-1)""
n= - ) to + )
V= —‘(m_l)to +(m_1)

2 2

excluding those for which |v—'n| is even; using equations (84), and (78) to (82), (or some convenient
modified form, such as those obtained using equations (73) or (87)).

(i) . “Fq(X‘J,’V‘,O).
for
q= 1,
r=1,.
_ (=1 (m—1)
V= 5 to 5

using the formulae (90) and (91).
(d) Calculate the logarithmic correction

KXV,

for
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_m=1) (m—1)
— 3 to + )

using equations (127), or (128) to (130), and then calculate
F (X%, 0)

for the same values of 7, g and v, using equations (131) and (132).
(e) Calculate

(x, y,, 0)

<l =

for

m-1)  (m-1)
B to + 5

Y o=

using equations (55), (50) and (51), and the given mode shape g.

(f) Construct the mN equations (106) in the mN unknowns ', , using equations (105) and the influence
functions calculated in (d), with left hand sides from (e).

() Solve the equations (f) for T, ,.

(h) Calculate whatever generalised forces are required using equations (145) and (148), (or (149) and
(150) if lift and moment are wanted).

The lift distribution on any wing section may be calculated using equations (64), (62) and (56).

4. Calculated Examples.

The calculations given below are for wings which are performing rigid pitching and heaving,. In all
these examples the typical length d is taken to be the geometrical mean chord 7, so the frequency parameter
becomes ¥ = wé/U.

In the earlier examples the influence functions were calculated by a program for the (now obsolete)
Deuce computer. Subsequent calculations are to be done by a KDF 9 computer until this in turn is
replaced.

In order to define the quantities calculated it is assumed that, when the wing is oscillating in a mode
combining heaving and pitching, its surface is defined by the equation

z = —{zo+(x—xp) o} (152)

where ¢ z, is the amplitude of the heaving oscillation, and x, defines the axis of rotation. Then the lift
and pitching moment are expressed by

Lift = pV2S & {(l,+i9 1) 2o+ (I, +i7 1) o), (153)

and
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Pitching Moment = pV?2S¢ &' {(m, +ivm,) zo+(m,+i¥ my) oo}, (154)

which defines the eight derivatives I, I, I,, I, m,, m,, m, and m,. The pitching moment is taken about the
axis x = x,, and is positive if it tends to raise the leading edge.

These derivatives depend on the position of the pitching axis and vary with it according to the following
equations:

~

1Axo) = 1.(0)
li(xo) = 1:(0)
L{x0) = 1,(0)— X, L.(0)
Idx0) = 10)— X 1,(0)
s (155)
%(XO) = mz(0)+x0 lz(O)

my(xo) = my(0)+x0 1,(0)

myxo) = M {0)+xo(1,(0) —m.(0)) — x5 L,(0)

myxo) = my(0)+x, (1,(0) —m(0)) — x3 1(0)

In all examples the origin is taken to be at the leading edge of the centre section.

4.1. The Rectangular Wing of Aspect Ratio 4.
Table 1 gives the derivative coefficients as calculated with m(N) = 7(2) at a high subsonic Mach number,

M= %;\/5, for a range of frequency parameters. The values for ¥ — 0 were obtained by the theory of this
report for small ¥ (Section 3.6); the low frequency theory of Ref. 1 gives I, = 0-531, and —m, = 1-188
which differ negligibly from the values in Table 1. All the other 6 derivatives are necessarily the same
for both low-frequency theories.

Figs. 1 to 3 show the variation of [, I, —m,, and —m, with pitching axis position x,. For all derivatives
the variation with v is reasonably systematic, although the value of m is probably too small for high
absolute accuracy. Figs. 2 and 3 also show experimental values measured in the 36 in. by 14 in. wind
tunnel in Aerodynamics Division N.P.L.,* which has solid side walls and longitudinally slatted roof
and flow.

4.2. The Rectangular Wing of Aspect Ratio 2.

Table 2 gives values of the pitching and heaving derivatives for a range of frequency parameters. It
may be noted that changing m from 7 to 11 makes little difference and m = 7 is presumably high enough
for this planform in these modes of oscillation. Again the derivatives tabulated for ¥ — 0 were calculated
by the low frequency version of the present theory. The method of Ref. 1 gives for 70, I, = 1633,
and —m,; = 1-060, so that the difference is negligible.

Fig. 4 shows the variation of —m, with pitching axis position, and a comparison with experiments
from the N.P.L. 36 in. by 14 in. wind tunrel. The theory shows reasonably consistent variations with
v and agrees fairly well with experiment.

