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RCYAL AJRCRAFT 233!ABISS=T 
Optmum Designs for Reinforced Circular Holes 

E. H. Mansfield, M.A. 

The design of reufcrcsd cu.-cu1a.r holes in an infinxtz sheet is 
considered theoretually. The stress system in the main bcdy of the sheet 
is assumed to be one in which the prrncipal stresses are zn the ratio 1 :-I 
(Lc. shear), 1 :0 (i.e. tenaon), 1 :I or 1: &. 

The reinforcemad may vary round the hole and families of such 
re~nforoem~nts with constant tctal weight are considered: the peak stresses 
IA the sheet are evaluated so that optimum weight-strength desxgns are 
deterrmnd. 
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1 @mzd.uction 

When a sheet has a reinforced hole there will usually be a perturba- 
tion of the general stress pattern in the vlcirsLtJr 3f the hole and a con- 
sequent weakenmg of the structure due to stress concentrations. It has 
been shuwn in a previous paper1 by the writer that the general stress 
pattern will remain unaltered in the region of the remforced hole if the 
shape of the hole ab well as :he distrzbution of reiriforoing m&rid iS 
suitably chosen. Such holes are called Neutral Holes, Frequently, however, 
mgineering con&aerations pre-determine a circulz~ shape for the hole, in 
whmh event there will generally be stress concentrations. The problem now 
is tc detemne what distribution of remforcing material will produce the 
least stress concentrations, and. if this optimum distribution is tuo heavy, 
what then is the optimum distribution for reinforcements of a given Smaller 
total weight. 

1.1 Assumpticns 

The follcwing assumptxons are ma&: 

(i) stress-strain relations are linear, 

(ii) buckling does not take plaoe, 

(iii) rivet flexibility is negligible, 

(iv) the bending stiffness of the relnforclng member is negligible 
compared with its tensde stiffness. 

lissumptions (i) to (iii) are standard praotioe and assumption (iv) has been 
shown to be justifiable by the author1 and by Reissner2. 

2 List of Symbols 

r,@ = polar co-ordlnstes 

ti = Airy stress function 

R = radius of hole 

t = thictieca of sheet 

A = cross-sectional area of reinforcement 

%70e I direct stresses in the sheet 

se = shear stress in the sheet 

s = octahedral stress concentration factor 

u. = 
6G -i- x elastic energy of distortion per unit area 

w E weight of ralnforcement/weight of sheet removed 

L' = Poissons ratio (taken as 3 in the ntuxerioal calculations) 

a, @,y,6,s = perturbatxon stress coefficients 
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h,‘h& = coefficients introduced in equation (34) 

C, c = constants 

3 The reinforced circular hole 

If the stress function in the sheet 
boundary of the reinforced hole, where r 5 # It oan be shown' that at the I 

, 

ad the seotion area of the reinforcement is given by 

(1) 

The method o?' solution is an inverse one. A stress fun&ion till be 
ohosen which satisfies equation (I), the stress coditione at infinity and 
the equation of oompatibiliky (V$d = 0), ad which gives rise to perturbation 
stresses roud the hole. The mber of independent perturbation stress syStemi 
will usually be restricted to two and their magnitudes will be determined by 
arbitrary coefficients. Substitution of the stress function in equation (2) 
gives the dorresponding section area of the reinforcement as a function of 8 
and the two arbitrary coefficients. The weight-strength aharaoteristics of 
different reinforcements may now be considered by varying the arbitrary 
ooefflcients. In view of the two-dimensional character of the stresses it is 
more r alistic 
stress '3 

to base the stress concentration factor on the octahedral shear 
rather than the greater of the two principal stresses. This "Octahedral 

stress concentration factor" is then given by 

i 
u 

s = -- 
1, ‘reference 

(3) 

where 

U 2 i: uf+u - Qr Qe + 3 7 2 
8 re' (4) 

The weight of the reinforoement will be exp,%ssed in terms of the weight of 
sheet removed, i.e. 

Ad0 

(5) 
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3.1 __ Uniform stress in all directions 

This is a trivial case since, from considerations of symmstry, the 
optimum rextiorcement will not vary with 6 and accordingly Only one 
perturbation stress system is possible. The appropriate stress function 
satlsfylng equation (1) an3 the conditions at infxnlty is givenby 

$ re r2- X2 + 2a R2 log (r/R) (6) 

where the log term gives rise to perturbation stresses ad a is an arbl- 
trary coefficient. 

Substituting equPtlon (6) in equation (2) gives 

A l+a 
Fix = 1 - Y - a(1+ v) 

so that Prom equation (5) 

(7) 

(8) 

The octahedral stress concentration factor is found from equations (3) and. 
(4) : 

s = (I + 32>* , (9) 

The minunum value of S OGOLU-s when a 1s eero glvug a value of 

which corresponds to the special case of a neutral hole. 

