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Summary. 
A computer programme has been written to solve the steady laminar two-dimensional boundary- 

layer equations for a perfect gas at given wall temperature, without wall suction. The programme solves 
the equations at a blunt stagnation point and then solves the equations downstream. Versions for 
Mercury and Atlas are available. The Atlas programme will permit use of linear or Sutherland viscosity 
laws. In an Appendix directions are given for setting up problems for solution ; the inviscid edge velocity 
and wall enthalpy, as functions of downstream arclength along the body, are at the programmer's 
disposal. It appears possible to obtain results correct to at least three significant figures, usually more 
not too near separation. 
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1. Introduction. 

It has long been known that incompressible boundary-layer theory is inadequate to deal with many 
viscous flow and heat-transfer problems involving high-speed aircraft. Accordingly, the compressible 
boundary layer has been the object of intensive study, beginning with Prandtll.  

Some specialisation has been almost unavoidable. Mathematically, even in the two-dimensional case 
one faces the tremendous task of solving two coupled non-linear partial differential equations, and 
some simplification of the basic problem is needed before a purely analytical solution may be attempted. 
The layer with zero pressure gradient (flat plate) has been studied by K~irm~n 2 and Chapman and 
Rubesin 3, who consider an arbitrary surface-temperature distribution. The case of zero heat transfer 
at the wall has been considered by Howarth 4 and Stewartson 5, who introduce transformations to reduce 
the momentum equation to its incompressible form. Similar solutions are found by Cohen and Reshotko 6 
and are tabulated for many values of pressure-gradient parameter and wall enthalpy. Other similar 
solutions for fluids with variable properties, and injection at the wail, have been found by Gross and 
Dewey 7, who present their results in graphical form. A general discussion of results is available 8. 



In many cases, including some of those mentioned above, the assumption of unit Prandtl number 
and linear viscosity-temperature variation simplifies the equations; Young 9 employs a generalised 
Pohlhausen method to study the effect of perturbations of Prandtl number and viscosity-temperature 
index o~ from unity (a possible law is : viscosity proportional to 09-th power of temperature). Matting ~° 
has solved the equations for axisymmetric flow by an expansion in powers of enthalpy difference between 
the wall and the free stream, with universal functions (including a set of constants depending on the 
fluid) as coefficients, the expansion being valid near the stagnation point. It is appropriate to remark 
here that Mangler 1 ~ has shown how to relate any axisymmetric boundary-layer problem to a correspond- 
ing two-dimensional one. 

This Report describes a computer programme to solve the equations in which no simplifications are 
made beyond two-dimensional steady flow of a perfect gas in equilibrium. The Prandtl number is 
assumed to be constant but not necessarily unity. This programme uses a finite-difference method for 
the values at points of a mesh of transverse and downstream lines, and 'marches' downstream from an 
initial profile at the stagnation point, utilising the parabolic nature of the equations. The method differs 
from that of Smith and Clutter 12, who divide the downstream range into intervals but integrate 
numerically across the layer, using trial values of skin friction and heat transfer and iterating on these 
until the outer boundary conditions are satisfied. Fliigge-Lotz and Blottner I a also use a mesh method, 
but they are satisfied with a single guess and trial calculation for the non-linear difference equations, 
and their solutions will not be particularly accurate, unless the mesh size is very small. They also work 
with physical variables instead of transforms, which introduces difficulties such as the need to add a 
certain number of transverse mesh points at downstream stages to allow for boundary-layer growth. 

Near separation the programme fails, and other methods will be needed to march past this point (see 
Catherall and Mangler 14 for an example of success in this field). Stewartson ~5 has shown that almost 
certainly a general laminar compressible boundary layer can develop a singularity at the separation 
point only if the heat transfer there is zero; it was not possible to tell whether this was the case in a trial 
run, as truncation errors due to finite mesh size were appearing in the results. As a reversed-flow zone 
appears after separation, so that in some measure the solution depends on downstream conditions as 
well as upstream, breakdown is not surprising. Moreover, any solutions constructed in some manner 
from upstream conditions alone will necessarily contain an element of indeterminacy. 

2. The Boundary-layer Equations. 

Consider the steady, two-dimensional flow of a perfect gas in equilibrium past a non-porous rigid 
body. Let x be the dimensionless distance measured along the body from some fixed point, for example 
the stagnation point in the case of a blunt body, and y* dimensionless distance measured normal to 
body surface at the point given by x. These distances are scaled with respect to some characteristic 
length l of the system. Further, let u and v* be dimensionless velocities in the x, y* directions which have 
been scaled with respect to the free stream velocity Uoo ; let p and # be similarly scaled density and 
viscosity, and finally scale the pressure p and enthalpy h by factors Po0 U 2 and U 2 respectively. The 
suffix 00 refers to free stream values. 

The Navier-Stokes equations written in these variables involve the Reynolds number R = Po~ l U~/#~. 
Solutions are sought, valid in the limit of infinite Reynolds number, and good for large values also. If 
we further write 

y* = R -~y,  v* = R -½v (1) 

1 and ignore terms 0(R -~, R-  . . . . .  ), the familiar boundary-layer equations are found: (~ is Prandtl 
number in equation (5)) 

Ox (pu)+ (pv) = o (2) 
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Ou Ou op +_~ / au \ 
pu Ox + pV-~y = Ox dy ~# (3) 

0 0 p  = - -  

0y (4) 

Oh Oh Op. t/Ou'~ 2 0 /'u ~h'~ 
(5) 

These are, respectively, the equation of continuity, the equations of momentum in x and y directions 
and the energy equation. In addition we require the equation of state 

h =  ~' P 
~,- 1 p (6) 

and the viscosity as a function of the thermodynamic variables. We shall work with two possible viscosity 
laws, both of the form 

one of which is Sutherland's formula 

= t,(h) (7) 

where 

(8) 

s . :  ,9, 

Cp being the specific heat at constant pressure, in suitable units so that the Sutherland constant Su is 
dimensionless and the same in all unit systems. (U~ comes in because h and h~ have been scaled by 
this factor.) 

Outside the boundary layer, where viscosity has little effect, Euler's equations hold, and also an 
inviscid energy equation. These lead to Bernoulli 's equation which, in our scaled variables, becomes 

h+½q 2 = const. = h~+½ = H,  (10) 

where q2 = u 2 + v,2 (=  1 at a great distance) and H,  is the stagnation enthalpy. We can write h~ in terms 
of the Mach number  M of the system, for if T denotes temperature 

h~ - CpT 7RT 1 
C~ = () , -  1) U 2 - (~ , -1 )M 2'  (11) 

We assume that the inviscid solution is known for the body. Then at the surface y* ~ O, v* ---, 0 and 
q = u = qe, say, where the suffix e will now refer to the outer edge of the boundary layer (y ~ oo). Then 
h e is also known by (10). 



The boundary conditions for the system (2) through (5) are now : 

At u = v = 0 ,  h=hB(x)  say 

As y--*oo: u ~ % ,  h--*h~ 

(12) 

(It can be shown that (u-qe) and (h-he) decay to zero exponentially as y ~ oo at the stagnation 
point, and this behaviour may be expected elsewhere. Goldstein 16 gives some arguments, both mathe- 
matical and physical, on this point.) 

From (2), there exists a stream function ~ such that 

_ oO pu 00 pv = . (13) 
= Oy' 8x 

We also put 

S h+½u2 = - -  1. (14) 
H, 

The system becomes 

OX Ox u = peqe-d--ff-I--~y -~y (15) 

(00 0 00 -~y) S = d I ~ OS 1 [" 1"~ Ou -] 
-~y O x O x ~y ~ y y + ~ # ~ l - ~ J U ~ y y J  (16) 

while (4) and (6) give 

h _ Pe at fixed x. (17) 
he p 

We now apply the Howarth-Dorodnitsyn transformation with an x-dependent coefficient to stretch the 
y co-ordinate so that the boundary layer lies approximately within the same interval for all x (familiar 
technique), while keeping the computation stage in view by choosing a field variable which decays to 
zero at the edge of the layer, an extension of the method of Smith and Clutter 12. This means that more 
significant figures may be retained to give the deviation from the asymptotic form in this outer region. 
The equations are simplified also by writing (7) as 

h he 
#s Hs = C ~  (from (17)) (18) 

Suffixes s refer to free stream stagnation values. 
The transformations are 

~, = O~spsx qe)~ (¢+n)  (19) 

Y 

= p (y ' )dy '  (20) 

0 



where A(x) is a certain function of x. From (19) and (20), (13) gives 

u = qe (q~7+ 1). (21) 

Subscripts t/and x will denote differentiation. Since, from (12), u --, q,. as ~/~ 0% the boundary condition 
on q5 is first 

% - - , 0  as q ~ o o  

or q~ ~ func (x). We need the function of x to be zero, as explained above, and this may be achieved if 
~/in (19) is subject to a change of origin dependent on x, given by (20). Thus A(x) is determined (and is 
part of the problem) by the boundary condition 

From (10), (12) and (14), we have also 

q~--*0 as r / ~ o o .  (22) 

S - - * 0  as r / - - , o e .  (23) 

At the wall, given from (20) by r/ = - A ( x ) ,  (12) and (19) lead to 

q~7 = - 1 (24) 

4~ = - q = A(x) (25) 

and 

S = SB(x), say (26) 

where 

hB(x) 
Sn(x) = ~ -  1. 

H~ 

Equations (15) and (16) now become 

he Pe 
Hs P~ Orl 

(GriP77)= -½(1-I-X ~x)(@+rl)~nq4Hs x dqe( ) 
q--£e he qe d x ~bn2+2~b"-S + 

+ x[4,x7 (~. + 1)-4,x 4'77] (27) 

{ [ ]} ( he Pe ~ __C __(') S + ( a -  I)~H-~(47 +2q~. ) q e  2 = -½ 1 +x_ dqe" ~ (O+q) ST+ 
H~ p~ Or I a ?~q qe dx ] 

+ x[Sx (4).+ 1)-4,~ s.] . (28) 

C is a function orS and 4~. For the (frequently assumed) linear viscosity-temperature law, p is proportional 
to h, and from (18) 

C = 1. (29) 
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On the other hand, if Sutherland's law (8) is invoked, with the help of (10), (14) and (21), (18) gives 

S+ 1 - ,+  1) 2 B' 

C =  
[S+B'-2q--~ (q~ + 1)21 (30) 

where 

B'= I+S./Hs. (31) 

Equations (22) through (28) form a non-linear system of equations for ~b and S with two-point boundary 
conditions. The range of r / ( -  A(x) to ~ )  is also a variable of the problem. 

We shall concern ourselves only with the special case of constant Prandtl number a, and with flow 
beginning at a stagnation point. Thus wedge flows cannot be treated with the parameters adopted. 
Adaptation to axisymmetric flow would be possible with suitably modified equations and computer 
programme-see Smith and Clutter t2. 

