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SUMMARY.

The design of reinfcreed carcular holes in an infimite sheet is
consider=d theoretically. The stress system in the main body of the sheet
is assumed to be one in which the principal stresses sre in the ratioc 1 ;-1
(i.e, shear), 1:0 (i.e. tension), 1:1 or 1: 3.

The reinforcement may vary round the hole and families of such
reinforcements with constant tctal weight are considered: the peak stresses
1n the sheet are evalusted so that optimum weight-strength designs are
determined,
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4 Introduction

When a sheet has a reinforced hole there will usually be a perturba-
tion of the general stress pattern in the vieimaty of the hole and a con-
sequent weakening of the stiucture due to stress concentrations, It has
been shown in a previous paper1 by the writer that the general stress
pattern will remain unaltered in the region of the reinforced hole if the
shape of the hole as well as the distribution of reinforcing material is
suitably chosen, Such holeg are called Neutral Holes, Frequently, however,
engineering consiaeraiions pre-determine a circular shape for the hole, in
which event there will generally be stress concentrations, The problem now
is tc¢ determne what distribution of reinforcing material will produce the
least stress concentrations, and if this optimum distribution is tuo heavy,
what then is the optimum distribution for reinforcements of a given smaller
total weight,

1.1 Assumpticns

The following assumptions are made:
(1) stress-strain relations are linear,
(ii) buckling does not take place,
(iii) ravet flexability is negligible,

{iv) the bending stiffness of the reinforcing member is negligible
compared with its tensile stiffness.

Assumptions (1) to (iii) are standard practice and assumption (iv) has been
shown to be justifisble by the author? and by Reissner?,

2 List of Symbols

r,d = polar co-ordinates

e = Alry stress funetion

R = radius of hole

t = thickrecs of sheet

A = cross-sectional area of reinforcement

Tas O = direct stresses in the sheet

T = shear stress in the sheet

S = octahedral stress concentration factor

U . = %? x elastic energy of distortion per unit area
W = weight of reivforcement/weight of sheet removed
v = Poissons ratio (taken as % in the mumerical calculations)
o B,y,0,6 = perturbation stress coefficients
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Ashyshg = ocoefficisnts introduced in equation (34)

3
c, O = constants
3 The reinforced circular hole
If the stress function in the sheet is ¢ -t can be shown' that at the
boundary of the reinforced hole, where r =R,
¢ = 0 (1)
and the seotion area of the reinforcement is given by
)
r
2 (2)

)
T

The method o7 solution is an inverse one, A strsas function will be
chosen which satisfies equation (1), the stress conditions at infinity and
the equation of sompatibility (V¢ = 0), and which gives rise to perturbation
stresses round the hole, The number of independent perturbation stress systems
will usually be restricted to two and their magnitudes will be determined by
arbitrary coefficients, Substitution of the stress Punction in eguation (2)
gives the corresponding section area of the reinforcement as a function of &
and the two arbitrary coeffiocients. The weight-strength characteristics of
different reinforcements may now be considered by varying the arbitrary
coefficients, In view of the two-dimensional character of the stresses it is
more realistic to base the stress concentration factor on the octahedral shear
stress’ rather than the greater of the two principel stresses, This "Octahedral
stress concentration factor® is then given by

U .
3 = ﬁEEEEEEE_- (3)
y reference
where
2 2 2
U = 0, +053~0,0,+3%5. (&)

The weight of the reinforcement will be exp.ressed in terms of the weight of
sheet removed, 1l.e,

3 ™
W = T A de
! (5)
=2 (@ mean
/



3,1 Uniform stress in all directions

This is a trivial case since, from considerations of symmetry, the
optimum reinforcement will not vary with 0 and accordingly only one
perturbation stress system is possible, The appropriate stress function
satisfying equation (1) and the conditions at infimity is given by

$ = £ - R% + 2a B° log (r/R) (6)

whers the log term gives rise to perturbation stresses and « is an arbi-
trary coefficient.,

Substituting equetion (6) in equation (2) gaves

A 1+ a
Rt = 1T -v=-a(i+v) (7)

so that from equation (5)

2{1
v 1 - v(-+af3(f-2+ v) °© (8)

The octahedral stress concentration factor is found from equations (3) and

()2
8 = (1+ 3«2)% . (9)

The minimum value of S occurs when @ 18 zZero givaing a value of

W of (T%—v-) which corresponds to the special case of a neutral hole,

For other values of W it 1s founi that

o« [ i T (o

which has becn plotted in Figure 2,

It will be noted for example that if W is to be limited to unity
the value of S5 is 1.2.