For other values of W it 1s fo-xml that 

s = p+3[$++-ql” (10) 

which has been plotted in Figure 2. 

It will be noted for example that if W is to be limited to unity 
the value of S is 1.2. 

3.2 Principal stresses in the ratio 2 :I 

Such a stress system occurs in a thin-walled cylinder tier internal 
pressure. The appropriate stress function is g-rven by 

9i = r 2 (3 +oos 2e) - 3R2 - aR2 03s 28 - BR4 00s 28 
2 + 2yR2 log (r/R) 

r 
. . . ...(n) 

The fxrst term in equation (11) satisfies the conditions at infinity 
arid the &x3t three terms give rise to perturbation stresses. In order to 
satisfy equation (I) Itwill be seen that 
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a+p = 1 (12) 

so that these perturbation stress systems are not irdeperdsnt. 

Substituting equations (11) and (12) in equation (2) ani taking Y 
equal to 3 gives 

A J 13 + Y + (I+ e) 00s 2el 
zi = 2 t3 - 2y t (I-58) CO8 2ej- * 

Now A is csser.tially positive everywhez and this fact limits the 
possible values of B ard y to a region in the @,y) plane bounded by the 
lines 

3+y+(ltP) E 0 

and (14) 

3 - 2Y + (I-!%) = 0 

3.21 The stress concentration factor S 

From equation (4) 

& UR = 3(3+y2) + 12(1tP)2 t 6(1t2pY- B) 00s 26 - (11+26&@2) cos2 29 

,...#.(?5) 

so that 

3y2 + 1313~ + 4(4+3&-28) 
-I 

au,, = (161 

3(3+y2) + 12(1+P)2 + 9(1t2py- f3J2 
II + 260 - 13~ 

whiohever IS the greater. 

Furthermore, 

so that 

u 03 = G8, 
u s = r =. 48 (17) 

Contours of S as a function of $ and y have been draw-n in Figure 3. 

3.22 The weight of reitioroement W 

Substituting equation (13) in equation (5) gives 

w = p+- 9(6P+Pu-y) 
(I-58) q(2-2y + 5P)(4 - 2y - 5P)3 * (18) 
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Contours of W as a. function of @ an3 y have been drawn in Figure 3. 

3.23 The optjmm W-S relationship 

The optimum W-S relationship can be regarded as occurrmg when W 
is least for a given S or when S is least for a given W. It occurs 
xn the (P,y) plane where the W-contours ati the S-contours are tangential, 
i.e. along the broken line in Figure 3. This optmum W-S relationship 
has been plotted in Figure 4, and the correspodmg values of p and y 
in Figure 5. 

3.3 Pure shear 

The appropriate stress function is given by 

16 r2 co3 28 a$ 26 BR4 cos 28 = - 00s - 2 tER 6 co568 

r 

where 

atp = I. (20) 

The first term in equation (19) satisfies the ooditions at infinity 
and the other term give rise to perturbation sb?SSeS. Perturbation stress 
systems vdrymg as co9 30, cos &e ary3. cos gt? will not OCCUT because of 
considerations of synmet.ry. 

Substituting equations (19) an3 (20) in equation (2) and Simplifying 
gives 

(21) 

The fact that A is essentially positive everywhere lizits the 
possible values of 6 and. E to a region in the (P,E) plane bourded by 
the lines 

and 

i+p-e+2c i: 0 

1 -58+17e+34e = 0 

(22) 

3.31 The stress concentratxon factor S 

From equation (4) 

$ s = co t c, cos2 28 t c2 4 
~05 28 + c 

3 
c0s62e 

) 
0 

0 
= 12(1 + I3 - 3E)* 

c, = -11 - 268 + 13~ + 390~ + iii+.i3~ + 2~58~ 
(23) 

O2 = -328~ + 4C& - 600~~ 
/ 

c3 
= ltooe2 / 
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so that 

or co G- 13 30 c 1 

whichever is the greatest. 

Furthermom, 

so that 

(25) 

Contours of 3 as a function of p and e have been drawn in Figure 6. 

3.32 The weight of reinforcement W 

Substituting equation (21) in equation (5) gzves 

w I -J-+ 18(3+ 20) 
17 17~t(1-5P+5l~)(1-58-17e)] 

Contours of W as a function of @ ad E have been drawn in Figure 6. 

3.33 The optimum W-S relation&i2 

The optimzn W-S relation&ii:! occurs in ?he @,E) plans where the W- 
oontolzs ad the S-contours are tangential, 5.e. along the broken line in 
Figure 6. XES optimum W-F relationship ha.? been plotted in Figure 7, and 
the corresponding values of 13 an3. E in Figure 8. 