3. Linearisation of the Equations for Iterative Solution. 
The equations (27) and (28), with (30) if required, contain four parameters which all depend on the 

distribution of edge velocity qe(x) when the stagnation enthalpy H~ (or the Mach number, by (10) and 
(11)) is known. The parameters are: 

x d% 
E t - -  

qe dx 

F' he Pe (he'~ ~'/cr-l) 
= 

G, _ 
Hs x dqe _ Hs E, 
he qe dx he 

H' q2 
Hs 

(from the equation of state) 

(32) 

We remark that, by (10) 

h__&e = 1-½H' (33) 
H~ 

while 

x dH' 
E' = - -  - -  (34) 

2H' dx" 

Hence the ratio q2/H~ is also sufficient. 
Equations (27) and (28) are both parabolic, (27) in ~b, and (28) in S; for example, (28) contains Sx and 

S~,. Consequently, when an initial profile has been obtained at a given x-station, to act as an initial 



condition for the parabolic equations, it is possible to take a series of stations separated by small step- 
length b, to replace the x-derivatives by central differences and to 'march' downstream from the initial 
station. This is the technique used by Smith and Clutter 12 and by Catherall and Mangler 14. For a variety 
of reasons-one  being the two-point boundary condi t ions- i t  was decided not to attempt the solution 
of the resulting ordinary differential equations, using the computer 's Runge-Kutta integration sub- 
routines, as done by Smith and Clutter, but instead to divide the transverse (r/) range into small steps 
and to replace the r/derivatives by differences also, as done by Catherall and Mangler. This involves 
truncating the boundary layer at a point where the field variables (which are decaying, probably 
exponentially, near the edge) are sufficiently small, r /=  Y say ; Y is a constant which experience shows 
can be taken as 5 or 6. 

The heart of the method of solution at each step downstream will now be as follows : in the equation 
(28) for S, say, replace all x-derivatives by central differences, for instance 

aS 1 
~X -~ b ( S  . . . .  ration - S las t  station) 

and other quantities, including differenced ~7-derivatives, by weighted averages, for example 

4, ~ 0 4' . . . .  tattoo + ( 1  - - 0 )  4,1astst.tion (34a) 

where 0 is a constant, the 'weight parameter', which lies between 0 and 1. The reason is that the repre- 
sentation for the x-derivative is most accurate at an interior point of the downstream interval, by the 
first mean-value theorem, and we are really atteinpting to solve the equations at some such interval 
point while using the end-station values as unknowns. Next, suppose that a guess has been made at the 
values 4,~ and SN of 4, and S at the interval points labelled 1,2 . . . . .  , N . . . . .  of the transverse (r/) co-ordinate 
line which is the new x-station. Replace some of the unknown field quantities by their guessed values so 
as to leave a system of linear equations in the remaining unknowns SN; for example, the term S~ 4,~ 
becomes 

1 guess (SN. unk . . . .  -- SN" station) [O(4,rl)N; new station @ (1 - -  0 )  (4,rl)N; last station] , new station , last 

Since the differential equation (28) is of second order in ~/, the difference equations obtained from centrally 
differencing all ~/-derivatives at the N-th interval point will contain SN, SN+ 1 and SN-x, so that the 
linear equations possess a tridiagonal matrix and can be solved without much computer labour (there 
is no need for full scale matrix inversion), as explained in Appendix A. The resulting values are used as 
new guesses in the other equation and the cycle continues until the values converge by some criterion 
to be determined. This is the method used by Fliigge-Lotz and Blottner t~, but they are content with 
the values obtained by one iteration only. Also, they take either a fully explicit scheme (0 = 0) or a fully 
implicit one (0 = 1). 

The equation (28) is almost linear in S, and it is fairly clear what must be done here. However, equation 
(27), which should be used to solve for 4,, is non-linear in this variable. There are many ways to linearise 
this equation, but the method used must not decrease the order of the differential equation, nor may it 
make application of the boundary conditions impossible; also, the linearised differential equation 
should have the same character as the asymptotic form of the equation for large i,/. It would be desirable 
to use a scheme yielding quadratic convergence, as in the Newtonian successive approximation to the 
zero of a function ; however, this would give a form of (27) containing 4, and all its derivatives up to 
4,~,~ in the unknown part, not replaced by iteration values, and the matrix of the system of equations 
would have five diagonals instead of three. So it is better to replace 4, by its last guessed value wherever 
it occurs, giving a second-order equation for 4,, with an associated tridiagonal matrix, as before. 4, can 
then be found by integration from the outer boundary. This sacrifices quadratic convergence, but the 
other criteria can be satisfied; it turns out that the right method effectively solves for u in the original 



equations (3) and (5), when the corresponding terms are compared; further, just as in (5) the operator 
(pu O/Ox + pv O/Oy) is applied to the unknown h, so in (3) and the new version of (27) it is applied to the 
unknown u with the operator variables u and v replaced by their values guessed by iteration. 

We use bracketed superscripts to denote the number of iterations that have been done to obtain 
the superscripted variables. Suppose we are performing the pth iteration; then q ~ - ~ ,  S ~ -  ~) are known 
and (27) is linearised to 

x [(¢~P -~ )+ 1) Gt: I -  ¢¢x p -~ ) G~ p)] + G' [(~b~ p -~ )+ 1) G¢')+ ¢ ~ - '  ) -  S ~' - ~)] - ~ ( i  + E')(¢~"- '  )+ ~/) G~ p) 

= v' L [c,,-" G:] Oq 
(35) 

where 

G~P) = q~P). (36) 

The reader is reminded that G' is a constant given by (32). 
Ctp-1) is calculated from CtP-1) and S ~p- 1). When q~cp) has been found from (35) and (36), it is used to 

determine S t~) from the similarly linearised equation (28): 

1 F' 0 {Ctp,)[S~p)+(a_l)H, tp~ tp) ¢. ,  (~b, + 1)]} (37) 

Ccp') is calculated from ~b ~1 and Scp- 1). The equation (35) is now solved again using the new values, and 
the cycle continues until convergence is attained. 

"The problem of coping with the variable range of ~/, -A(x)  ~< q ~< Y, with A(x) an unknown of the 
problem, is best overcome by a linear transformation 

n + 6(x) 1 
= Y + A(x) = D(x) (~l+ D -  Y) (38) 

where 

D = Y + A ,  

so that 0 ~ < ~ <  1. 

We have 

0 a D~ _ 0 o  ~ - ~ x + ~ (  1 (39) 

0 1 0 
- -  ~ - -  - -  ( 4 0 )  
Oil D O~ 

It is convenient to scale q~ also and to write 

¢ = D q ~  

9 

(41) 



so that 

1 
(42) 

(35) now becomes, on rearranging: 

Y F' C~_ 1) ] ~-(-~-~o(,-")  } -½(I+E') +B- + 

+ x  (q)(p-; l)+ 1) G ~ ) + G  ' [((p~P- 1)+ 1) G(P)+q)~ p- 1)_ S(p - x)] 

f t  
= _ ~  C o, - ~) ,,z.(p) • -,~ • (43) 

Since D must also be brought into the iteration scheme, we understand that D m e a n s  O (p- 1). Equation 
(37) becomes: 

S~P' [x{-~(l-#-q~(P))-q~ '} -½(l-l-E')(qo(p)+~-l+~)_l F'C(p')l 
a D  2 : J 

+ x (¢p~P' + 1) S~ ) + 1  (1 - a )  H' r(p') .~(p)(qo~p) + 1) 

1 F' 
(44) 

From (24), (38) and (41), the boundary conditions on q~ in (43) are" 

( p ~ = G =  - 1  } a t ( = 0  

q~ 1 -  Y/D(x)  

and since the rate of decay of ~o is exponential, 

(45) 

q ) = 0 ,  G = 0  a t e =  1.  (46) 

The boundary conditions on S in (44) are as before: 

S = SB(x) 

S = 0  

3 (¢ = o) [ 

f 
(47) 

(~ 1) 

The four boundary conditions in (45) and (46) on a third-order equation imply that D(x) can indeed 
be calculated as well as (p. In fact, this is made the basis of the convergence criterion. A set of guesses 
is fed into (44) in difference form, from which new SN are determined with the help of (47). These SN and 
the last set of<oN and D are fed into (43), and the boundary conditions (45), (46) on G are used to determine 
new GN. The other boundary condition of (46) is then used to integrate G inwards by the trapezoidal 

lO 



rule to obtain (PN" The second boundary condition of (45) now gives D (p) in terms of the value ~Po at the 
wall : 

Y 
D ¢p) = - -  (48) 

1 -q~0" 

It is found that comparison of D tp~ with the value Dtp- 1) fed in is a sufficient test of convergence, and 
that convergence will occur almost everywhere upstream of separation, that is, the iteration scheme is 
stable. 

The details of the difference scheme (due in principle to Crank and Nicolson w) and solution of 
equations (due to Leigh 18) are given in Appendix A. 

At each step downstream, it is useful to have some information printed out by the programme. In 
earlier versions, tables oft/, qS, U = ¢ ' +  1 and S were printed at intervals of 0.1 in x ; later versions printed 
the parameters, displacement thickness 

\ P~ qw 
0 

(49) 

and skin friction (drag per unit length) 

FD = #B • (50) 
B 

These expressions are transformed to the working variables, and comments made upon computation 
processes, in Appendix B. 

Obviously the programme can be modified to give profiles if desired. 

4. Reduction of Discretization Error. 

The replacement of derivatives with respect to ~ by differences is an approximation because of thc 
finite transverse mesh size a. We can show that 

~,-~-] N = ~ (~0N+ ~ -- 2~°N + e N -  ~) + 0(a2) + O(a'*) (51) 

&p) 1 
- ~  N = 2a (~PN+ I--ePN-1)+O(a2)+O(a4)" (52) 

These errors are carried through the entire iteration and marching processes. Hence the final answers 
will have errors 0(a 2) and 0(a 4) ; even when the successive values ofA~ ) converge to within 10- s, the value 
converged upon may differ from the true value in the fourth or even third decimal place. The difference 
is the discretization error. Some error is due also to finite b, caused by x-derivatives and weighted 
averaging, but it is the error due to a with which we are concerned here. 

In order to eliminate the error of order a 2, we use Richardson extrapolation. Two calculations are 
performed, one with a at its smallest possible value (for the Mercur3 programme) and one with a exactly 
twice this value. Thus the number s of steps used for the smallest a must be even; on Mercury this 
requires s = 94, since s ~< 95 (see Appendix A). Let us consider A. Denote the value of A for transverse 
step length a by aA; °A is then the correct value in the limit a ~ 0, and we have (writing 3: for second 
derivative of A with respect to transverse step length) 

11 



o a2"" 
"A = A+~-!A+O(a '~) 

a z 
z~ A = ° A + 4 ~ .  )~+O(a4) 

(53) 

E l i m i n a t i n g  a 2 ~ from (53), we have 

°A = ½ (4 ~A- 2aA) q- O(a4). (54) 

It is now possible to get five decimal places of accuracy for A. 
Similar methods can be applied for ~oM.~v and SM, N. As only the mesh points with even values of N 

are used for the 2a calculation, in order to get the values at odd mesh points an interpolation formula 
is used based on the 2aq~M, s ; the formula is accurate to 0(a4). Richardson extrapolation is then performed 
on all these values and they are used as the values at the last station, when calculating ~0~t + 1,u, etc. This 
method has a suspected drawback-i t  may be responsible for some oscillation which increases as we 
go downstream, and it might be better to do two completely separate 'runs' with different values of a, 
and extrapolate afterwards as an isolated routine. However, the method used has the advantage of 
conv~enience, as it requires only two sets of information besides the ones basically needed, as discussed 
in Appendix A, while the other method would require four extra sets. Moreover, on Mercury it is 
frequently convenient to interrupt a run for resumption later, and half as much data again would have 
to be extracted for use on resumption in the other method (see Appendix C). 

