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Page 6. Equation (15)

V(#,P) = -'_ Li ($A&)
%I

Fig. a. 'here is an error in the calculated velocity dutrlbutlon  m the re&lon
x/c = 0.6. The corrected curve  is shmn in Fig. 10.

Fig. IO. The relaxation solution is compared with reeults  obtained  by the
Kamn-Tsien  approxmatmn, and by experucnt  mth transition to a
turbulent boundary  lrryor  mar the leadmg e&o of the aerofoil.
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This paper presents a relaxation treatment of a simple but exact
differential equation for compressible flow. The method has advantages over other
numerical treatments of the same problem and because of the simplicity of the
basia differential equation should be particularly suitable for high-speed
computing machines.

The flow about a 16 thick aerafoil (RAE 104  section) at zero  incidence
is calculated for Mach numbers of 0.70, 0.79 and 0.86. At ki = 0.86 the
existence, but not the position, of a trsnsonic shock wave is predicted by the
relaxation technique. Satisfactory agreement with experiment is obtained.

ccoltents zssi

1. Introduction 2

2. List of Symbols 2

3. General Mathematical Theory 3

3.? Basic Differential Equations 3

3<2 Solution using van K&-m&~~s  Approximation 5

3.3 Comparison with IncompressibLe Plow 6

4 . Boundsry Conditions 6

4.1 Inccmpressible  Plow 6

4.2 Compressible Plow 7

5. Relaxation Procedure 8

5.1 Incompressible Plow 8

5.2 Compressible Plow II

6. Application of IL&hod 13

7. Acknowledgement 1 3

I./



-2-

1. Introduction

Numerous papers dealing with the numerical determination of the
compressible flow about sn aerofoil have been written, see for example, Refs.i-6.
In most cases the differential equation solved has been quite complicated so that
the difference equation, approximating to the differential equation, demands much
labour  in its solution. The equation, due to Woods7,used in this  paper is
probably as simple in form as is possible for an exact equation for ocmpressible
flow, This simplicity is obtained at the expense of scans increase in the
ocnnplexity  of the boundary conditions on the aerofoil surface, which are dependent
on the iterations throughout the calculation. This disadvantage was not found to
be important.

The (4,~) plane is taken as the plane of the independent variables,
where 6 and p are the compressible potential and stream  functions respectively.
This ohoice  confers the advantage, useful in the relszaticn process, of having
Straight boundaries in the plane of the square mesh on which the calculations are
made. 'Similar  transformations have been made by Thoml for many years.

Transonic shock waves appear in the relaxation solution of the basio
differential equation in a simple manner. It is found that, for a given aerofoil
and above a certain free-stream Mach number, it is no longer possible to relax
all the residuals over the whole field. Individual residuals can be relaxed but,
in a part of the field near the aerofoil surface, their relaxation causes the
appearance of even larger residuals at neighbouring mesh points*; this is discussed
more fully in 85.2. However, it is possible to arrange  these unrelaxed residuals
in pairs of opposite sign along a line starting  on the aerofoil surface and
running scane  distance into the flew. in the exsmple calculated,  for lvl = 0.86,
the position of the shook wave was estimated from a direct shadow photograph of
the flow,(Fig.Y(ii)),  and the lines of unrelaxed residuals arranged along
equipotentials on either side of this positian.

In the application of the theory it is found convenient f'irst  to
calculate the incompressible flow past the given aerofoil. This enables a simple
form of the boundary conditions on the aerofoil surface  in the compressible flow
plane to be used and also faoilitates  the treatment of the singularities at the
stagnation points. There is no necessity to calculate the oamplete  solution of
the incompressible flow equation by relaxation.
the values of Li
other methods (of. Lt

It is much quicker to calculate
cf. 82.0) on the aerofoil surface and outer boundaries by
.?(a)) and then to fill  in the field by relaxaticn.

