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SUMMARY

This Report describes the basic prineiples on which theoretical
flutter analyses are made, and illustrates them by some simple
applications, The techniques employed are typical of those in current
use in this Country. Three Appendices give the two-dimensional aero-
dynamic derivatives for a wing-aileron-tab system, computational details
of typical forms of solution, and an illustration of the use of resonance

test modes in flutter calculations,
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1 Introduction

In 1948/49 a series of flutter courses was held at the R.A.E. for
the purpose of introducing to technicians in the Aircraft Industry the
methods used in making flutter calculations. A memorandum* was written
at the time describing these methods. Although the memorandum was
necessarily limited in scope, it has proved to be of considerable value
as an introduction for those new to the subject and as a reference to the
methods typically employed in flutter investigations, It has therefore
been decided to re-issue 1t as a formal Report for general use. A few
detailed improvements have been made, and parts of the original that
related directly to the broader purpose of the flutter courses have been
omitted.

This Report, as it stands, 18 wholly concerned with the techmiques
used in caleculations for predicting theoretically the flutter character-
istics of an aircraft. The techniques described are typical of those 1n
current use in this Country. The Report, however, does no more than
illustrate the basic principles involved, It does not give a realistic
pleture of the comprehensive nature of the flutter calculations normally
required, nor does it describe all the detailed computational methods
that may be employed.

The general basis of flutter calculations is first described., This
is followed by two typical analyses illustrating the application of the
basic analytical approach to the prediction of wing-aileron flutter and
wing flexure-torsion flutter, In Appendix I expressions are given for the
aerodynamic derivatives of a wing-aileron-tab system for two-dimensional
incompressible flow. Appendix II amplifies the description given of the
forms of solution in the typlcal analyses. Appendix ITT describes the
interpretation and use of ground rescnance test results, and illustrates
the use of resonance test modes in flutter calculations by a typical cal-
culation for fuselage-elevator flutter,

No attempt is made to provide a2 bibliography of flutter literature,
which is not required for the restricted purpose of this note. The few
references quoted are given as footnotes to the text,

Acknowledgements are made to Mr., E. G. Broadbent and Mr, W. G. Molyneux
for the caleulations of Appendix III and for their assistance in writing
this Appendix. .

2 The Basis of Flutter Caleulaticns

The physical and mechanical aspects of flutter have been well
described by earlier wraiters on the subject®*, and it is not proposed to
deal any further with these aspects here. Suffice it to say that the
vibrating aeroplane is simply an elastic structure supporting certain
masses {that is, having certain inertia propertles) and subjected to
aerodynamic forces of an oscillatory nature, There are therefore two maln
aspects to be considered: the elastic-inertia characteristics of the
structure and the nature of the aerodynamic forces,

* R.A,E. Technical Memo. Structures 8. "The Technique of Flutter
Investigations."

** W_J, Dunchn. "The Fundamentals of Flutter". R.A.E. Report No.
Aero, 1920,
P,B. Walker. "The Mechaunicel Aspect of Flutter"., Aircraft Engineer-
ing, February, 1938.
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On the elastlc-inertia side the problem may be considered in relation
to that of the natural oscillations of the structure in vacuo, where each
prineipal oscillation has a fregquency and mode associated with i, the
mode being the shape of the deformed state of the structure relative to
its equilibrium position. For all but the simplest structures it is
generally impossible to obtain an exact solution of the mode, except by
iteration, and it is common practice t¢ prescribe an arbitrary mode on
the basis that if it is a reasonable approximation to the true mode then
the frequency will not be Unduly affected. Better still, a combination
of several arbitrary modes may be prescribed, with amplitude ratios to be
determined along with the frequency. The structure is then termed semi-
rigid in the sense that it is allowed to deform only in a 1imited number
of defined ways; or, in other words, it has a limited number of degrees
of freedom, The term "degree of freedom" is fairly self-explanatory but
for the sake of clarity may be defined as 2 prescribed deformation or
movement of the struecture whose amplitude in relation to that of any
other degree of freedom is not assumed but remains to be determined.

The mode associated with a degree of freedom may conveniently be termed
_ the freedom mode,

In flutter the structure is likewise treated as gsemi-rigid and the
ma.jor problem on the elastic—inertia side is to know how many and what
sort of degrees of freedom to consider in order to provide a satisfactory
representation of the true mode in the eritical flutter condition. TFor a
complete flutter investigation on any particular aercplane the number of
degrees of freedom considered should bhe large enough to cover all possible
deformations of the various components as well as control surface move-
ments and bodily movements of the aeroplane as a whole. Assuming that
such a process were practicable, it would even so be found generally that
in any critical condition a certain few of the degrees of freedom pre-
dominated, their amplitudes being much greater than thoge of the remainder:
the resulting flutter would then be designated as being of a particular
"type", invelving those components asscciated with the major degrees of
freedom., Wing flexure - aileron flutter for instance is the flutter which
arises when the wing flexural mode and alleron rotation predominate:
fuselage bending and elevator rotation would similarly result in fuselage =
elevator flutter, It is therefore generally possible to investigate any
particular type of flutter with a relatively small number of degrees of
freedom. For so-called "classical" flutter, with whish this Report is
oconcerned, at least two degrees of freedom must be present: although
each degree of freedom would separately give a damped oscillation the
various couplings that exist between the two can result in an unstable
oscillation when combined together under certain conditions. The labour
involved in a flutter caleculation increases greatly with the number of
degrees of freedom, and for the average routine investigation the prac-
tical limit is set at four., For most routine work, however, two to four
degrees of freedom are generally adequate.

On the aesrcdynamic side the forces are expressed in the form of
derivatives, which define the amount of the particular force concerned
per unit displacement, velocity, or acceleration of the particular motien
concerned, the motion being relative to the equilibrium poesition. The
aerodynamic derivatives used in flutter prediction are mainly theoretical
values based on the following assumptions:-

(a) thin aerofoll theory
(b) perfect fluid with two-dimensional irrotational flow

(¢) simple harmonic motion of the surfaces.



A complete list of two-dimensional incompressiole flow derivatives
is given in Appendix I* for a wing-aileron-tab combination: it 1s
equally applicable of course teo a tailplane-clevator-tab system, Motion
of the system is represented by the displacement of some reference point
on the wing chord together with rotations of wing, aileron, and tab about
the reference point and hinge posations respectively, In Appendix I the
leading edge is used as reference peint and the derivatives are termed
"leading edge" derivatives. The form of the expressions for the aero-
dynamic forces is explained in Section 3. It 1s to be noted that the

damping and stiffness derivatives (such as ¢y and &Z) which relate to

veloeity and diasplacement are functions of the ﬁyequency.

To use two-dimensional derivatives as they stand would be tantamount
to assuming that the aerodynamic forces on any chordwise strip of the
wing are the same as 1f the strip were part of a uniform wing of infinite
span underg01ng the same motion as the strip., For practical wings such
an assumption is of course not justified, and 1t is usual to apply approxi-
mate correctien factors to the two-dimensional der1Vat1ves based on the
knevmn vslues of the static derivatives (a 85, bys By ete.) for the
complete three-dimensional wing, For wings of lcw aspect ratio more
accurate values are required, and experimental and theoretical work is
in hand to 'this end.

Elastic-inertia and aerodynamic e¢ff'ects are combined in a flutter
calculation by straightforward application of the Lagrangian equationg of
motion for a non-conservative system to the critical flutter conditdon in
which the motion is simple harmonic, representing transition from a decay-
ing to a growing oscillation. Typical ternary and binary analyses involv-
ing three and two degrees of freedom are gaven in detail in Sections 3
and 4 respectively. Simple uncoupled freedom modes are used for the wing
deformation in these analyses, one of pure flexure and one of pure torsion.
Modes of this type are often fermed "arbitrary" modes in contrast to the
normal modes associated with the natural oscillations in vacus or in still
air, which as discussed later may also be used for the freedom modes: in
actual fact of course any freedom modes used with semi-rigid structures
are essentiaily arbitrary. The distinction has arisen because in many
cases normal modes do provide a betfer approximation o the flutter mode
than do the simple arbitrary modes, and also because they provide a stiff-
nesg representation that is more accurately related to the freedom mode.

The ternary analysis is given first, from which the binary analysis
in Section 4 follows very simply by making the omissions appropriate to
the deleted degree of freedom. This procedure is adopted purposely in
preference to a detailed binary analysis followed by a rather complicated
presentation of the effect of introducing a third degree of freedom.

An unswept wing is assumed in the analyses, in which it will be noted
that the flexural axis is taken as the reference axis for the wing motion,
invelving a transformation of the leading-edge derivatives. If the analysis
is applied to an ad hoc calculation, which is primarily the intention, then
the unknowns are the frequency of the oscillation and the airspeed in the
critical flutter condition. The solution of the equations: of motion is
complicated by the dependency of the damping and stiffness deravatives on
frequency. General forms of solution described in Sections 3 and 4 are
given in greater detail in Appendix II. It should, incadentally, be
mentioned that the notation used for-the typical analyses and throughout

1

¥ Values for a wider range of tab chord ratiocs are given by Minhinnick in
R.A.E. Report No. Structures 86. Theoretical values of two—dimensional
subsonic compressible flow derivatives are given by Minhinnick in
R.A.E. Report No. Structures 87.
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the report generally is by no means universal: various systems of notation
are used by different workers, so much so in fact that serious considera-
tion is being given to the possible adoption of a universal system. At the
moment, however, the notation used in thns report will be found adequate for
the immediate purpose. -

Finally, in Appendix III, an outline 1s given of the usefulness of
regsonance tests in flutter investigations. The analysis§ of resonance
tests 18 by no means a cut-and-dried science, being st1ll at the stage
where knowledge grows with experience. Resonance tests have, however,
more than ence indicated possably dangerous modes conducive to flutter and
have thereby enabled preventive measures to be taken in time. They are
particularly useful, of course, in cases where no specific theoretital
flutter investigations have been made in the design stage and reliance hag
been placed on the standard stiffness and inertia criteria, which do not
pretend to cover all eventualities. Any flutter caleulations made as a
result of resonance tests will generally use the resonsance modes, which
will be the normal modes of vibration as distinet from "arbitrary" modes.
This makes no difference to the form of the analysis: a binary caleulation
similar to that presented in Section h might for instance be done either
as given there using two arbitrary modes, one of pure flexure and one of
pure torsion; or it might be done using itwo normal modes, each of which
would involve both flexure and torsion, There are certain advantages in
using normal modes, which may, resonance tests apart, be sufficient in
some cases to warrant a theoretical estimation of such modes for use in a
flutter calowlation, In view of the interest attached to normal mode cal-
eulations, a typical investigation (in this case of fuselage - elevator
flutter) is given at the end of Appendix III.

3 Typical Ternary Analysis. Wing Flexure and Torsion with Free Aileron

' The case envisaged iz that of the wing oscillating in flexure and in
torsion, together with accompanying oscillation of the unconstrained
aileron; The wing motion, like that of the aileron, is antisymmetric.
"Fuselage immobility is assumed, or in other words there is no rolling
motion of the aeroplane as a whole, so that the wing motion is due entirely
to structural ‘distortion. PFuselage mobility could be included as an extra
degree of freedom, making the calculation a guaternary one.

The analysis is based on the application of the standard Lagrangian
equations to the case of the wing and aileron in the critical flutter
sondition, oscillating with constant amplitude or simple harmonic motion,

The Lagrangian equaticns are a statement of the energy relationships
of a dynamical system whose configuration in space is determined or can be
expressed by a number of so-called "generalised" co-ordinates q4, Qp, etc.

In the simplie case of a rigid body with a single translational degree of
freedom the equations reduce to the well kmown Force = Mass x Acceleration.

In generazl, the Lagrangian equation appropriate to the go-ordinate
4. is
d oT N Ve

— g t—

at oy, 3

= Q. (1.1)

where T and V., are the kinetic and petential energies of the system and
Qe is the "generalised" force appropriate to the co-ordinate q, (see

3T
later). Strictly speaking a further term = e should be included in
T
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equation (1.1) but as small displacements are assumed.fbr which the
kinetie energy is a function only of the velocities qp and not of the
displacements d, the term is here omitted,

To apply the equations to the critical flutter condition the wing-
aileron motion is represented by conveniently chosen co-ordinates and the
various terms in the Lagrangian equations evaluated in order.

