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SUMMARY

This report considers the torsional wvibrations of thin solid wings
of doubly-symmetrical chordwise section, with linear variation of choxd,
and parabclic variation of thiclmess.

Frequencies of sgymmetrical and anti-symmetrical vabrations are
presented graphically for a range of values of the aspeot ratio and the

taper ratio.
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1 Introduction

Torsional frequencies for cantilever rectangular plates of uniform
thickness have been found by Reissner and Stein!, In this report a
similar method of analysis is used to find the frequencies for a tapered
wing of doubly-symmetrical chordwise section with linear variation of
chord and parabolic variation of thickness. The deflections of the wing
are assumed to vary linearly across the chord. Minimisation of the
potential energy then leads to an ordinary differential equation instead
of the usual partial differential equation of plate theory, Taking a
parabolic variation of thickness makes the solution of the differential
equation tractable. The effect of constraint ageinst axaal warping is
inherently included since the structure is analysed as a plate rather than
as a beam.

The frequencies sc cbtained are compared with the frequencies
obtained on the assumption that there are no constraints to axial
warping, (called here the "St, Venant" method). The deflcction modes
calculated by these two methcds are compared for a particular wing.

2 The Structure and Problems Treated

The structure considered is a thin, elastic, isotropic, solid wing
of tapered thickness and chord as shovn in Pig.l.

In Appendix I the frequency equations are derived for symmetrical
and anti-symmetrical vibration of a wing with rectangular cross section,

In Appendix II 1t is shown that the frequencies for any doubly-
symetrical chordwise sections may be obtained by modifying the para-
meters in the results for the rcctangular cross section.

In Appendix IIT the equations are derived for finding the frequencies
by the "St, Venant" method.

The modes may be readily obtained once the frequencies are known.

3 List of Symbols

g = 6{x}) = angular deflection
m = clrecular frequency of torsional vibration
x = distance along wing from root
= semi~span
Co = root chord
ct = tip chord )
v = Poisson's ratio .
A = ft 2 1;” = aspect ratio parameter
“St.Vt = frequency according to "St. Venant" methed for tapered wings

T = frequency according to "St. Venant" method for an untapered
*fo wing with thickness and chord equal to those at the root of
tapered wing (see equation (10) of Appcndix I)

e



k, k, = parameters depending on the chordwise section (see squation
(33) of Appendix II).

Additional symbols used only in the Appendices are given before
Appendix T.

a2

4 Presentation of Results

Figs. 2 and 3 present curves for the fundamental frequencies for
aymeetrical and anti-symmetrical vibration respectively. The frequencies
are expressed in terms of kp US4, v, and are plotted against kqN where

k4 andi kp depend on the shape of the chordwise section. The values of

and k, for some sections are given in Table I below, The range of
k4A covered is 0.5 = 4.0 in the symmetrical cese and 0 - 4.0 in the anti-
symmetrical case. Values taken of the taper ratio ct/og are 0.2, O.4,
0.6, 0.8 and the untapered cass (oy/cg = 1.0) is included from results
obtained by Reissner and Stein! and lansfield?.

In Fig.5, for the purpose of comparison, the frequency is plotted as

a ratio of the fresquency cbtained when axial warping is unconstrained.
The effect of constraint against axial warping 1s to inorease the fre-
quency, and, as is seen from Fig.b, the smaller the value of kA the
greater the inorease in frequency. For the symmetrical case, ag kq\
decreases below 2.0 the increase becomes greater than 10% for all taper
ratios. For the anti-symmetrical case the increase is greater than 10%
when the taper ratio is less than 0.6 and A is small.

In Pig.6 the fundamental symmeirical and anti-symmetrical modes are
given for a wing with a taper ratio of 0.6 and for which IyA is unity.
The modes differ considerably from sach other and from that cobtained when
warping constraint 1s ignored.

' Table I
Chordwise section k,l k2
Rectangular 1 1
Ellipse V2 1
Two parabolic arcs V3 1.0690
| 1.8145 1.1619
v T
013w C/3 5 'e0y33
Dramond v5 1

5 Conclusions
Fundamental frequencies have heen found for the torsional vibrations

of thin, solid wings of doubly-symmetricel chordwise section, linear
variation of chord and parabolisc variation of thickness. The frequencies
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are presented graphically for symmetrical end anti-symmetrical vibration
over a range of values of the aspect ratio and the taper ratic, If axdal
warping constraints are ignored, the torsional frequencies may be con-
siderably under-estimated, especially for the symmetrical case,
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Additional Synbols used in the Appendioces

w = deflection normal to the plans of the wing

D(x,y) = -1-3-1(3‘-&1)2— , the Plexural rigidity of the wing
12 (1=-v7)

t(x,y) = local thickness of wing

E = Young's modulus of elasticity

m(x,y) = mass per unit area ‘

c = chord

T = parameter defining taper (see Fig.1)

differentiation weret. x or x1

= " " 4o time
&e = a small increase in 6(x) which is a function of x
Zy = rd -~ X
84583583 = as defined by equation (%)
PysPpsP3sP) = TOOts of equation (11)
Aysboshsgsh, = constants occurring in equation (12)

Suffices x and y denote differentiation werets x and y



APPENDIX I
Anelysis for a Plase of Varying Thiclmeas

1 Analysis

The structure considered is a thin, elastic, isotropic, solid wing
of varying thickness as shown in Fig.1 and is treated as a plate.

