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deraved Ly the method of RAE Report No. Structures 168%

by
D, Williams, D.Sc., i Liech.B., F.R.Ae.S.

SUMMARY.

The relative accwacies of moments and deflections, as derived by the
method of r=f.4, are discussed, and it is shown that moments are not
expected in general to be less accurate than the deflections.
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4 Introduction

RAE Report No. Structures {68 describes s general method of deriving
the bending moments and deflections of any type of aercplane wing under any
transverse load distrabution. The method depends on representang the trans-
verse deflection of the wing by the deflections of a number of stations
distributed uniformly over the surface ¢f the wing. Starting with a hypo-
thetical set of deflections, ome writes down in finite-difference form the
bending and twisting moments at each station in terms of the deflections of
the =small group of stalions surrounding it. The reaction at each station
(necessary to heold the wing to its hypotheticsal contonr) is, in turu,
written down in terms of these moments and hence in terms of the deflections.
Having in this way expressed by standard formulae the reactions in terms of
the deflertions, ore finally solves (in matrix form by digitel computer)
the relevant set of linear algebralc equations to obtuain the deflections in
terms of the reactiuns. VWith the deflections for any type of loading thus
knowm, it is a straightforward operation to derive the bending and twisting
mements ane bence the stresses.

An exam.ple2 worked cut for the case of a square plate wounted as a
centilever and loaded at an outer corner showed that the deflections derived
by the use of this method agreed very satisfactoraly with expevimental
values., A3 only the deflections of the plate were recorded in these experi-
ments there was no means of judging how accurate were the stresses cbtained
by the method. It was therefore not easy to refute the natural argument
that, since mrments are obtained from deflections by two successive
differentiations, any errors in ithe dellections tend to be magnified in the
moments.

The writer was inclined to accept this craticism at its face value
unt1l it was found¥* that, in practice, exactly the opposite often happens;
in other words, the moments are obtained with greater accuracy than the
deflentaons., This seems somewhat paradoxical at first sight, but examination
of the factors involved shows that the original criticism was ocased on a
falge wnalogy. It iz perfectly true that, if only the transyerse deflections
of a beam-like structure at a number of points uncformly distributed over it
are given, the second dafferences will not in general give the true curvaiure
(i.e. bendaing moments). Still more inacourate will be the loading as
expressed by the fourth differences. The position is radically different,
however, if what is gaven is the loading at a number of stations distributed
over ithe structire. HFor the moments are then cbtained by integrating the
loading and the deflections by integrating tie moments. The moments are
thus in a more direct relation with the loading than the deflections, and
on that account can, in many practical cases, be derived more accurately.
Not always however, for much depends on the type of structure and the type
of loading.

In many cases, as exempliified by a beam under uniform loading, the
bending moments cbtained at the various stations are exact. The deflections
derived from these correc: moments (or curvature) cannot however be exact
because the curvature, unlike the loading is not constant,

Examples will now be given to demonstrate the truth of the above remarks
and a2t the sam® time to throw some light on the factors governing the relaw
tive accuracies of moments and deflections as derived by the method of ref.i.
This falls Jar short of a ragorous demcnctration that, in general, moments
derived by that method are closer %o the true values than the ocorrespondirng
deflections. Wrat can however be claimed as having been demonstrated is that
in most practical ceses there is no basis for the criticism that moments are
necessarily less accurate than the deflsctions.

¥ py Mr. Miiler of Vickers-armstrong (Supermarines).
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2 Beam examples

2.1 18t beam example

Consider first a cantilever beam of consteni cross-section under a uniform
loading ¢ per unit length (Fig.t)

Figet

We proceed to derive the moments and deflections of the cantilever at the
four stations shown. This we do by first writing down (as described in ref.q)
the moments and reactions associated with a hypothetical set of displacements
Y4s Y2 and y3 &t the stations 1, 2 and 3. Following this programme, we ¢btain
the bending moments

M3 = O -~
MZ = @%‘) (.YJ; +3’3"'23"2)
> (1)
EL\ (.
My, = (—;) (v, ~ 2v4)
/E1
¥, = \';) (2y,) )
and the loadings
Eé } (u2+mlt—zm3) N
a 2 ’
a
where M, = O (because I, is zero), or
R M
3 o 2 EI(
= = = (v + 35 - )

a a2 RO I 2 ; (2)
R (M, - 2M,)
2 X 2 EI(
= m bt = 22 (5y, - Ay - 273)
2 a° ol 2 1 3
R (M + M, - 2M,)
...£.= 2 g ] ='ET{(TY1"1FY2+5T3)' J

a a
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From (2) and (1), which have been written down at sight, we solve for
the moments and deflections in terms of the reactions R and obtain

1 8-5‘

¥4 =§'(R1+2I{2+§23}<:ﬁ) \]
3

Yo = (R_1 + R, o+ 5R3) (%‘f) > (3)
{
5 ( 1R R,) [&= ’
y3 = = By + A, + 19R, (EI J
5
M2 & aRS :
§

My = = (R, ~ 2R3) :‘ (4}
1\1i0=a(R1+2R2+3R3). J

It is important to note that we can derive the bending moments appro-
rriate to any given set of forcer R exther by first obtalning the deflec-~
tiors and taking their second differences or by direct solution of the
equations giving the reactions in terms of the moments. Thus any errors
involved in deriving deflections from moments or moments from deflections
have rno effect on the relation conmecting moments and reactions. It is
clear, for instance, that the moments givea by (4) which are here sxact,
would be just as exact if the constant-section beam were replaced by a
strongly varying secotion. The accuracy of the deflections cbtained would,
however, be mch reduced. The fact of the matter is that the relation
between moments and loading is one of equilibrium and is independent of the
beam characieristics in this particular example.

