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I Introciuctlon - 

In a ~;.'ressur~sed shell the pressure is resisted by the tensile or 
membrane stiffness of the shell. wall actins alon? or in oombma.t~on with 
the flemal std'fness of the shell wall. If the flexural staffness 18 
net tailed mto play m resxstmg the pressure the oalcuiat~or. of the mem- 
brane stresses depends only on conslderatiom of equilibrmm. If the 
flexural stiffness is called into play an accurate calculation of the 
stremes i3 ir~ractxabie' unless there 1s amal symmetry, ris in the 
spherical shell witn a rairforced mroular openmi: consGiered in Sectmn 3. 

In this report the mJ%mxx on the m?Cbrane and flexural stresses of 
stringers, frams, erd oars and re;nforced openmgs 1s investigated and the 
design of end cap ard spexmgs v&Jch cause no stress ooncentrat~on 1s 
considered. 

2 List of S bols - 

:*- E 

I a 

P 
I 

A 

B 

A" 

!I? 
w 

b 

I s 
h 

a. 

z 

rl 
r n 

I n 

= Poxson's ratio, assumed to be 0.3 

= r&au3 of sphere or cylinder 

= wall &i~KneSS 

= smi-male subtended by circular hole m sphere 

= seti-angle subtended by ooze 

z cross-sectional area of centrally placed r2mforcing 
metier 

= cross-sectional area of eccent:xally placed reu-Zorcmg 
metier 

= value of A a-cpropriato to a neutral hole 

= cross-sectioril area of f'ram 

= fr&ie pitch 

= strmger pitch 

= moment BP inertia of each stringer-cum-adJacent-skin 

= d.mtance from neutral axis G? Is to 1nslde edge of 
strxnger 

= half the shorter axis of a neutral hole 

= dutance from oone apex to centre of neutral hole 

= depth of end cap 

= radms of curvature of reinforcing member normal ta 
shell surface 

= Is u2troduoed after equatxon (39) 

-3- 



P cr 

"$ 

% 

*X 

% 
u ring 

us . 
CT 

x,b 
u 

s,b 

M* 
H 

I hydrostatic pressure in shell. 

z value of p to cause buckling of Inverted em3 caps 

= stress in sphere 

= stress in sphere or hoop stress in oylmders or cones 

= long~tu6inal stress in cylinder 

= stress along generator in cone 

= stress m reinforcing rmg 

= stringer stress 

= longitudinal stress due to bendmg of shell wall 

= stringer stress due to longitudinal bending 

= bending moment in stringer-cum-adjacent-skin 

= horizontal reactlon per unit length between ring and shell 

= load in reinforcmg member 

= norms.1 re.aLtion per unit length between vnndow and 
reinforcing member 

= radial displacement in plane of ciroular ring 

= rotation of cross-section of reinforcement 

= longitudinal axis 

= axis along generator of cone 

= axis normal to cylmder F, (Sect1033 k2), or 
axs normal to Ox and. 1x1 the developed surface of cylin- 

drical shell (Section 4.3) or 
axis normal to plane of shell wall (Section 6) 

= element of area 

= ratio of thickness of cap to thxkness of wall of spherxal 
shell 

= cross-sectional area of strmger + (bt) 

= effective cross-seotzonal area of frame + (wt) 

=x2? 
J-63 

bt $ = w 
Lr ) 2 Is 

EI fL 
2 

= efficiency of eccentrically placed remforomg member 

= (shear stress)/(hoop stress) 
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3 Spherxal Shell 

3.1 Spherical shell with remforceS. c~roular opemng 

Consukr two spherxal shells mth reinforced cuxular openings. The 
window in the first shell 1s flat and that in the secoti has the same 
curvature as the shell. In both cases the functmn of the windows is to 
resist the pressure by their flexural rlgldity and to transmt the result- 
ant pressun by bearug (mthout frxtlon, say) on to the remforcing rmg. 

If the flexural stiffness of the shell wall is neglected the menbrane 
stresses are detemmed by 

ar,d the direct stress m the remforcmg ring 1s given by 

cc. rmg = 
p r2 su-l a cos 6( 

2A 

for the flat window, ad 

d ring = 
p r2 tan a 

2A 

Now the radml dxplaoemr:t m the plane of the ring is given by 

A 
r sin a 

rmg = 
( > 

E c ring 

for the rmg, anil 

A shell = 

(2) 

(3) 

for the adjacent shell, and unless 

A. rmg = 
A 

shell (6) 

there will be an additxonal interaction between ring aCi shell the magnitude 
of vvkch will depend on the flexural stiffness of the shell mall. It IS 
shown in Appem!lxx I that this mteractlon between ring and shell 1s given 
by 

(7) 



for the flat endow, and 

E set a 1 -Y ---- 
Hz 2 * rt sin a 

; + 2 ~3(l-v2)]W t -3/2 

for the curved wirdwr. 

