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Fig. a. ‘'hereis an error in the calculated velocity distribution in the region
x/c = 0.6. The corrected curve i s showm in Fig. 10.

Fig. 10. The relaxation solution is conpared with results obtained by the
Karman-Tsien approximation, and by experament with transition toa
turbul ent boundary layor ncar the leading edge Of the aerofoil.







is calculated for Mach nunbers of 0. 70, ) . .
existence, but not the position, of a trsnsonic shock wave is predicted by the
relaxation technique.  Satisfactory agreement with experimnent
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Thi s paper presents a relaxation treatment of a sinple but exact

differential equation Tfor conpressible flow. The method has advantages over ot her
numerical treatments of the same probl em and because of the sinplicity of the
basia differential equation should be particularly suitable for high-speed
conputing  machi nes.

The flow about a 10% thi ck aerofoil (RAE 104 section) at zero incidence
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1« Introduction

~ Nunerous papers dealin? wth the nunerical determnation of the

conpressi bl e flow about an aerofoil have been witten, see for exanple, Refs.1-6,
In nost cases the differential equation solved has been quite conplicated so that
the difference equation, approximting to the differential equation, demands nuch
labour in its solution. The equation, due to Woods?,used in this paper is
?robably as sinple in formas is possible for an exact equation for eampressible

low, "This sinplicity is obtained at the expense of game i ncrease in the
camplexity of the boundary conditions on the aerofoil surface, which are dependent
on the iterations throughout the calculation. Thi s di sadvantage was not found to
be inportant.

The ($,y) plane is taken as the plane of the independent variables,
where ¢ and y are the conpressible potential and stream functions respectively.
Thi s choice confers the advantage, useful in the relaxation process, of having
Straight boundaries in the plane of the square mesh on which the calculations are
mades Similar transformations have been made by Thom! for many years.

Transoni ¢ shock waves appear in the relaxation solution of the basio
differential equation in a sinple manner, It is found that, for a ?iven aerof oi |
and above a certain free-stream Mach number, it is no longer possible to relax
all the residuals over the whole field. I ndi vidual residuals can be rel axed but,
inapart of the field near the aerofoil surface, their relaxation causes the
appearance of even larger residuals at neithouring mesh points*; this is discussed
nore fully in 85,2, However, it is possible to axrange these unrelaxed residuals
in pairs of opposite sign along a |line starting on the aerofoil surface and
running seme distance into the flow., In the example calculated, fOr M = 0.86,
the position of the shook wave was estimated froma direct shadew photograph of
the flow, (Fig.9(ii)), and the lines of unrelaxed residuals arranged al ong
equi potentials on either side of this position.

In the application of the theory it is found convenient first to
calculate the inconpressible flow past the given aerofoil. This enables a sinple
formof the boundary conditions on the aerofoil surface in the conpressible flow
plane to be used and al so facilitates the treatment of the singularities at the
stagnation points.  There is no necessity to calculate the camplete sol ution of
the inconpressible flow equation by relaxation. It is mch quicker to calculate
the values of Lj (ef. 82.0) on the aerofoil surface and outer bhounderies by
other methods (of. «1(a)) and then to £111in the field by relaxation.

2. List of Synbols

(x,v) the physical plane

(¢sv) the conpressible flow plane, where ¢ = constant are the velocity
equipotentials, and ¢ = constant the streamlines

(q,0) vel ocity vector in polar co-ordinates

PsPo | ocal and stagnation densities respectively

y ratio of specific heats

U velocity at infinity

M Mach nunber

B = (1 - 12 )2

s, di stances neasured along and normal to a streaniine

R (= - 2s/8) radius of curvature of the aerofoil surface

- P e st < Sk S e e

*The same difficulty has been encountered by Woodst and Emmensd.




c aerofoil chord
U
L = Ioge(n)
q
00 as suffix, denotes values at infinity
L,T as suffioes, denotes values at |eading and trailing edges of the

aerofoil respectively

i,c occasional |y used as suffices to distinguish values for inconpressible

and campressible fl ow respectively

h rel axation nesh size

3. General Mathematical Theory

3.1Basic Differential Fouatien

The potential and stream functions ¢ and ¢ are defined by

P
d¢ = qds , dy = e=qgdn,
Po

whi ch enables the 'intrinsic' equations, {Ref.8, p.168)