The values of A* and q~ (convenient notation for (~b,,)8), which are measures of the displacement 
thickness and skin friction respectively, are calculated as part of the solution for steplength a and for 
steplength 2a separately, and values for (a) stored along with aA, "tpM,N and aSM, N while the values for 
(2a) are being computed. The reason for this is that an integration has to be done in computing A* (see 
Appendix B), and this integration is liable itself to involve errors of order a 2 which are best absorbed 
into the Richardson extrapolation. (The original programme performed the integration on the final 
extrapolated values, and the results were observed to be definitely poorer.) 

As the values of (~O~)M, u = GM. N are correct only to order a 2, within the iteration cycle, the value of 
4~'~ = (d&~)M,o D-  1 calculated from (B12) of Appendix B will have an error of order a, and the formula 

o ~  = 2"q~]~- 2"~b~+O(a3) (55)  

had to be used instead of (54) in calculating the values reported in the next Section. After these tests 
reported there, another formula for ~b~ was developed, in the alternative forms (B16) and (B24). As 
both these are correct to 0(a2), ordinary Richardson extrapolation was again employed. 

5. The Initial Profile and Departure therefrom. 

The program requires an initial profile from which to march, and can quite easily be made to calculate 
one. The boundary layer always starts at x = 0, at which point all the terms with x-derivatives in (27) 
and (28) disappear, and so also in (43) and (44), so that these equations are ordinary differential equations 
in r/(or () for ¢p and S, with two-point boundary conditions, and the same iteration process is used to 
solve them. In the weighted averaging process defined by (34a) reference to quantities at the 'last station' 
is suppressed by fixing 0 = 1 ; thus the averaging leaves all quantities unchanged but the same program 
can be used. 

All the examples done in the next section are blunt stagnation point flows (blunt flows for short), 
near which qe is proportional to x so that: 

E ' = F ' = G ' = I ,  H ' = O  
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But the program will also cope with wedge flows, and flat plate flows (Blasius flows), for which qe = 1, 
E' = F' = 0 and the momentum equation is uncoupled from the energy equation. 

When an initial profile has been calculated at x = 0, some care is needed with the first few steps 
downstream. At the first step x = b the equations do not depend on b explicitly, but only through the 
four parameters E ' . . .  H'  ; thus for blunt flows when the change in these is of order b 2, the solution at 
x = b should not vary much with b, and we expect to find for instance dA*/dx = 0 at x = 0; but for 
wedge flows and decelerating flows the change in E ' . . .  H' is of order b, and the solution is then found 
to be rather sensitive to the value of 0. The theoretical optimum value is 0 = 0-5, but in practice this 
causes the values of A* and ~b~ at successive values o fx  to oscillate, even for blunt flows. This can usually 
be cured by choosing a larger value of 0; the best value to take depends on the problem, but 0.7 is a 
good average first guess. In some cases adjustment of 0 may still fail to produce acceptable answers; 
the next line of attack is to decrease b. This has worked for a decelerating flow qe = 1 - x ,  at high Mach 
number M t> 2. 

Far  downstream, if 0 is returned to the 'optimum' 0.5, oscillation usually appears again. This is contrary 
to normal experience, whereby errors tend to die out downstream; it could well be due to the Richardson 
extrapolation which attempts to return the solution of the difference equations to that of the differential 
equations at each step but thereby unbalances the smooth running of the difference scheme. However, 
this oscillation does not appear (and indeed, can be severely inhibited) when 0 is kept a little higher 
than 0.5, say 0.56; the program is thus arranged to let 0 tend to 0.56 as x increases. 

6. Examples and Comparisons. 
In order to test the programme, three special cases were examined and compared with results obtained 

elsewhere. These were, the incompressible boundary layer on a parabola (Catherall and Mangler14); 
the similar solutions of Cohen and Reshotko6'19; finally, some profiles computed at the stagnation 
point by a different method, using numerical (Runge-Kutta) integration, in which the linear law and 
the Sutherland law could be employed as desired. 

Finally, these two laws were compared in their effect on displacement thickness and skin-friction 
parameters at the stagnation point, and a new example was run, of subsonic flow past a suitable cooled 
cylinder, such that the inviscid velocity distribution round the cylinder is a simple funct ion-the shape 
of the cylinder is not needed in the calculation, and is not considered. 

The programme was modified slightly to allow for an adiabatic wall (zero heat transfer instead of 
prescribed wall enthalpy), with tr :# 1, but the enthalpy profiles grew from zero only very slowly with 
increasing x, and it is not considered worth while to present the results. 

6.1. Incompressible Solution for the Parabola. 
Inspection of the equations of motion (27), (28) and the viscosity law (18) shows that reduction to the 

incompressible case is obtained by putting 

he 
C = 1 " - - =  1 ; a  = 1;SB(x) 0. 

' n s  
(56) 

From (32) and (33) we have 

H ' = 0 ; F ' =  I ; G ' = E ' .  (57) 

In terms of the variables used by Catherall and Mangler t*, writing q = qe: 

j = ¢2/q2, dx = ~d~/q (58) 

and for the parabola 

J = 1 + 42. (59) 
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Eliminating J and { from (58) and (59), 

dx - dq 
(1 _qZ)Z 

hence 

I -  1 + q , 1  q 
x = ~ in T---2± ~ (60) 

l _ q 2 "  1 - - , /  

This makes x --, 0 as q ~ 0, and x --+ m as q --+ 1 - .  q is calculated at the required x-station by solving 
(60) numerically, and then substituted into the formula 

E , X  dq 
q dx - x(1 _q2)Z/q (x > 0). (61) 

As there is no thermal boundary layer, Y was put equal to 4. At this point in the known solution, 
~b was 5.20x 10 -7 (with x = 0). 

Fig. 1 shows the agreement between the methods of calculating q~(r/) at the stagnation point x = 0; 
values found by both methods lie on the same smooth curve. As ~b decays exponentially to zero at the 
outer edge, log10 q5 was used to demonstrate that the significant figures agree throughout the range; 
a plot of ~b would not have shown this so well. (Similar considerations were applied to Figs. 3 to 6 later.) 

Comparison of downstream results in detail is complicated and tedious, and it was judged that 
comparison of a few ~l.~es of A would form a sufficient test. The table below shows the agreement in 
A(x) up to x = 0.2. The value Ac~ due to Catherall and Mangler is determined from the series expansion 
for small x : 

ZXcM(X) = 0"64790 + (0-29190)X 2 - -  (0"21528)x 4 + (0"20358)x 6 - . . . . . .  (62) 

x 0.0 0"025 0-05 0"075 0.10 0.20 

A 0.64790 0.64793 0"64867 0"64940 6-65077 0.65922 

AcM 0.64790 0"64808 0'64863 0"64953 0"65080 0.65925 

The agreement at the stagnation point x = 0 is good;  a small error is introduced at the first down- 
stream step, and this is reduced in the next step but is persistent thereafter. Catherall and Mangler 
encountered this difficulty also, and discussed its cause, which is that the terms in the difference equations 
at the first step do not involve b, so that the values found at the first step will be about the same for all b. 
They developed a G6rtler series to leave the stagnation point ; this method is not available to us, at least 
without considerable labour, and in the next sub-section we shall see that the error can be reduced in 
some cases by a change in 0 (the weight parameter;  see Section 3). 

The programme is not suitable for the incompressible case for two reasons: it uses two unnecessary 
sets of storage locations (enthaipy), and on Mercury it takes about 9 seconds per iteration in solving 
for 94 points across the boundary layer, whereas the Catherall and Mangler programme requires 7½ 
seconds (a new programme developed by Catherall 2° as a simplification of the present one requires 
only 2 seconds per iteration). 
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6.2. The Similar Solutions of Cohen and Reshotko. 

The  variables used by Cohen  and Reshotko  6 are:  

dX = a~ p~ dx 
as Ps 

a~ p dy dY = as P~ 

(63) 

where a~, a s are sound speeds at the boundary- layer  edge and at free-stream stagnat ion respectively 
the s t ream function used is defined by 

wr=PU, ~Px= -PV (64) 
Po Po 

and 'velocities '  are defined by 

U = qJr ,  .V = - ~Px (65) 

so tha t  

U = as u .  (66) 
ae 

The  linear viscosity law is assumed. 
The similar solution is sought in the form 

q" = f (q*)  k p~(m+ 1) J 
(67) 

where  

q*= ( m ; 1  psUe~ "~ 
(68) 

so tha t  

U u 
. . . .  f ' ( t /*) ,  (69) 
Ue qe 

and the free s t ream 'veloci ty '  is taken as 

U e = C* X m . (70) 

The  enthalpy function S is defined the same way, as in (14), and tr is taken to be 1. Then the equat ions 
solved by  Cohen  and Resho tko  are:  

" N  

f "  ' + i f "  = f l ( f ' 2 - 1 - S )  L 
(71) 

J S"+fS'  = 0 
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with boundary  condit ions 

Here 

f (0)  = f ' (0)  = 0 ,  S(0) = S~ ; lim f ' =  1, lim S = 0 .  (72) 
t/* - - -~  ~/* ---,~x~ 

2m 
18 = m +  1 (73) 

(The dashes here denote differentiation o f f  and S with respect to q.) Now, if the free stream flow is 
adiabatic, for our  perfect gas 

P~P~= h(_~)r/~-t = H~/~r_l) ' --=psPe H1/{r-t}., --=a~as H ~ (74) 

h~ 
if for convenience we define H = ~ ; then by (63) 

3~-1 
dX H2r=~ . (75) 
dx 

Equat ions  (66), (70) and (74) give 

qe = H½ xm C* 

or, writing C* = (2c Hs) 

½H'= q__~_z = c .  H X TM (76) 
2H s " . 

Moreover ,  by (10) or  (33) 

H+½H'= 1 

and eliminating H '  with (76) gives 

1 
H = 1 + cX 2-------~" (77) 

The constants ?, c, m are still at our  disposal in the similar solution. The value 7 = 1.4 for air is par- 
ticularly convenient,  for in (75) it makes ( 3 7 - 1 ) / 2 ( 7 - 1 )  = 4; c can be set equal to 1, and in flow from a 
stagnation point x = 0 (X = 0) we must have qe propor t ional  to x, so that by (66), (70), (74), (75) and 
(77) (which give U propor t ional  to qe, and X propor t ional  to x, near x = 0) m = 1. Then equations 
(75) and (77) give 

.X 

x = I ( I + X 2 )  4 d X  1 
0 
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o r  

_ 2 6  , , 4  6 1 8 
xX = l + ~ X  + ~ X  + f i X  + ~ X  (78) 

Given x > 0, there is an X > 0 which satisfies (78). This X is found by the computer, and is then substituted 
into (77); then the quantities in (33) are given by 

H' = 2(I - H )  

F' = H 3'5 

E' = X H 5  
X 

(79) 

Gt x 4 = ~ H  

From (20) and (68), with (63) and (74), 

t/* = ( m f l  ae X ) = H ~ ( x / ~  
~/+ A(x) ao (80) 

This quantity was also calculated and printed at each step downstream. We see that at the stagnation 
point there is no difference between (t/+ A) and t/*, but that downstream of stagnation the ratio changes 
(t/* increases relative to t/+ A). It is a constant at a given x station, so that the boundary-layer variable 
is uniformly stretched ; this is helpful in comparing the tables. 