Wing-Aileron Motion (Arbitrary Modes)

& = =

—_—

Mean chord] Chord

Datum

e

Cm c
\L__,,_..——-—"'"’-
|
e T
Reference ! Flexural
Centre Section Axis Hinge

The flexural axis is chosen as the axis of reference and the wing
motion represented by a downward displacement 2z of this axis and a
nose-up rotation a about the axis, both relative to the equilabrium
position. Arbitrary modes

Z, - t (TD

ta
i

(1.2)

a = G\'.O.F(Tl)

are chosen, 1z, and &, being the values of z and @ at the reference
section, where T and the displacement functions f and F are all unity.
Co-ordinates q, and qp are then chosen to represent the displacements

Z4 and @, at the reference section as follows:

25

Y :
(1.3)
(4]
_ Im
q2 = 7 o

Combining {1.2) and (1.3) gives the wing motion in terms of the_generalised
co—~ordinatey as

™
1]
&
Hh
O
—

(1.4)



For the aileron motion the angle relative to the wing is likewise speci-
fied by the angle at the reference section, &,. If, as is quite common,
the aileron is assumed rigid torsionally, then the local aileron angle is
given by

E = E +a -a {1.5)
Ir Eo is represented directly by a2 third co-ordinate Q3 = % . 50 ’
(1.5) becomes
& £
£ = el Qg + = (1-9.4q (1.6)

The ailez;on mode is thus a function of two of the three co-ordinates.

In the oritical flutter condition the displacements 2y, %, %o,
and therefore the corresponding co-ordinates aqq, dp, 93, Vary ainu-

soidally with time, If -2% is the frequency of the oscillation in cycles

per second, then

' L1 L1 ) 2
E‘l = .92 = 32 = - p2 = - 2 . 1—2' (1 . 7)
IR boen

pc
w 1is the local frequency parameter —v- , and @« the mean frequency
parameter corresponding to the mean chord o, V is the airspeed.

a oT
Inertia Coefficients (from term — « —
dt 9§,

For an element of mass Om situated in the win,g a distence x behind

the reference axis, the dowmward velocity is (% + x&), For a gimilar mass
in the aileron a distance x; behind the hinge the velocity is

(2 + x& + x8).
The total kinetic energy for the half-wing is then

. - . . ’ 2
P = L3 (z+xa)2 dm+ I (z+xx+xE)" Om (1.8)
wing aileron :

Substituting for z, a, and E& from (1.4) and (1.6) gives

* e’ - 2
T = Z%(&fqdl +x§Fq2) Sm
wing

2
. 2 . L .
+ I (&fq1+§{xF+x1 (1—F)}q2+x1-cl-;q3> dm (1.0

aileron

that is, a function of the three co—ordinate velcoities 'q_l s q2 , and ;15.

-



For the eguation in 9y the appropriate inertia term is

(1] ‘ﬁ' e
—_— m— = h> ('efq +X"_FQ)€'f- dm

-l 4& ” B.‘
+ L (ffq +— xF+x, (1-F)} q +x——q>€f.5m
aileron \ | °m } 2 Tem 3

3.2 2
-pé’v (ea.ﬂq,i * 8,00, + a13q3) w (1.10)

1l

where, by using equation (1.7), the non-dimensional inertia coefficients
are obtained as

1 2

a =————/fm.dn
14 I:)ch

ay = _l? [[fpmi,dmrffh-mmil .dnj
P Sy

i Y
a e fmx, . dn
1 ] 1
? Pcm3

H

m is the mass per unlt span (including the aileron), m x the mass moment
about the reference axis per unit span {including the ailerom), and m X4
the mass moment about the hinge per unit span (aileron only).

Similarly, for the equations in g, and q3 the appropriate inertia
terms are

4 08T 32 2

a AT 3 2 2

S, 2 . Lp

8% 3y PV Lagyay + a5t + 83303) @ (1.12)
with inertia coefficients
Bo1 T Byp

1 ' 2 2 _ 2
ays = 0 [[szxz an+2/F(1~F)mK2 .an+f(1-F) mK, "~ . am

m

; [[ 2 / 2 jJ
By = e Fuk,” ., dn+ (1 -7 ukK,” . an
23 PGmAF 1
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31 13
4z = 83

1 / 2
a = mK, . 4an
33 p ontt |

sz is the mass moment of inertia about the reference axis per unit span
(including the aileron), mK.|2 the mass moment of inertia about the hinge
per unit span {aileron only), and mK22 the mass product of inertia

Ix X4 Sm eabout the reference axis and hinge per unit spen (aileron only).

. . . av
Stiffness Coefficients (:f‘rom term —a--§>
qr

The potential energy stored in the wing during displacements z5 and
%, iz equal to the work that would bé¢ done by any system of statically
applied loads which produced the same wing deformation. 3By the semi-rigid
principle this is equated to the work done by conecentrated loads which,
applied at the reference section, produce the same displacements zp and
4, at the reference section,

In terms of the standard flexural and torsional stiffnesses {4 and
mg appropriate to the reference section, “the potential energy stored in
the helf-wing can then be expressed as

2
7

- 1 ] 1 2

Ve = 2%(@) + 7 Mg &

or, substituting for z, and a, from (1.3)

2
o 2 . &% 2

Sinec the aileron is unconstrained there is no elastic stiffness associated
with it and consequently no additional energy stored in respect of the
aileron motion, Equation (4,13) therefore gives the whole of the potential
energy stored in the wing-sileron system,

For the equations in Yy and d4 the appropriate stiffness terms

are
3, 3
T Gy = e LA (1.14)
av & .
Hgf = myTp e = Pl VL ey, (1.15)
2 °m

from which the non~dimensional stiffness eoefficlents are obtalned as

- 10 -



£

¢
e,, = (1.16)
. 11 o E;VQ
2
m 2 e
eop = °_. - 1 (1.17)
2
£ c
where R, the stiffness ratio = ¢ .
Mg 52
5Ve
For the equation in q3 the gtiffness term Y is zero. 1t should
q

be noted that it is possible, as with the inertia coefficients, to have a
total of nine stiffness coefficients, Cross stiffness coefficients

eps (r #8) are however eliminated by the choice of flexursl axis as the
wing reference axis and by the absence of interaction between wing and
aileron motions, The direct stiffness coefficient e associated with
the aileron motion is zerc in this case, but would noi™be 'so, of course,
if the aileron were constrained by holding the stick.

Aerodynamic Force Ooefficients {from term Qn)

The "generalised" forne Q. represents the externally applaed loads
appropriate to the cg-ordinate g, and is defined as follews, If due to
a small displacement &g, the work %fne by the applied loads 1s Sﬂr,

il

then the generalised force is Qp = -I,

%y

The applied loads in this case are the aerodynamic loads which on an
oscillating aercfoil consist of contributions due to inertia, damping, and
stiffness., Using derivatives appropriate to the reference axis, the 1lift
force L, for instance, is per unit span,

L

po VP

&
= (0l s iet + ¢)me(=ol L1 iwb + L) 0

+ (—w2 8% + icuEé + €E) E

The three major terms in =z, a, and & represent the contributions due to
these three constituent motions and the interpretation of the form of these
terms can be illustrated by the first, the term in =z, Since 2z is vary-

ing sinusoidally with time at a frequency of l% cycles per second, or in
exponential form is proportional to elpt, then velocity and acceleration
are respectively equal to dipz and -pz, and therefore proportional o

C
iwg and —wzz, ® being the frequency parameter % . The three terms

in the bracket therefore represent in order the 1if't due to translational
acceleration (inertis), velocity (damping), and displacement (stiffness),
with the appropriate derivatives €7 £y and ¢,. There is in the present
case a total of 27 derivatives, comprising inertia, damping, and stiffness
derivatives for each of the three relevant foreces in respect of each of the
three displacements.

-1 -



The three forces concerned, that is the 1ift L, moment akout the
reference axis M, and hinge moment H, may conveniently be written in
the following shortened notation as

L -z

Pcv2=Lz.g+La.a+Lg.§'\
M 2 \ '
= M ,—=—+M , ¢+ M ., 1.18
Pc2v2 4 c+ @ * Y 5 ( )
H O ,
:H .E"-H ,a+HE|E..) 7
242 z ¢ 4
pe

where the complex derivative L, = —o® {’:; +iwé;, + £, and similarly
for the cther complex derivatives,

The work done by the aerodynamic forces on a unit span strip during
displacements &z, Ox, and OF us

I
-~

- 8 = -L, dz+ M, Sz +H, 8

end by substituting (1.4), (1.6) this is obtained in terms of the
co-ordinate increments as

B = - L. by + = PN L by + ZH . by (1.19)

where M = M+1 - E H. (1.20)

Integrating sparwise over the wing gives the total work done during
increments in a4, qp, and gs. The "generalised" forces appropriate to
the three co-ordinates then Tollow automatically by definition as

&
CaQ == = - [ rL.an
R . 1 5q1
oW, 2
2 £ !
Q = 7= = [—FMN .,an (1.21)
bq, O

{
]

&w 2
Q_,,—---2 fﬁ—H.d'ﬂ 4
6Q3 m

It remains only to substitute for L, M', and H and by expansion to
obtain expressions for the three generalised forces in terms of the
co~ordinates q4, qp, and 9.
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The first step is tec obtain expressions for L, M', and H in fterms
of qq, 9, 43.

EA'Y

Substituting for z, @, and & from (1.4), (1.6) in equation (4.,18)
for L gives finally

- L

PcVz' z

Fay + Ly . o 9 (1.22)

where Ly = Lg+ L 7 Lg (1.232)

and in the same way exactly similar expressions are cbtained for

g P°2V2

and with compound-complex derivatives
22
pccv
My = M, *L;TEME (1,23b)
and By = Hy+ - ;,FHg (1.23c)

Substituting these new forms for M and H in equation (1.20) then gives

M’ t ¢ " 4 1 £
= M, .—fq +My .—Fq +M . =—.q (1.24)
P02V2 Z c 1 @ Cm q2 E Cm 3

' | - F
where M, = Mo+ H (1.24a)
M, = My 4 E’;FHQ' (1.24b)

o 1-F
Me' o= Mg+ T H (1.24c)

The second and final step is to substitute the new expressions for L, M','
and H in equations (1.21) to obtain the generalised forces., Since L, M
and H have been reduced to linear functions of the co-ordinates a4, 9o,
and q; the generalised forces will also be obtained in this form. The
coeffitients of g4y 9o, and dx in L, M and H in every case include
a complex derivative and the corresponding coefficients in the generalised
forces will therefore consist of inertia, damping, and stiffness contri-
butions, This can be illustrated by considering the coefficient of g4

in the expression for the force Q4. By substituting (1.22) in the first
of equations (1.21) it is seen that the term in qq is

- f e, pot? . LZ.Cii fq, . dn = —p PV ffz(_mza-z- s 408y 4+ 4) an . g

replacing the complex derivative L, by its basic derivative form, The
term in qq ocan then be written as ‘

- 13 -



3 2 :
POV (-xyq0, + By By + o) L gy

the mean frequency parameter , replacing the local and variable para-
meter w, The ¥, b, and ¢ coefficients represent respeotively the
inertia, damping, and stiffness contributions to the generalised ferce in
respect of the particular co-ordinate, in this case qq. The suffix
notation employed for the coefficients is similar to that used for the
strustural inertia and elastic stiffness coefficients, the numbers 'rs'
after a coefficient signifying the contribution to the force Q. in
respect of the co-ordinate qg.

The three generalised forces can therefore be writien generally as

P’;vz Z (- v Yrs + brs iwm + Prs) qq (1.25)

with r having values 1, 2, and 3. The total number of coefficients is
thus 27 and their values are found by equating corrcsponding terms in
equations (1.21) and (1.25).