The strain energy of bending, Iy, 18 given by

e +c/2

-

SRRy D(xy) [(nx #7507+ 2(1 - v) Wy = wmyy)] axay (1)
° -¢/2

The wing 1s vibrating torsicnally with saimple harmonic motion, so
that the potential energy due to inertia loading, I, , 1s given by

¢ t¢/2
nw=%// n(x,y) o v &k dy (2)
[} —0/2

where the function w = w(x,y) 1s the maximum deflected shape.

Assuming that the deflection varies linearly across the chord we
have

w = yo(x)

The total potential energy, I, is now given by

n = O+ o,
2 +C/2 '
i %f f [D(x,y) (2 (8")° + 2(1 - v)(6")°F - wx.y) w2y202] dx dy
G —0/2
’ 2
= %/ {9“3(9")2 + 2(1 - v)\a,l(a') ~ Sjwz 62} dx (3)

where with the notation of Ref.1,

+c/2 +c/2 +c/2

8, = ] D(x,y)dy; a3 = f D(x,y)y°dy; S, =] m(x,y)yzdy (%)
=%/ =¢/5 ”0/2
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Equation (17) becomes

2 ., 2 .2
[xﬁ 't - 16 r° ) e']x

Substituting

il J

8=1-4
into the boundary conditions (15), (16), {18), (19) gives

Py
Ag (re) = 0
£

S=1-4

p -1
AS PS (I“ef) = 0

gl

I

’)
5 e

1
-

L

2 .2 Pg
Z{: A Ipg (pg - 1)(pg - 2) - 16 ¥ 2" p_J[(r - 1)¢}
8=1-4

1]

r -2
ZE: Ay vy (py = 1) {{r - 1)e} 8 0

s=1-4

—

1§

(19)

(20}

(21)

(22)

(23)

The condition for a solution of eguations (20)-(23) other than the

vanishing of the constants A1, Az, A3, Ah 1s:-
1 1 1 4
Py C P B P
Py
3 2.2 = - -
(P1 P1 —.163:‘ A P/I)(r)’ """"
r
( 2 _ ) r-1 e
L IR DA™
;

1.3 Derivation of the Frequency Equation for Anti-Symmetrical Vibration

For anti-symmetrical vibration, we have the following conditions at

the root:-
- 10 -
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w(0,y) as before (13)

and

1
(=

WH(OJ-Y) (25)

Proceeding as in Section 1.2 we again cbtain equations (15), (17)
and (18) as three of the boundary conditions, the fourth being

(0], o = © (26)

Substituting

in equation (26) gaves

-2
) hr (e - 0 = o (27)

S=1-4

The other three boundary conditions are the same as (20), (22) and
(23) of the symmetrical case.

For a solution of (20), (22), {23) and (27) other than the vanishing

of the constants Aj, A2, A}’ A4:—
1 1 4 1

P.1(P1"1) pz(Pz"'i) Pj(Pj_‘I) PLI-('PA--")

3 2.2 1P1

I‘- —
(P1 "pal - 16 " A P1)<r> """""""""""""" = 0
Pq

2 r-1

(P1 - P1)(}E?{) """"""""""

- 11 -






APPENDIX IT

Chordwise Sections Other Than Rectangular

Z
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For a tapered wing with a doubly symmetrical chordwise section,

3.9 1
D(0,0) ¢ x h
8y = - /{f<p>z5p2ap
3 & r9 &9
o]
4
a, = D(0,0} T / {f (p)}5 ap . (29)
r 4
Q
and
= 1
m(0,0) < x
S; = 2 1 £ (p) p° ap
3 5 ,5
Y g o
where
y = fpand RIS - 2 (p) (30)

The differential equation (6) becomes
1

1
D(0,0)c? 2 -
—= / (£(2)} s ap(=5T5 ") -2(1-D(0,0)e, [ e s [;7%7 o |

o)

1 .
Eﬁglglig;fi /-f(P) P2 dp w2 8
b o

-—

H

0 (3),

which reduces to

9 7 gt <
x 1 xl 0 2 3]
’ 2 2™ 2 2 2 " 1
— 6" | - 16 X A '*"*"“:l - L X A= ( ) = 0 (32)
l:r9 j 1 [: el 1 kz“’St.vo r5

- 12 -




where

4 1
f (e(2)} ap [ )P a

2
s k2 = . (33)

2
k = 1
2
3[ £(p) ¥ dp
o

1

.
3 ] [f.'(p)]3 p° ap

The parameters k1 and k2 are constant for a given section.