Figs. 5 and 6 show the variation of I, m, and m, with frequency parameter. This variation is reasonably
self consistent and also fits in well with the tangents to the curves at ¥ = 0 as predicted by the theory
of Ref. 9, in particular by the following formulae for small ¥:

*Unpublished communication from K. C. Wight.
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_A -
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4.3. Wings of Non-Rectangular Planform.

Table 3 gives the derivatives for a swept tapered wing of aspect ratio 2, for three frequencies at M = 0-781
(B = 5/8) and one frequency at M = 0927 (8 = 3/8). The planform is shown in Fig. 7. The curves in
Fig. 7 illustrate the theoretical behaviour of —m, as a function of the axis position x,. The curve for
v = 05 has been omitted to avoid confusion. The comparatively small effects of changes in ¥ and M
may be noted. The experimental points in Fig. 7 have been obtained either by taking mean values from
Ref. 10 or from Fig. 20 of Ref. 11. The theory appears to agree best with the experiments of Ref, 11.

Fig. 8 contains some curves of the derivatives for lift and pitching moment, for pitching about the axis
xo = 1. (It should be noted that the scales are larger than in the previous figures.) The curves for non-
zero frequency obtained by the present theory fit in well with the values of I, and m, for ¥ = 0, and fairly
well for [, and m, with the tangents for small ¥ obtained by using the method of Ref. ! and the formulae
of Ref. 9 (equations (156) and (157) of this Report).

Fig. 8 also shows curves obtained using the relations between the derivatives in backward flight and
forward flight which are predicted by the reverse flow theorem (Ref. 12). The differences between the
direct and reverse flow solution is fairly small.

Finally Table 4 contains the derivatives for two other wings whose planforms are given in Fig. 9. The
effect of increasing m is fairly small but larger for the delta wing possibly owing to the greater change in
leading edge angle at the centre section.

5. Concluding Remarks.

The results described in Section 4 indicate that, in common with most kernel function methods, that
of this report can be used to provide satisfactory solutions of the linearised problem of three-dimensional
theory for rigid modes of oscillation. It seems reasonable to suppose that this will also be true for modes
involving smooth distortion provided the mode shape is not so complicated that an excessive number
of solving points is required, and the frequency is not excessively large.

Possibly the most important decision which has to be made at the start of a calculation is the choice
of the number and position of solving points. Obviously a first consideration is that the mode shape
must be adequately defined by its values at the solving points. After this the only general method is to
carry out calculations with increasing numbers of integration points until some limiting solution is
reached. This is open to the objection that it requires lengthy computation which, even if practicable,
is eventually discarded, but there appears to be no alternative. Some guidance as to the minimum number
of stations across the span may be obtained from Ref. 13, which deals with the steady case.

Hinged control-surface derivatives, or forces caused by oscillations in other modes whose shape has
a discontinuity in shape, are not covered in this report. The usual methods of adapting lifting-surface
theory to this problem involve either the use of the reverse-flow theorem or the replacement of the dis-
continuous mode by a smooth one designed to give the same derivatives (Refs. 12, 14 and 15).

There have been many other applications of lifting-surface theory to oscillating wing derivatives,
each with its own method of choosing solving and integration points. All of them should be satisfactory,
given sufficiently accurate integration, provided M is low enough to be well within the range for which
equation (1) is applicable. The chief interest lies in the derivatives predicted for high subsonic M. A
comparison of their behaviour in this respect is given in Ref. 16, in which the present method appears
to give reasonably good results.
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LIST OF SYMBOLS

Aspect ratio

Wing chord aty =y’

Geometric mean chord (¢ = §/2s)

Root chord

Tip chord for wings with straight tips parallel to the flow

Representative length associated with the wing (in the examples in Section 4,
d=7)

Strength of doublet distribution (in Section 1)

Representative function in integration formula, equation (102) (in Section 3.2)
Function defined by equations (111) and (114)

Influence function (equations (66) and (67))

Parts of kernel function, equations (68) to (72)

Coefficient in correction for logarithmic term in spanwise integration, equations
(131) and (132)

Bessel functions (Ref. 7)

Bessel functions (Ref. 7)

Bessel functions (Ref. 7)

Kernel of integral equation (equation (27))

Coefficient of Y2 log Y in F, (equations (125) and (126))
Wing loading (equation (16))

Equation (56)

Derivative coefficients defined in equation (153)

Value at leading edge of wing

Modified Struve functions (equations (33) and (44))
Number of spanwise solving stations (equation (93))
Derivative coefficients defined by equation (154)

Mach number of undisturbed stream, 0 <M < 1
Integer denoting spanwise station (equation (93))
Number of chordwise solving points (equation (96))
Fluid pressure

Fluid pressure far upstream of the wing

Integer denoting chordwise position of solving point (equation (96))
Radial distance in polar co-ordinates (equation (6))

Distance modified for compressibility (equation (3))
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W (suffix)
w