2. List of Symbols

(XtY) the physical plane

(b$) the compressible flow plane,  where # = constsnt  srethevelocity
equipotentials, and 9 = constant the stresmlines

(s,e) velocity vector in polar co-ordinates

PIP0 local and stagnation densities respectively

Y ratio of specific heats

U velocity at infinity

M Mach number

P r (1 - I@)2

s,n distances measured along and normal to a streamline

R (= . i+s/i3U)  radius of curvature of the serofoil  surfa2.e

4---------_----_----_--_----_-_ - -
*The same difficulty has been encountered by Wood&  and, Emnans5.
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c aerofoil chord

U
II ; loge -09 . ..(I)

w as suffix, denotes values at infinity

LT as suffioes, denotes values at leading snd trailing edges of the
aemfoil respectively

i,c occasionally used as suffices to distinguish values for incompressible
snd. campressible flow respectively

h relaxation mesh size.

3. General Mathematical Theoq

3.1 Basic Differential Esuatmn

The potential and stream functions $ and p are defined by

P
a+= qas,au = -qdn,

PO

which enables the 'intrinsic' equations, (Ref.8,  p.168)

ae (I - 142) aq
-+ - - = 0,
an (I aa

ae 1 as-- -"-e = 0,
as San

to be written

ae P, 8’ as
--+--*-*- = 0,
a* P q a6

a0 p 1 aq
-w-*--- a 0.
a+ PO q au

B$ use of the substitutions

P ’
av s - - - *

PO q

PO
m = P-

P

. ..(2)

. ..(3)

. ..(4)

w
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the equations of flow are reduced to

a6 av
-..,a- P 0,
a* a+

ae av
-+- = 0,
ati ait

whence

1
i
t

2

which is the equation to be solved by relsxatxon.

Integration of equation (3) yields

.*.(5)

. ..(6)

. ..(7)

from (I).

NOW

PO Y -1 l/Y-l
mm = 1 + --mm  Ma
P 2

= (I + 0.2 hP)~'S

with y = 1.G. Also from the usual  equations for compressible flow it osn be
.&mm that

,gJp = - 2lYP  (1 + o.aP) aL ,

therefore eqmtion (7) may be written

1

M 6x2
v 22  -$ - - - - - - - - - -  s

Mr;M, MyI  + 0.2M2)s~s

= [$log---------a+ a - 1 1 5a5 1 3a' 1 I I Id ,
a &A

vih.re/



-5-

where a = (1 + 0.2M+, enduse hasbeenmde  of the fact that V = 0 when
L = 0, i.e., when M = Mm.

Equation (4) gives

LI = (1 + o.Zidap*5  (1 -Ma)*  )

= a5 (1 -& .

Hence V and m can be tabulated as functions of M for a given free stream
Mach number; the relation between V and m dll be required for the relaxaticm
solution.

3.2 Solution usiw van ?S&dn's Approxim+i&cm

It can be shorn  that

ln = mo3 ‘-----c y2;; I$+) +o([;-q)},
therefore for thin aerofoils (q/U  4 I) at high subsonic Kach numbers or thick
aerofoils at low subsonic Mach numbers, von K&m&*s  approxjmation,

is reasonable. With this approximation equation (6) becomes

PV aav
--- +I&-- = 0. . ..(8)
a*= w=

The solution of this  equation may be found by a theory similar to that used in

Re~.;G$~os~f,O$ee  of r( E /&L). In the case of zero circulation

ii3 1 w

I

B'd$
v + -- = "- -- _____-_- , . ..(Y)

%2 mJ -DO @’ - # - +d

where $ = 6' and 8 = e' cu.-e  va&ss  on * = 0, the diviajng streamline.
Now since 6' is zero outside the range ($L, $T),  i.e.,

r

r+
de’ = 0,

QL-

the real part of equation (9) can be written

. ..(lG)

1 5$ cJ’(9’  - $1  64’
v a --

i

___-_-_-------  .

qg QL ($1 - 79 + 41ya
. ..(I11

@=/
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One further equation which till.  be of some value is obtained from the ~closuret9
condition, namely

+
$ Vd.$’  = 0 , . ..(lZ)

#L'

which cm be deduced from equation (11) snd the fact that there is no circulation,
The numerical solution of equations of the same form as (IO), (II) end (12) is
described in detail in Ref.9.