Cohen and Reshotko give a table for the case m = 1, with SB = 1. This boundary condition was used 
accordingly; Y = 5 seemed to be the best value to take to include most of the thermal and velocity 
boundary layer, and for the Mercury programme 94 transverse steps were used. The easiest variables 
to compare were the velocity u/qe = f '  = ~b, + 1, and the enthalpy function S. For the velocity, Fig. 2 
shows that the Cohen and Reshotko points and those obtained by the present method lie on the same 
curve to within three decimal places; interpolation reveals differences in the fourth place. (For x = 0.2 
the calculated (q*, f ' )  points again lie on the curve (and nearly coincide with the calculated points for 
x = 0), which agrees with the theoretical similarity.) Current programme variables f '  and S are inter- 
polated to t/* = 0(0"2)4 and are displayed, together with the corresponding Cohen and Reshotko values, 
in Table 1 ; the results again agree to three decimal places, which is as much as could be expected since 
Cohen and Reshotko give only four places, and moreover we have reason to believe that their tables 
are only accurate to three places in any case, as we shall now show. 

The value of A in terms oft/* and f a t  x = 0 is 
oO oo 

f/1  
oO 

= I ( 1 - f ' ) d q *  = lim 
• t/* ~ c o  (q* - f ) "  

0 

(81) 

From Cohen and Reshotko's tables, A = 0.4254. On the other hand, the current programme (with 
Richardson extrapolation) applied for 70 steps, 94 steps, and (later, on an Atlas run) with 150 steps, 
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gives A = 0.42500 to five figures; increasing Y to 6 makes no difference in the fifth place, although 
decreasing it to 4 does make a difference here (too much boundary layer cut off); moreover, as we shall 
see later, the value of a related parameter  does not change downstream to this order, and finally, the 
accuracy obtained (nearly six decimal places) in the Catherall and Mangler comparison suggests that 
A can be calculated to five places in general, certainly at the stagnation point. It is concluded that the 
present results are probably more accurate than Cohen and Reshotko's tables. 

We turn to the related parameter mentioned above. Return to equation (81) for general x. At x = 0, 
q + A = r/* ; downstream, equation (80) is invoked and then 

dr/ - 1 
A(x) = ( 1 - f ' ) ~ d t / *  = A(O) ~t 

so that we may define AcR by 

A c R = H  ~ ~ A(x)=A(O).  (82) 

Consequently the correct value of A(x) at any x is determined in principle. 
A programme was written for Atlas (similar to Mercury, but larger and faster) and provision was 

made for the value of AcR to be calculated from A(x) and the parameter  (80) at each step. 
The values should have been all equal to A(0), and the difference provided an excellent check on the 

accuracy. As mentioned earlier, 150 transverse steps were used, and the downstream step length was 
taken as b = 0.005, 0-01, or 0.02. The accuracy demanded of the iterations was 10-6. 

At first the value of the weight parameter 0 = 0-5 was used, and in all runs oscillation in Acg started 
at the first step downstream. The oscillation tended to be smallest for b = 0.01, so that decreasing the 
step length b was not the best way to get more accuracy. When b = 0.01, the oscillation was about 
+ 25 × 10- 6 up to x = 0.2, and increased steadily thereafter. Attempts were made to relate this oscillation 
to errors due to finite a and b, with the aid of formulae like the Richardson extrapolation rule, with a 
general power, but they all failed to give a satisfactory answer, and it was concluded that the oscillation 
was not only not due to finite steplengths, but was considerably larger than errors due to such step- 
lengths. Two possible causes are, the first step from the stagnation point, which introduces difficulties 
noted in Sub-section 5.1, and the actual manner in which the Richardson extrapolation is used; in this 
programme the values from the extrapolation are used as the initial values (at the last station) for the 
next step, whereas it may be better to keep two runs going together, one for twice the transverse step 
length a of the other, the calculations being performed completely independently, and Richardson 
extrapolation being done outside the main programme as an incidental. Catherall 2° has done such a 
'parallel run'  from stagnation point for incompressible flow past a parabola, and finds no oscillation. 
However, as remarked in Section 4, the present method has the advantage of convenience. 

Moreover, the method can be greatly improved by manipulating the parameter  0. As 0 was increased 
from 0'5 the oscillation at the stagnation point became less, and eventually at the value 0 = 0.75 it 
disappeared altogether (s = 150, b = 0'01). Table 2 shows how the value of Acg now tends to rise very 
slightly and then to fall away again; as the run was continued, AcR continued to decrease, below its 
correct values so that monotonic instability set in (not shown). The values of AcR found for 0 = 0.5 are 
given for comparison. 

It now seems plausible that the monotonic instability far downstream is due to discretization errors 
piling up for 0 q= 0.5. (Theoretically the error in the equations through replacing x-derivatives by central 
differences and other quantities by averages is 0(b 2) for 0 = 0"5 and 0(b) for 0:4= 0"5). The instability can 
be checked by gradually returning 0 to its theoretical optimum, 0'5; no comparisons have been made 
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to see how this should be done, but the programme has been written to replace 0 by its average with 
0.5, viz 

0L + 1 = 0"5(0r. + 0'5) (83) 

at every station x = 0.1 L, where L is an integer. 
The optimum value 0o to start with is a function of the problem; for 0o = 0.5 or perhaps 0"55, the 

similar solution with SB = - 1  (instead of SB = 1) yields hardly any oscillation and increasing 0 o to 
0.75 produces monotonic instability immediately; for Sn = 0, 0o = 0.6 is a good value, and for SB = 2, 
0o = 0'8 is near the best. In this particular problem, determination of Oo(Sn) is easy because the para- 
meter Aca is available as a check; however, in a general problem one should have A printed out at each 
step to six decimal places, using 10- 6 as a convergence limit, and spotlight oscillation by taking differences. 
In good cases, even some way downstream fourth differences may be required. 0o is then varied suitably 
until the oscillation is minimised. 0o must not be set too high at first, because then monotonic instability 
will set in at once, and this cannot be detected by differencing. Thus the smallest value of 0o which just 
eliminates oscillation is the one to use. 

One last comparison with these similar solutions was made. Cohen and Reshotko 19 give a table of 
displacement thickness A* against wall enthalpy SB; the current programme was accordingly fed with 
these values of SB; and the results are displayed, along with Cohen and Reshotko values, in Table 3. 

The negative displacement thickness for SB = - 1  (zero wall enthalpy and temperature) indicate 
that the relative density near the wall is very high. 

On the whole the values of A* differ in the third decimal place, except for the incompressible case; 
as A* is calculated from A and an integral over quantities which differ in the fourth place, this is not 
surprising. We again have reason to believe that our values are better. 

It was noted that the first five points nearly lie on a cubic curve; a least squares fit gave 

A* = 0.64785 + (0"76356)SB - (0.03444)S 2 + (0.00751)Sn a . (84) 

From (84) A* = 2.097 at Sn = 2, which differs by 0.02 from the table value; within the range ISn[ <~ 1, 
the cubic curve will be accurate to 4 decimal places. The zero of A* occurs at Sn = -0.8135. 

For  the similar solution Sn = 1, Cohen and Reshotko give the skin friction f '  = q~ as 1.7368, and 
one Atlas run gave 1.73668, using (B16). (The expression (B12) gave 1-73472, which reveals its inadequacy.) 
The difference is of the order as that found for A and A*. 

6.3. Another Method of Obtaining Stagnation Point Profiles. 

At the stagnation point x = 0, the differential equations become ordinary (in fact, the leading terms 
in a G6rtler expansion in powers of x are given by these ordinary differential equations in t/). The 
equations are: 

[Co ~ ] ' +  ,, ,2 (q~o+n)~o-4~o - 2 ~ + S o  = 0 (85) 

[co  s~]' + cr(q~o + 7) s~, = o. (86) 

These equations are obtained from (27) and (28) with the stagnation point values E' = F' = G' = 1, 
H '  = 0. Here ~b o = q~(0,t/), So = S(0#I), and dashes denote differentiation with respect to 7. Also Co 
= C(So), by (30). The boundary conditions for (85) and (86) are: 

¢ o ( - A o )  = Ao, ¢ ~ ( - A o )  = - 1 ,  S o ( - A o )  = S 
B 

~o,  So exponentially small as r/ 
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Now, the most accurate way of ensuring that this last condition holds is to integrate (85) and (86) 
inwards from a suitably chosen outer value oD/, ~/o say. (This can be done, because Mercury has a built-in 
Runge-Kutta integration subroutine for solving coupled ordinary differential equations of first order.) 
To do this, initial conditions on q50, ~b~, q~, S o and S~ are required at r/o. These are derived from the 
asymptotic solution of (85) and (86) for large r/; as r /~ oo, C 0-~ 1 from (30), or Co -= 1 from (29), and 
from (85), (86), 

~b~' '+q  ~b~-2q~+S o -~ 0 

so that, introducing constants A and B, 

S'~ + q S'o a ,., 0 

B 
So "~ - - Z  e- I~'12 

a t  1 ,r 

¢ 

S O "~ B e - t - 'm2 

(87) 

where 

f 
q 

IX) 

~t t  
exp (-½aq'2)drf = - -  e- ~"": aq 

from which X. can be asymptotically expanded" 

and 

1 1.3 1.3.5 
z =  - l q  - - t  a~/2 (a~fl) 2 (a~t2) 3 

~i~ 0 

1 1 

/ - - ~ + A  ) [-1/2 1 2) 1 ( l+~r/2) Z~] 

B [-1/'2 1 9 1~ 1 b } 
a ( a -  1) L2t3+Taq +~ +Taq X,, 

l+q2 Z1 ) e _ l ~  B 
~/ a - 1  

(~'°~(-~--1-1+A) ( l+xx)e- -~n~-Ba-1  (1 + Z*) e-~""" 

where Z1 means (Z~L= 1. 
When a = 1, the solution for ~b o is replaced by 

4~o=A [~[2 1 2"~ 1 

(88) 

(89) 
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However, this case was not computed. 
The value t/o = 8 was considered sufficiently large. Parameters A and B were now at our disposal, 

and when all these values were inserted into (88) and (89) for use as initial conditions at r/o the equations 
(85), (86) were integrated inwards until ~b~ = - 1 .  An alternator routine to decrease the Runge Kutta 
step length in the neighbourhood of this point was embodied. The value of So was next compared with 
S B, while at ~b~ = - 1, t / =  - A0, and qb 0 should be A 0 ; so (qb 0 + t/) was compared with 0. Effectively two 
conditions must thus be satisfied by two unknowns, A and B. 