3.2 Principal stresses in the ratio 2 31

Such a stress system ocours in a thin-walled cylinder under internal
pressure, The appropriate stress function is given by

L
$ = r2 (3+coa 20) - 5R2 - UfRz aos 20 - E}_“{__cgs__Eg + 2«(1512 log (r/R)

i veenes(11)

The first term in equation (11) satisfies the conditions at infinity
and the last three terms give rise to perturbation stresses. In order to
satisfy equation (1) 1t will be seen that
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@+ 8 = 1 (12)
so that these perturbation stress systems are not independent,

Substituting equations (11) and (12) in equation (2) amd taking v
equal to % gives

A 333+ + (1+B) cos 26} (13)
Rt =~ 2 {3 -2y + (1-58) cos 26] °

Now A is esserntially positive everywhere and this fact limits the
possible values of B amd ¥ to a region in the (B,y) plane bounded by the
lines

34y (1+8)
and (14)

5 -2y + (1-58)

n
o

n
o

3,219 The stress concentration factor S

From equation (&)

3T = 3034x%) 4 12(148)% & 6(1+ 28y - B) cos 20 - (114268~ ) ons” 20
veeees{15)
so that
3 + 138% + 4(4+ 3By -28) 1
¥u = 2 (16)
or 3(3+ 72) +12(1+ 5)2 + a4 +2P’Y-ﬁ)2
11 + 26p - B

o

whichever 18 the greater.

Furthermore,
U = 48,
L]
80 that
U
max
| — 1
3 18 (17)

Contours of S as a function of $ and +y have been drawn in Figure 3.

3.22 The weight of reinforcement W

Substituting equation (13) in equation (5) gives

3(1+8) 9(68+ By ~v)
Vo TR U VIGea - G E - (18)
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Contours of W as a function of p amd ¥y have been drawn in Figure 3,

3.23 The optimum W-S relationship

The optimum W-S relationship can be regarded as occurrang when W
is least for a given S or when S is least for a given W. It oceurs
in the (B,y) plane where the W-contours and the S~contours are tangential,
i.e. along the broken line in Figure 3., This optumm W-3 reletionship
has been plotted in Figure 4, and the correspording values of f and ¥y
in Figure 5.

3.3 Pure shear

The appropriate stress function is given by

) 2
¢ = r® cos 26 - aR> cos 20 - BR”cos 20 | $R6 cos 60 (- R (19)
2 LT 6
where
a+p = 1, (20)

The first term in equation (19) satisfies the conditions at infinity
and the other terms give rise to perturbation stresses, Perturbation streas
sysiems varying as co8 38, cos 48 and cos 56 will not ocour because of
considerations of symmetry.

Substituting equations (19) and (20) in equation (2) and simplifying
gives

A 3(1 «+ B -8+ 2& cos 4B) (21)

Rt T 2(1- 58+ 17e~ 346 cos 4B) *

The fact that A is essentially positive everywhere limits the
possible values of B and & to a region in the (B,e) plane bounded by
the lines

1+B~e8+26 = O
and (22)

1-58+ 176+ 3ke = O

%231 The stress concentration factor S

From equation (i)

T = o, +o cos® 20 + e, costtoa 4 o3 c0s®20 )
where o, = 12(1+8 - 36)°
o, = -1 -268 + 8% + 3908 + 1148e + 225e% [ (23)
o, = -328¢ + 4OBe - 600e”
¢z = 40082 A
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so that

1 -
zUmax CO w
cr Oy *+ 8y * 021—03 [ (24)
3 2
c,0 2¢ 2¢ 2c ——
172 2 ( 1 2 ) J 2
or ¢_ - + + - (e, = 3c.0;)
= 2
° F3 27,27 V3 27 2 )
3 3
whichever is the greatest,
Furthermore,
4] = 12
so that -
Umax
S = —:'I*é'-' . (25)

Contours of o as a function of B and & bhave been drawn in Figure 6,

2,32 The weight of reinforcement W

Substituting equation (21) in equation (5) gaves

18(3 + 28)
v o= _%+ 17 {3(1~5B+51+a)(1-5ﬁ-178)} (26)

Contours of W as a function of P and & have been drawn in Figure 6.

%33 The optimum W-§ relationship

The optimmm W-S relationship occurs in *he (B,e) plans where the W-
contours and the S-contours are tangential, j.e. along the broken line in
Figure 6, %his optimum W-f' relationship has been plotted in Figure 7, and
the corresponding values of £ and £ in Figure 8.