If 

equations (7) and (8) approximte to 

H s 0.2~ (rt) 3/2 

Note that if H 1s zero, 

A = A* I 

rt s1n a 
= 

1 -Y 
1 

(8) 

(9) 

(10) 

(11) 

which is the mount of reinforcement necessary to make the hole neutral2 UL 
an equivalent flat sheet under "hyclrostatx" tenslon. 

The interactlon H causes bend.mg stresses in the shell ati a stress 
ooncentratlon factor which may be put u the form 

s.c.f. c 1+0.4 5-l . 1 I 
3.2 Spherical skell with cap of greater thiokness 

The presence of a cap of greater thxkness on a spherical shellwzll 
reduce the rmbrane stresses m the cap, but It will also cause stresses due 
to bendmg along the ccxrmon boundary of cap ad sphere. It 1s shown in 
Appendxc II that due to thm bending of the shell wall there is a stress 
concentratmn factor for the thinner sheet equal to 

L n n+l (n-1 
2 

1 + 1.3 
' 1 + 2 $13/2 n2 + l15i2) 

1 (13) 
+ + 114 
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For exanple, if the ca.p has tpnce the thlckmss of the shell there is 
a stress ooncentratlon factor in the shell eqw-1 to 1.2. If the shell 1s 
bult-in the stress concentration factor, obtamed by letting n+- in 
equation (13), is 2.3. Note that equation (13) is md.ependent of the extent 
of the cap. 

4 Cylmdrical shells 

In consCtering cylzdr~cal shells It 1s convenient to consCler fn-at 
the stress dlstrlbutlon m the rram body of the shell and the influence of 
strrnger and f&me remforcment. The effect of the type of end. caps for 
the cylmder ml1 be con.sCterecl next md fznally the design of ape-ings in 
the wall of the cylmder. 

4.1 Stresses 111 the nm.n boily of the shell 

4.11 Urnemforccd shell 

The hoou anci longzttima.1 stresses are g%ven by 

(14) 

4.12 Sk11 remform& b7 stri ngers and close1.y spaoed fmnes 

Beckuse of the effect of Poxson's ratlo the greatest stresses3 OCCUT.- 

i,l the shell rather then m the stringers or frames: 

ue = ET 
c 

1 + s + 0.15 F 
t 1 +S+~+0.9SF 3 

and 

u 
arc l+F+0.6S 

x = Zjl +S+F+O.Y-3 * 3 

The stringer stress IS given by 

,J- ,E 

c 

0.4 f 0.9 F 

S 2t l+S+r7+0.9SF * 
3 

(15) 

(17) 

It will be seen that the strmgers are ineffxient m reducm& the 
lonp.tudm;il stress m the shell. 20~ emmple, If 

A = 0.5 

sid 
T = 0 



it follows from equation (16) that 

ux = 0.87 5 
0 

instead of 0.67 E 
0 

if the stringers were fully effective. 

The frames are apparently n;ore ef'ficlent m reducing the hoop stress. 
For example, if 

F =a5 
and 

s = 0 

it follows from equation (15) that 

However, in equations (15), (16) and (17) the symbol F refers to the 
effective cross-sectional area of the frames in resistmg hoop stress. For 
Z-section and similar frame sections the hoop stress will vary consderably 
across the scctlon of the frame because of the bending flexibility of the frame 
m the plane of Its cross-sectlon; outstanding legs of a frame may be almost 
unstressed. The presence of strirGer cut-outs m the frames will also reduce 
their effectiveness. An average value for F may be given by 

and it will then be seen that the frames are as inefficient in zeduclng the 
hoop stress as strmgers are In reducmg the longitudinal stress. 