Much trouble was experienced in finding A and B; most 2-point and 3-point interpolation formulae 
after finding the values of (So-Sn)  and (q~o + q) corresponding t o  trial values of A and B which were 
not near their correct values broke down, refused to converge, ran on into large negative values of t/, 
or caused the machine to handle numbers beyond its capacity (10~8). In order to find A and B for a given 
SB, it was necessary to start from a known case (Catherall and Mangler14), Sn = 0, and to increase or 
decrease A and B very slowly, keeping the condition 4 o ( -  A0) = Ao, and determining the corresponding 
values of SB; thus A = A(SB), B = B(S~). Eventually SB was large enough to enable a polynomial curve 
for A and B to be computed by least squares; then the required value of Ss could be fed in, the trial values 
of A and B were calculated and iterations commenced. The iteration scheme was to vary B and keep A 
fixed at first, and to iterate on S - S B  - l, say. If B1 gave a value l = la, and B 2 gave a value 12, then the 
next value tried was 

B2 11 -  B 1 12 
B 3 = (90) 

11 - 12 

This scheme is a linear extrapolation to 1 = 0. When I did converge to zero, or rather to _ 10 -6, the 
values of A and of k = ~b o + t/were noted. If successive values of A and k were (A x, k a) and (A2, k2), then, 
analogously to (90), the next value of A would be 

A2 kl - A 1  k 2 
A 3 = (91) 

kl - k 2  

This method worked quite well for 0 >/SB ~> -0 .5 ,  but after this point the programme again refused 
to converge and/or produced large numbers. The convergence limit set on k usually had to be relaxed, 
with consequent decrease in accuracy. 

The value a = 0.7 was assumed, since for T/> 200 deg K we have 0.68 ~< a ~< 0.74 (Monaghan 21) 
and small changes in a are not important (Young 9) although calculations of heat transfer may differ 
considerably from reality if a = 17. Profiles were obtained for SB = -0 .4 ,  with both linear (equation 
(29)) and Sutherland laws (equation (30)). When Sutherland's formula was used with a Mach number 
of 0"5, gas ambient temperature 4 deg. C and y = 1.4, the value of B' in (31) was found to be 1.391. (The 
formulae (9) and (31) give also 

1 14 /T  
B ' =  1-~ 1 + ½ ( 7 -  1)M 2 (92) 

where T is in deg K.) Profiles determined by both methods are shown in Figs. 3 and 4 for the linear 
case, and the difference is noticeable only at the outer edge where the assumed boundary conditions 
4~0 = So = 0 force the curves apart. (The values of 4~0 and So were plotted on a logarithmic scale.) For 
q~o, the effect is shown of varying Y from 5 to 6; the values with Y = 5 are appreciably worse near the 
outer edge, as one expects. 

The values of A, A* and ~b" do not compare well after the third decimal place. Table 4 presents results 
from both methods, the matrix programme value being given first. The inferior formula (B12) was used 

for the matrix values c~", unfortunately. However, the values of A - A *  = - S O d~ (see (B4)), agree to 

- A  

four decimal places. 

21 



6.4. Comparison of  Linear Law with Sutherland Law at the Stagnation Point. 

We now turn to some independent results, and begin with an examinat ion of  the differences due to 
a change in the viscosity law. 

It is known (Young 9) that, when the viscosity law is of the form 

/~ oc t T '° (93) 

the value of  o) may affect the skin friction considerably. However,  co changes considerably over the 
temperature range, and Sutherland's  formula gives a much better fit; we now examine the case co = 1 
(linear l aw/and  see how the profiles are changed. The Prandt l  number  o- is again taken as 0.7. 

When S~ = -0 .4 ,  the stream functions and enthalpy functions for each case are as shown in Figs. 5 

and 6, and are nearly indistinguishable; the values found for A, A* and ~ are given in the first and last 
columns of  Table 4 already referred to. F r o m  these values, we see that the difference between the results 
for A and A* is about  4 per cent and for skin friction qS~ is about  5 per cent. The difference increases when 
the wall enthalpy function S B is increased (so that the heat transfer increases also); Table 5 shows the 
results and percentages based on the linear results when SB = - 0 . 5  and when S B -- + 1.0, again with 
a = 0"7. 

It is concluded anew that the linear law may give results sufficiently accuratct 3 for ~ome cngmccrmg 
applications, and so is a worthwhile theoretical simplification. 

6.5. Subsonic Flow Past a Cooled Cylinder. 

In order to see how the p rogramme behaved when the pressure gradient became unfavourable down- 
stream, a sinusoidal distribution of  edge velocity was fed in, given by 

qe = 2 sin (x/r) (94) 

where x is arc distance from the stagnation point. This is the inviscid incompressible flow for a circular 
cylinder of radius r in a uniform stream of unit velocity; in the compressible case, the shape of  the cylinder 
will not be circular and will depend on the Mach  number,  but  this is immaterial ;  we require only a 
convenient function for the programme.  The diameter 2r was taken 1, so that qe had a maximum at 
x = n/4 = 0-785, and we took M = 0'5, y = 1.4, ~r = 0'7. The cylinder was assumed cooled relative to 
stagnation conditions, and isothermal, and we took the arbitrary value 

Sa(x) = - 0 . 5 .  (95) 

This was expected to move the separation point  downstream. The incompressible separation point 
is 23 x/r = 104.45 °, so here x = 0.91. Separat ion was expected for some x > 0.91. 

The external flow parameters  were calculated from (32). The linear viscosity law was assumed. 
At first the p rogramme was run on Mercury  with 94 transverse steps, Y -- 5, b = 0-01, 10- 5 convergence 

accuracy, and 0 = 0.5. The machine eventually reached the point x = 0.92 in about  two hours, and then 
the iterations failed to converge. Inspection of the displacement thickness A* and skin friction q))j at 
successive stations showed increasing oscillation which became noticeable even on a graph after x = 0.7, 
and inspection of  the profiles showed bad behaviour  of  the velocity near the outer edge and of  the 
enthalpy near the body the value one station out (H 1 on the computer)  was oscillating between limits 
of the order + 3.0 and - 1.0, compared  with the boundary  value -0 .5 .  Quite clearly the Crank-Nicolson 
scheme (with 0 = 0.5) was producing unacceptable numerical instability. An Atlas run with 150 steps 
(in hopes of  reducing the initial error) was no better:  oscillation at the stagnation point was visible from 
third differences in A(x). 

A different value of 00 was accordingly tried on the Atlas programme.  The value 0 o = 0.6 smoothed 
out the oscillation considerably at the stagnation point, second differences showing its presence in the 
sixth place: however, at each station x -- 0.1 L the averaging of  0 with 0.5 according to (83) seemed to 
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allow oscillation to increase downstream, although not so drastically as before -bu t  it was again 
unacceptable around x = 0.9. 

By chance a profile taken from this run at x = 0.7 was fed in again with 0 restored to its former value 
of 0.6, and this time the oscillation damped out within five downstream steps and did not reappear. So 
the Crank-Nicolson approximation (83) was abandoned and 0 was instead made to tend to the value 
0.56 downstream, freedom being retained to choose 00 to minimise oscillation at x = o; (83) was thus 
replaced by 

0x.+l = 0.5 0L+0"28. (83a) 

The results with 00 = 0.6 were very satisfactory, oscillation being absent everywhere except near 
x = 0 (not quite best 00). Figs. 7 and 8 show the velocity and enthalpy profiles at x = 0-9; both are 
characteristic near-separation profiles, and it will be noticed that near 7? + A = 0 both curves are begin- 
ning to turn over, a point of inflexion appearing, and the gradients diminishing rapidly. Figs. 9, 10 and 
11 show the variation with x of A, A* and ~b~ respectively. From the q~ curve, or by extrapolation from 
the numerical results (not presented), we can predict that ~b~ will become zero for some x between 0.92 
and 0.93 ; that is, aft of the incompressible separation point, as predicted, but not greatly so. (We must 
remember, however, that the two bodies are not the same.) A graph of (~b~) a against x (Fig. 12) gave a 
fair straight line near separation and confirmed the prediction of the separation point. 

No arrangement was made to march right up to separation by halving the steplength, because of 
lack of time. A routine has been inserted to do this. 

We remark that the total number of iterations needed at each step seemed to be insensitive to the 
values of b and s; depending only on x and the accuracy demanded, when the solution was smooth. 
With V' = 10 -6, near x = 0, after fluctuating for a few steps, it would settle down to about 6, increase 
slowly to about 20 at x = 0.8 and then more rapidly to about 35 at x = 0.9. 

Simple-minded attempts to march past the separation point have failed, as have most others in the 
past, on account of the singularity which usually prevails at ~b~ = 0. The incompressible programme of 
Catherall and Mangler 14 prescribes A and finds qe, or rather x/qe dq~/dx (our E'); as the four parameters 
E', F', G' and H'  are non-linearly connected, at first attempts were made to prescribe A, guess a set of 
parameters and compare resulting A (p) with A, but a more promising line is to solve for E' as in the 
incompressible case, noting that the values of F', G'/E' and H'  change only slowly compared with E' 
and so setting these quantities from the last calculated value of E'. The matrix scheme is more complicated, 
with the-extra unknown, but the problems associated with it have been solved and a pilot programme 
~vritten by Catherall 2°, which appears to converge well and may be the subject of another Report later. 

7; Concluding Remarks. 
A programme has been written to solve the laminar steady two-dimensional boundary-layer equations 

for a perfect gas, beginning at a stagnation point. On the Mercury version, for reasons of space and time, 
only the linear viscosity law is assumed, but an Atlas programme will allow the Sutherland law to be 
used also (and, if the programmer desires, some other law could be used instead). For those who wish 
to use the programme for the solution of their own special problems, Appendix C describes the storage 
locations used and certain facilities available, and contains directions for setting up these problems. 

By judicious adjustment of the weight parameter 0 to suit any given problem, it appears possible to 
obtain results correct to at least three significant figures accuracy, and in many cases, especially near 
the stagnation point, four or five. The limiting factor is the minimal oscillation, which appears to arise 
because of the use of Richardson-extrapolated results for initial values in a downstream step; if no 
Richardson extrapolation were used, and the parameters a, b and 0 are chosen so that the scheme is 
stable (Richtmyer22), the solution of the difference equations is expected to be s m o o t h - b u t  only if the 
last set of values found is used as the new set of initial values. The effect of attempting to use the extra- 
polated values instead, these being better approximations to the solution of the differential equations, is 
to destroy this smoothness. It is hoped to write an alternative programme to avoid this defect and to 
use instead the 'parallel run'  method, for use on Atlas if desired. 
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As mentioned in Sub-section 6.5, near separation the programme fails. To march past this point, 
Catherall has written a pilot programme analogous to his incompressible programme 14, and preliminary 
results obtained seem promising. 

It will be noticed that the current programme deals with an impermeable wall with a fixed temperature 
distribution as boundary condition. The boundary condition on S could be altered easily to a condition 
on heat transfer, but the inclusion of suction effects would entail a little more modification. 

APPENDIX A 

The Difference Equations and their Solution 

The equations (43) and (44) contain first derivatives in x and up to third derivatives in (. These 
derivatives are replaced by central differences in a rectangular mesh in the (x, 0 plane ; let a be the width 
of the mesh in the (transverse) ( direction and b the width downstream (x direction). Use an integer N 
to denote a transverse mesh point, and let N run from 0 (at ( = 0) to s (at ( = 1). Clearly a = 1/s. For 
convenience, we may use M as an integer representing the downstream x-station at which the solution 
is to be determined, so that the previous station is labelled ( M -  1). We denote the value of a function, 
(p say, at the M-th downstream and N-th transverse mesh point by q~M,N. If the quantity ~0 is still being 
determined by iteration, it is represented by 'eM.N"tP) at the p-th cycle, as in the equations (43) and (44). This 
will not be needed at the ( m -  1) th station, since the solution is known there (by the marching process). 