30 (1 = M?) 3q

- - —— - »
an q 08

ae 1 3q

TT em am s = 0’

as gq an

to be witten

a0 fo ﬁn Gle

--+—-.-u.-_=0,
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By use of the substitutions

dv::u-ul-d,q

the/



the equations of flow are reduced to

86 av B
— -ma-... = R {
ay ¢
L s (5)
ae av ‘
et w= a8 0,
3¢ oy
whence ~
*vV 9 . v
—— o M e = 0 . (6)
3y*  o¢ ( 8;6) ’
which is the equation to be solved by relaxation.
Integration of equation (3)yields
P dq
V - - T g
b ¢
= £ a% , . (7
Po
from (1).
Now
PO y - 1 1/}/-1
——— = (1 + ————— MB)
p 2
= (1 + 0.2 y=)2'8
with v = 1,4. Also fromthe ususl equations for conpressible flow it can be
shown t hat

a? = w2M% (1 + 0,2?) al ,

therefore equation (7) my be witten

s aus
Vo= ‘“é[ T oo S\3es
ey ME(V+ 0.247)
e |

1

t log pra=s = 5a¥ = 3af - iy
a
MCO
where,/
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1
where a = (1 + 0,2°)%, and use has been made Of the fact that V = 0 when
L =0, i.e., when N = M_.
Equation (4) gives

1
@a + O.ZMQJQ-S ¢! _MQ)E ,

2
1t

1
o (1 - M2)2 .

1

Hence V and m can be tabulated as functions of M for a given free stream

I\/alch nunber; the relation between V and m will be required for the relaxation
sol ution.

3.2 Sol ution uging von Kirmén's Approximaiion

It can be shown that

therefore for thin aerofoils {q/U & 1)} at hiah subsonic Mach nunbers or thick
aerofoils at |ow subsonic Mach nunbers, von EKfrmfn's approximation,

m S| my,

is reasonable. Wth this approximtion equation (6) becomes

3*Vv *V
T4 g -— = 0. . .(9)
ay? a4

The solution of this equation may be found by a theory simlar to that used in

Ref.7, but uging V instead of r( £ [6&L>. In the case of zero circulation
the solution is found to be

18 1 = 6'd¢'
V ¢+ — = wee T mememme— m———— ".(9)
m, n7 oo ¢! = ¢ = dimyy

where ¢ = ¢' and 6 = B! are values On y = 0, the dividing streanline.
Now since gt is zero outside the range (gys ¢7)s i.e€.,

+
/¢T gl = o, 00(10)
31,

the real part of equation (9) can be witten

1 pdp 64(g! = ¢) d¢

2o [T oot NCE

Podt Sq (81 = ¢F + mov’
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One further equation which will be of sone value is obtained fromthe ‘closure'?

condi tion, namely
+
ﬁ"‘ ptagt = 0 , ee(42)
)

whi ch can be deduced fromequation (i1) and the fact that there is no circul ation,
The numerical solution of equations of the same formas (o), (I1) end (12) is
described in detail in Refe9e

3.3 Camarison with Incompressible Flow

The equation for inconpressible flow can be dexived fromequation (6) by
putting m = 1 (cf. equation (4)) and replacing V by Iy (ef. equations (1)
and (3)), which give

0°L;  ?%Iy
———f m—— = O, e (13)
dys®  o®

The solution of this equation is (cf.(11))

eoa{iL)

L = 1 ’/‘%19; (5 ~ ¢,) ag!
¢

Ly (B = 8aF + v

If the small differences in the locatian of the (¢, y) nesh in the corpressible

and inconpressible flow planes are ignored, then camparison of equations (i1)
and (14) yields

1
V(¢:v’r) 2 = Ly (¢: nbc‘x") 3 "-(15)
Meo

where V is a solution of the approximte f£low equation (8). Equation (15) will
be found useful in determining certain of the boundary conditions in the conpressible
fl ow plane.