A point t~ note here is that any compound complex derivative is con-
veniently expressible in terms cf inertia, damping, and stiffness contri-
butions involving eppropriate derlvatlves. For instance, {1,23a) can be
written -

La = ~@ 4 iwé +5a
1 ~F
where &a' = &y + 7 85
and similarly for the compound derivatives E&' and €)' In other

words, the compound inertia, damping, and stiffness derlvatxves are
obtained from expressions exactly similar in form to those for the oorres-
ponding compound-complex derlvatives. To illustrate the point further,
the damping derivative hy' is, from (1.23c),

' 1«7,
Fhi

and the inertia derivative my" 1s, from (1.24b),

a " —_ u' 1 - F ™ 1
m = m, + = ha

Tt is not necessary to write down the complete list of 27 force coefficients
since for any given order there is a simple relationship between the Y,

b, and ¢ coefficients of that order. The nine c coefficients are as
follows:

N 4

c = j.fz £ . an

-l -
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The b and Y coefficients for any given order are obtained from the
e coefficient of the same order by including additional factors

2
é; and 9—§ within the integral and using the appropriate damping and
®m

jnertia derivatives, TFor example, for the order '12' the coefficients are:

il

s ]
Cyo f“c—mfF‘ﬁa.dn

\2 '
b, = f“—fF&;x . an

“m

= 22_ FP L. a
Cn

To evaluaté the force coefficients the basic derivatives are first
cdleulated, A complete list of these is given in Appendix I*, where it

*The hasic derivatives given in Appendix I are two-dimensional derivatives
appropriate to the leading edge as reference axis, Transformation formulae
are also given from which corresponding derivatives may be obtained for
other reference axes, 15



will be seen that the damping and stiffness derivatives are functions of
the local frequency parameter ® and can therefore only be caloulated for
a given value of the mean frequency parameter ®p, from which the local
value is obtained as ®w=® ., 9(; . Prom the basic derivatives follow
the compound derivatives and finally, by spanwise integration over

the half-wing, the coefficients themseives, Since the b and c¢ coeffi-
cients are derived from dasmping and stiffness derivatives respectively it
follows that they also must depend upon the value of W,

Solutlon of the Equations of Motion

The Lagrangian equations can now be written down directly from the
general equation (1.1) with r successively equal to 1, 2, and 3, The
first equation with r = 1 is for instance obtained by substituting (1,10)
for the inertia term, (1.14) for the stiffness term, and (1.25) with r =1
for the force term, and the resulting =quation is

2 :
{' (agq + ¥q) @7 + bydey + 0py + F"11} 4
+{-{a,, +¥ )w2+b iw +c¢
12 ¥ Y42/ " 127 * %2 B
+{~ (a +Y)m2+b iw + ¢ q, = 0O
13 * Y43/ 13:% * G435 ( U

By a similar process the two remaining equations are obtained. The complete
set of equations may conveniently be written as

(Bpptegd 4+ by o595 = 0
521 q + (622 + e22) q + 623 ST 0 L (1.26)
P50 % * B5p B ¥ b3 % =0

whers in general

2
-~ w w + 0
rs (ars * Yrs) m Y brs 1 m rs

or

2
rs (ars + Trs) Mo+ brss Mt crs ’

the symbol M being used for the imaginary quentity 1.

Equations (1.26) are the equations of motion for the eritical flutter
condition, linear in Y, G and 435 with complex coeffiecients,

Eliminating Qs 92, ang, Qs gives the determinantal equation

- 16 -



6 + 2 6 6

11+ %00 P12 O3
| %945 Spp * Bpps Oyl = O (1.27)
51 520 053

which is the relationship that must exist between the coefficients in the
oritical condition, Speed and frequency are the variables in (1,27), whisch
when real and imaginary parts are equated to zero provides two equations
for the solution of these quantities; but the solution is complicated by
the form in which the variables occur. Ixeluding compressibility effects,
speed occurs only in the stiffness coefficients e4q and epp, The
frequency parameter , however occurs explicitly in the form of the 6
coeffieients and i1mplicitly in the values of the forece coefficients b

and c. There are two possible methods of solution.

In the first, which might be termed the "direct iterative" method,
(1.27) is expanded in the form of a pelynomal in A to the sixth power

2

6 L 3 L.
AT 4 p3 x4 pu Ao+ p5 A+ Py = 0 (1.28)

5
Po M+ pyp Mt py

where the coefficients p; to pg are real functions of the original
inertia, stiffness, and force coefficients. ZEquating to zero the real and
wmaginary parts of (4.28), involving even and odd powers of A respectively,
then gives the two real equations

6 L 2
"D Yy tP Yy - By, “n * Pg 0

(1.29)

1
o

w b W 2
Py %m T P3 % *Ps

from which ®,; can be eliminated to give an equatien which, after substi-
tuting eqq = Regp from (1.17), resolves itself into a sextie in eop,
the coefficients of which are functiens of the inertia and force noeffi-
cients {(a + ¥), b and e. Theoretically, for an assumed value of the
frequency parameter @, the b and c¢ coefficients, and hence the
coefficients of the sextic, could be evaluated and the sextic solved
directly for eops and hence for the speed from (1.17). The assumed value
of w, 1is then checked from (1.29) and af different the process repeated
until reasonable agreement 1s obtained, In practice this method is
unsuitable because of the sextic solution,

The darect solution of the sextic can of course be aveided by adopting
an indirect solution of equations (1.29)., For a given speed, which with
an assumed value of W, determines the values of the p ceefficients, the
second of equations (1.29) can be solved as a quadratic for ®w 2 and its
value substituted in the left-hand side of the first of eguatiens (1,29).
Repeating fer a range of speeds, the speed for which the left-hand side of
the first of equations (1.29) becomes zero can be found by interpolation,

In the second method, which in contrast to the first might be termed

the "indirect non-iterative", {1.27) is expanded as a function of the
stiffness coefficients e44 and epp, giving
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18] 4 ) gy ¥ By epy v By epy = 0 (1.30)

where ‘5[ is the determinant of (1.27) with e44 and eaé omitted, and
A.g 18 the minor in 18] of Bpg.

Equating real and imaginary parts of (1.3%0) to zero then gives the
two real eguations

Ro + R1 911 + R2 622 + 33 e11 e22
(1.31)

SO + 8 + 3. e

22 * ®3 %49 S22

184+ 5

where the R and S coefficients are functions of the original a, ¥,
b and ¢ coefficients and the frequency parameter wp, For a given
value of Wy, the R and S coeffacients can be evaluated and equations
(1.31) solved for eq4 and epp, and hence for the stiffness ratio
e
R = ;11 . This process involves only the scolution of a quadratic. The
22
procedure is therefore to obtain values of eq4, €22, and R for a
range of values of ®, and to plot either e49 or eg; against R,
For the actual value of R the corresponding speed and frequency are then
obtalned directly from the curve,

The above general forms of solution are amplified in greater detail
in Appendix IT.

Simplified Aileron Mcde

For the purpose of a typical calculation seme simplification is
effected if instead of assuming the alleron torsionally rigid the aileron
angle is assumed constant along the span and related direectly to the
co~-ordinate q3 by

~ - A
E = =, 2 (1.32)

®m

Comparing this with (4.6) for the torsionally rigid aileron, it-is seen
that the simplification involves the deletion of all terms centaining the
factor (1 - ¥) in the evaluation of the coefficients. In particular, the
compound derivatives in the integrals for the serodynamic coefficients
beoome the basic derivatives; for example, £,  becomes Lo

L Tvplical Binary Analysis. Wing Flexure and Torsion

The analysis for this case is obtained directly from that of Seetion 3
by simply omitting all those effects appropriate to the aileron motien.
This means the omission of the coefficients of order 'r3' or '3s' and the
deletion of all terms containing the factor (1 - F) from the remaining
coefficients,

The equations of motion are now two and may be written down direotly
from (1.26) as

- 18 -



(O v o) g+ 8y = 0

(2.1)
81 9y + (85 + ep5) g5 = O
the corresponding determinantal equation being
P IRPRRLY
= 0 (2.2)
84 S0 * epp

In this case the "direct iterative" method of solution 15 comparatively
simple and is the one usually adopted for an 'ad hoc' determination of
critical speed., Expanding (2.2) gives

A

2
P, +p17\3+p27* tpp Mt = 0 (2.3)

which in turn gives rise to the two subsidiary equations

L 2
Po ¥y T~ P2 W, * pu =0

(2.4)
2
=Dy, o+ p3 = 0
Eliminating w, from (2.4) gives finally
_ 2 2 - 0
Py Py Pz = P, P3 Py B =
which may be written alternatively as the test determinant
. 1A
0 B, P
Coeffioients p, to are as before functions of the inertia, stiffness,
and force coeffioients. Substituting ey = Repp, p, and Pz become
linear functions of e5s, P, & quadratic in epo, Py and are

functions of inertia and force coefficients only, On expansion (2.5) then
becomes a quadratic in epo, 1instead of a sextic as in the case of the
ternary.

For an assumed value of W, the coefficients of (2.5) are calculated
and the equation solved for es5, The assumed value of W, is then

P
checked from wm2 = 52, the second of equations (2.4), and the process
1

repeated until reasonable agreement is cobtained, Finally the speed is
obtained frem (1,17) as

..19_



v = - 76 (2.6}

°m A[ p tegp

The caloulation is fairly'insensitive to the value teken for W, S0
that iteration is quite often unnecessary. As an indication, if' the

initial value taken for w, is 1,0 the calculation need only be repeated
if the check value is less than 0.6,

- 20 -



APPENDIX I

Aerodynamic Derivatives

(Two-dimensional, incompregsible flow)

The w.ng motion- ané_forces are referred, in the first instande, to
the leading-edge "as reference point, In the accompanying sketch forces
and moments are represented by double-headed arrows.

Equilibrium position

R
Adileron x ‘\ p
N
|
| ! L BT~
Tab
R
[
f €.c ‘
) Eac
s i
Chord ¢

L.E.

If ® is the frequency parameter the forces are expressed as

L 2 . ! 2
Lo P aen ) e (P et ) s
pc

+ (uu?€£ + 108 + 8E)E + (—wzég + 1oy + EB) B
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!
= (-w2 my + dwmg + mz) -'7'-'0— + (-w2 my

+ dwmy + m,)&

+ iwhy + hy)a

pc2v2
+ (-w2 my + iwmy + mg)E + (-m2 m? 4 iwmy + mg) B
g 3 g B B8 B
K 2 e ' 2 ..
7 s Frpeam n) £ (P
+ (—-m2 hy + ivhy + ho)E + (-ua2 hy + iwh? + hg)B
g g & B g g
T — ( &? - - Z' " s .
e = (= by s oty 4 4)) UG- G tg)@

+ (—w2 tg + iwtzz + tg)é + (~w2 ta + :iwtf3 + tB)B

coefficients are then

1}

il

Al
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g
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x
Hh (1 + 34 - 4B/w)

In (48 + 30B)

116 (8, - b e, &)

-};A(@z ~ 4 & @1) - B @1/w + % 2
A 4 TwB (2, -4 & @1)
FALECAER AR S

2800 ~ 4 g ) - By osd
Ay, + o8 (¥, -4 g W)
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B
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11

1

I

128
1/‘16 x(3 + 3A - 4B/ w)
116 (LA + 30E)

Ve (3 + 2) - /32 5 (28 + &)

1/16 (25 + 3 - b g &) + 1164(8, -4 e &) -%3 8 /0

%@5:*-1;1; 2, + 116 0B (&, - b & 2,)

6 (4, + ) = 1/32 e (2 45 + %)

116 (dy + ¥ = bog, ) + 1716 4 (4 — b 5 ) - 5B 4 /v

T+ 2AY + 11608 (¥, - b V)

1
1/16 § -k &

1 -
T A (@8 L& @31)

7B (8 - L4 & @31)

u (3« 2) - /32 €, (28 + 8)

116 (85 - b 5, &,) + 1/16 (38 - 4B/) (25 - 4 &,

32
1/16 (44 + 30B) (%5 - b &, %)

..._..h(fb ~8¢ & +168a2

i 2
m [¢11 - b ®a (@‘IO + @36) +8 Ca %5

+A (8 -4 e @)(@ A @31)-1,13@1(@8-4 e %1)/:»]

1
-1-6—7;[4@10-85a@35+m¢1 (‘58"1* o 31)

+ wB(@z - ke, @1)(‘58 -k & ‘531)]
167( [X10 2(83. 'X.5 + St X.IB) + L E&. Et X.1)+]