4.13 Shell remforced by wzde1.y spaced frames (no stringers1 

If the frmes are widely spaced their action in reducing the hoop stress 
in the shell will be localised to regloss near the frames. In addition 
localised longitudinalbeding of the shell wall ~111 occur and the peak 
stresses so developed may exceed the hoop stress in the shell. It is shown in 
Appendix III that the peak stress due to thu long~tudinalbeding is given by 

u = * smh F - sm ~ 1 
x,b t smh p + sm p , + 1.5 c53 

(19) 
cash fi - cos N 

Fw c sinh p + sin p 



For most shells, 1-1 will exceed 5, and equation (19) simplifies to: 

u x,b = 
P 

t 

( 
, :1:5p l 

> 

(20) 

For example, if 

At will be found that 

so that 

ux + o- x,b = 1.5 y 

which represents a stress concentration factor of 1.5. For a correspond- 
ing oylmtler mth F equal to 0.2 tile stress concentratmn factor 1s 1.83. 
For a completely rigu?. frame the stress concentration factor is 2.5. 

4.14 Shell rex&orced bg widely spaced frames (with stringers1 

The Presence of strangers stiffens the wall of the shell considerably 
agaxnst the longltudwd bending discussed in Section k.13. 

It 1s shown ~.n Appendu IV that the long~tudixdbending moment acting 
on each stringer-cum-ad3acent-sun has a. maxurum value givenby 

Mx 
sink, q - sm q 
Slnh r) + s-Ln ?l (24 1 

where 

The maximum tensile stress due to this longitudinal bending, whioh 
must be added to the valze determued by equation (17), is given by 

hM ' 
5 

s,b 
E-2 

IS 
(22) 
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and it will oocur in the stringers It pouts furthest from the wall of tile shell. 
For the worst possible case, that of a angle rig33 frame, we find 

v 
s,b (23) 

4.2 The effect of end caps 

At the Junction of the cylinder with the end caps there will be a 
localised bendIng of the walls of the shell due to the different degrees of 
hoop expansion due to the membrane stresses in the cylinder and the end caps. 
The effect of spherical ad. ellipsoidal erd caps 1s consdered by Timoshenko' 
who shows that, for an unremnforced oylirder, the hoop stress in the cylinder 
walls is the determining factor ln deslga 

4.21 Stress concentrations 

If the wall thioknesses of cylinder and end oap are the ssme, it is 
found that 

S.C.f. = 1.032 

for a hemispherical cap, and 

2 
S.&f. = I + 0.032 L 0 rl 

for s.n ellipsoidal cap. 

Slrrilarly, it canbe shown that 

s.c.f. = 1.on 

for an inverted hermspherical cap, ad 

s.0.f. = 1 + 0.032/ 3.4 - ($ 

(24) 

(25) 

for an inverted ellipsoidal cap. 

4.22 Qe&ns without stress concentrations - 

There will be no localx& hendlrg of the walls of the shell If the 
hoop expansrons due to membrane stresses in the cylu-der and the end caps are 
the same, This may be achieved xn a. number of ways; for exs.mple:- 

(5) by takug the thlokness of the wall of the hemisphere equal to 
0.41 tixes the cylinder wall thickness; but this gives a greater 
membrane stress in the hemisphere and it would be better to com- 
promise with a ratlo of wall thicknesses of about 0.6; 

(ii) by taking an inverted ellipsoidal cap in which 

rl = 0.54. r (see equation (25)); 

- IO - 



(Cl) by designing the cap so that there will be no abrupt change in 
the curvature of the shell wall. A suitable form for such a 
cap would be the surface of revolution of the curve 

($+($ = 1 (26) 

and the optimum value of r, which rrakes cylznder and cap 
equally strong is given by 

‘I = 0.75 r. 

4.23 Buckling of inverted caps 

The use of inverteri caps may be ruled out bec&use of the possibility 
of failure preolpitated by buckling. It is shown by Timoshenko that the 
critical buckling pressure of a spherical shell IS given by 

2 
P or 

= 1.2 E $ 
0 

and this formula may be used wi+h fair accuracy for ellipsoiCla1 and other 
shells if the maximum spherical radius of curvature IS substituted for r. 

4.3 Desi&n of openings in the wall of the cylinder - 

It was shown in Section 3.1 that for the spherical shell the shape of 
the opening and the type of the rexnforcement that caused zero stress con- 
centration and zero bending of the wdls of the shell corresponded to a 
neutral hole in plane sheet, provi&ed that the radius of the hole was rrmdL1 
in camparimon with the radius of the spherical shell. It is shown xn 
Appendix V that for any shell whose walls are developable the type of 
opervng to cause zero swess concentration and zero bending o? the walls 
of the shell correspotis e.uaotly to the neutral hole in tie developed shell; 
there is no llrmtation on the size of the hole in comparison with the size 
of the shell. 