L. Boundary Conditions

As is mentioned in the Introduction it is convenient to obtain a solution
for the inconpressible flow past the given aerofoil to facilitate the compressible
flow calculations. This solution can be obtained quickly by making use of

anal ytical solutions an the boundaries and conpleting the solution in the field
by relaxation.

4.1 Inconpressible Flow

(a) Aerofoil Surfoce

The values of L at points of the relaxation pesh (Figs.3 and 4) on the
aerofoil surface were estimated by the nethods of Woods? and Goldstein's10
Approxi mation I, which agree closely with each other and wth experiment. These
val ues were kept fixed throughout the application of the relaxation process to the
field.

e e S o

*mig nethod is based on equation (14 ).




(b) Cuter Boundary

In the relaxation process, wnless inversion3 is unsed, it IS necessary to
limt the field to a finite region enclosing the aerofoil. Values of the function
nust then be estimted on some outer boundary. The accuracy of suchval ues e¢an be
checked by extending the boundary such that the ;Foi nts of the previous boundary
become part of the field solved by relaxation. Then if the function is estimated
on the extended outer boundary, the solution throughout the field should remain
essentially unchanged. ~ On the boundary chosen for the incompressible flow plane
(Fig.3) the values of L were obtained from equation {14).

(c) Singularities at the Stagnation Points

The leading and trailing edges of the aerofoil, (¢1,0) and (¢p,0)
respectively, are singular points for L, since at these points g is zero and
fromthe dei‘inition,%:)l}, Wil have a logarithmic infinity. In the
neighbourhood.of the singularities an approxumation to the function is
(fromRefs7)

T S
L 2 wa- |Og V¢2+1{(a .05(16)
yis

where ¢ and y are neasured fromthe singularity and T is the discontinuity
ing at the stagnation point (e.g., at a rounded nose T = %/2), The
singular points require special treatnment in the relaxation process and this is
di scussed in 851,

4.2 Conpressible Plow

(a) Aerofoil Surface

The second of equations (5) gives

av 06 ae fs
3y a¢ as 0¢
1
= e - Ott(17)
ch

For inconpressible flow equation (17) reduces to

3L, 1
-EE = —— 000(18)
ak"i qu

Now for comvenicnee ¢p = ¢r, IS chosen to be the same in the inconpressible and
conpressible (¢,v) planes, in consequence the aerofoil chord with be of different
| engt hs, c; and oy, in the physical, {x,y) plane., The calculation of these
| engt hs is discussed in 85.2. Then equations (17) and (18)mey be written

av c 1

. B0 = -
dy R ¢ 9%Cc
oL. c !

- ':: = 0 - — s ;
3wy R.

gscC.
1 so/
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so for a fixed position on the aercfcil surface

av oL, ©:qQa
- 4 --nul -E-E » g‘(19)
dy O3 Colg

There is a slight novenent of the equipctentials frem the inconpressible to
conpressi bl e flow planes, but the chonge in e5q94/c,0, dU€ tO this was found to
be insignificant. Thus equation (19) vxhereavzgw amd B8L;i/0y.; are at the same

val ue of the potential, was used to obtain the boundary condition cmthe aercfcil
surface in the conpressible flow plane.

(b) Cuter Bowndary

The values of V on the cuter boundary of the compressible flow field
ore obtained from the relation, derived in 83.3

1
V(gy) = == Iy ($omea)

Boo

which al though approximate is sufficiently accurate if the cuter boundaries
chosen are a sufficient distance fromthe aerofoil. Vhether this is so can be
checked in the sane way as that used for the inconpressible flow solution

(cf. Bret(n)).
(c) Stagnation Points

The same type of gingularity in V as that for the incomressible flow
function, Lj, arises at the stagnation points. These were dealt with by use of

the inconpressible flow solution in the approximate relation, derived from
equation (15),

1
v = -Li,

ey

at points of the relaxation mesh in the Mediate neighbourhood of the stagnation

points ig.5). This is an approximation which is thought to have little effect on
the final solution.