8?t[x9 2(s x + & x8)+ha stxj

2,g_[x7 -2(5:9.)(2-1-5‘l= x6)+1+ & & x'}-L,_B()(G -2 ¢ )(1)/&0]
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167

7[*8'2%"3*2“("6'2%"1)

+WB{X7—2(3aX2+5tX6)+LI-Ea atX.l]]

164, -2 5 %
A (¥ - b gy ¥y)

ToB (g ~ & & )

V6w (4 + ¥) = 1752 e (24 + ¥)

146 (B = b gy ¥gp) + 1/16 (38 - 1B/6) (¥g - b & ¥,)

146 (4 + 303) (§g - & 5, ¥5,)

'—[X1O—2(E=ax1 + 8 X)+l;.€

167 ‘Ila-]

1
arl%g-2(e, Xgv e %) v le, 8 X

+ 24 {x7—2(sax6+stx2)+l;eastx1}

- 4B (X - 2 g X)/0]

—1,;[3(8"2"’G’%*z"-(}%”ze’_cx1).+°’“x7'2(etx2+sax6)

+hoe st}[1}]

2

2
o Uty = (g v i) + 8 8% vy

1

[‘h“%o_ 8 Et \!;55 + LA 1!,1 (dfs -4 S‘t 4’31)

Transformation to alternative reference axis

Derivatives for an alternative reference axis may be obtalined from

those for the leading ~dge as reference axis by simple transformation
formulae, If the alternative reference axls is situsted a distanse he
behind the leading edge and its displacement is =z, then the displacement
at the leading edge is given by

-2 -



z' = g = hoo
and the moment about the alternative reference axis 1s
M{h) = N + hcl

Meking these substitutions, the forces referred to the referenme axis at
he may be written, using the ocomplex derivative notation employed in
Section 3, as

L(h)

) = Lz(h) 2 « L (h)a + Lg(h)é + LB(h)B

i

with similar expressiens for M(h), H(h) and T(h), where

Lz(h) = L, L) = L, - hL_, Lg(h) = Ly, LB(h) = Lg
M () = M, + D, M(h) = M, - EM_+ kL, - h°L

Mg(h) = Mg + hlg, MB(h) = MNg + hlg

H,(h) = H_» H(h) = H, - hH_, Hg(h) = Hy» HB(h) = Hg
Tz(h) = T, Ta(h) = T, - hT, Tg(h) = Ty, TB(h) = Tg

Derivatives without the suffix (h) are those for the leading edge as
reference axis, Relationships between the basic derivatives are the same
as those above between the complex derivatives, e.g.

il

&a(h) ¢, - ht

Z

2
m&(h) my, = hm? + hé; - h Eé

1]
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Taeble 1.

Values of A and B

) A B
0 1.0000000 | 0,0000000
0.02 | 0,9824216 | 0.0456521
0.04 | 0.9637253 | 0.0752079
0.06 | 0.9450111 | 0,0979135
0.08 | 0.9267018 | 0.1160013
0.10 | 0,9090087 | 0.1306443
0.12 | 0.8920397 | 0. 142594
0.16 | 0.8604318 | 0.1604021
0,20 | 0.8319244 | 0.1723022
0,24 | 0.8063273 | 0.1800727
0.28 | 0.7833715 | C.184L890L
0.32 | 0.7627719 | 0.1875659
0.36 | 0.7442570 | 0.1886727
0.40 | 0.7275799 | 0.188624,2
O | 0.712521% | 0.1877232
0.48 | 0.6988879 | 0.1861940
0.52 | 0.6865125 | 0.184,2043
0.56 | 0.67524,92 | 0,1818807
0.60 | 0,6649711 | 0.1793191
0.64 | 0,6555686 | 0,1765929
0.68 | 0.6469L60 ! 0.1737580
0.72 | 0.6390200 | 0.1708575
0.76 | 0.6317179 | 0,1679244
0.80 | 0.624,9763 | 0.1649840
0.8, | 0.6187392 | 0,1620556
0,88 | 0.6129575 | 0.1591543
0.92 | 0.6075879 | 0.1562909
0,96 | 0.6025921 | 0,1534740
1,00 | 0,5979361 | 0.1507095
1.04 | 0.5935896 | 0.1480019
1,08 | 0.5895258 | 0,1453541
1,12 | 0,5857205 | 0.1427682
1.16 | 0.5821522 | 0.1402450
1,20 | 0.5788016 | 0,1377852
1.2 | 0.5756512 | 0.1353855

A A B
1.28 | 0.5726853 | 0.1330545
1,32 | 0.5698898 | 0.1307822
1,26 | 0,5672518 | 0.1285708
1.40 | 0.5647596 | 0.1264189
1.4, | 0.562L026 | 0.1243252
1,48 | 0.5601712 ] 0.1222882
1,52 | 0,5580567 | 0.1203065
1,56 | 0,5560509 | 0.1183784
1,60 | 0.5541466 | 0.1165024
1.64 | 0,5523369 | 0,1146768
1,72 | 0.5489774 | O. 1441714
1.80 | 0.5459286 | 0.1078496
1.88 | 0.5431533 | 0.1C46996
1.96 | 0.5406197 | 0.1017105
2,00 | 0.539%349 | 0.1002729
2.20 } 0.534.2148 | 0.0936062
2,40 | 0.5299560 | 0.0877090
2,60 | 0.5264367 | 0,0824643
2.80 | 0,523,957 | 0.0777759
3,00 | 0.5210132 | 0,0735641
3,20 | 0.5188992 | 0.0697629
3.40 | 0.5170845 | 0.06631735
3,60 | 0,5155155 | 0.06318165
3,80 | 0.5141501 | 0.0603171s
4,00 | 0.5129548 | 0.0576913
4,20 | 0.5119026 | 0.0552762
440 | 0.5109717 | 0.05304825
L,60 | 0.5101443 | 0,0503871
4.80 | 0,5094058 | 0.0490750
5.00 | 0,5087440 | 0.0472969
6.00 | 0.5062799 | 0.Q4.00039
8.00 | 0.5036709 | 0.0304961

10,00 | 0.5023973 | 0.0245986
20,00 | 0.5006178 | 0,0124467
= 0.5000000 | Q.0000000







_La_

Table 2.

Volues of &

Ea_ -Cos @ @1 @2 @3 % @5 @6 Q? @8
0.60 | -0,2 2.75195 | 4.63657 |1.96811 | 2,04138 | 0.78384 1 5,19037 | 3.08815 | 0.70034
0,55 | ~0.1 2.66595 | 4., 0963 [1,77046 | 1.66748 | 0.895,9 ¢ 4.85431 | 2.58554 | 0.55371
0.50 0.0 2,57080 | 3.57080 |1.57080 | 1,33333 | 1,00000 | &.47493 | 2,11873 | 0.42920
0.45 0.1 2.46562 | 3,06698 [1.37113 {1.03916 {1.0944.9 ] 4. 05564 | 1.69189 ] 0.32472
0.40 0.2 2,.34923 1 2,58530 | 1,17348 | 0,78475 [ 1.17576 | 3.60110| 1,30878 | 0,23834
0,35 0.3 2.2200% | 2.12844 | 0,97992 | 0.56949 | 1.2L042 | 3.11729| 0.97265 | 0,16829
0.30 0. 4. 2,07579 | 1.69828 | 0,79267 | 0,39236 | 1.28312 | 2.6118, | 0,68605 | 0.11293
0.25 0.5 $.91322 | 1.29904 { 0.61418 | 0.2518, | 1.2950% | 2. 09440 | 0.45068 | 0, 07067
0.20 0,6 1.72730 1 0.93454 | 0.44,730 1 0.14591 | 1.28000 | 1,57726 | 0.26716 | 0.03995
0.15 0.7 1.50954 { 0,61023 [ 0,29550 [ 0,07192 | 1.21404 | 1.07661 | 0.13469 | 0,01923
0.10 0.8 1.24,350 | 0.333%90 | 2.16350 | 0,02640 | 1.08000 | 0,61500 | 0,05055 | 0. 00630
0,0% 0,9 0.88692 | 0,11866 | 0,05873 | 0,004,772 | 0.82819 | 0.22788 | 0,0092, | 0, 00121
0. 00 1,0 0. 00000 | 0, 00000 | 0,00000 | 0, 00000 | 0, 00000 | 0, 00000 | 0, 00000 | 0, 00000
0.10 0.80 |1.24350 | 0.33%390 | 0.163%50 | 0,026L0 | 1,08000 | 0.61500 | 0.05055 | 0.00690
0.09 0.82 }1.18175 ] 0,28538 | 0.140095 { 0.02033 | 4,04170 | 0.53010 | 0.03910 | 0, 00529
0,08 0.8y |[1.11610{0.23941 |0.11774 [ 0.01518 | 0,99836 | 0.44846 | 0,02932 | 0,00393
0.07 0.86 11.04582 {0,19616 [0.09667 | 0,01089 { 0.94,915 | 0,37052 | 0,02114 | 0.00281
0,06 0.88 [0.96991 { 0,15582 | 0,07696 | 0,0C7L3 | 0,89295 | 0.29679 | 0. 01447 | 0.00191
0,05 0.90 0.88692 ] 0,141866 |0, 05873 1 0,00472 ) 0,232849 ) 0, 22788 | 0.0092 | 0.00121
0., Q4 0,92 |0,79463 | 0,08439 [0.04215 | 0,00271 | 0.75248 | 0.16457 | 0,00532 | 0, 00069
0.03 0.9 [0.68934 10,05526 {0,02746 | 0,00132 | 0.66188 | 0.10787 | 0.00261 | 0, 00033
0.02 0,96 |0.56379 [ 0.03011 | 0.01499 | 0,008 | 0.54880 | 0,05926 | 0,00095 | 0, 0001 2
0,04 0,98 10,39933 10,01066 | 0,00532 | 0,00009 | 0,39402 | 0,02114 | 0,00017 | 0. 00002
0,00 1.00 [0,00000 | 0,00000 |{Q,00000 | C.00000 | Q,00000 | 0.00000 | 0.00000 | 0. 00000







Table 2 (Cont’d)

Values of @

-

-~ Qz -

¢g 2410 21 2P 3 2 % %6 24y

-0, 2 3.38243 | 0.62108 | 9.12529 | 6.54742 | 0.81650 | 1,95959 | =1.14310 | 5. 39270 | 4.79507

-0.1 2.78125 | 0.60533 | 7.24939 | 4..67963 | 0.90453 | 1.98997 | ~1.08544 | 5.30518 | 4., 11464

0.0 2.23746 | 0.57080| 5.60899 | 3,23370 | 1.00000 | 2.00000 | ~1.00000 | 5.14159 | 3. 46740

0.1 1.75360 | 0.52058 | 4.20523 | 2.14543 | 1.10554 | 1.98997 | 0. 88443 | 4. 90651 | 2, 86010

0.2 1.33116 | O.458Y2 | 3.03379 1 1.35379 | 1.22474 | 1.95959 | ~0.73485 | 4..6035,. | 2.29865

] 0.3 0.97069 | 0.38712| 2.08541 | 0.80178 | 1.36277 | 1.90788 | -0.54511 | 4.23557 | 1.78835

. 0.4 0.67178 | 0.31150{ 1.34618 | 0. 43709 | 1.52753 | 1.83303 | -0. 30551 | 3.80499 | 1. 33393