4.31 The shape of the neutral hole 

The neutral hole in the cylindrioal shell will have the form in the 
developed plane of an ellipse with axes in the ratio $2: 1, the longer 
axis lying in the direction of the greater (1.e. hoop) stress. If the 
length of the shorter axx is 2a the equation determining the shape of the 
opening is 

4.32 Sectlon area of the reinforcing member 

Unless the shell 1s reidforced by stringers or frames the cross- 
sectional area of the reinforcement round the opening 1s given by 

A* $2 p + ($ j'" 

-= 
at 2 - 

(29) 

c.4+3 z 
0 
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(The 0.4 comes from (l-211) with v equal to 0.3. 

If the shell is reinforced by closely spaced. stringers and frames 

A* ~2(l+s+F+o.YsP) -= at 2' 
0.4 + O.TF t (3 + 3.6~ - O.TF) 0 ; 

(30) 

In practice it will be swfficiently accurate to have a constant remforcement 
of magnztude (A*)xla. 

4.33 The lad m the remforcmg member 

The load in the reinforcing nembcr is gzven by 

P = pra 

/ 
I+ z 

I 

2 

0 
2 

(31) 

4.34 Normal reaction between widow and reinforcing member 

The normal load per un.xt length between the wudow and the reuforcing 
member due to the load P is gjven by 

(32) 

and the window must therefore be designed to withstand these edge reactIons 
and the nonral pressure p. For complete neutrality the edge of the window 
s!?ould, under this sytem of loading, deforms In the same manner as the 
remforcmg meder. 

4.35 Effect of superimposed shear stress 

If there are shear stresses in the walls of the cylinder in the region 
of a prdpose& opening it is still theoretically possible to design a neutral 
hole provided the shear stress is alway s a constant proportion (say, K) of the 
hoop stress, a coditior, which does not occur in aircraft fuselages. Even so 
such a hole will seldom be feasible, for it 1s In the form of an ellipse with 
axes in the ratio 

and inollned to the longitudinal axis at an arlgle 

$ tan-' (J+K) . (34) 

- 12 - 



For example, if K 1s $ the ratlo of the axes LS 1.67 and the angle of 
inchnation is 22i”, but if K is 4 the ratio of the axes goes up to 2.62. 

( 
I? the shear stress 1s not a constant proportion of the hoop stress 

or, indeed, for many cases where it is) it wxllbe prefexble to design 
the hole to be neutral under xnterna.1 pressure and to reduce the inevitable 
stress concentrations due to shear by suitably increasmng the wall thick- 
ness m the region of the hole. Note that such a scheme lends itself 
particularly to the cylinder with a row of openings in it, for a longi- 
tuclu-al strip of increased thickness zn a cylmnder does not causeay stress 
concentratum at the junctxn with the thinner wall of the rest of the 
cylinder (see para. 3.2). 

5 Conical Shells 

The membrane stresses are gzven by 

ue 
= 2cz 

= p z tan B 
t 

(35) 

and If ve design for a uuform membrane stress, r3e should have to take 

tccz. 

5.1 The shape of the neutrel hole 

The sbpe of the neutral hole 1x1 the developed surface of the conical 
shell, is no longer az exact ellipse, but is determued by the equation 

z3 - (3+x2) z z2 00s e + 223(1-x2) = 0 . (36) 

As h tends tc zero, It can be shovm that equatzon (36) represents 
an ellipse with axes In the ratlo 42 : 1. 

5.2 The load in the relnforcxnt member 

The load in the reinforcing member round the neutral hole is given by 

p = Q-$Q [& - 12ez3(1-a2; + z4(J+a2)2;i . (37) 

6 Reinforcement 011 one sxde only of the shell wali 

The analyst in paragr@is 3.1 and 4.32 referred to an idealised. line 
remforcement, but It 1s approximately valid 1p ths c.g. of the reinforce- 
ment cross-se&Ion 1~s i.il the plane of the snell wall. If the reinforce- 
ment 1s eccet~trxz.lly placed with respect to the snell wall some tvnstmn& 
of the reuxforoement ~113 t&e place under load ad the rernforcement wiEriu 
not be so ef'ficlent. It is sham In Append= ?I that an eccentrically 
placed ranforcement of cross-sectional area A is approximately equiiva- 
lent to centrally ph.cd reulf'orcement of cross-sectional arca A, where 

A= 5; (38) 
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and 

II 
2 

E = : -- 
IO I2 

(39) 

where rr 

I = J.l Y” as . 
n 

Some values of E, which may be regarded as the efficiency of an 
eccentrically placed rcuxfcrcmg member, are shown in Table I below when 
the relnfcrcement is on one side only of the shell ~iall. 