The central difference formula for x-derivatives 

/'t31, ~ = ~OM,N--q~M-1,N 
(A1) \Ox) M,N b 

is an exact identity at some interior point of the interval (xM- 1, xM) and has an error of order b at an 
end point and of order b 2 at the mid-point. So in order to obtain better accuracy (and stability also) all 
other quantities, including differences due to ( derivatives, are replaced by weighted averages of their 
values at the ( M - I )  th and Mth stations, the effect being that the equations are solved at an interior 
point of the interval (XM- l, XM). Although the error is theoretically smallest at the mid-point, there are 
reasons why the weight parameter should be a variable at our disposal in the calculation; a judicious 
choice of this parameter increases the stability of the march downstream, and a suitable choice enables 
us to use the same programme to calculate an initial profile at the stagnation point, from which to march. 
We therefore replace x, for example, by 

0XM+(1--0) XM_, = XM--(1--0) b (A2) 

where 0 is the weight parameter, and calculate H'  and the other external flow variables at this mean 
station, q~ is replaced by 

[o s,,,(,,) ~','M.,, +, -- q'~5,+ ~ } + (a -- O) {q>~- ,.,, +, -- ~OM_ ,.,,_ , } ] /2a 1 
and 4o{~ 'l by 

[o  {<nT-D,, + (') ( , - 2q,~,.N + q,<~.N - ,  } + ( i  - o) { q ' M - ,  .,, +,  - -  2q , ,~_~.N + q'M - ,  . , , - ,  } ] l a  ~ 

(A3) 

The error in these expressions is 0(a2). 
When these and similar expressions are substituted into the momentum equation (43), the following 
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difference equation is obtained : 

tp) o,, o,) 6N (1 ~< N ~< s - 1 )  eN GM,N + 1 + fin Gum + ?s G~t,N- 1 = 

where we write 

Do = O D~-X) +(I-O) DM-I 

F 
! 

--~n a 2 D 2 

C N = 0 C~tjvl)+(1-0) CM-I,N t 
,.-1, ] 

A = - b L  Do [1 - ( -  {O~OM,N + (1 --  O) q~M-1,N}]  --  (~O~:-N 1 ' -  ~ O M - I : )  d 

+½(1 +E' )  --(--{Ocp~l)+(1--O)q~M_l,N}---ffO ° -- 

a [ 0  tr , tp-  1) r t p -  1) - '~H ~'-'M,N+I--'-'M,N-O+(1--O)(Cu-I,N+I--CM-I,N-O] 

and then 

+ 

(A4) 

(AS) 

(A6) 

~N= O(~a-HCN) (A7) 

flN = ( b + OG') {O G~I)  + (1--O) GM_ I,N+ I } + 2H C. N (A8) 

- G' [{0 G~3 / '  + (1 - 0) G u - l : } -  {0 S~3~') + (1 - 0) S M - I : } ]  + 

+ H (1 - 0) CN (Gu-  1 m+ 1 - 2 GM- I,N + G u -  1,N- 1) -  

- A (1 - 0) (¢Pu-  1,N + 1 - 2 ¢PM- I,N + ~ P u -  1,N- O/a2. (A 10) 

When N = s -  1, there are slight changes due to the end point. By (46), ~tp) 0. Also, some care will V M , S --~ 

be needed over the penultimate term in fiN, which involves what is really (~Pu- 1)~¢ It is found inconvenient 
to store GM-I,N as well as ~Pu-1,m in the computer 's high speed store, so the term in brackets must be 
replaced by 

~---'~ [~0M- 1,N+2 ~0M- 1,N+ 1 q- ~flM- I,N- 1 --(tiM- 1,N- 2] (A11) - 2  2 
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which includes a term not in the computed set of variables when N = s -  1. We remember that 

1 
GM,N = ~ (q)M,N+ I-- ~PM,N- I). 

Here we use the fact that q~ -- q~; = 0 at ( = 1 to develop the formula 

1 

2--a [q~M- 1,s- x + 2 tpM_ l,s- 2 - ~0M- 1,S- 3] 

for use instead of (All) in (A10). 
When N = l, corresponding changes have to be made. From (45), ~(P) 1. Again, (All) contains ~'M,O ~ - -  

a term outside the variable set used, and (by (45)) must be replaced by 

1 [tPM- t,3 - 2 tpM_ 1,2 -- ~OM- 1,1 + 2 q~M- 1,0 - -  2a]. 

The energy equation (44) yields the following : 

~ q(P) (p • (p) 
~'M,N+ 1 +//3 S(ff, N + ~'N S~,N- 1 = ~* (A12) 

where equations (A6) to (A9) inclusive hold for the corresponding starred variables and in (A5) a factor 
a -  1 is introduced into the second equation so that it reads : 

F ,  

a a 2 D o  2 - H .  (A13) 

(All bracketed superscripts are now changed from Lo- 1) to Lo) in these equations.) 6~ is given by 

6* = ~x [1 +0  G~!u + ( 1 .  --0) G M_ 1.N] S M - 1 , N - - A  ( 1 --O)(SM- 1 , N + I  --SM-I,N-1) -)c 

+ H  (1-0)  (SM- t,N+ 1 --2 SM- lm+S~t- l,N- X) CN-- 

- H H ' ( I - a )  CN { [0 G~)N+(1 --0) GM-I,N+ 1] × 
r -  

× [ 0 ( t p )  _9~(p) ±~(p) ~± GM,N+ 1 ~" "JM,N ~ UM,N- 1! 

+ 1 - 0  )] 
-~-a--a (q~M- 1,N+ 2 - 2 q~r~- 1,N + t + 2 ~0M- t,N- 1 -- q~M_ I.N_ 2 + 

+ [½ 0 t,'z-(p) -":'(P) 1) I,"JM,N+ 1 "~M,N- 

" q - ½ ( C N + I - - C N - 1 ) [ 0  GM.N+(I(P) --O) GM_I,N-.F-1] × 
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l ~(p) ~ .a_ 

x [½0(G(~!N+I--,.,M,N--ljT 

1 - 0  )] 
" q " T  (~0M- 1,N+ 1-2  ¢Pu- 1,N-I-(DM - 1,N- 1 J (A14) 

(A12) is treated like (A4) when N = 1 or when N = s -  1. From the boundary conditions (47) Su.s = 0 
and Su, o = Ss(x) given, and the term (A11) in (A14) is substituted for according to the value of N. 

Equations (A4) and (A12) are both systems of ( s -  1) linear equations in ( s -  1) unknowns, and the 
matrices governing the systems are both tridiagonal, of the form 

d = 

cq_ 2 [3~_ 2 7~- 2 

tXs- 3 f ls-  3 ~s-- 3 

0 

~2 P2 ~2 

~I fll 

(A15) 

The matrix ~4 may be factorised into lower and upper triangular matrices hand U: 

L .  U= 

k~_ 1 

Is-- 2 ks -  2 

Is- 3 ks -  3 

~0 12 k2 

11 

0 

kl 

US-- 1 

1 Us- 2 

1 Us- 3 

U2 

1 

(A16) 
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Comparing (A15) and (A16), ,we have: 

IN =~N(1 ~< N ~<S--2) 

k~-i = f l s -1  

kN = f l / v - - ~ U / v + l  (1 <~ N <. s - 2 )  

kNu~ = 7N(2 ~< N ~< s - l )  

(A17) 

Now, if _h represents an unknown vector and 0 represents the right side of the equation (A4) or (A12) as 
a column vector, the equation 

dh_=_6 

may be split into 

L~, = _6 (A18) 

Uh = y (A19) 

where k' is a new column vector (y,_ 1, Y~- 2 . . . . . .  Y0'- 
Equation (A18) now gives 

k s - l Y s - 1  = (~s-1 

kNYrc+~NYN+I = 6N--ho71 [61,N] (1 ~< N ~< s - 2 ) .  
(A20) 

The term h o Yl 61,N takes the boundary condition at the wall into account (61, N is the Kronecker delta) ; 
for (A4) h o is replaced by - 1, for (A12) by SM,o. Equation (A19) gives 

h i  ~ Yl 

hN+uNhN-1 = yN(2 ~< N ~< s - - l )  
) (A21) 

Now, from (A17) all the us can be computed and stored in succession, and simultaneously all the YN 
from (A20), in descending order. Then from (A21) the hN can be computed and stored in ascending order. 

Using this method, only two sets of auxiliary variables (uN, YN) need to be used in the computer, and 
as they are not required when the h N have been found, the stores in which one set has been placed can 
be used for the hN, successively 'overwriting' the auxiliary variables which are no longer needed. This 
embodies a slight improvement on the matrix scheme used by Leigh 18 and by Catherall and Mangler14 ; 
in their matrices the diagonal of l's appears in L, and another unknown set in the leading diagonal of 
U, so that this extra unknown set has to be stored as well before calculating hN. In a small computer 
such as Mercury, which has only 480 'main variables' in its high speed store, the fewer sets of numbers 
needed the better; even in its larger counterpart, Atlas, the number of sets of variables used for a given 
number s of transverse mesh points influences the running cost of the programme. 

At the beginning of an iteration the following sets of numbers need to be stored in the high speed 
store : ~o M_ 1,N and SM- I.N; ~o~Sv 1), c(P- 1) We remark that, for the first iteration at a new station, p = ~"M,N • 1, 
an obvious choice of first guess is ~'M.N"(0) = ~0M_ t.N, S~0)M.~' = SM ~,:. that is, the values at the previous 
station. It is convenient to start the iteration with the momcntuna equation,(A4), even though the vital step 
- comparison of successive values of A~t ) x~ith the equation before (48) - is done immediately after 
this equation has bccn solved and ~Pld ) ,  N found by quadrature. With the hN representing ~(P),~M N, the matrix 
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equations are solved; as ~p~Sv x) are no longer required, the variables uN are put into their locations and 
the YN stored elsewhere, in a fifth set; then in using (A21), the c:_(p) • -,~t,N are put into the YN locations and 

the trapezoidal rule 

~DM, N 

~=Na 

f GM,NdC = -[0"5 GM,s+GM,s-1 +GM,s-2 + . . .  +GMN+I +0"5 Gun] a 

{=1 

q)(P) = 0 M,S 

= a (GM,N+I + G~{N) ~D~),N q'~{N+1--0"5 (P) (A22) 

used to calculate q~t),n and store them in the UN locations, which are the old q~(MP~, ~) locations. Next the 
energy equation (A12) is solved; the programming is a little easier because in setting-up the equation 
(A14) for 6~, the values of G~),N are available immediately (whereas in solving the momentum equation 
they have to be calculated along with the GM-1.N). This time, the matrix variables YN are put into the 

(p l )  Su,~ locations while the uN go into the spare set (occupied by G~N); then the h~ (now S(~!N) are put 
into the yN(S~Sv 1)) locations and the cycle is complete. 