3.4 Uniform stress in one direction 

The analysis for this problem falls naturally into Truro seotlons. The 
first section treats the case when the stress in the reinfonement does not 
change sign with 0. The second section treats the mere important case when 
the stress in the reinforcement changes sign with 8. 

The first case 

The first case is shown to be an inefficient way of reinforolng the 
sheet, and only the bare results of the analysis are given: 

The appropriate stress funotion is given by 

# r2(l+oos 20) - R2 - aR2 00s 28 - 
@4 00s 28 

= 
r2 

+ 2uR2 log (r/R) (27) 
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where 

a+@ = I. (28) 

Substitution into equation (2; gives 

A 
x= 

3ll+y+ (1+p) 00s 2el 
2)1-2114%5P) cos 2ej - (29) 

The podsxble values of f3 and y are limited to a region in the 
(p,y) plane bounded by the lines 

B-Y = 0, 1 
5v - 2y= 0, 

2- 2y - 5p= 0. i 

(3Q3c) 

The second case 

The appropriate stress function is now given by 

6 = r2 (l+cos 28) - R2 - aR2 00s 20 - DR4 ;y 2e $ 2YR2 log (r/R) 

2 
+ 6R4cos@ +-" 6 > r4 

. . . . ..(31) 

where 
a+@ = 1. (32) 

Now adjacent to the reinforcement 

$LT e = 1 -y + 76 + (i-3~) cos 28 - 146 ~0s~ 20 
i 

and 

i 

(33) 

&rr = lty- 6 + (i+p) 00s 28 + 2s 00s~ 28 

and as we have stipulated a change of sign in the stress m the remforce- 
med. as 0 varies the expressxons above must also ahange sign at the same 
value sf 8. The expressions in equation (33) must therefore have a ccudnon 
factor and we 13811 write 
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1 - + y 76 + (I-3p) CO8 28 - 1Ii.6 cos2 28 Ez -I@ (h,+COS2e)(~2+C0s2e), 

and 

I +y- 6 + (I+ p) 008 28 t 26 ~0s~ 28 = 2s (h,t0082e)(~3+00s2e), 

it is By comparing the coeffioients of the different powers of co8 28 
possible to solve these equations to give 
and y: 

S, A,, A2 and A3 interms of p 

6 ( B)(2P+Pf-r) 

s (4:3d2 - :(2++)2 ' 

1 

A, = 
( > 
4 + 3Y 

,4+@ ’ 

h2 = 
7@Ptl%-Y) ' 1 

Y(l+3Y) - (1+!3)/2+ 3psp) 

“1 

i 
(34 

SaY. 

(35) 

x3 = &+Ju)t2-33-82. 
28+&-y 

Substituting equations (31), (32) and (35) in equation (2) gives 

A - 3(h + cm 28) 
iz= 21x2 + h3 t 22 008 28 l 

(36) 

The possible values of B and Y are limited to regions xn the (a,~) 
plane bounded by the curves: 

Xl 
-1 = 0. 

1 

3.41 The stress concentration factor S 

From equation (4) 
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-tU 4R = co + c, cos 28 + (I2 cos2 28 + c3 oos3 26 + c4 ..s4 28 

where 

% = 13 + 2443 + 12f32 + a2 + 66 - 2.44 57s2 

c, = 2 - 2@ + 102s + 12py + l+2P6 

c2 = -11 - 26p + p2 - 126 + l&s - 36A2 

o3 = - 1086 + 12ps 

50 that 

@J-z co+c2+c4+ p,+c31 

> 
(38) 

where 

c, + 2c2 cos 28 + 3 
4 

~0s~ 28 + q 00s~ 20 = 0, 
! 

whichever is the greater. 

Furthermore, 
u = 16 a 

so that 

(39) 

(4-o) 

Contours of S as a functmn of p and y have been drawn in 
Figure 9. 

3.42 The weight of reznforcement W 

Substitutmg equation (36) in equation (5) gives 

w = -+,, 
63 IX3 - X21 

$)(21 A2 + A3 - 22)(21 A2 + x3 + 22)( (41) 

Contours of W as a function of 8 and y have been drawn in Figure 9. 
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3.43 The opt&mm W-S relationship 

The optimum W-S relationship occurs m the (P,y) plane where the W- 
contours ad the S-contours are tangential, i.e. along the broken line in 
Figure 9. This o@.m.m~ W-S relationship has been plotted in Figure IO, ani 
the oorrespording values of p an3 y in Rigure 11. 

4 Examples an3 Discussion 

4.1 Principal stresses in the ratio 2: 1 

Suppose that W Ss to be limited to a valxe of 0.5; what distribution of 
reinforclng material then gives the lowest value of ST 

From figures 4 an3 5 the lowest value of S is 1.6 am3 it CXUL‘s when 

P = -0.1 

y = -1.8 

whence from equation (13j: 

A 
Fz= 

1.2 + 0.9 00s 28 
L4 + CO8 28 

which has been plotted in Bigure 12. 