Table I 
Dependence of E on the form of the reinforcement cross-section 

Cross-sectmnal form 
of reinforcement E 

rectangle $ 
triangle l/3 
equal sided channel (U) ; 
symnetrical angle (L) 5/a 

The derivatlcn of equation (39) z.s based on the assumption that the 
remnfcrung member does not distort In the plane of Its cross-section. 
WLth this assumptxcn it IS theoretxelly possible to obtain ccnsukrably 
higher values for E. Tne problem IS considered in further d&u1 in 
Appendix VI. 

For the problem considered in para. 3.1 the rotation of the crcss- 
section of the reinfcrcmng member is related to the radial duplacement 
by the equation 

and there will be a localised bending of the wall of the shell to acccmno- 
date this rotation. The maximm stress m the wall due to this bending 1s 
given by 

7 Conclusions 

This report considers the stresses developed under rnternal pressure 
m thin-walled shells of spherical, cylind.rxa.1 or conical form. Formulae 
have been presented for predicting the maxmum stresses in 

(i) a spherical shell with 

(4 a rernfcrced 0xrcul.a.r opr;ing 

(b) a cap of greater thzdmess; 

- 14 - 



and (ii) a cylindri-,al shell with 

(c) Stringers ad closely spaced frames 

(d) Strmgers and widely spaced frames 

(e) End caps of various form. 

The feasibility of neutral holes in shells which have a developable 
surface has been ascertained, and investigated m detail for the oy1ind.ri- 
cal and comeal shells. 

h simple formula is given to allow for the reduced efflcienoy of 
remforoement on one side only of the shell wall. 

&. 
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ADDITIONAL SYMBOLS USED ONLY IN THE APPENDICES 

6 = 

% 
= 

x = 

@ = 

it = 

v = 

%p X2' x3 
L = 

w = 

0 = 

N,' N N 
Y' ry= 

N 
e’ re 

N 9' N,> Nsn = 

Os, On = 

c = 

r: = 

w e 

U = 

0, d = 

Y> c 

radial wvement in plane of ring 

berding moment per unit length in shell 

I3 (I- Y2)(r,/t)2j$ 

angle as defmned in Chapter XII of Ref.1 

bendlng moment per urnt length between cap and sphere 

rotation ?f' cap or sphere along cormnon bowday 

are defined In equetion (53) 

direct load in 8 frame 

radial displacement (Appendix iv) 

force funotlon defined in equation (58) 

direct ana shezr membrane forces per unit length 

are defmed after equatlcn (57) 

direct and shear membrane forces per unzt lerath 

axes tangentul and normal to hoe 

co-orduate measured along boundary 

angle between tangent to curved boundary ad OS 

rotation of ranforoement cross-section 

strau energy stored in complete rxng 

sides of rectangle 

ere defined after equation (75) 
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APPENDIX I 

Spherical shell w!.th remforced circular opeluq 

The analysis given here 1s based on the smplr?ied treatment given 
in Chapter XII of Ref.1. 

Under purely membrane stresses the radial discrepancy, m the plane 
of the rmg, between tne ring and tkie shell is 

I3 
=ng - 'shell 

and tks nust be eliminated by a radu~l force H per uxu.t length. The 
radxil movement of the ring and the shell due to H is 

6 ring 
= lb2 sm2 a 

Ed 

8 w sm2 a 
shell = E 

i 

from equakon (274) 0f ~ef.1. 