5. Relaxation Procedure

5.1 Tncampressible Flow

The sinplest approximation to the basic differential equation of the

flow viz.,
?L 3L
- - = 0
a3 o
Is the difference equation
L1+L3+L3+L4-!+L0=0: vee(20)

where L. refers to the value of L at same point r of the relrumtion mesh
(Fig.1)s The use of equation (20) involves a possible errar of 0O(h*).

Figs1/
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Bquation (20) nust be satisfied at all points of t he relaxation megh.

As nentioned in 8.1(a) the values of L on the surface of the
serofoil and on the out er boundarics (Fig.3) wer e calculated and maintained during
the relaxation of' the interior of the field. Sincc the problem considered is that
of asymmetrical aerofoil at zero inci dence, by symetry it is only necessary to
consider the half of the field of flow bounded bel ow by the dividing streamline.
At points of the relaxation nesh on the dividing streamline but not on the
serofoil surface this symmetry gives the condition, (Fige1, point B),

L, -Lg = 0. .e(21)
Hence for such points, from equations (20) end (21)

L, + L + 2L, =4 = 0.

r

Tn $.1(c) it is noted that the stoppation pointe, wWaich arecsingular
points for L, require special t{reatment in the rclaxation process. In the
neighbourhood Of the singularity L can be expressed as (cf. equation (16)),

.144

- P+ g2 <
L = = «=1log,(=—=====/ +7q e(22)
™ 12

where ¢ and v are neasured from the singularity and n satisfies,

2 2
9

i Ton

and hns no singularity at the stngnation points.
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A relaxation treatment of such logarithmc singularities has been given
in Refe11e In this paper it iS shown that flecading factorst nmust be added to the
residual s at points of the relaxation mesh near t%]e singularity, (Fig.5). These
factors depend on the strength of the singularity, which in this case I's
-r/x (equation (22)). The true value of 7 obtained from the aerofoil profile,
cannot be wused since the conditions inposed by equations (10) and (12) of B3.2,
mist be satisfied.  These two equations can be witten

55111' a6
[ --d¢+-rL+rT=0,
"bpt 8¢
end > .s0(23)
= a8
f ¢~ dp + ¢pry + Gfp = O .
ot % }

Then, since, fromthe secad of equations (5),for inconpressible flow,

a8 oL

¢ dy

3

equation (23) gives

-y

aL
T * Tp = %3('8';)] [¢]3:
and ’ oaa(zli-)
rirp 2 3(o) BF), s
SLTL + HTT ] <8w>j 21y

J

where the summaticns are taken over all the nesh points on the aerofoil gurface
(excluding those at and ¢n)e. The square brackets denote a mean value of the
encl osed function over the interval covered by the nesh point: e.g., for a nesh
point at ¢ = 5, with an interval h = 1,

(28], = & (5.5)" = § (45)° = 50,

The derivative 8L/ay can be estimated at each mesh point, on the aerofoil from
the equation,

oL
2h— = I ~I + o(n?) | vee(25)
as

where L, is a fictitious value (Figs1, point C) which can be eliminated by the
use of equation (20), thus

oL
= & L+ 20, -4l .
v
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Then from the simultaneous equations (24.) appropriate values of 1, and Tp can
be calculated. As the mesh interval, h, tendas to zero the calculated values of
T will approach the true values.

5¢2 Compressible Flow

The eguation to be solved is

?*vY a av
oT— + — (mﬂ —— ) -1 0 3
G T ad

which can be represented with a possible error of 0(h*) by

V,+ V4 mdV, + ok V, = Vo (2 +md +m) =0, - ee(26)

2 3

where and refer to the value of m* correspending to the value of V
at the points a and b on Figel, i.e., Va = (Vo + V,)/2,

On the aerofoil surface the form of equation (25) fer V can he used
with equatien (26) to give,

av
v, + Vim;_'*' vam'g— Vo (2 + m;.'*' m;) & 2ha_;'

Now in §h.-2(a) it is shown that the derivatives satisfy the relation

av o3 q3 0ly

= . ———— y

oy Cp de O¥i

and it seems reasonable to suppese that the difference approximations to the
derivatives will be related quite accurately in a similor manners Therefore to
obtain the boundery condition en the asrofoil in the compressible flow plane the
follewing relation, for the same mesh size, was used,

Cs Qu
2v, +mgV1+m%V3 'vo(z +mg.+m?)): “c‘:':"‘q“‘i' (1'1+Ih+21'2"1‘l'0)'
C

This form of the boundary condition reduces any errors introduced in the
vepresentation of derivatives by differences.