It is interesting to note that if W = 1-l (S = 1.42.) the optimum 
distribution of reinforcrng material is idependent of 8. For values of W 
greater than 1.1 the opt- distribution of material is such that the m 
reinforcement occurs at the points where the reinforoement line is normsl to 
the direction of the greater applied stress. This, at first sight ancmdcus 
result, is due primarily to the effect of Poisson's ratio on the strains in the 
sheet; a similar result occurs in the optimum distribution for the e~iptlCal 
neutral holel. Ir.creasing the value of W above 1.1 does not however lower 
the value of S significantly, as can be seen from Figure 4. 

4.2 Pure shear 

(i) What reinforcement grves the lowest pssible value of S? 

From Fiyres 7 ad 8 the lowest possible value of S is 1.17 ad it 
occurs when 

w i: 0.566 

6 t 0 

B = -0.416 

whence 

A 
Fs= 0.283 

and it will be noted that this optinxm distribution is idependent of 8 . 
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With this optimum reinforcement the peak octahedral shear stress has 
a constant value around the edge of the reinforcement. 

(ii) If S is to be limited to a value of 1.5, how should the reinforcing 
mate-ial be diatrlbuted for least weight? 

From Figures 7 and 8 the least value of W is 0.20 which occurs 
when 

E = 0.031 

p = -0.66 

and the variation of reinforcing material 1s found from equation (21): 

A - = 0.0876 Rt 

whish has been plotted in Figxe 13. 

4.3 Simple tension 

From Figure 9 it wiXlbe seen that the permissible region in the @,y) 
plane has a "waist" wluch vanishes at the point p = -0.414, y = -0.58 6 , 
corresponding to a constant reinforcement with W = 0.57. In this waist, 
say from W = 0.4 to 0.65, the range of possible distributions of reinforce- 
ment is therefore somewhat Xmited. This is a fault of the method of 
analysis; by takxng another term In the stress function of equation (31) it 
would be possible to arrive at nore efficient reinforcements in this region. 

If W = 0.76 (S = 1.54) the optimum distribution of reinforcing 
mterial is independent of 8. For values of w greater than 0.76 tm 
optimum distribution 1s such that the maximum reinforcement occurs at the 
points where the reinforcement line is normal to the direction of the 
applied stress. The reason for this is identical with that given in 
para. 4.1. 

(i) As a first example consider the optimum distribution for W = 0.3. 
Note that from Figure IO we should. have to take W = 0.5 if the reinforce- 
ment did not vary with 8 to get as low a value of S. From Figure 11 
we find 

P = -0.49 

v= -0.65 

whence, from equation (35) 

h2 = -4.31 

h3 = &57 

so that from equation (36) 

A - = 0.136 
Rt 

which has been plotted II). Figure 14. 
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(ii) If it is neceseary to rduce s to a value of 1.4, say, we should have 
to take N P 2.0 ad, from Figure 11, 

B = -0.24 

Y = -c* 34 

so that 

h2 e +2.40 

‘c3 = -10.8 

whence, from eqation (36), 

which kas been plotted 5n Figure 15. 

5 Conclusions 

The optiLRun weight-strength design of reinforced circular holes in en 
inKn.ite sheet is consxdered theoretioally. The stress system in the main 
body of the sheet is assumed to be one jnwhich the principal stresses are 
in the ratio 1:-l, 1:0, I:1 or I:&. The method of solution is an 
inverse one; a stress functxon is chosenwhioh satisfies the equation of 
compatibility ard the stress conditions at infinity, ad which gives rise to 
a number of arbitrary perturbation stress systems round. the hole. The section 
area of the reinforcement is then detetined. in terms of these arbitrary 
perturbation stress systems. The weight-strength chezacteristios of different 
reinforcements is then investigated by varying the perturbation stress systems. 

It is shown that (apart from the trivial case of tne : :I stress field) 
for a given total we@.t. of reinforcement the stress oonoentration in the 
sheeL may be reduced by suitably varying the reinforoement around the hole. 
The reduction in stress comentration is greatest when the weight of reinfoxce- 
merit is smail. For the I :O Ml I :&stress fields there zs a reinforcement 
whzcb gives least stress concentrations when it does not vary aroud the hole; 
for reinforcements with a seater total weight the opt- variation is then 
sush that the maximum reznforoement oocurs at the points where the reinforce- 
ment line is normal to the direotion of the greater applied stress. -- 
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FIG. 13. OPTIMUM DISTRIBUTION OF A/Rt 
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FlG.14. OPTIMUM DISTRIBUTION OF A/Rt 
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