Equation (7) follows by equating 

A rmg - 'shei z ' +6 nag shell' (43) 

In deternxlung the effect of the H forces on the stresses In the 
shell wall It will be notwc3 from equation (10) that 

which may be neglected in oompa-nson Pnth the merrbrane stresses in the shell 
wall (see equation (1)). The bending stresses m;iy not be neglected, for we 
have from Ref.1: 

where 

a4 = 3 (I-v2) ; 2 

0 
Substituting the value cf H from equation (IO) in equation (a) and 

puttug Y equal to 0.3, gives 

I& 83 
8 

= 0.11 prt x- 1 
( > 

e -v sin A* 
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which occurs when 

Now the maxizum tensile stress in th.e shell wall is related to the bend- 
ing moment by the equation 

and the corresponding stress concentration factor is therefore 

, + %x-ding 

"# 
EI I + 2 x 6 x 0.11 x 0.32 

(45) 

c.f. equation (12). 
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APPENDIX11 

Sqhermal shell with cap of @xater th$mess 

If' the parts are considered first to be acting as Eembranes and 
suff'lces 1 and 2 refer to the shell and cap respectively, we have 

A, = pr2 (l-v) sin a i 
2Et 

= r,A 
i 

2 
i 

(46) 

Furthermore, It will be noted that umler the membrane forces there 
will be no change in the slopes of the shell mall arsl the cap. Because 
A +A there mllba add~t~ons.1 interactlam (H and XI) along the comnon 
b&ud&y between cap and sphere. 

The relations between the rotation V and the displacement 6 and 
F and M .s.re given approxirrately by equations (273) and (2%) of Ref.1: 

3 2 h2sin a H 
v, = 4 x1 M1 1 1 

Ert + -Ed--- 7 

6, = 
2 kf Slrl a M, 2 X,r sin's H, 

Et + Et 

and if 7x3 express h2 in terms of h,: 

v2 = 
4 ?,{!s 2 ?,f? sin a H2 

Ert n? + Etn2 

2 X: sin a M2 
s2 = - 

2 h,r sin2aH2 

Etn' 
+ 

Et*"5 

The conditions of equllzbrium ard co=patlbility are 

H, = - H2 

5 = "rr = M, say 

v, = - v2 

A,-A2 = 62 - si 

t 

i 

(47) 

I (48) 

(49) 
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Equations (47), (48) and (49) my be solved to give 

M = Y (3+&-, + * ,~1i;-y~-jI,, + n4] C50) 

and equation (13) is derived from equations (50) and (45) with Y eqml to 
0.3. 

- 20 - 



AEFEND1x III - 

Sheil reinforcecl. b,y widely spaced frames (no stringers) 

The problem 1s vutually solved in Chapter XT. of Ref.j where it is 
shown that the equations relatmg the loki L in a frame and the longitu- 
dinalbendmg moment m the shell adjacent to the frame are 

and 

Ivf = Iv2 x,(d 

2 p2 [ P (1 -&y) - f!& 
i 

whence It vnllbe seen that 

rechces to sinh p + sin p 
2 (cxsh fi - cos II) 

(51) 

(53) 

anti the derivation of equation (19) 1s now straightforward. 
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Shell reinforced by widely spaced frames (with strJ.WXerSl 

For the case without stringers considered in Appendix III the 
differential equation for the radial displaoement w is given by 
equation (228) cf' Ref.l: 

The equation is identwal with that of a beam on an elastic four&+ 
t1on. When there are strmgers present the equation takes the form 

(55) 

The analysts for the two cases is then dentical except for the 
substitutmn of 1(1 for !J , 
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APFmIx v 

Neutral holes m developable surfaces 

Let us begin with a defmitlon*: a neutral hole in a structure is a 
reinforced hole which 1s elastically equvalent to the uncut, or continuous, 
structure. The structure considered here 1s a shell whose walls are 
developable. 

If the only b&y forces actmg on the shell wall are pressure forces 
normal to the shell wall the equations of equilibrmm of an elemert of the 
shell wall are 

aN 
x+22 = 0 
ax ay ‘I 

>+$L 0 
I 

(56) 

where Ox, Oy are Carteszan co-orilinates in the developed flat sheet and 

rE? 
is the local principal curvature of the surface (l.e. norrral to the 

generator) and N 

&( 

ic the load per wLt length In the shell wall. normal 
to the generator. Compare, for example, jpith equation (224) of Ref.1 
where a cyliradrlcal surface is aonsxlered.) 