C. 0.5 0.43301 | 0.23535] 0.79785 | 0.21281 | 4.73205 | 1.73205 | 0.00000 | 3, 31380 | C.93972
0. 0.6 0.25187 | 0.16294 | (.41802 | 0,08797 | 2.00000 | 1.60000 | 0.40000 | 2,76367 | 0.60967
0. C.7 0.12461 { 0.09865| 0.18032 | 0.C2809 | 2.38048 | 1.42829 | 0.95219 | 2.15606 | 0. 3,742
0. 0.8 0.04590 | 0.04698| 0.05459 | 0.00560 | 3.00000 { 1.20000 | 1.80000 | 1.49220| 0.15633
0. 0.9 0.00823 | 0.01254 | 0,00697 | 0.00035 | 4.35890 | 0.87178 | 3.48712 | G.77320| 0.03955
Q. 1.0 0. 00000 | 0.00000] 0.00000G | 0.00000 oo 0. 00000 oo 0. 00000 | 0. 00000
Q. 0.80 | 0.04590 | 0.04698 | 0.05459 | 0.00560 | 3,00000 | 1.20000 | 1.8000C | 1.49220 | 0.15633
0. 0.82 | 0.03537 { 0.03857| 0.03997 | 0.00368 { 3.17980 | 1.14473 | 2.03507 | 1.35278| 0.1269.
C.08 | 0.8, | 0.02643 | 0.03088] 0,02849 | 0.c0230 | 3.39117 | 1.08517 | 2.30599 | 1.21116 | 0.10053
0.07 | 0.86 | 0.01898| 0.02395| 0,01896 | 0.00135 | 3.64496 | 1.02059 | 2.62437 | 1.06735] 0.07715
0.06 | 0.88 | 0.01295| 0.01782| 0.01199 | 0.00073 | 3.95811 | 0.94995 | 3.00817 | 0.92136 | 0.05682
0,05 | 0.90 | 0.00823 | 0.01254| 0.00697 | 0.00035 { 4&.35890 | 0.87178 | 3.48712 | 0.77320| 0.03955
0.0k | 0.92 | 0.00473| 0.00812| 0.00358 | 0.00014 | 4,89898| 0,78384 | L.11514 | C.62286 | 0.02537
0.03 | 0.94 | 0.00231 | 0.00463| 0.00152 { 0.00005 | 5.68624 | 0.68235 | 5.00389 | 0.47037 | 0.01430
0.02 | 0.96 | 0.00084 | 0.00208 | 0.00045 | 0.00001 | 7.00000 | 0.56000 | 6.44000 | 0.31573| 0.00637
0.01 | 0.98 | 0.00015 [ 0.00053| C.00006 | 0.C000C | 9.94987 | 0. 39800 | 9.55188 | 0. 15893 | 0.CC160
0.00 | 1.00 | 0.00000 { 0.00000{ 0.00000 | 0.00000 oo 0. 00000 oo 0. 00000 | 0. 00000







Tabie 2 (Cont'd)

Values of $

_62—

Eq -8 %9 220 $21 231 330 »35 236 337
0.60 |-0.2 1.86574] 1.92835! 1.17576 | -0.31836 | 0.79236 3.14387| 1:92000 | 8.03069 | 5.25182
0.55 [ -0.1 1.72373| 1.76159] 1.09449 | -0.17990 | 0.67598) 2.86495| 1.98000 | 7.C3248 | 4. 11485
0.50 | 0.0 1.570801 1.57080] 1.00000 | 0.00000 | 0.57080]| 2.5708G| 2.00000| 6.C3320| 3.14159
0.45 | 0.1 1,41067 1.36426| 0.89549 | 0.22010 ] 0.47564 | 2.26662| 1.98000 | 5.C6303 | 2. 32523
0.40 | 0.2 1.26633] 1.14977| 0.78384 | 0.48164 | 0.38964 1 1.95732] 1.92000 | 4.14007 | 1.65674.
0.35 | 0.3 1,080161 0.9347S| 0.66776 | 0.78862 | 0.31216] 1.647568| 1.82000 | 3.27080 1.12516
0.30 | 0.4 0.91417 | 0.72650| 0,54991 14871 [ 0,242761 1.3,258( 1.68C00 | 2.47543 0.71785
0.25 | 0.5 0.7500C| 0.53190| 0.43301 | 1.57536 | 0.181171 1.04720! 1.50000 ] 1.76%17 | 0.42063
0.20 | 0.6 0.58908| 0.35784| 0.32000 | 2.09257 | 0.12730! 0.76730} 1.28CC0 | 1.16241 | 0.217%4
0.15 | 0.7 0.4.3263| 0.21103| 0.2142% | 2.74669 | 0.08126} 0.50974} 1,02000 0.67083 | 0.C9300
.10 | 0.8 0.28170| 0.09810] 0.12000 | 3.64330{ 0.04350} 0.28350| 0.72000 | 0.30555 | 0.02786
0.05 | 0.9 0.,137221 0.02560| 0.04359 | 5.12146 | 0.01514 | 0.10231] 0.38000 | C 07821 | 0.00352
0.00 | 1.0 0.0C0C0! 0.00000| 0.00000 oo 0.00000} 0.00000| C.00C00 | C.CCCCO | 0. UCOCO
0.10 | 0.80 | 0.28170] 0.09810| 0.12000 | 3.64330 | 0.043501 0.28350| 0.7200C | 0. 30555 | G.02786
0.09 | 0.82 ! 0.25226] 0.08016] 0.10303 | 3.87192 | 0.03702| Q. 24307 0.65520 } 0.24869 | C.02035
0.08 | 0.84L | ©0.22308| 0.06388| 0.08681 | 4.12563 | 0.03093| 0.20455| 0.58380 | 0.19743 | 0.01433
0.07 | 0.86 | 0.19418( 0.Q4933| 0.0714 | 4.41107 | 0.02523 | 0.16812| 0.52080 | 0.15187 | 0. 00962
0.06 { 0.88 | 0.16556| 0.03655( 0.05700 | L4.73798 | 0.01996 | 0.13395! 0.45120 | G.112101 0.00607
0.05 | 0,90 | 0.13722| 0.02560! 0.04359 | 5.12446 | 0. 01514 | 0.10231} 0.38000 | 0.07821 | 0.00352
0.04 | 0.92 | 0,10917| 0.01652] 0,03135 { 5.58681 { 0.01080 | 0.07350| C.30720 { 0.05028 | 0.00181
0.03 | 0.9 | 0.08142| 0.00937 ] 0.02047 | 6.18145 | 0.00699 | 0. 04793 | 0.23230{ 0,02841 | 0.00076
C.02 | 0,96 ] 0.05397] 0.00420} 0.01120 | 7.01186 | 0,00379 | 0.02619| 0.1558C 1 0,01269 | 0, 00023
0.01 | 0.98 | 0,02683: 0.00106 ! 0.00398 | 8.41785 | C. 00134 | 0.00930| 0.07920 | 0.00319 | 0.00C03
0.00 }1.00 o.ooooo! 0. 00000 | ©.0C000 oo 0. 00000 | 0.00000| 0.00000 | 0.000C0 | 0.00000
Note The values of tae functions ¢ are the same as the corresponding functions ¢

except that thay refer to the tab, and the value of Eg

should be substituted for Eg,.







Table 3. Function X3
-cos ¢ | -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-Cos @ - E
Et a 0.60 0.55 0. 50 0.45 0. 40 0. 35 0. 30 0. 25 0. 20 0.15 0.10
0.80 0.10 0.05895 [0.07373 {0.09096 |0.11122 |0.13534 | 0.16463 | 0,20123 [0.24906 10.31622 {0.42466 | 0.72000
0.82 0.09 0.04997 |o0.06247 [0.07704 |0.09413 |0. 11445 | 0.13906 | 0.16971 |0,20951 [0.2648L ]0.35199 | 0.54535
0.84 0.08 0.04158 10.05196 |0,064C5 |0.07821 |0.09501 | 0.11532 | 0.14053 [0.17309 10.217%2 [0,28712 | 0.42762
0.86 0. 07 0.03379 {0, 04222 {0.05201 |0.06347 10.07705 | 0.09343 | 0.11369 {0.13973 [0.1752% |0,22922 | 0. 33246
0.88 0.06 0.02663 [0.03326 0. 04095 | 0.04995 {0.06060 | 0.07340 | 0.08920 {0.10942 [0.13681 10.17774 { 0. 25274
0.90 0.05 0.02012 |0.02512 [0.03092 | 0.03769 |0.04569 | 0.05530 | 0.C6711 |0.08217 |0.1024.3 |0.13231 | 0.18522
0.92 0.Ch 0.01430 [0.01785 |0.02196 [0.02675 10.03241 | 0.03919 | 0. Q4751 [C.05806 |0.07218 |0.09276 | 0.12820
0.9 0.03 0.00923% [0.01151 |0.01416 [0.04724 |0.02087 | 0,02522 | 0.03054 |0.03726 |0.04620 (0.05910 | 0.08080
0.96 0.02 0.00499 10.00622 [0.00765 |0.00931 |0.01127 | 0.01360 | 0.01645 !0,02004 [0.02479 |0.03158 | 0.0Q4279
0,98 0. 01 0.00175 10.00219 [0.00269 | 0.00327 10.00395 | 0.0G477 | 0.00576 |0.00701 |0,00865 |0,01097 | 0.01475
0. 00 0. 00060 0. 00000 10, 00000 {0.00000 |0.0C00C | 0.00G00 | 0.00000 |0.00000 |C.0C00U 0.00000 | O, 00C00
Table 4. Function 1(3
-Ccos -0.2 -0.1 0.0 0.1 0.2 0.3 O. 4 0.5 0.6 0.7 0.8
g Far| 060 | 055 | w50 | 045 | 040 | 035 | 030 | 025 | 020 | 045 | G0
t ~
0.80 0.10 2.29256 [2.31424 | 2.3090 | 2.27675 [ 2.21617 12.12483 | 1.99840 | 1.82941 [1.60378 {1.28929 | G. 72000
0.82 0.09 2.19323 {2.21550 | 2,2124,2 | 2.18385 | 2.12875 |2, 0449, | 1.92861 | 1.77321 [1,56673 |1.28301 | 0.82832
G, 8 0. 08 2.08,92 [2.10750 { 2.10630 | 2,08126 [2.03148 |1.95506 1 4.84863 | 1.70649 {1.51836 |1.26282 | 0.87459
0.86 0.07 1.96614 [1.98373 | 1.98917 | 1.96747F 11.92288 [1.35373| 1.75708 | 1.62798 |1.45766 |1,228,7 | 0.89224
0.88 0.06 1.83488 |1.85711 | 1.85894 | 1.84042 {1.80091 (1.73898 | 1,65208 | 1.53594 [1. 38311 (1.17906 |0.88720
0.90 0.05 1,68821 [1.70970 | 1.71264 | 1,69713 {1.66264 {1.60795 | 1.53089 | 1.42780 [1.29242 |1.11284 |0.86092
0.92 0.04 1.52170 11.54197 { 1.54572 [ 1.53306 |1.50359 {1.45627 | 1.38929 | 1.29958 [1.18196 [1.02678 [0.81240
0,94 0.03 1,32790 [1.346357 1.35054 | 1.34062 {1.31625 [1.27662 | 1,22023 | 1.14460 {1.04556 [0.H549 | 0.73802
0.96 0.02 1.09238 |1.10816 | 1.11235{ 1.10507 |1.0861GC |1.05484 | 1.01004 | 0.94990 |0.87121 [0.76826 |0.62921
0.98 0. 01 0.77815 0.78981 ; 0.79330 | 0.78873 | 0.77596 {0.75456 | 0.72378 | 0,.6823, (0.62815 |0.55748 |0.46285
1.00 0.00 0.00000 | 0.00000 | 0. 00000 | ©.000C0 | 0,00000 [0.00000 | 0.00000 | 0.00000 {0.00000 |C,0C000 | 0.00000
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0. 0000C
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0.67234
C. 56643
0.L6612
0. 37183
0.284.33
0, 20449
C.13350
0.07303
C. 02595
C, 00000

0. 75809
0.65104
0. 54874
0.45169
0. 36045
0.27572
0. 19837
0. 12954
0.07039
0. 02520
0. €000

0. 72925
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C.L 3513
0. 3.740
0. 26586
0.19135
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G. 06844

0. 02434 |
0. 000C0 '

0.69607
0. 59846
0. 50499
0.41613
0. 33243
0. 25455
0.18332
0.11983
0. 0656,
0.02335
0. G000

0.65775
0. 56603
0.47804
0. 39425
0, 31521
0. 24155
0. 17409
0.11388
0.06242
0.02222
0. 00000

0. 61317
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0. 44676
0. 36889
0. 29527
0. 22652
0.16343
0.10702
0.05872
0.02092
0. 00000

0. 56061
0.48400
0.41003
0.3351F
0.27193
0. 20896
0. 15095
0.09902
0. 0541
0. 01941
Q. Q000G

0.4.9725
0, 43073
Q. 3660,
0. 30366
0. 21413
0. 18808
0.1362,
0. 03955
0. 931
0.01763
0. 00LOC

0.41761 | 0. 30555
0.36422 10.27318
C. 31143 | 0, 23807
0.25982 |0.20175
0.20997 |0.16523
0.16253 | 0.129.0
0.11825 }0.09513
0.07805 * 0.06337
0.04315 1 0.03522
0.01548 ' 0.01277
0.00000 (. UOCOU

Table 6.