3.3 Oocnarison  with Inocnnpressible  Flew

The equation for incompressible flow can be derived from equation (6) by
puttin m = 1 (cf. equation (4)) and replacing V by Q (CT. equations (1)
and (3 ), which give

. ..(13)

The solution of this equation is (cf.(ll))

If the small differences in the locaticm of the (a*) mesh in the cmrpressible
and incompressible flow planes aye ignored, then ocnrpsrison  of equations (11)
ma (14) yields

0.0(15)

where V is a solution of the approximate flew? equation (8). Equation (15) till
be found useful in d.etermining  certain of the boundary conditions in the compressible
flow plane.

4. Boundary Conditions

As is mentioned in the Introduction it is ccmvenient  to obtain a solution
for the incompressible flow past the given aerofoil to facilitate the cmressible
flow calculations. This solution can be obtained quicUy  by rxdcing  use of
analytical solutions an the boundaries and completing the solution in the field
by relaxation.

4.1 Incompressible Flow

(a) Aerofoil Surf'aoe

The values of L at points of the relsaation gesh (Figs.3 and 4) on the
nerofoil surface were esttited  by the methods of ~0oas9 and tildstein's~0
Approximation III, which agree closely with each other and with ezqxrincnt. These
values were kept fixed throughout the application of the relaxation process to the
field.

___________--____-_--------------------------------------------------
%his  method is based on equation (14).

bdf-,
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(b) Cuter Boundary

In the relaxatiou process, unless inversion3 is used*  it is necessary to
limit the field to a finite region enclosing the aerofoil. Vslues  of the function
must then be estimated on some outer boundary. The aocuracy of suchvalues canbe
checked by extending the boundsry such that the points of the previous boundary
becane part of the field solved by relaxation. Then ir the f%ncticm  is estimated
on the extended outer bouudary,  the solution throughout the field should remain
essentially unchanged. On the boundary chosen for the inccmpressible  flow plane
(Fig.3) the values of L were obtained from equation (14).

(c) Singularities at the Stagnation Points

The leading and trailing edges of the aerofoil, (oL,O)  and ho)
respectively, are sin

t?
cw points for L, since at these points q is zero  and

from the definition,  I), L will have a logsr~thmic  infinity. In the
neighbourhood-of the singularities an approxusatlon to the function is
(from Ref.7)

7 -__
L i *.. log d# + v= . ..(I61

71

where $ and @ are measured from the singularity snd T' is the discontinui~
in 8 at the stagnation point (e.g., at a rounded nose r = 75/2). The
singular points require special treatment in the relaxation process and this is
discussed in d5.1.

4.2 Compressible Plow

(a) Aerofoil Surface

The second of equations (5) gives

a v ae a e  as
-  = -- = ---I
av ad a s  ad

1
= m-m .

Rqo

For incompressible flow equation (17) reduces to

.9*(17)

Now for convenimce  h - $L is chosen to be the same in the incompressible and
compressible (6,~) planes, in consequence the aerofoil chord with be of different
lengths, in the physical,
lengths isc&.szse2L  85.2.

lone. The calculation of these
Than equations and (18) my be written

a v c
- - =
au

0 -
1

- - - ,
R  c SCOC

aLi 0 1
- - - e 0 - --a ;
aVi R i qj,'i so/
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so for a fixed position cn the aercfcil surface

a v aLi ci9i-- = w-w em- ,
au a*i ccS,

. ..(19)

There is a slight movement of the equipctentials from  the incompressible to
compressible Plow planes, but the chongc  in
be msignificant. Thus equation (19) where av p rind aLi/api

CiB/c,S,  due to thi~;~;~d~&

value of the potential, was used to obtain the boundary condition cm the aercfcil
surface in the compressible flow plane.