3.4 Uniform stress in one direction

The analysis for this problem falls naturally into two sections. The
first section treats the oase when the stress in the reinforcement does not

change sign with 6. The second section treats the more important case when

the stress in the reinforcement changes sign with 0,

The first case

The first case is shown to be an inefficient way of reinforcing the
sheet, and only the bare results of the analysis are given:

The appropriate stress function is given by

¢

i

)
:\:‘2(1 +cos 20) - R - oR? cos 26 - w + 2482 log (v/R) (27)

r
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where

a+p = 1. (28)

Substitution into equation (2) gives

A 3§14y + (1 +8) cos 20} (29)

Rt © 2] -2v+(1-5B) cos 28) °

The possible values of B and y are limited to a region in the
(B8,y) plane bounded by the lines

Bwy = O:}
5 - 2y = O, (3c)
2-2¢y - 5B = O,

The second case

The appropriate stress function is now given by

N
4 = T (1l+cos 20) - R* - aB> cos 26 - —B—R—-—‘—’-‘zﬁ”-ﬁ- + 2YB% log (x/R)

T

2
+ 53400543 -‘-Ié--i:)

48 4808 (51)
where
a + B = 1 . (32)
Now adjacent to the relnforcement
2 3
%0‘6 = 1 -y + 70+ (1-38) cos 20 - 140 cos”™ 20
and 4 (33)
%c‘r = 1+y = 8+ (1+B) cos 26 + 28 cos® 26
g

and as we have stipulated a change of sign in the stress in the reinforce-
meat as O varies the expressions sbove must also change sign at the same
value of ©., The expressions in equation (33) must therefore have a common
factor and we can write



1 =+ 78 + (1-3B) cos 20 -~ 145 cos® 20 & —14b (M +c0820) (h,,+00528), ww
and (34)

1+ 9y~ 8 + (1+B) cos 20 + 2B cos> 20 = 25 (?~1+00526)(?\3+oos26), se.y.j

By comparing the coefficients of the different powers of cos 20 it is
possible to solve these equations to give 6, M5 M, and A; in terms of B

2
and v ’

s . (248)(2B+ By -y) h
- 2 2 !
(h+3)" - 2(2+8)

A = 4L + 3Y
v+ (),
r. (35)
n o= Y(1+3v) - (148)(2+ 38)
2 7 7(28+ By-v) !

N . YQe) +2 -3 -8
2B+ By =¥y

LY
I

/
Substituting equations (31), (32) and (35) in equation (2) gives

A - 3(13 + cos 20)

Rt T 2h, + A, + 22 cos 20 * (36)

The possible values of B and y are limited to regions in the (B,y)
plane bounded by the curves:

13i1 = G,

i
o
"

11-1 = 0,

3.41 The stress concentration factor 8

From equation (4}

- 10 -



-

%UR = Co + 01 cos 20 + 02 0032 20 + C»3 0053 20 + G}+ cos}"' 28
where
2 2 2
CQ = 13 + 248 + 128" + 3 + 68 - 2yb ' 578
.
01 = 2«28 + 1028 + 128y + 42P5 { (38)
G, = - 11 - 268 + B° - 125 + 4Byb - 3652
Cj = - 1086 + 12B8
2
C = ) K
L 3
5o that
\
F Uy = G+ Cp + 0 + [0)+0C4]
or
$(e,) > (39)
where
G_1 + 202 coa 20 + 5(_"3 cos2 26 + ).,.G&_ 0033 28 = 0,

'
whichever ig the greater,

Furthermore,

so that

g
ol

S = £ (u . (40)

max

Contours of 5 as a function of B and 4 have been drawn in
Figure 9,

3.42 The weight of reinlorcement W

Substituting equation (36) in equation (5) gives

63 "}\.3 - 7\.2l

-2
7T VIRT R, + A, - 22)(21 %

o+ X5 ¥ 22)] (41)

Contours of W as a function of B amd y have been drawn in Figure 9,

-1 -



3.43 The optimum W-S relationship

The cptimum W-S relationship occurs in the (B,y) plane where the W-
contours and the S-contours are tangential, i,e., along the broken line in
Figure 9, This optimum W-S relationship has been plotted in Figure 10, and
the correspording values of B and ¥ in Figure 11.

4 Examples and Discussion

L.1 Principal stregses in the ratio 2: 1

Suppose that W is to be limited +to a valus of 0,5; what distribution of
reinforeing material then gives the lowest value of S%

From Figures 4 and 5 the lowest value of 8 is 1.6 and it cocurs when
B = -0.1
¥y = -1.8
whence from equation (13):

A 1.2 + 0.9 cos 28
Rt holt + cos 26

which has been plotted in Figure 12.