Function x4

>

1
Q
Q
¢}
L

.1

0,2

0.3

0.4

C. 5

0.6

t=1

-COS ¢

53
o
w

0.45

0.40

0. 35

0. 30

0. 25

0.20

0.7 |
0.15

. »

SPO0OoDLOLO0O0
O \D N0 \D O \o Qo o o
<3:mch¥?noc>830\g2N>c

cop

o0 OO0 o =
SRICIEZRILIS

-
== N

CLO0POEE

»
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0.65277
0. 54950
0.45175
0. 36006
0. 27510
0.19769
0. 12895
0. 07049
0. 02503
0. 0000

0. 74676
0. 64070
0. 53953
0.44.370
Q. 35377
0. 27038
0.19436
0.12682
0. 0693,
0.02563
0. 00000

0.733%0
0.62925
0. 53011
0. 43610
0. 34787
0. 26598
C.19127
0.12485
0.06829
0. 02426
C. 00C00

0.711121 0.68344
0.61073! 0.5873,
0.51478| 0.49541

Q.4237h

0. 33816
0, 25868
0. 186414
0.12154
0. 06651
0. 02364

| C. 00000

0.40807
0. 32586
0. 24943
0.17957
0.11733
0. 064.25
0. 02285
0. 0COC0

0.64934
0. 55859
0.47159
0. 38880

0. 23805
0.17151
0.11216
0. 06146
0.02187
0. 000CC

0.3107 |

0.60796
0. 52369
0. 44269
0. 36542
0. 29241
0.22426
0.16176
0. 10589
0. 05809
0. 02069
0. 00000

0.55770
0.48137
0.40770
0.33715
0. 27025
0. 20761
0.14599
0. 09834
0. 05402
0.01927
C. COOSU

0. 49550
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0. 36489
0. 30262,
0. 24327
0.18738
0.13570
0.08918
0.04910
0. 01755
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0.25942
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0.16223
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0.07789
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0.0 Gu
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27315
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Taeble 7. Function X5

- Ve = —_——

"Zg“

—cos ¢ | -0.2 -0.1 0.0 i G 0.2 | 0.3 | 0k | G5 . 0.6 0.7 | 0.8 !
Tees @ E, La 0. 60 0.55 0. 56 0.45 0.40 0.35 0. 30 % .25 C. 20 0.15 0.10 !
0.80 0.10 0.34,977 1 0.30598 16.26380 | 0.22340 | 0.184,98 | 0.14877 io.11504f 0.08413 | 0.05648 | 0.03272 }0.01593
0.82 0.09 0. 30203 0.26453 {0.22834 | 0.19366 | 0.16C66 | 0.12954 |0.10051 | 0.07387 | 0.04998 | 0.02935 |0.01285
0.8, 0.08 0.25605 | 0.22445 | 0.19397 | 0.16L76 | 0.13694 | 0.11069 | 0.03648 1 0.06364 | 0.04339 | 0.02582 |0.01162
0,86 C.07 0.21196| 0.18538 | 0.16092| 0,13688 { 0.11398 | 0.09235 0.072141 0.05353 | 0.03677 | 0.02217 | 0.01026
0.88 C. 06 SLATOIH] 0014840 [ 012942 0.11025 1 0.09197 | 0.C747¢ 10.C5854 | C. 04364 | 0.03019 | 0.01843 | 0,00877
0.90 0.05 0.13086| 0.115C4 | C.09977 | 0.08511 | 0.07113 { C.0579C |o.04552l 0.03409 | 0,02375 | 0. 01468 | 0.C0717 |
0.92 0. Ok 0.09468, 0.0833, | 0.G7233| 0.C6179 ' 0.05173 | 004221 ;0.03329 | 0.0250, ; 0.01756 | 0.C1099 | 0.C055G |
0. 94 0.03 0.062181 0.05476 | 0. 04760 | 0.C4072 { 0.03415 | 0.02793 | 0.02209} 0.01669 | 0.01178 | 0, 00745 | 0. 00382 |
0.96 0. 02 0.03422 0.03217 | 0.02625| 0.02249 0,01889 | G. 01548 0.01228 ! ©,00932 | (1, 0C662 i O, Glh2h | 0.00222
0.98 0.01 | 0.01223 0.01079 | 0.C0940| 0.008G6 ; 0.0C679 | 0.00557 | 0.0Ckk, | 0.003381 0.0C242 ! 0.00156 |C.0008L !
1.00 0.00 0. 00000 o.ooooog 0.0G000 | 0.00000 | 0. 00000 | 0. GO000 lo.ocooog 0.000CC | 0.00000 0. 00C0C | 0.COCCO |

Table 8. Function X 5

-cos ¢ | -0.2 -0, 1 0.0 o1 | G2 0.3 Ok 0.5 .6 0.7 0.8
-Cos ¢ Eg

E; 0.60 C. 55 0. 50 Q.45 0,40 0.35 0.30 0. 25 0. 20 0.15 0,10
0. 80 0.10 C.03606| 0.03:86} 0.03353| 0.03205 | 0.03041 | 0.02858 [0.02652| 0.02418| 0.02146 | 0.01819 | 0.01393
0.82 0.09 0.02779] 0.02688 | 0.02586 | 0.02473 { 0.02347 | 0.02207 |0.02050| 0.01871| 0,01664 | 0.0i416 | 0. 01097
0.84 0,08 0.02077| 0.02009 1 C.01933 | 0,018,499 | 0.01756 [C.01652 |0.01536 1 0.01404 | 0,01251 | C.01CE8 | 0. 00835
0.86 0.07 0.01452] 0.01443 ) 0.01389 | 0.01329 | C. 01263 |0,01189 {0.011G6 | 0.01012 | 0.C0904 | G, COT7h | u. 0611
0.88 0.06 0.01013] 0.00985| 0.00948 | 0.00908 | 0,00863 | 0.00813 {0.00757 0.00693, ©.00620 | 0.C0533 | 0. 00424
0.90 0.05 0. 00647 0.00626 | 0.00603 | C.C0578 | 0.00549 [0.00518 :0.00482| 0.004421 0.00396 | 0.00342 | 0. 00274
0,92 0. 04 0.00371| ©.C0360| 0.00346 | 0.00332 | 0.00316 |0,00298 !0.00278 0.00255] 0.00229 { 0.00198 | 0.0(159
0. 94 0.03 0.00181| 0.00176 | 0,00169 | 0.00162 | 0.001 i, |0. 00146 10.00136 | 0.00125( C.00112 | 0.00097 { G. 00079
0.96 0.02 0,C0066| ©.00064 | 0,00062 | 0.00059 | 0.00056 | U.0UC53 |0, 0005C | 0.000K61 0,001 | 0.00036 | U.00029
0.98 0.01 0. 00012{ 0.00011 | 0,00011 | 0.00010 | 0.00010 |0.00009 |0.00009 | 0.00008 0.00007 | 0.00006 | 0. 00005
1.00 0. 00 0. 00000" 0.00C00 { 0. 00000 | C, 00000 | 0.0C000 [0.00000 [0.000001 0.00000 1 0.00000 t 0. 00000 | 0. 00300
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fable 9. Function g
~cos ¢ | -0.2 -0.1 0.0 | 0.1 | 0.2 0.3 0.4 0.5 0.6 0.7 0.8
B 1 .
£, g 0.60 0.55 G. 50 0.45 | 0.40 0.35 0. 30 0.25 0. 20 0,15 0.10
N |
0.80 0.10 0. 00462 | 0.C0578 | G.00712 ; 0,00863 | 0.01055 |0.01279 | 0.01557 | U.01915 | 0. 02406 .03158‘ J. 04698
0. 82 0. 09 0.00353 | 0.00441 | 0.005L4 | 0.00663 | 0.00805 | 0.00976 | 0.01187 | 0.01457 | 0.01326 02283 ] 0.03453
0.8, 0.08 0.00262 | 0.00327 i 0.00403 §0.00+91 | 0.00596 {0.00722 | 0.C0877 | 0.01C75 | 0.0134 01745 ¢ 0,024,85
0.86 0.07 0.00187 | 0.00233 | 0,00287 | 0.0J350 | 0.00424 {0.00513 | 0.00623 | 0.00763 | 0. 00551 G12301 0.01728
0.88 0. 06 0,00126 | 0.00158 | 0.00194 | 0.00236 | 0,00287 10,0037 | 0.00420 | 0.00514 | 0.00640 {0.0082% i 0,01145
0. 90 0.05 0.00C80 | 0.00059| 0,001 22 : 0,00149 | 0.0C181 | 0.00218 | 0.00264 | 0,0C0323 | 0.0CL01 {0.00515 ; 0.00709
0.92 0. O 0.00045 | 0.00057 | 0.00070 | 0,00085 | 0.00103 | 0.00124 | 0.00150 | 0.00183 | 0.00227 1 0.0C291 | 0. 00397
0.94 0.03 0.00022 | 0,00027 { 0.0003 | . 001 | 0.00050 | 0. 00C60 | C.00073 | 0.00089 | L.0UI1C 0.0 | G189
0.96 0.02 0.00008 | 0,00010{ 0.00012 { J.00015 | 0.00018 | 0.00022 | 0.0C026 | 0.00032 | 0.00G39 | 0.0005C | C. 0067
0.98 0.01 0.00001 | 0.00002 | ©.00002 | 2.00003 | 0.000C3 | 0.000C4 | 0.COCCH | 0.00006 | 0.00007 | 0.COCCY | 0.G0012
1.00 0.00 0.00000 ' 0.00000| 0.00000 ' 0.00000 | 0.00000 [ 0.00000 | 0.0C000 : G. 00000 | G.CCCUL | 0.0620C0 ! ¢, 000Co
Table 1C. Function Xg
-cos o | -0.2 0.1 0.0 0.1 0.2 0.3 Ouly 0.5 0.6 0.7 0.8
) E
a ’

Eg\\\\\\_ 0.60 C.55 0.50 0. 45 C.40 0. 35 C. 30 C. 25 0. 20 0.15 0.10
0.80 0.10 2.00203 | 1,77146 | 1.54007 | 1.31056 | 1.08567 | 0.86834 | 0.66187 [0.47008 | 0.29786 {0.15222 { 0.04698
0,82 0. 09 1,94395 | 1,723301 1.50169 { 1.28166 | 1.06580 | 0.85687 | 0.65790 | 0.4724 | 0.30494 |C.16163 | 0.05360
0. 84 0.08 1.87521 | 1.66539} 1.45451 | 1.244.93 | 1.03908 | 0.839521| 0.64906 [0.47098 | 0.30929 {0.16952 | 0.06092
0.86 0.07 | 1.79412| 1.5961G} 1.39711 | 1.19909 | 1.00438| 0. 84533| 0.63455 | 0. 46500 0. 31032 {0. 17540 0. 06806
0. 88 0.06 1,698%71 1.51360] 1.32763 | 1.14249 | 0.96024.1 0.78305| 0.61328 10.45361 | 0. 30730 {0.17867 | 0.CG74.33
0.90 0. 05 158470 | 1414691 1,24302 | 1,07277 | 0.90462 0,74092| 0.58378 [0.43560 | 0.29929 {0,17858 | 0.07907
0.92 0. Ol 1,448391 1.29506 | 1.14054 | 0.98647 | 0.83449| 0.68634 | 0.54389 {0.40924 | 0.28490 {0.17409 | 0.08148
0.94 0.03 1.2681351 1.14751 | 1.01255 ] 0.87788 1] 0. 74491 0.61513| 0.49014 [0.37173 | 0.26200 {0.16364 | 0.08045
0.96 0,02 1,06843] 0.95830| 0.84718{ 0.73621 | 0.62656| 0.51940| 0.416Q4 |0.31791 | 0.22668 | 0.14447 | 0.07421
0. 98 0. 01 0.77131| 0.69284 | 0.61362} 0.5345| 0.45615| 0.37955| 0, 30555 |0.23515 | 0.16950 | 0.11006 | 0.05880
1.00 0. 00 0.00000( ©.00000| 0.00000} 0.0000C| 0.00000| 0.00000| 0.C0000 |0.0G0000 | 0.00000 | L.000G0 | 0. 0000U







Table 11.