(b) Cuter Bcundery

The values of V on the cuter boundary of the ccrpressible  flow field
ore obtained fkom the relation, derived in 83.3

which although apprcxkaate  is sufficiently accurate if the cuter boundaries
chosen ace a sufficient distance from the aerofoil. Whether this is so can be
checked in the same way as that used for the incompressible flow solution
(cf. $.1(b)).

(0) Stagnation Points

The some type of singulcrity  in V as that for the inc~ressible flow
functicn,  Lj, arises at the stagnation points. These were dealt with by use of
the incompressible flew solution 5n the approximate relation, derived from
equation (15),

1
v = --IAir

mea

at points of the relzwaticn mesh in the Mediate neighbcurhood of the stagnation
points (Fig.5). This is an approximation which is thought to have little effect on
the final solution.

5. Relaxation Procedure

5.1 Inccnmn-essible  Flow

The simplest approxdmaticn to the basic differential equation of the
flow, viz.,

aaL aaL
-es + -- E 0
a3 a@

is the difference equaticm

L, + L, + L, + L, -% = 0 ' . ..(m)

whhere  4 refers to the value of L at scme point r of the r&~tianmesh
(Fig.1 1. The use of equation (20) invclves  a possible ~STQT  cf O(h4).

Fig-l/
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I :. _-. _--

:'foli tirface

Section of -ieI~x&t!~-n  mesh

a an.1 3 are the md point.s  of 0-i and O-3

Eqmtion (20) must be mtisfied  at all points uf the 'relnzdcim mxh.

As mentioned in &.1(a)  the values of L on the surface of the
aerofoil and on the outer boumkwice (Pig.3)  were cnlcdated and lmintained during
the relaxation of' the jnterior  of the field. Since  the problem considered is that
of a symetncal  aerofoil at zero  incidence, by symmetry it is only necessary to
consider the half of the field of flow bodied below b;r the didding streaKLine.
At points of the relwation mesh on the dividing streanikine but not on the
zerofoil surface  this symmetry gives the condition, (Pig.1,  point B),

L 4-L = 0.a . ..(21)

Hence for such points, from equations (20) end (21)

I
L,+L3+2L -4-L,  = 0.a

E-L %+.1(c)  it is noted that the stag~.?.ti.aapointaL  -m-c-
points for L, require special iseatint  in the relamtion process. In the
n&gl~ourhocd. of the singularity L can be expressed as (cf. equation (16)),

. ..(22)

1
where 0 and Q axe ueaswed from the singularity and TJ satisfies,

aa, aa7j
--- + -mm 72  0 ,
a$ a@

and has no szingularity  at the st.agnation points.
A/
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in Ref.11.
A relaxation treatment of such logarithmic singularities has been given

In this paper it is shown  that 'loading  factorsz  must be added to the
residuals at points of the relaxation mesh near the singularity, (Fig.5). These
faO?x?rs  depend on the strength of the singultity,  which in this case is
7/z (equation (22)). The true value of 7, obtained from the aerofoil
cannot be used since the conditions imposed by equations (10) and (12) of

rofile,
t-i

must be satisfied.
3.2,

These two equations can be written

and
i

$- 33
-- a.6 + TL + TT = 0 ,

oL+ ag
i

PlT- 6
a8
-- ag  + h7L + q+$T = 0 .

$L+ ag
!

Then, since, from the secmd  of equations (5),  for incompressible flow,

at3 aL
-- e --,
w a*

equation (23) gives

aL
IL + TT = c --

5 0 1ati j
WI, *

and

. ..(23)

. ..(.a)

where the sumations  are taken over all the mesh points on the aerofoil surfaoe
(excluding those at $L and e). The squme brackets denote a mean value of the
enclosed f'unction over the interval covered by the mesh point: e.g., for a mesh
point at $ = 5, withanintenml  h = 1,

WI, = 3 (5.5)2 - + (4.5)s = 5.0 . /

The derivative aL/a@  can be estimated at each mesh point, on the aerof'oil from
the equation,

aL
2h- = L, - L, + O(h')  , . ..(25)

as

where 4, is a fictitious value  (Fig.1,  point C) which can be elim.inated  by the
use of equation (20), thus

aL
2h- f

a*
Li+$+2h-&.
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Then from the simultaneous  equations  (24) appropriate  values of q and TT csn
be calculated  As the mesh interval,  h, tends  to zero the calculates values of
T willapproaohthe true values.