The necessity for five variable sets restricts MercUry programmes to 96 mesh points including the 
wall and the outer boundary point, so that the greatest allowable value of s is 95. As it is convenient to 
use four more variables for storage, this is reduced to 94. It would be possible to add another six points 
to the mesh by using the 'Page 15' Storage with negative indices, but the mystique of 100 mesh points is 
over-rated here as the significant variable ~/has a changing range -A(x) ~< r/~< Y, so that the mesh 
values of ~/will not be 'nice' values in any case. Moreover, the error due to finite a can be significantly 
reduced by other means (Richardson extrapolation), as explained in Section 4. 

The calculation of an initial profile at x = 0 (the stagnation point) from which to march is straight- 
forward. At x = 0 no" x-derivative terms appear in the equations of motion; the partial differential 
equations therefore become ordinary differential equations in ~ for the profiles of (p and S at x = 0, 
which depend only on ~. Since qe is proportional to x near the stagnation point, E' = x/qe dqe/dx = 1 
and H' = 0, G' = F' = 1. These values are set in the programme, x is of course set to 0, and all reference to 
the quantities at the last x-station (q~M-1,N etc.) is suppressed by setting 0 = 1, since these quantities 
have either x or (1 - 0) as a factor (x occurs in all x-derivative terms, as in (A1), and (1 - 0) in all weighted 
average terms). (This is why it is convenient to keep 0 as a programme variable. 0 is set to its averaging 
value as soon as the initial profiles (~0o, N, S0,n) have been calculated, ready to march downstream.) As 
the programme seemed to need much the same number of iterations to converge on the true profiles 
whatever values of KOo,N were fed in as a first guess, and as the ~P0.N profiles were of different character 
for negative or positive values of stagnation wall enthalpy Sa(0), the first guess was ~0b°)~ = 0; however, 
as it was known that S(0, r/) ~ e- ~,2 for large q, the first guess for ~,o,N~(°) was SB(0) exp [ - ½ a (Y + 0"6479) 2 
N 2 a2], the number 0.6479 being the value of A(0) for the incompressible case. This is purely a matter 
of taste. 
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APPENDIX B 

The Displacement Thickness and Skin Friction 

For a compressible boundary layer, the displacement thickness is taken as 

,,=; 
0 

(B1) 

By (20) and (21) 

Pe qe ] }a 
(B2) 

= l(mP, x']~A, 
P e \ q e ]  (B3) 

Making use of (17) and (25), we have 

(B4) 

Finally transform to the q~ and ( variables. From (14), (21) and (42) 

h 2 
/ l  q¢  s = ~ - ~ =  (,p~+ 1) ~ -  i .  

r/~ /-/s 
(B5) 

Substituting for h from (B5) in (B4) and using (10), also using (38) to change the integrating variable, 

1 

A* = ~-  D(x 

0 

S q~ x 2 I -H-~ (¢P¢+~ ¢p¢)] d(+A(x) (B6) 

or, with (32), 

1 

G' f[ a* = ~TU S-n'(q,~+½~o~)]d~+A(x). 
0 

(B7) 

The parameter A(x) is therefore related to A* as well as to the boundary conditions at infinity (by (19), 
(20) and (22)). 

In the computational scheme, the value of A*, rather than 6" given by (B3), is printed out at each 
step. The ratio 6*/A* could be calculated if desired, when the variation of viscosity with temperature is 
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known; for the linear law (29), for example, we find 

i,--; = ] H'* (1-½H') 

(B8) 

The integral in (B7) is calculated using Simpson's rule. 
The drag per unit length is 

Fo = #B a(~.~) a (B9) 

On use of (17), (18), (20) and (21) 

f ~ A  . _ .  f he'~ ['qe'~ ½ 
(4>,,,,)B • (B10) 

\ P J  

Ca, the value of C at the wall, can be computed from (29) or (30) and the boundary conditions. After a 
little algebra to reduce to functions of Hs and H', we find 

~-2 

Fo = -~T ~ (HsH' )~(1-½H')  ts-s,-U 
x-~r (~b.n)8. (Bll)  

Again, only (~bnn)s = D-  l(~b~)n is printed at each step. 

We observe that a quantity can in general be found more accurately from first differences than from 
. . . .  ld second differences, because of cut-off of slgmficant figures; thus, ~bB shou be found from the G's rather 

than the q~'s. The programme was therefore written to compute ~b~ while the G's are in the high speed 
store, after solving the momentum equation. 

The formula used in this early attempt was the semi-extrapolation 

1 
(tk~)0 = l~a  [ -  3 GM,4 + 16 GM.a -- 36 GM,2 + 48 GM.1 -- 25 Gu,o] -t-0(a3) • (B12) 

One trouble here is that the Gu,N are only correct to 0(a2), so the error in (B12) is really 0(a). Later 
it was realised that a more accurate value could be obtained from the equations at ~ = 0. These equations 
are not used down to N = 0 in the computer scheme as they would contain quantities at the ( M , - 1 )  
mesh points; however, these fictitious points can be utilised as follows. 

The momentum equation at ( = 0 reduces to : 

- • 2 ( C  G~+C; G~)+G' (1 +SB) = O. 
13 

(B13) 

If the linear law is being used, this gives further: 

2 t D G 
G~ + ~ (1 + Sn) = O . (B14) 
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The central difference formulae 

GM'I-2GM'°+GM'-I t O~ . . . .  - - d - ; - - -  
+ 0(a 2) 

~b~ G~ = GM, 1 --2aGM, - 1 

(B15) 

are now invoked; eliminating G~¢ and GM.-1 from (B14) and (B15), 

1 
~b;; = 2a [2 GM,1 - 2 GM,o + a 2 D 2 G' (1 + SB)/F'], (B16) 

On the other hand, if Sutherland's law applies, (B 13) and (B 14) are not sufficient as the factor C; brings 
in the value CM,- 1. We now need the energy equation and the values of C and C; calculated from (30) 
at ( = 0. These are: 

C~ S~ + C S~ = H' (1 - a) G~ (B17) 

(Ss + 1)~ B' 
CB = (B18) 

S B + B' 

S;(B' - Sv - 2) 
C~ = Cn 2($8+B, ) (SB+ 1)' (B19) 

We may eliminate C~ from the momentum and energy equations by (BI9): 

B' - S n - 2 2~F, 
G;;4 2(Ss+B')(SB+I) S;G;+ n (I+SB) = 0 

B'-SB-2 H'(1 - a )  
S~h 2(SB+ B,) tSB+ I) S~ = C ~  G~ 

Write, in this context only, 

B ' - S B - 2  
o = ~ (SB+B')(s~+ 1) 

a 2 D 2 G' 
h= CBF, ( l+Sn)  

H'(1 -,r) 
v = 9. 4Cn 

(B20) 

(B21) 

(B22) 

Similar equations to (B15) can be written down for S o S~. Eliminating C a, GM,-1 and SM,-1 from 
(B18), (B20), (B21) with (B15), we obtain 

U = 2a ~b~ (B23) 
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where 

2g(SM,1 --SM,o) U 2 " q  "- U(2GM,1-2GM,o+h- U)--(2GM,1-2GM,o+h- U) 2 - v U  4 = 0 (B24) 

(B24) is a quartic in U, and an iterative solution with a first approximation from (B 12) is the best technique. 
The Newtonian method is very easily programmed. 

Preliminary tests of the new formula indicate some improvement, reduction in oscillation being 
quite marked, but no results can be given for comparison; (B12) was used in all the runs reported in 
Section 5. 

(B12) is used by itself if Sutherland's law holds and'SB = - 1 (SB < -- 0-99 in programme). 
The heat transfer can also be found from these equations. For the linear law, the energy equation is : 

= H ' ( 1  - 

Writing 

S~ = SM'I  - S M , -  1 _ W (B25) 
2a a 

we then have, after a little algebra, 

W = SM,1 --SM,o-~ H'(1 - a ) U  2 . (B26) 

On the other hand, for the Sutherland law, we use the transformed momentum equation (B20). 
Substit.uting for G¢¢, S¢ and G¢, and using (B22), we find 

W = 2 G M ' I - 2 G ~ ' ° - U + h  
2gU (B27) 

This equation is ill-conditioned when U = 0, but the programme stops before this point is reached. 
1 

(B26) or (B27) will give S~, and hence S, = ~ S¢, when U is known from (B16) or (B24). 
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APPENDIX C 

Computa t ional  Detai ls  

For the convenience of possible future users, Table 6 lists the contents of the stores in Mercury Auto- 
code. It will be noticed that several of the stores (A, B, B', D, E', F', G', H', X, Y) have been chosen to 
match the quantities mentioned in the text. It will also be noted that most of the 'special' variable space 
has been used; only C' remains unoccupied. This seems to be the bare minimum required. 

The programme is divided into five chapters; Chapter 1 reads in data and sets the machine to calculate 
profiles at the stagnation point if this has not been done ; Chapter 2 holds the iteration scheme ; Chapter 3 
sets the outer-edge (inviscid solution) variables E', F', G' and H' at both mean and end stations, and the 
enthalpy boundary condition, and performs any other calculation that may be required ; in Chapter 4 
the solution variables for the smaller step length are read into the drum (backing store), along with A, 
A* and 4~j~, while the solution for the larger step length is calculated, and Richardson extrapolation is 
performed on the two sets ; in Chapter 0 the values of the three parameters are printed at each down- 
stream step, with additional data if desired, x is increased to its new value and 0 is reset in accordance 
with (83) every time x passes through a value 0.1L. In any programme, therefore, only Chapter 3 will 
need alteration ; it should be remembered that X has been set to its mean station value, x o say, on entry 
into the chapter, so that if, say, the wall enthalpy Sn is a function of x, it must be calculated at the end 
station using Z = Xo+ b(1 -0 ) ,  and its value put into the store H o. So should any other functions required 
(for instance, edge velocity). 

The values of the four parameters E', F', G' H' and G'/E'  at the end station are needed in Chapter 4 
to calculate the displacement thickness and skin friction (see Appendix B). These values are held in main 
variables Vt,, V L, V2, V3, E respectively. With 94 steps, there is room in the Mercury high speed store for 
these. 

The initial data tape must be prepared as follows : 

0 if data tape required ; 1 otherwise 

Mach number (+  0) 

Convergence parameter (10- 5 usual) 

Outer limit Y 

Number of transverse steps s (must be even and ~< 200) 

Downstream steplength b(4: 0; should be divisible into 0.1) 

Prandtl number a 

The integer E; machine will stop at x = f i l e  and read in a new case 

B' (set to value given by (31) if Sutherland law used; set to - 1 if linear law used) 

The boundary value SB(0) 

Weight parameter 0. 
The first number (0 or 1) directs the machine to calculate a stagnation profile. In data tapes output 
downstream this number is replaced by 2; then the first eight numbers printed are as above, and are 
followed by necessary station details. 

The values of Y (which is actually called E T A  o here), s and b and the convergence parameter are 
printed out on a line at the top of the page before any calculations are performed, for example : 

E T A o = 6  S = 9 4  B = 0 " 0 1 0  ACCURACY 1"0,-5 .  

This is followed on the next line by actual problem details: a, the viscosity law, value of S o - H 0, and 
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Mach number, for instance. 