Reverting to the present example, we see that the moments given by (4)
are exsct. In ferms of an applied loading q, since

R,! = R2 = 2}{3 = ga (5)
2
= B
Mp = =5 }{
|
i, = 2qa2 ’ ‘rk (6)
Mo = Leb qa2 . J

The deflections grven by (3), compared with the true deflections are
ag follows: -



Tehle T

Station | Derlection | True Deflection | % Inaccuracy
2.25 dt q 1.79 8
4 = - 12.5
EL EI
L b
2 65279 585274 1125
ET BL
3 11,25 a* 10,125 & .1
EI EI *

The deflections are all too large, as would be expected from the fact
that they are cbtained o.a the assumption of constant curvature over each set
of three successive stations. For this neglects the interference effect
introduced by the fac. that che curvatures defined for example by the set of
three displacements Yy, ¥4, ¥o and the succeeding sel Yqs Y25 ¥3s 8TO not
compatible over the overlapping region between yy and yo.

Before leavirg this example 2t is interesting to note that, whereas the
deflections obtained from the given set of reactions of equation (7) are only
10-12% inaccurate, the reactions deraved from the correct deflections appro-
priate to these reactions (by eguation (4) and Taeble I) are respectively:

0.615qa, 0.59ga and  0.055qa for Ry, Ry and R, (7)

insgtead of

0.5qa, 1.0qa and  1.0qa, (8)

The ervors are +23%, -16: and -95.Fb.
errors in the moments , M_L and M, are respectively +2%b, +3. 55 and ~20. Ho.
Yet, starting with a hypothetical set of deflections to derive the corres-~
ponding set of reactions, we find that on giving these reactionz the numerical
values aprropriate to a particular system of luading, we obtain the moments
with exactness and the deflections with only 10-12% error.

the true values. The corresponding

2.2 2nd beam example

Take next a beam example in which the loading is not constant; and where
therefore the moments derived from it will not b: exact.
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The beam ~ of constant section ~ is shown in Fig.2 under a loading

"X
= Sin ——- 9)
¢ = q 7 (
Taling account of symmetry, we write down the moments (hogging moments
taken as positive)

:3{[2 z(y-l - yo) ~
“E ¢ Z ’
* |
EI ~ az i’
EI ~ a2
R 2(M, - M) 0
Then =2 L 5 2
& &
R (M, + M_ -~ 2M,) j
- S > (11)
a :
R, (M1 - mz)
a aZ B
Solving for moments and deflections, we have
M, = --a('é-Ro-i-?R,l-{-Rz) ’
M1 = -2 (RO + 2R1 + Rz) F (12
R i
M2 = -a<—§+31+R2> J
v, = (ﬁf) (L 75 R, + 831 + Le5 Rz)
a_'ﬁ
vy o= ’E':'f) (R, + TRy + iRy) > (43)
0



Introducing now the loading given by (9), which means that,

q for station 0 = 9, \]
9, s8in 2x® ‘
q P gtation 1 = -——3“-'“-" = 0.866 q_o ?' (1&-)
!
q, sin 5% i
g for station 2- = —_— = 0.5 a, .
and putting
3
Ro = qoa i
R, = 0.866q2 (15)

R2 = Jeb g2 |

we obtain the moments and deflections frow (12) and (13). The moments znd
deflections compared with their trus values are as follows:~

Table IL
r Deflection
a . Moment | True . True
Station - qo'f'z Moment | ST OF + 295* Deflection | X%
EI
0 0s1037 | 01043 | 2% 0. 01076 0.0103 | balifh
1 0,0898 | C.088 | 2.% 0.00932 0.00893 | Lalift
2 O. ()54 8 O- 0506 2. 270 00 005 38 O. 0051 5 L}-- Lﬁﬂ

It is seen from this table that the error in the deflsctions is approxi-
mately twice that in the moments (or s¥resses).

3 Plate examples

Zed 1st plate example

We shall next consider two plate examples for which the theoretical solu-
tions ~ obtained by a series method - are known. Consider first the problem
of the square plate clamped slong 211 four edges. By taking a square plate
we take meximum adventage of symmetry.

[Figh
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With eight-fold symmetry as shown in Fig.3 it is necessary only to
consider the three stations 0, 1 and 6 to cbtain the solution for the whole
plate for a constant loading.