5.2 Compressible  Flow

The equation  to be solved  is

a% a a v
-a* - ma -
a*”  w ( >

=  0,
ad

which can be represented with a possible error  of O(h4)  by

v. + v* + &VI + n$ v, - v, (2 + ng + llg) = 0 , . ..(26)

where r$ and g refer  to the value  of II? correspondrrng  to the value  of V
at the points a and b on Fig.1,  i.e., Va = (V, + V,)/2.

Cm the aerofoil surface  the form of equation (25) for V can be used
with eqwtien (26) to give,

av
274  + Vi4  + v,rlg - ve (2 + I&+ lT$, q 2h -- .

au

Now in &.2(a) it is shmvn  that the derivatives  satisfy  the relation

av Oi  Si ah-- z --- . --^ ,
au OLJ qc a*i

and it seems  reasonable to suppwe that  the difference  approximations ti the
derivatives vsillbe reLatea quite  accurately in a similar  nanner.  Therefore to
obtain  the boundary condition on the aerofoil in the compressible  flow pLane  the
following relation,  for the same mesh size, was used,

25 + lng,  + n$ v, - v. (2 + ITg  + mg =
ci  Si
o--$L,+Ig+w-a.

0

This  form of the boundary condition reduces sny errors  introduced in the
rcp?xoentaticn of derivatives by differences.

The outer  boundary and stagnation points iere treat&i  as described in
&.2(b) and &.2(c),  the incompressible  flow solution  being used to obtain $,
and hence  V, at mesh points near the singularities.

pne f?urther point v&h remains  to be dxcussed is the calculation of
the chord,  C. F~?om  the aerofoil co-ordinates it is possible to estimate  the
ratio s/c, where s is the perimeter dQ&anoe along the nerofoil surface. Nrn?

s/
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s =
J

QTds ,

OL
. ..(27)

(from equation (2)), which can be integmted  nmerically  by use of the values of
q obtained f'rcm the partial solution at ony stage in the calculation. At the
stagnation points q is zero, a-d, as in Ref.7,  the equation

where 2 is measured from the singularity, and < is the voluc  of q at
0 * #s was used for the mesh intervals adjacent to the stagnation points.

As is mentioned in the Introducticm  the existence of a shock-vave  is
revealed by the relaxation technique. It is found to be irpossible  to relax over
the whole field because, for a sufficiently high f?rec-stream  Mach number and with
q/J greater than unity, ma assumes large negative values. In *his  instance it
is easily seen from the relaxation pattern (Fig.2),  derived f‘rm equation (261,
that the essential feature of relaxation,  the fact that the eliminatron of a
residual at one point shall not produce lorgcr  residuals at ncighbouring pohtts,
is lost.

Heiaxatm  pattern for equation (2_6)- - - - -
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The large  unrelaxed residuals can be moved about the domsin by raking alterations
to V at mesh points on the same streamline. In this my they CSJI be collected in
pairs of apposite si@ along two nerghbouring equipotentials of the mesh as
required..

6. Application of Method

The flow about a 1% thick symmetrical aerofoil of Ff& IO& section*, at
eero  incidence and for three  subsonic Mach nur.lbers, was calculated by the method
discussed. above. The solution on the nerofoil surface m the incompressible flow
plane was calculated by the method of Ref.9. The corresponding velocity
distribution is shown in Mg.6, together with that obtained by the method of
Ref.10,  snd by experiment (measured at M = 0.40  and reduced to M = 0 by
the Glauert  IAW).

The velocity distribution8 obtained from the relaxation solutions for
Mach numbers of 0.70, 0.79, and 0.86 are shown in Figs.7, 8 and 9, and compared with
correspondjng experimental values. The experimental values of q/U I-e sxxsured
in the NPL 20" x 8" High Speed Tunnel using stre~line  xU.ls,  i.e., walls shaped to
the streamlines  of the free-air flow about the model. In Fig.7 the velocity
distribution  calculated by the method of Ref.9 is also sham;  this method is not
applicable to the higher Mach numbers, where there are local regions of supersonic
flow.