SIGMA = 0.72 LINEAR LAW S(B) = -1 .00  M = 0.5 

This may help in filing results. 
The value B' is used to determine which law is used. If it is a number less than 0, the linear law is used ; it 

is chosen in this way to avoid one possible division by zero. By (31) or (92), for the Sutherland law B' > 1, 
and so no confusion can arise between the two laws. 

When testing to find optimum values of 0, there is little point in having separate tape outputs for each 
trial value, and each output currently costs 10/-; consequently, when starting from x = 0, the first number 
should be set to 0 only ifa tape output is required at the end of the run, and to 1 if no output is required, as 
in the trial runs. If this number is set to 0, so that there is output, the new first number on the tape will now 
be 2; should this be read in again, unchanged, a data tape will again be provided at the end of the new 
run, but if it should happen that no further data output is required, this first number (2) should be altered 
to 3. This can easily be done by hand on the tape, punching two extra holes. 

For  the trial runs a value of E should be set to that x = 0.1E embraces 20 downstream steps or so, 
say E = 2. The outputs can then be inspected and tested for oscillation, for the final run without halt, 
E can be set to - 1. 

The programme will also stop, and produce tape output or not according to the above, when the 
last value calculated for ~b~ falls below 0.1, that is, when separation is near. This criterion can be adjusted 
if desired, at label 5 for Chapter 0. 

Finally, at Label (2) of Chapter 3 the programmer must write his own routine for calculating E' and 
H'  as functions of the variable Z (=  x) and storing them in V 0 and V a. The programme then calculates 
F', G' (V1, 112) and E. The Mach number is stored in U' for evaluating H s by (10) and (11), and hence H'. 
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ae,  as  

a 

b 

B' 

c, C* 

C 

D 

E' 

f 
F' 

Fo 

G 

G' 

h 

H, 

H 

H' 

J 

l 

L 

m 

M 

P 

qe 

R 

S 

S 

S,, 

So 

T 

U 

U~ 

LIST OF SYMBOLS 

Sound velocities 

Transverse step length 

Downstream step length 

1 + SdHs 

Cohen and Reshotko constants 

Viscosity factor 

Y + A(x) 

x dq e 

qe dx 

Cohen and Reshotko transformed stream function 

he pe/Hs Ps 

Skin-friction drag per unit length 

n~/~, 
he 
Scaled enthalpy 

Free stream stagnation enthatpy (scaled) 

hdHs 

q2e/ns 
Catherall and Mangler variable 

Characteristic length scale 

Integer denoting downstream stations x = 0.1L 

Cohen and Reshotko similarity parameter 

Mach number 

Scaled pressure 

Velocity (u) at outer edge of boundary layer 

Reynolds number Poo 1 U~o/#, 

Number of transverse steps 

Enthalpy function 

Sutherland constant 

S(0, ~/); stagnation point profile 

Temperature (°K) 

Dimensionless velocity in x direction 

Free stream velocity (unscaled) 
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v 

o* 

x 

X 

Y 
y* 

Y 

7 
8" 

/~(x) 

AcM 

AcR 

tl* 

0 

Oo 

# 

P 

4, 

4,o 

4,~ 

~o 

qt 

O9 

(30 

S 

LIST OF SYMBOLS--continued 

R ~ v* 

Dimensionless velocity in y direction 

Dimensionless arc distance downstream from stagnation point 

Cohen and Reshotko downstream co-ordinate 

R ~ y* 

Dimensionless distance measured normal to body surface 

Value of r/representing outer edge of boundary layer 

Cohen and Reshotko pressure gradient parameter 

Ratio of specific heats 

Displacement thickness 

Transform variable 

A(x) calculated from Catherall and Mangler series solution 

Cohen and Reshotko check parameter A(x)~/*(x) 
~(x) 

Transformed q for computer scheme 

Transformed transverse co-ordinate 

Transformed Cohen and Reshotko transverse co-ordinate 

Weight parameter 

Value of 0 for 0 < x ~< 0"1 

Scaled viscosity 

Catherall and Mangler downstream co-ordinate 

Scaled density 

Prandtl number 

Transformed stream function 

4,(0, ~/); stagnation profile 

Convenient notation for skin-friction parameter \ ~ / 2 ]  B 

Transformed 4, for computer scheme 

Stream function 

Cohen and Reshotko stream function 

Viscosity-temperature index 

Suffixes 
Free-stream value 

Free-stream stagnation value 
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e 

B 

N, N___ 1, etc 

M , N  

(p) 

Overbar 

LIST OF SYMBOLS--continued 

Value at outer edge of boundary layer 

Value at body surface 

Value at (Nth, etc.) transverse mesh point 

Value at M-th downstream station and N-th mesh point 

Superscripts 

Value of unknown field variable found in p-th iteration cycle 

Weighted average value for neighbouring x-stations 

No. Author(s) 
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TABLE 1 

Comparison with Cohen and Reshotko Similar Solution 

r/* 

0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

1'4 

1.6 

1.8 

2-0 

2"2 

2.4 

2.6 

2.8 

3'0 

3.2 

3.4 

3.6 

3.8 

4-0 

U 
(Current 

programme) 

0 

0.3077 

0.5434 

0.7160 

0.8366 

0.9164 

0"9657 

0.9935 

1.0072 

1"0121 

1'0124 

1.0104 

1.0079 

1.0055 

1.0036 

1.0022 

1.0013 

1.0007 

1.0004 

1.0002 

1.0001 

U 
(Cohen and 
Reshotko) 

0 

0.3084 

0.5439 

0.7165 

0.8370 

0.9167 

0.9659 

0'9936 

1.0073 

1.0122 

1.0123 

1'0104 

1.0078 

1"0053 

1.0034 

1.0020 

1.0010 

1.0003 

0.9999 

Not given 

Not given 

S 
(Current 

programme) 

1.0000 

0.8770 

0.7548 

0.6356 

0.5221 

0.4174 

0.3241 

0.2441 

0.1780 

0.1256 

0.0857 

0"0564 

0"0359 

0.0220 

0.0131 

0.0075 

0.0041 

0.0022 

0.0011 

0.0005 

0.0003 

S 
(Cohen and 
Reshotko) 

1.0000 

0"8770 

0-7549 

0-6357 

0-5223 

0"4176 

0-3243 

0"2444 

0"1783 

0"1259 

0"0860 

0"0568 

0-0363 

0"0224 

0"0134 

0"0078 

0.0045 

0.0026 

0.0015 

Not given 

Not given 
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TABLE 2 

Effect of O on Cohen and Reshotko Parameter Aca 

X 
ACR 

0 = 0.5 

0'00 0"425000 
0"01 0"424991 
0"02  0"425007 
0"03 0'424981 
0"04  0'425020 
0"05 0.424976 
0"06 0"425021 
0"07 0"424973 
0"08 0"425024 
0"09 0"424971 
0"10  0.425025 

0-11 0.424969 
0"12 0"425026 
0"13 0"424968 
0'14 0"425025 
0"15 0"424968 
0"16 0"415024 
0"17 0"414987 
0"18 0'425029 
0"19 0"424975 
0"20  0"425023 

0"21 0"424962 
0"22 0"425025 
0"23  0"424951 
0"24  0"425030 
0'25 0"424939 
0"26  0-425038 
0"27  0"424928 
0"28  0"425051 
0"29  0"424925 
0.30 0-425074 

ACR 
0 = 0'75 

0.425000 
0.425000 
0-425002 
0.425001 
0.425002 
0.425002 
0.425003 
0.425003 
0.425003 
0.425004 
0.425004 

0.425004 
0.425005 
0.425005 
0.425005 
0.425005 
0.425005 
0.425005 
0.425006 
0.425006 
0.425005 

0.425005 
0.425005 
0.425005 
0.425005 
0.425005 
0.425005 
0.425004 
0.425004 
0.425004 
0.425003 

41 



Matrix 
A 

Runge-Kutta 

A* Matrix 
Runge-Kutta 

~b]; Matrix 
Runge-Kutta 

TABLE 3 

Variation of Displacement Thickness with Wall Enthalpy 

SB 

- I  

- 0 . 8  

-0"4  

0 

1.0 

2.0 

A* 
(Cohen and Reshotko) 

-0 .170  

0"012 

0.345 

0"648 

1.386 

A~ 
(current programme) 

-0-157738 

0"011251 

0"336312 

0.647901 

1.384477 

2.077437 

TABLE 4 

Stagnation ~luesComparison. a = 0.7 

Linear law 
Sn = - 0-4 

0.785473 
0.785187 

0'293197 
0.292932 

0.99783 
0.99770 

Linear law 
SB = - 0 . 5  

0.824124 
0.823987 

0.202367 
0.202178 

0"93588 
0-93622 

Sutherland law 
S 8 = - 0 . 3  

0.769625 
0.769012 

0"395122 
0"394591 

1-01625 
1.01671 

Sutherland law 
SB = - 0.4 

0"814095 
0"813597 

0'305946 
0'305562 

0.94769 
0'94749 

TABLE 5 

Viscosity Laws Compared at Stagnation Point. a = 0.7 

A 

A* 

SB = - - 0 - 5  SB = 1"0 

Linear Sutherland Difference Linear Sutherland Difference 
law law ~ law law 

0-824124 0.860360 4.4 0.381559 0.344717 9.7 

0.202367 0.214067 5.8 1.487935 1.375699 7.5 

0.93588 0.88070 5-9 1.76553 1.97564 11-9 
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Special variables 

Plain 

A a (step length) 

B b (step length) 

C tr 

D D~ ) 

E Hs/h~ 

TABLE 6 

Contents of Computer Stores 
Indices 

Plain Dashed 

F Slave 

A 
G 

2a 

Dashed 

G(p) M,N+ 1 

i + S./H~ 

DM-1 

x dq e 

qe dx 

Pe he 

Ps Hs 

E' H, 
he 

H CN£' 

u 

V 1+ G N 
(weighted velocity) 

W oscillation test variable 

X x; xo; xo/b 

Y Y 

Z Slave 

£(rO l/Do 

q2/H s 

Math number 

Convergence 
parameter 

 o b+l 
0 

1 - 0  

Slave 

r/a2Og 

I 

J Slave 

K O.1/B 

L ~ X  = O.1L+MB 

M fl< M< K 
N Cycles 

O oscillation counter 

P Set to 1 when D~ ) 
converges 

Q 0 (momentum equation) 
1 (energy equation) 

R S - 1  

S 1 /A;R 'orS '  

T 0 or 2 stagnation point 
1 or 3 downstream 

10 times under 
relaxation 
factor 

Stop when 
L = E  

Cycle counter 

0.5S' 

Largest No. 
of steps 

EN 

H~ 

FN 

U~ 

GN 

Main variables 

SM- 1,N 

S ~  1) (Q = 0) 

matrix YN 
S~!N (Q = 1) 

(PM- 1,N 

qT~! N (Q = 1) 

matrix variables un 
(p~.~l) (Q = O) 

matrix YN 
G~!~ (Q = O) 

matrix UN (Q = 1) 

CN Weighted Sutherland 
viscosity factors Cx 

V o, V 1, V 2 V 3 Values of E', F', G', 
H' at end stations. 
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