From the standard difference formula that gives the reaction at any
station in terms of the deflsctions of the group of surrcunding stations we
have, for the central station O,

R b 8 12
o - 20 8 2\ o 6)
Y W Z“’r* r (4
r=1 r=5 r=9
wherea Wr = deflection at station =x
and D = plate stiffness.

By using the symmetrical properties we reduce this to the formula

R0=f§(20w9~32w1+8w6). 3
. D
Simijarly Ry = ?(—BWO + 26 w, - 16 wg) . (47)
end B, = 2 (2w -16w, + 24 w)

6 az o 3 6 ' A

Deflections in terms of loads are found by solving (17) to give:



s
n

2
=~ (0.1295 Ry + 0.225 Ry + 0,107 Rg) 3

o}
9.2 5
Wy = <3 (0.0564 R, + 0.163 Ry + 0.0901 Ry) > (18)
a2
wg = = (0.0269 R, + 0.0895 Ry + 0.0929 R¢) o -

Por a constant loading q per unit area

2

RO = R1 = RG = qa (19)
al*' h
so that W (i—) (0.4615)
o D
g
w = (D>(0-3095) > (20)
w6 o= (E%" (0-2093) - .,
The bending moment per wnit width M, at the centre of the plate is
(tald-ng ¥y = 003)
o= 2 (14 v) 20w, - W)
o a.2 . 1 [+
= 0,025 qe? (21)

(where & = 4a).

The true value of the bepding moment as given in Table 30 of Timoshenko'!s
"Theory of Flates and Shells"’ is 0,0233 g2 and therefore the valus above
obtained is some 5% too large.

Comparing the central deflection 'v'rg with the true deflection we find a

much greater discrepancy - 0.0197 q_&""/Eh as ageinst the true wvalue of
0. 0138 q&}"'/Ehj - and therefore an excess error of 42.Hh.

The central bending moment is thus obtained witn much greater accuracy
than the central deflection. The bending moment across a gice at its mid-
point is, however, not nearly so accurate as that at the plate centre. It is
given by

2 oow = 0.0387 q€° (22)

M =
a1

mid-side

compared with the correct value quoted by Timoshenke of 0.,0513 q62. The error
is therefore some 2%% on the small side.
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It is easy to explain the relative magnitudes of these errors. The
reason why the central deflection is too large is that too little account
is taken by the difference methcd of the clamping effect at the sides of the
plate. It tried, so to speak, to satisfy the clamping cordition by the cnly means
available which .s, in Fig.4 for esemple, to make the deflection at station 1!
outside the plate equal to that at station 1 inside the plate. But this still
leaves the plate simply supported at station 1! and no account is taken of
the fact that the slope at 1' is equal and opposite to that at 1. The result
is that the full c.amping effect is not obtained with the natural consequence
of an excessive deflection at the plate centre.

That the central bending moment is so near correct is due to the mutually
cancelling effects of ihe central deflection being too large and the clamping
momenls being too small. As the nurber of stations used is increased, thas
error rapidly decreuses since the closer stations 1 and 1! are to each other
the nearer is a true clemping effect achieved.

2.2 2nd plate example - four sides simply supported

In the second plate exanple the four sides of the square plate are
assuned simply-supported. The procedure is the same as for she first example
except that deflections at stations 1 and 4! (Figel) are now equal but
opposite in sign. It is fourd that

w o= 0,044 qf/ER

Q

(23)

e

as against w {true) = 0,043 qt.l“/Eh.3 ’

the ervor being less :inan 1% on the small side.

The bending moment this time is not gquite so accurate as the deflection,
having a value

Mo = 0., 0457 qaz

(24)
as against M (true) = 0.0479 q_az,

an errcr of 47% on the small side,

That the error is not due to loss of accuracy caused by aeriving the
moments from the deflsctions by a process of differentiation, is shown by
the fact that it is jossible (in this symmetrical example) to derive the
bending moment at the plate centre lirectly from the loading and without
reference to she deflections. This in fact is the methed used by Timoshenke
in working out this very exomple* by finite differences. His numerical
solution agrees exactly with that giver above. The procedure depends on
wrating the eguation comnecting the deflections with the loading in terms of
a quantity M defined by the relation

(Mx + I )

¥ = —Trmr

2 2
i

0

* Tlefe3 Chap.V Section 36.



It is then possible to write the standard equation

d.h'w BL"W al"w 1 \
)++ )++ 2 58 < § (26,
ax &y ax oy
in the form of two separate equations
-6—2% + —a-lé&- = ¢ (27a)
ax” Ay
2 2
AW dW 1L
TEYZ S p¢ (27b)
x93y

Thus M ocan be derived in terms of g without proceeding via the
deflections. Errors in expressing moments in terws of deflections do not
therefore arise,

L Conclusions

Enough has peen said, one would suppose, to prove that bending moments
{and hence stresses) obtained by the method of ref.4 are not likely to be in
general lese accurate than the deflections. Indeed in many practical cases the
reverae is true.
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