The outer boundary and stagnation points were treated as described in
8.2(b) and 8:.2(c), the incompressible flow solution being used te obtain Iy,
and hence V, at mesh points near the singularities.

One further point which remains to be dascussed is the calculation ef

the chord, ¢, From the aerofoil go-ordinates it is possible to estimate the
ratic s/c, where 5 is the perimeter distance alang the aerofoil surface. Now

s/
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¢
S=fd39
oL

_ /‘¢T ag
= el
b, q

ves(27)

(fromequation (2}), which can be integrated numerically by use of the val ues of
g obtained fram the partial solution at ony stage in the calculation. At the
stagnation points ¢ is zero, and, as in Ref.7,the equation

<

- T
(-2)
T
where ¢ is measured fromthe singularity, and g is the walue of q at
¢ = 4, was used for the nesh intervals adjacent to the stagnation points.
As is mentioned in the Introduction the existence of a shock-wave iS

revealed by the relaxation technique. It is found to be impossible to relax over

the whole field because, for a sufficiently high frec—stream Mach nunber and with
q/U greater than unity, m® assumes large negative values. In +his instance it

i's easily seen from the relaxation pattern (Fifg.Z), derived fram equation {26),
that the essential feature of relaxation, the fact that the elimination of a
residual at one point shall not produce larger residuals at neighbouring polints,

is |lost.

Reliaxation pattern_ for gguation (2_;_:)

Fic 2.

The/



The large unrel axed residuals can be moved about the domain by raking alterations
to V at mesh points on the sane streanline. In this Ny they can %e collected in
pairs of apposite sign along two neighbouring equipotentinls of the mesh as
requireds

6. Avplication of Met hod

The flow about a 40% thick symetrical aerofoil of RAE 104 section*, at
zero incidence and for three subsonic Mach nuubers, wes calculated by the method
discussed. above. The sol ution on the aerofoil surface in the inconpressible flow
pl ane was cal cul ated by the method of Ref.9, The corresponding velocity
distribution is shown in M.6, together with that obtained by the method of
Refs10, and by experiment (neasured at M = 0.40 and reduced to M = 0 by
t he Glauvert Law),

The vel ocity distribution8 obtained from the relaxation solutions for

Mach nunbers of 0.70, 0.79, and 0.86 are shown in Figs.7, 8 and 9, =na conpared with
corresponding experinental values. The experirental val ues of o/U were measured
inthe NPL 20" x 8" H gh Speed Tunnel using strearline woalls, i.e., walls shaped to
the streamlines of the free-air flow about the nmodel. In Fig.7 the velocity
distribution cal culated by the method of Ref.9 is also shevmjthis nmethod is not
?Fpllcable to the higher Mach numbers, where there are local regions of supersonic

OW.

At a Mach nunber of 0.70 the flow is entirely subsonic, at M = 0.79
(just above the pressure critical Mach nunber) there is a small region of supersonic
flow, extending from about 0.30c t0 0.55¢ (Fige.8(ii)), which presented no
difficulties in the relaxation process. The shock wave present at M = 0.86
wos dealt with as discussed above, the flow photograph, (Figs9(ii)), being used to
determne the position of the foot of the shock.

The experinental results for M = 0.79, between 0,50¢ and 0. 700,
indicate a |ocal separation of the boundary layer, transition taking place at
about 0s70c, With turbulent reattachment. At M = 0.86 the experinental results
inthat region indicate a laminar boundary layer upstream of the shook wave, with
separation at about 0.50c, transition under the shock, and possibly turbul ent
reattachment. Since the theoretical problemconsidered is that of the flow of an
inviseid fluid it is thought that the discrepancies between the relaxation solution
and the experinental results are due in part t0 bowmdary-layer effects.
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