This differentiel equation is the same as the one obtained for the

rectangular chordwise section with A replaced by k,]?t and Wy v by
o

knw .
2 St.Vo

Similarly the boundary conditions can be shown to be the seme after
using this replacement.

The results cbtained for the rectangular section therefore give
results for other sections in terms of k17s. and kz"’st.v instead of
A and w . Q

St.VO

Similarly the results cbtained for the untapered wing of rectangular
chordwise section can be used to cbtain results for sections other than

rectangular.

- 13 -



APPENDIX TIT

St. Venant Frequency for Tapered Wings, Way v
"t

- When axial warping constraints are ignored, (the St. Venant method),
the differential equation for torsional vabratieon is

J.Bl = %(C%% . (3’-!-)

For a thin wing -

+e/,

7 = f n(xy) ¥ ay = S5
+c/,
C = 2(4-v) f‘ D x,y)dy = 2(1-u)a1
_0/2
and equation (343 becomes
S.6 = 2(1- )-i(a 48\ (35)

37 = Y7 3x (™M dx )

For the tapered wing vibrating with simple harmonic motion equation
(35) becomes, on using equations (8) and (10),

R A TR AN
kx5 6"+ 28x, 8' + x'r 8= 0 (26)
1 1 4
St.v
0
A solution of the above differential equation is of the form x1P
where p satasfies the following equation:-
w, 2
StV
22 t
4 p2 + 24 p+ xR ( ) = 0 (37)

Yst, v
Q

-1 -



and the general solution is
6 = Ax™ .y px P2 (38)
where p, and p, are the roots of equation (37).

The boundary conditions are

[8]x1=re 0 (39)

(6" =(zm1)e = © (40)
Substrtuting (38) into (39) and (40) gives

A(r%)P1 " B(m)p2 = 0 (41)

p,~1 2y
A p, [(z-1)e] +Bp, [(r-1)e] = 0 (42)

-1

The frequency equation is the condition for a solution of (1) and
(42) other than the vanishing of the constants A and B, 1.e.

P b
(ve) ! (ve) 2
, ) = 0 (43)
P, - B~
p, [(=-1)e] ' b, [(x-1)e] 2
whach becomes
gqcos y+PpPsiny = O (1)
Where
P, = P+1g
P, = p~iq (45)
and ,
o ot ()
- 15 =
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FIG. 4.

20

var\\\\\\\\
wSt. Vh
Wsey,
16 \\\
| 4 \\\\\\\\
12 \\\\\\\\
10
o) co 04 o6 o8
Ce (TAPER)

Co

FIG4. VARIATION OF THE ST VENANT
FREQUENCY WITH TAPER.



FIG.5@

2O

Kelgpy,

el

l
o2
o
C4| ce
os( co

08
10

15

\
\

——

(T

1
~0QO00
Caopn

40

10

FIGS5@ FUNDAMENTAL FREQUENCIES FOR

20

K, A

30

SYMMETRICAL VIBRATION PLOTTED AS RATIOS
OF THE ‘ST VENANT FREQUENCIES.



F1G.S.(b)

-5

onpN

L0t
ﬁlﬁ
ol

é&wt ;;;

- 00 00

(o] 10 20 30 4-Q
Ki A

FIGS®) FUNDAMENTAL FREQUENCIES FOR
ANT|-SYMMETRICAL VIBRATION PLOTTED AS
RATIOS OF THE ST VENANT FREQUENCIES.



FIG.6.

-0

> &P
(1]
O
o)}
~
~

n
o
~

o8 4
/ /
/7
/,
06 /

Q4 4z /

SYMMETRICAL

7/
oz = ANTI- SYMMETRICAL
S - ST VENANT THEORY
gl / l
" -~
A ”~
o o2 o4 06 oY) {0

FIG6. DEFLECTION MODES FOR A
PARTICULAR WING.









C.P. No. 218

(17.526)
A.R.C. Technical Report

Crown Copyright Reserved

PUBLISHED BY HER MAJESTY'S STATIONERY OFFICE

To be purchased from

York House, Kingsway, LONDON, w.C2, 423 Oxford Street, LONDON, W 1
PO Box 569, LONDON, SE 1
13a Castle Street, EDINBURGH, 2 109 St Mary Street, CARDIFF
39 King Street, MANCHESTER, 2 Tower Lane, BRISTOL, 1
2 Edmund Street, BIRMINGHAM, 3 80 Chichester Street, BELFAST

or from any Bookseller

1955

Price 2s. &€d. net

PRINTED IN GREAT BRITAIN

$.0. Code No. 23-9009-18

C.P. No. 218