Function X9

1
Q
[&]
0]

R

-0.2

-0.1

0.0
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0.8

0.60

0.55

0.50

G.45

0.40

0.35

0. 30

0. 20

C.15

.10

N o

.

\ONDNDND D 0 Q0o
8030\{:'?\)0&)%

SPOPPPO00RPe

.

0.06534
0.05039
0.03767
0.02707
0.01848
0. G1175
0. 00675
0.00330

0.00120,
0.00021 |
0.00000!

0. 06362
0.04507
0. 03669
0.02637
0. 01801
0.01146 1
0. 00658 |
0.00322
0.00117
¢. 00621 !
0. 00000

0.06164
C. Q756
0.03557
0. 02553
0.01746
G. 01111
0. 00639
0. 00312
0.0C1 14
0. 00020

0. 00000 |

0.05933
0.04583
0. 03429
0.021,65
0.01685
0.01072

00615

00302

00020 |

0.
0.
C.GC11M0
0.
6. COC00

0.05678
0. CL.384
0. 03281
0.02361
0. 01614
0.01028
0.0C591
0. 00289

0.02105

0.0C019

0. 00000

0.065379
0.04156
0.03112
0. 02241
0.01532
0. 00976
0. 00562
0.00275
0. CO100
0.CC0"8

€. 0C000 .

0. 05032
0.03891
0.02916
0.02101
0. 01438
0.00917
0. 00528

0.00259 |
0. COOIL.
0.00017 |
0. 00000,

0.25 |
]
I

0. 04624,
0. 035801
0. 02687|
0.01938!
0.01328
0. 00848
0.00488;
0. 00240
0.00088,
0.00016!
0. 00000

0.04138
0.03210
0. 02414
0. 01744
0.01197
0. 00765
0. 0042
0. 00217
0, GO5Y9
0.00014
0. 0C000

0.03535
0.02754

0.02730
0.02150

0.02078 « 0.01639
0.01507{ 0. 01199

0. 01038

0., 0Ck66 |

0. 00385
0. 00190
0. 0007

0.00832
0.00537
0.00313
0. 00155
0. OCL57

0.00012 | 0.0C010

Q. GO0COo

0.C2000

- 0 -

Table 12,

unction X 9

-Cco3 ¢

-0.2

-0.1

G.0

0.1

0.2

0.3

0.4

0.5

0.6

0.8

0.60

0.55

.50

0.45

0.40

0. 35

0. 30

0.25

0.20

0.15

0.10

o

o

SERENEIRER S

P ) -

SOP0O0O0P0E

ON NN ND ND GO Qo

Py
(@]

COOOOOO0OD0

3282£28358

0, 64228
0.55512
0.47088
0. 39008
0. 31327
0.24115
0. 17460
0. 11474
0. 06319
0. 02260
0. 00000

0. 56670
0. 49028
0.41629
0. 34519
0. 27749
0. 21381
0.15495
0.10192
C. 05618
0. 02011
0, 00000

0, 49251
0. 142662
0. 36268
0.30109
0.24232
0.18693
0.13562
0.08931
0. 04928
0.01766

0.00000 | v. C000C

0. 42026
0. 36458
0. 31040
0. 25807
0, 20799
0.16068
0.11674
0.07698
0. 04254
0. 01526

0. 35048
0. 30463
0. 25985
0. 21645
Q. 17477
0.13526
0. 09844
0. 06503
0.03599
0. 01294
0. 0000

0.28379
0. 24729
0. 21147
0.17657
0.1429
0.11085
0.08088
0. 05355
0.02970
0.01070
Ve U000

0.22086
0.19312
. 16571
. 13882
L11273
.08773
. 06420
. 04263

COO0OQOCO0O000

.02372l
. 00857
. GO0

0.16249
0.14280
0.12313
0.10365
0. 08456
0. 06611
0. 04859
0.03241
0. 01811
0. 00657
0. 0UCIU

0.10970
0.09716
0. 08442
0.07160
0. 05884,
0.04632
0.03428
0. 02302

0. 01295

Qoaﬁﬂ

o UCLOOH

0, 06387
0.05736
Q. 05052
0. G4 341
0. 03613
0. 02879
0.02157
0.01465
0.00333
0. 00307
. LOOCO

0.02730
0. 02521
0. 02284
0.02019
C.M727
0.C1413
0.01085
0.00755
0. 00439
0. 00166
0. LCuGL

Y







Table 13.

Function % = X0

U.G

1

()l

0.2

G 3

0.4

.6

U.7

U, 8

1
Q
o]
3}

G

V.60

0.55

J.5u

.45

d. 40

e 35

0. 30

0. 25

U, 20

U, 15

J.10

L

COoPPPooD

M) ND NS ND GO Q0 Q0 OO B0

(¥
8 DN EFE DO M NO
1T o

POPEOODLO00P
OODOOOS\)OOO—“'

SIS EWM

S

| 0. 02891

0. 00151

0.02239
0. 01682
C.01214
0. 00832
0.00532
0. CO307

0. 00055
0. 00010
G. 00000

0.02536
0. 01966
C.OML77
0. 01067
0. 00732
0. COL68
0. 00270
0. 00133
0. 00049
0. 00009
0. 00000

0. 02194
0.,01702
0.01280
0. 00926
0.00636
0. 00407
0.00235
0.00116
0. 00042
0. 00008
0, 00000

0.01866
0. 01449
0.01091
0. 00790
0. 00543
0.00348
0. 002G1
0. 00099
0. 00036
0. 00006
0. 00000

0.01554
0. 01208
0. 00911
0. 00660
0. 00454
0.00291
0. 00169
0, 00083
0, 00031
0. 00005

0. 060000

0.01259
0.00980
0. 00750
0.00537
0. 00370
0. 00238
0. 00138
0. 00068
0. 00025
C. 0000
0. 00000

0.C0983
0.00767
0.00581
0. 00,22
0. G0252
0.00188
0, G01Q9
0. CO054
0. 0020
0. 0000k
0. 00O

0. 00729
0.00571
0. 00k 34
0.00316
0.00219
0.00142
0. 00083
0, 00CL1
0. 00015
0. 00C03
0. 00000

0, 00500
0. 00394
0. 00301
0. 00220
0.00154
C. 00100
0.00U58
0.20029
0. 00011
0. 00002
(. GC00O0

0.00302
0. 00240
0. 0018
0.00136
0. 00096
0. 00063
0, 0CO37
0.00019
0. 00007
0. 00001
i 0.00000

0.00140
0.00113
0. 00083
0. C0067
0. 0048
0.00032
0.00019
0. 000
0. 00004
C. 000
0. 00000
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Table 14.

Function

X12

- G¢ a

-cos ¢ | -0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.63

0.55

}

0.50

Q.45

0.40 E
i

0. 35

0. 30

0.25

0.20

0.15

Q.10

CLoLePP
0 @

.

BERERNEZRERS

-~ o QOCO0O

. .

-0.13701
~0.11595
-0.09633
-0.07818

-0. 04642
-0. 03294
-0.02123
-0.01146
-0. 00402

0. 00000

-0, 06152

-0, 15928
-0. 13,68
-0.11180
-0, 09065
-0.07128
-0.05374
~0.03811
-0. 02454
0, 01324
-0. 00LEL

0. 00000

-0.18629

-0.15733

-0. 13045
-0,10567
-0, 08300
~0. 06251
-C. 04429
-0.02849
-0.0153%6
-0.0C538

0. 00000

-0, 22016
-0.18565
-0.153714
-0.124.33
-0.G9753
-0.07336
-0,05192
-0.03336
-0. 01797
-0.00629

0. 00000

=0, 264 34 |
-0, 22240,
-0, 18381
-0, 14839
-0, 11620
-0, 08726
-0.06165
-0.03955
-0, 02127
-0. 00743

0, 00000

-0. 32488
~0. 27258
-0. 22461
-0, 18087
-0.14128
-0.1058)
-0, 07462
-0. 04,777
-0. 02564
-0.0089
0. 00000

-0, 41343
~0, 34534
-0. 28339
~0.22732
-0. 17693
0. 13211
3. 0928,
~0.05926
~0. 03172
-0,01103

0. 60000

-0. 55545
-0.46056
-0, 37542
-0.29931
-0.23165
-0,17207
~-0.12035
-0.076L8
-0.04077
~-0. 01413

0. 00000

-0. 81888
-0, 66939
-0.53889
=-0.42492
-0, 32565
-0, 23976
-0.16636
~-0.10495
-0. 05557
-0.01914
0, 00000

- 1. 48659
~C. 15428
~0. 90142
~0.69317
~0. 52013
0. 37608
--0. 25688
~0. 15984
~0.08361
~0. 02848

0. 00000

o0

-3.6402,
-2.33157
-1.60309
-1.11555
-0.76313
-0.49932
-0. 30015
~0.15258
-0. 05074

0. 00000

]







.-9{._

.

Table 15. Punction X4o

~cos § -0.2 -0,1 0.0 0.1 0.2 0.3 O.4 0.5 0.6 C.7 0.8 !

Nk
-cos ¢ | N 0.60 0.55 0. 50 0,45 0.40 0.35 0, 30 0.25 0.20 0.15 0.10

Et v
0.80 0.10 4.76197] 4.72520] 4.61371| L.42312] 4. 14475 3.76343 3.25263| 2.56224| 1.53112 |-0.03830 —oo
0.82 0.09 5.18049{ 5.15759] 5.05753| 4.87652} 4.60667 4. 23409 3.73473 3.06429| 2.12883! 0.66238|-3,25866
0. 84 0,08 | 5.66293| 5.65496| 5.56670| 5.394921 5.132431 L. 76647, 4, 27509 3.61867] 2.7°662 1.35890)-1.51769
0.86 0.07 | 6.23114] 6.23957 6.16366| 6.00074| 5.74427) 5.38244 4.89502| 4.24623; 3,358l 2.08339-0.29091
0. 88 0. 06 6.91914] 6.54601] 6.88328] 6.72881| 6.47664| 6.11576 5,62734h | 4.97865! L4.10744.1 2.87186| O, 78434
0.90 0.05 | 7.78344] 7.831811 7.78351} 7.63695} 7.38670 7.02237" 6.52622| 5.86780! 4.9°092) 3. 77442 1.85221
0.92 0.0k | 8.92706{ 9.00173{ 8.96983| 8.83037] 8.57835; 8.20385 7.68980| 7.00729) G.10434 | 4 87436 3.02754
0. 94 0.03 | 10.56435]10.67375; 10.6616410.52775{10.25745| 9.87100, 9.32148| 8.53051, 7.6283k; 6.33742| L4.47625
0.96 0.02 | 13,2484 13. 410041 13. 52464113, 29275{13, 01001112, 56635, 11, 94,08 |11.1136,,| 10. G243 | 3.58132] 6.567,2
0.98 0.01 | 19,16871(19.43536] 19.49637(19.35371,19.00282{ 18.43183 17.64944{16.53021{ 15, 104671 3.23536 (10, 69512
1.00 0.00 o0 &0 oo < | %0 * . { . . o i oo -

f: Table 16. Function X5

i —cos 9| =-0.2 | -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Teose | Pal o0.60| o.55| o.50| oms5| omo| 0.35| o3| 025 o0.20| o0.15| 0.10

t
0.80 0,10 | 0.20315] 0.23403| 0.26833| 0.30900| 0.35592| 0.41225 0.48221[ 0.57346} 0.70205! 0.91144 1.49220
0.82 0,09 | 0.17249| 0.19862{ 0.22812| 0,26193] 0,304 | O.34875 0.40728( 0.48315{ 0.58891{ 0.75685] 1,13542
0. 84 0.08 | 0.14376] 0.16547| 0.18994| 0.21796| 0.25063| 0.28965{ 0,33775| 0.39974{ 0.48532{ 0.61841| 0,89235
0.86 0.07 | 0.,11704] 0.13465| 0.15448| 0.17716| 0.20355| 0.23500{ 0.27363| 0.32316| 0.39094| 0.49448( 0.69520
0.88 0. 06 0,09238{ 0.1062k{ 0.12183| 0.13963| 0.16031| 0.18489] 0.21499| 0.25340] 0.30555] ©.38398| 0.52943
0. 90 0.05 | 0.0699%| 0,08036| 0.09211{ 0,10550] 0.1210k| 0,13947| 0.16197| 0.19055} ©.22907| 0.28624} 0. 38861
0.92 0. 04 0.04976| 0.05718] 0.06551| 0.07499; 0.08598] 0.09898| 0.11481| 0,13483F 0.16164] 0.20094 0.26936
0. 94 0,03 | 0.03216] 0.03694) 0.04230| 0.04840i 0,05545 | 0,06378] 0.07389| 0.08663] 0.10358; 0,12818} 0.16999
0.96 0.02 0,01742| 0.02000} 0.02289| 0,02617! 0.02997| 0,03444| 0.03986 0.04666, 0.05566| 0.06859| 0,09013
0,98 0,01 0.00613! 0.00703| 0.00805! 0.00920 0.01052} 0.01208! 0,01397{ 0.01633, 0,01943| 0.02386{ 0.03110
1.00 0.00 | 0.00000 0.00000° 0.00000| 0.00000 0.00000 ! 0.00000 ©,00000{ 0.00000" 0.00000 0.00000, O.00000