At a Mach number of 0.70 the flow is entirely subsonic, at M = 0.79
(just above the pressure critical Mach number) there is a small region of supersonic
flow, extendtig from about 0.30~  to 0.55~  (Fig.8(ii)),  which presented no
dWficulties  in the relaxation process. The shock wave present at M = 0.86
KLS dealt with as discussed above, the flow photograph, (Fig.Y(ii)),  being used to
determine the position of the foot of the shock.

The experimental results for M = 0.79, betireen 0.50~  cmd 0.700,
indicate a local separation of the boundary layer, transition taking place at
about 0.7Oc,  with turbulent reattnobment. At M = 0.86 the experimental results
in that region indicate a laminar  boundary layor  upstream of the shook wave, with
separation at about 0.5Oc,  transrticm under the shock, and possibly turbulent
reattachment. Snce  the theoretical problem considered is that of the flow of on
invisoid fluid it is thought that the discrepancies between the relaxation solution
and the experimental results are due in part to boundsry-layer effects.

7. Acknowledpement_

The author expresses his gratitude to Er. L. C. Woods? for his adtie
and assistance in the preporation of this paper.

References/

-v-w

*Co-ordinates given in Ref.13.
- ---

*oftheNewZealand ScientiricDcfenceCorps, at pre&ent seconded to the
Aerodynsmics Division, N.P.L.



- II+ -

NO.- Author(s)

I A.Thommd
Imra  Klanfer

2 L c. wocds 3nd.
A. Tlmm

,3 R. V. Southwall

4 H. &rums

5 L. c. woods

6 A. R. &lit&e11

7 ;. L. c. wc0d.s

8 H. 1;. Liopnenn  and
A. E. Puokett

9 L. c. Woods

10 s. G-oldstein,
E. J. Richards and
J. H. Preston

11 L. c. Woods

12 E. W. E. Rogers,
C. J. Berry and
R. F. Cash

13 R. C. Penkhurst on.d.
H.B.sguFre

Title, etc.

Ocmpressible  flow past an aarofoil.
R. & M.~283‘1, -JhlgLst,-l~l.

A new relnx;ltion  treatment of the coqressible
two-dimensional flow about on aerofoil with
circulation. R. &M.2727,  March, 1950.

Relaxation methods in theoretical ahvsics.- -
chap.v.  O.U.P.  1946.

The numerical solution of ccarpressible
problems. N.&C.& TN.952 (1944).

A relaxation  treatment of shock waves.
C:P..Jl%- JuU, 1950.

floW

Application of relaxation to the rotational
field of flow behind a bow shook wve.
Quart. Journal of Mech.  and Applied Maths.
VOLN.  P-6.3. Septenber,  1951,

The two-dimensional subsonic flow of M
inviscid  fluid about m aerofoil of arbitrary
shape. Parts I-N. R. BE M.2811.
November, 1950.

Aerodynamics of a ccnxpressiblc  fluid.
Ohapman and Hall. 1947.

The application of the polygon method to the
caloulatim  of the compressible subsonic flow
round two-dinensional  profiles. O.P.115.
June, 1952.

Approximate two-dimensional aerofoil theory.
Parts I-VI. c.P.68-73.  May 1942-&ust  1945.

A retition treatment of singular p0illtS  in
Poisson's equation. Quart. Journ.  of Mech.
and Applied. Maths. Vol.'&  Pt.2. 1955.

Tests at high subsonic speeds on a 10% thick
pressure-plotting aerofoil of R.h.E.104
Section. Port II. Pressure distributions
and flow photographs.
R. &. EI.  2863. February, 1451.

calculated pressure distributions for
R.h.E.lOO-lC!&  acrofoil sections.
C.P. 80. I"m.c,h,  1950.

JES.



R Y

K
2
K
3



FIGS 4L5
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