Equation (56) is ldectical with the correspon&.ng equations for a 
plane sheet and imply that there is a function # fk~n whwh the membrane 
forces may be determmned as follows: 

(58) 

It wdlbe noticed that the fun&Ion # is independent of the co- 
ordinate system: lf fresh Cartesian axes Ox.,, Oy, are rllosen we have 
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Consider now the eqwlibrium conditions adjaoent to a neutral reidorce- 
merit. Take Cartesian axes OS, On tangertial and normal to the bowdary, and 
let I: be the distance along the curved boundary, and R be the angle between 
a tangent to the curved boundary and OS so that the curvature of the boundary 

an in the developed flat sheet Is x . Resolving in the s- and n-directions 
gives 

end 

These equations rray be put in terms of rp by virtue of equations (58) and 
(59) : 

and 

Nom from geometrical considerations 

ahenoe equation (62) may be integratd to give 

P = -g 

ana equations (63), (64) and (65) reduce to 

&Lo 
az2 

so that for a closed boundary we have 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 



Equatmn (67) determines the shape of the hole boundary, 4 equation (65) 
then determines the load ~rl the reinf'orcmg member. The direct stiffness 
of the remforcing member 1s determmed from equation (65) ad the known 
strain in the adjacent shell wall. 

But these cordltions alone do not suffice to determine a neutral hole. 
This is bemuse appreciable beting of the reinforcmg member will occur 
unless the unbalanced component of the force nomal to the surface, due to 
the fact that the remforcing member IS curved., oan be balanced. The 
balancing load required 1s obkmed by resolvmg norm1 to the surface, 
whence 

N ,’ 
a -. (68) 

n 

Fortunately m prezzsurised shells the presence of stdf window frames 
ensures that equation (60) will be satisfied. In general, however, if 
there is no such supporting structure or external agency to f'ulfll equation 
(68) a neutral hole will not be feasible. 

Example (Pressurised co&al shell) 

With the notation used in Sectror, 5 the stresses in polar (e,e) 
co-otiinates in the developed flat sheet are such that 

%z = 0 
whence 

(69) 

$= (z3 c ax + by + c) 

and equations (36) and (37) follvw yrar.edi~tely. 
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APFmDIx VI 

lYf~cumcg of eccentri*~placed reinforcement 

In what follows the assumption will be made that the reirforcing 
member does not distort in the plane of its cross-section. Such an 
assumptxon vvi3.l be justiflable for most practacal reinforcements whose 
cross-sectmn is sufficiently compact. The assumption will, of course, 
tend to overestunate the actual stiffness and effxiency of the reinforce- 
ment. Fe are only concerned wit& reinforcements which are neutral, or 
nearly so, and thas sets a kinit on the flexibility of the reinfor-emcnt 
we need consider; for such reirforcements the action of the sheet itself 
in resistzng the rotation or the remnforcement cross-section is very .¶a.U 
and will be ignored. 

A further simpLify?ng assumption will be made later that the width 
of the reu?fbrcement is small in oomparlscn with the radius of the hole, 
but this is not essentzal to the analysis. 

Consider now an srbitrary cross-section of a circular ring attached 
to a plane sheet ur&r unlfonn "hydrostatic" tension. We shall let the 
line of attachment between ring and sheet expata3. radially an amcunt A 
and determine the resultant rotation o and hence the stiffness of the 
ring. 

A typical point at (r, y) moves radially an amount (A - wy) and the 
circumferential strain is therefore 

and the energy stored 1x1 the ccmplste ring IS therefore given by 

$a,y-2A.w 
11 

. . . . ..(70) 

Expression (70) must be minimised with respect to w, whence 

(71) 

If the width of the rang 1s small compared wath the radius of the 
hole the factor (l/r) in the various antegrals will remain sensibly 
constant and we may write 
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0 II 
A = - . 

12 
(40 his) 

With this simplification equation (70) becomes 

(72) ’ 

c.f. x E A2 IO 

if there were no rotation of the cross-section 

The expression for the efficiency factor E given in equation (39) 
~O~OWS from eqdl0n (72). If for example, the reinforcing ring is on one 
side only of the sheet and of rectangular cross-section (o x d) it will be 
found that 

I = cd 
0 

I, = $ cd2 

I2 = (d/3) .a3 

(73) 

so that 

But if the cross-section consists of two ddferent, adjacent rectangles 

IO 3 
clal + c2a2 i 

I, = G- (old:+ 02a2") 
i 

(74) 

12 = (‘/3)(cp,3 + 02d23 1 , 
/ 

and 

s 
= ?7YYs%& (75) 

where 

Y = o&,2/(c,a,2 1 

c = %/a, 

and it is clear that c can be m&e to approach unity by letting y remain 
finite while ?Z becomes very large. Unfortunately these requirements are not 
compatible with the initial assumption that the reinforcement till not distort 
in the plsne of its cross-section. 
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