X1V1.21

X1,

X 0,2

x,y

X0:Yo

X, (in Section 4)
Zo

X

Xo

Y

Y

LIST OF SYMBOLS—(continued)

Semi-span of wing

Arca of wing planform

Time

Value at the trailing edge of the wing
Perturbation velocity in the streamwise direction
Velocity of undisturbed flow

Perturbation velocity in the starboard direction
Perturbation velocity in the upward direction
Equation (55)

Wake

Weighting function for generalized force (equation (139))

Rectangular co-ordinates, x; increasing in the direction of undisturbed flow, y,
to starboard, z, upwards. (In the numerical examples of Section 4 the origin
is taken to be at the leading edge of the centre section.)

Variables of integration

xi/d, yi/d, z,/d
Non-dimensional co-ordinates
Xy/d, yi/d

(x=x)(y—y)

Non-dimensional x co-ordinate of the axis of pitching oscillation
Non-dimensional amplitude of heaving oscillation

Defined in equation (74)

Streamwise variable (equation (110))

Defined in equation (75)

Defined in equation (82)

Amplitude of oscillatory incidence of a pitching wing (equation (52))
(1-M?)?

Functions in lift distribution (equation (64))

[, (1)

Semi-major axis of ellipse dividing (x,y) plane (equation (8))
Increment in f (equation (8))

Angular polar co-ordinate (equation (6))

Angle of sweepback of a straight leading or trailing edge

v )
B d
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LIST OF SYMBOLS—(continued)

Frequency parameter v = wd/U

Frequency parameter ¥ = wé/U

Fluid density

Fluid density far upstream of the wing
Chordwise variable (equation (62))
Velocity potential of perturbation flow field
Velocity potential of an oscillating source
Acceleration potential (equation (14))
Chordwise lift distribution (equation (65))

Angular frequency of oscillation
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TABLE 1

Pitching and Heaving Derivatives for a Rectangular Wing, A = 4.
(Pitching Axis at Leading Edge, x, = 0)

\
T T N
|
M 0-866 0-866 0-866 0-866
7 -0 03 06 12
i
I, 0 0077 ‘ 0-180 0-209
I, 2479 2310 | 2098 1705
—m, 0 0041 | —0121 | —0250
—m, 0515 0546 0620 0581
I, 2479 2432 2413 | 2184
l, 0-547 0892 0960 | 0936
—m, 0515 0-544 0634 | 0602
—m, 1194 1217 1-086 0751
TABLE 2

Pitching and Heaving Derivatives for a Rectangular Wing, A = 2.
(Pitching Axis at Leading Edge, x, = 0)

m(N) 7(3) 7(3) 11(3) 7(3)
M 0-866 0-866 0-866 0-866
) -0 03 03 0-6
L 0 —0:043 —0-043 —0-167
l; 1-461 1-478 1-477 1-571
—m, 0 —0-052 —-0051 —-0212
—my 0-242 0-258 0-260 0-340
L 1-461 1-486 1-486 1-625
L, 1-634 1-692 1-691 1-699
—m, 0242 0-235 0-237 0-264
—my 1-063 1-101 1-102 1193
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TABLE 3

Pitching and Heaving Derivatives for a Sweptback Wing, A = 2.

Pitching axis through leading edge of centre section, x, = 0

(Ap=60° Ap = 26:57°% ¢, /s = 16160, ¢,/s = (0-3840)

m(N) 15(3) 15(3) 15(3) 15(3)
M 0-781 0-781 0-781 0-927

v 0-25 0-50 1-00 1-00
I —-0-017 —0-081 —0371 —0228
l; 1268 1260 1294 1-333
—m, —0-028 —-0125 —0:548 —0-388
— M 1-368 1-362 1413 1-532
L, 1-261 1211 1-020 1-315
I 2-351 2:374 2:428 2:272
—my, 1-344 1-246 0-879 1-333
Lo 2-959 2:994 3-084 3-031

TABLE 4

Pitching and Heaving Derivatives for a Tapered Wing and a Delta Wing.

(For planform details see Fig. 9)
Pitching axis through leading edge of centre section, x, = 0

! Wing | Tapered A = 433 Delta A = 15
m(N) 7(3) 11(3) 7(3) 1143)
M 09 - 09 09 09

v 0-190 0-190 0-15 0-15
I, 0-056 0056 |—0-010 | —0-009
l; 2-640 2:636 1-066 1058
—m, —0-012 —-0012 —-0017 —-0015
— 1-315 1:324 1273 1302
I, 2:742 2:737 1-058 1-050
l; 1-281 1278 2-461 2-405
—m, 1-332 1-341 1-255 1-285
— M 2-255 2-251 3-487 3453
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