It is interesting to note that if W= 1.1 (8 = 1.42) the optimum
distribution of reinforcing material is independent of 8, PFor values of W
greater than 1,1 the optimum distribution of material is such that the maxdimum
reinforcement occurs at the points where the reinforocement line is normal to
the direction of the greater applied stress, This, at first sight anomalcus
result, is due primarily to the effect of Poisson's ratio on the strains in the
sheet; a similar result occurs in the optimum distribution for the elliptical
neutral holel, Ircreasing the value of W above 1.1 does not however lower
the value of S significantly, as can be seen from Figure 4.,

4,2 Pure shear
(1) Wnat reinforcement g.ves the lowest pussible value of 89

From Figures 7 and 8 the lowest possible value of S is 1,17 ard it
occurs when

W = 0,566
e = 0O
whence
A

and it will be noted that this optimum distribution is independent of €

- 12 -



With this optimum reinforcement the peak octahedral shear stress has
a constant value around the edge of the reinforcement.

(i1) If S is to be limited to a value of 1,5, how should the reinforcing
material pe distributed for least weight?

From Figures 7 and 8 the least value of W is 0,20 which occurs
when

e = 0.03
B = -0,66

and the variation of reinforcing material is found from equation (21):

A 5.00 + cos 48
w7 = 0-0876 (4. 55 - oos 4O

whish has been plotted in Figure 13.

4,3 Simple tension

From Pigure 9 it will be seen that the permissible region in the éﬁ,y)
plane has a "waist" which vanishes at the point B = 0,414, v = -0,586,
corresponding to a constant reinforcement with W = 0,57. In this waist,
say from W = Q.4 to 0.65, the range of possible distributions of reinforce-
ment is therefore somewhat limited., This is a fault of the method of
analysis; by taking another term in the stress function of eguation (31) it
would be possible to arrive at more efficient reinforcements in this region,

If W= 0,76 (S = 1.54) the optimum distribution of reinforcing
material is independent of 6, For values of W greater than 0,76 tne
optimum distribution 1s such that the maximum reinforcement occurs at the
points where the reinforcement line is normal to the direction of the
applied stress., The reason for this is identical with that given in
paI‘a. 14'-1'

(i) As a first example consider the optimm distrabution for W = 0.3,
Note that from FPigure 10 we should have to take W = 0.5 if the reinforce-
ment did not vary with 6 +to get as low a value of 8. From Figure 11
we fand

B = ~0.49
'sr = —0, 65
whence, from equation (35)
?\.2 = e 31
7\3 = +4e 57

s0 that from equation (36}

A L, 57 + cos 20
= 0136 3,90 - cos 26)

Rt
which has been plotted in Figure 1i4.
- 43 -



(i1) If it is necessary to reduce S to a value of 1.k, say, we should have
to take W = 2,0 and, from Figure 11,

ﬂ = -002)4-
vy = ~0J5h
g0 thai
)l-2 = +2-1+0
7\.5 = "'1008

whence, from egaation (36),

A 10,8 - cos 29
Rt 0. 136 ( 1.8 + cos 26)

which ras been plotied in Figure 15.
5 Conclusions

The optiuum weight-strength design of reinforced circular holes in an
inf2nite sheet is comsidered theoretiocally. The stress system in the main
body of the sheet is assumed to be one in which the principal stresses are
in the ratio 41:-1, 1:0, 1:1 or 1: 4. The method of solution is an
inverse one; a stress function is chosen which satisfies the equation of
compatibility and the siress conditions at infinity, and which gives rise to
a number of arbitrary perturbation stress systems round the hole, The section
ares of the reinforcement is then determined in terms of these arbitrary
perturbation stress systems, The weight-strength characteristics of different
reinforcements is then investigated by wvarying the perturbation siress systems,

It is shown that (apart from the trivial case of the % :1 stress field)
for a given total weight of reinforcement the stress concentration in the
shee* may be reduced by suitably varying the reinforcement around the hole.

The reduction in stress concentration is greatest when the weigh* of reinforce-
ment is smail, For the 1 :0 and 1: % stross fields there xs a reinforcement
whach gives least stress concentrations when it does not vary arcund the hole;
for reinforcements with a greater total weight the optimmum variation is then
such that the maximum reinforcement occurs at the points where the reinforce-
ment line is normal to the direction of the greater applied stress.

-4 -
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