" Table 17. Function Y3

.. - 3 (" N
-cos ¢ | -0.2 -0. 1 0.0 | 0.1 0,2 I 0.3 | O.k 0.5 0.6 ro.? rﬁo.a
————— e —_—-— — — ———— e — e — ! ;
-cos @ . Eq 0.60 0. 55 0. 50 0.45 0.40 0. 35 0.30 0. 25 0.20 3 0.15 l 0.10
t L ,
SR IR S - . s
0. 80 0.10 | 5.53595 | 5.43965 | 5.30303 | 5.12427 | 4.89992 |4.62425 14.28812 |3.87622 |3, 36030 f2.6?608 11.49220 I
0.82 0.09 5.29349 | 5,20482 | 5.07824 | 4,91218 | 4.7035% (4.44723 |4.13512 13,75382 |3.27917 }2.65904 1,70645
0. 8L 0.08 5.02968 |4.94856 | 4.83201 | 4..67867 | 4.48579 | 4. 24886 | 3.96069 |3.60958 |3.17485 (2.61382 |1,79638
0. 86 0.07 L.74095 | 4.66735 | 4.56088 | 4. 142038 | 4. 24343 | 4. 026051 3.76192 | 3.44086 13.0L523 ;2.53987 1.,82889
0.88 0,06 | 4.42245 | 4.35637 | 4.26011 | 4.13267 | 3.97196 | 3.77450 |3.53478 |3.24399 [2.88714 (2.43531 |1, 81572
0.90 0,05 L.06718 | 4. 00870 | 3.92289 | 3.80891 | 3.66497 { 3.48804 |3.27341 ;3.01354 12,69581 12.29652 |1.75975
0.92 0. G4 3.66448 | 3.61379 | 3.53884 | 3.43895 { 3.31259 | 3.15723 [ 2.96886 [2.74117 (2,46370 12,11726 {1.65890
0. 9k 0.03 | 3.19646 | 3.1539% | 3.09056 | 3.00579 | 2.89838 | 2.76625 | 2.60611 |2.41283 12.17798 |1.88643 [1.50572
0.96 0.02 2.608,8 | 2.59%87 | 2.54435 | 2.47651 | 2. 39041 | 2,28443 | 2,1560 {2.00127 {1.81370 |1.58202 {1.28279
0.98 0.0t 1,87166 | 1.8,.866 | 1.81378 1 1.76677.1 1.7C699 | 1.63336 {1.55448 {1.43679 11,30695 [1.14729 {0.94.301
1.00 0. 00 0. 00000 { 0.00000 { 0.0000C | 0.00000 | 0. 00000 { 0.0000C | ©C.000CO |0.00000 |0.00000 |0.00000 !0, 00000

o T

Table 18. Function %y, = %

—cos ¢ | -0.2 | -0.1 | 0.0 0.1 0.2 0.5 Ok ' 0.5 0.6 . 0.7 0.8
R 2l 060 | 0.55 | 0,50 045 | o0 | o0.35 | o030 | 0.25 | o0.20 | o.15 | 0.10

t
0. 80 0.10 0.44532 1 0.43011 | 0.41321 | 0.39445 | C. 37356 | 0.35019 { 0,32382 | 0.29366 |0.25836 {0,21523 |0.15633
0.82 0. 09 0.38187 | 0.3689) | 0.35460 | 0. 33867 | 0.32095 | 0.30115 | 0.27884 | 0.25337 |0.22365 |0.18758 [0.13962
fo.gu 0.08 | 0.32140 { 0.31062 | 0.29866 | 0.28539 | 0,2706% | 0.25417 [0.23564 | 0.21451 |0.18994 {0.16029 |0.12156
0.86 Q.07 Q. 26417 1 0.25540 | 0.24566 | 0.23486 | 0.22287 | 0.20949 | 0.15445 | 0.47733 {0.45747 [0.13364 10.10294
0. 88 0. 06 0.21052 | 0.20359 | 0.19590 | 0.18738 | 0.17793 | 0.16738 | 0.15554 | 0,14210 |Q.12653 [0.10793 10,084,25 |
0.90 0.05 0.16081 | 0.15557 | 0.14975 | 0.14330 | G. 13616 | 0.12819 [ 0.11926 | 0.10913 | 0. 09743 [C. 08350 |0, 0659, i
0.92 0. Ok 0.11554 | 0.11181 [ 0.10766 | 0.10308 | 0,09800 | 0.0923) {0.08599 | 0.07881 |0.07054 |0.06072 0. QB45
0.94 0.03 0.07535 { 0.07294 | 0.07026 |0.06730C | 0, 06402 | 0.06037 | 0.05628 | C.05166 |{0.0463, |C. 006 |0.03225
0,96 0.02 | 0.04118 ;1 C, 03987 | 0.0384%2 | 0,03682 | 0.03505 | L.C3307 | C.03086 | 0, 02837 §0.02551 {u.02213 (L. 01757
0.98 0.01 0.01462 | 0.01416 |0.01365 | 0.01308 { C.01246 | 0.01177 |0.01099 1 0.01012 |0.00912 10.00794 10.00649
1.00 ~ .00 &O&OOQOJ Y-0000C 1 0.0CCCO 1 Q. 000001 0,CQ00Q LO.GLLCE L C.0200C 1 4 0000 12,0000 _10.000C0 (€. 007200

—






Table 19.

Function K¢

-COs @

"'Oo 2

=01

0.0

0.1

0.2

0.3

C.4

T

1

0.5

0.6

0.7

T o8

1
Q
Q
0
-5

0.60

0.55

0.5C

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

L) L] -
o o

SERRVEBRER S

SO0 0000000

-

COPOPOELOOP
O —
S2R8RERI83

O - N

-0, 01070
~0, 00817
-0, 00605
-0.0G: 31
=Q. 002M
-0. 00184
-0, 001,
-0, C0051
-0, 00018
-0, 00003

0. 00000

-0, 01241
~0. 00947
-0. 00701
~0. 00499
-0.00337
-0.00212
~0. 00121
-0, 00058
-0, 00021
-0, 0000k

Q. 00000

-0, 01447
-0.01103
-0. 00816
-0.00580
-0.00392
-0.00247
-0. 00140
~0. 00068
-0. 00024
-0, 00004

0. 00000 |

-0.01703
-0.01297
-0. 00958
-0, 00681
-0, 00459
0. 00289
-0, 00164
-0. 00079
-0, 00029
-0, 00005
0. 00C0C

~0. 02033 |-0. 02481

-0, 01547
-0, 01142
-0, 00810
-0, 00546
-0.00343
-0.00195
~0. 00054
-0. 0003,
-0. 00006

. 00000

-0.0188,
-0,01387
-0. 00983
-0, 00661
-0.0Q415
-0.00235
-0.00113
-0. 00041
-0. 00007

1 0, 00006

-0.03122
-0. 02364
-0.0737
-0.01227
~0. 00824
-0. 00515
-0.00291
-0, 00140
-0, 00050
-0.00009

0. 00000

-0. 04121
-0.03107
-0.02272
-0, 01599
-0, 61069
-0. 00667
-0. 00376
-0, 00180
-0. 00065
-0. 00011
. 00000

-0.05882
-0. 04398
~0,03192
-0.0223
-0, 01483
~0. 00919
-3, 00515
-0. 00246
-0, 00038
~0.00015

0, Q0000

~0, 09758
-0.07148
-0. 05101
-0, 03513
-0.02305
-0, 01413
~-C. 00784
-0.00374
~0. 00131
-0, 00023
0. 00000

~0. 28170
-0.16963
~0.1115i
-0.07272
-0.04582
~0.02721
=0, 01471
-0. 00681
-0.00236
-0. Q0C40

0. 00000

Table 20,

Function X4

-0.2

‘-001

0.0

Q0.1

0,2

Oo}

0.4

0.5

Q.6

J. 7

0.8

0.60

0.55

r
0,50

05 | oo

0.35 |

0.30

0.25

0.20

0.15

0.1C

OO SO MO D 0O Qo QR0 Qo
E§a30\¥'N)C>OJGNEEN>c

OQ_C,_OO_CCJOOC)

.y

s 8 -
OO COOO Q =
O-APO\NF'v1a\E}830c)

POLOLOOPOOO

2.66095
3.1579%
3. 729U
4, 39888
5, 20244
6.19984
7.49897
9, 32261
12, 24069
18. 48897

2,18598
2, 6400
3.16288
3. 77464
L, 50844
5.41826
6. 60U16M
8.25968
0. 90653
16, 55703

1. 71840
2,12899
2,60112
3.15377
3.81622
4. 63669
5.70217
7.1919¢0
9.56358
14, 60875
o0

1, 26587
1.6%159
2.05232
2. 54481
3,138
3,86L83
L.81125
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APPENDIX IT

Binary and Ternary Solutions and
Appropraiate Stability Tests

General forms of solution for bimary and ternary calculations are
described in Sections 3 and 4 of this report, These are amplified here
into a detailed form which will enable a computor to obtain from the
equations of motion solutions for oritical speed and frequency, The
process is taken from the stage where values of the basiec a, ¥, b, and
¢ coefficients have been obtained.

In addition to the determination of critical speed 1t is sometimes
necessary to decide upon which side of a critical boundary the stable and
unstable regions lie., More explicitly, if the critical speed has been
determined for a range of values of some variable parameter, say a struo-
tural stiffness, then the curve obtained by plotting critical speed against
the parameter 1s the critical boundary, representing steady sinuscidal
oscillation with constant amplitude. Points lying off this boundary repre-
sent either stable or unstable conditions with decreasing or increasing
amplitude respectively, and 1t may net always be obvious which side of the
boundary represents the stable and which the unstable condition. In such
cases stability tests are available to define these regions. Each of the
solutions given below is accompanied by an appropriate stability test,

1. Direct Iterative Solution for Binary

8 = a ¥ip Mio
rs TS s s
where
1
= a A= qiw,
ars ra * Y}s’ and *%m

Coefficients b and ¢ are ocalculated for an assumed value of Wp,

The determinantal equation obtained directly from the equations of

motion is .
St e Oy
= 0 (1)
%1 S92 * 2
and is expanded in the form ¢
2
P, - o, A+ Pp M +Ph+p = O (2)

i

5

The notation (x, y; is adopted to represent the sum of the distinct
determinants of type (1), which can be made wath all possible permutations
of x and y taken together, each being associated wath a row of the
determinant. In the general case x *#y there are two permutations,
xy and yx, and-therefore

- 41 -



(x, 5) = fmpy Ry | 4| Tyy Ty
Yo 22 X4 ¥op

In the specific case x = y = z there is only one permutation, zz,
and therefore

" (2, 2) = lzq 2]
[%21 %22
Using this notation, the values of the p coefficients are

P = (a', a’)

p, = (a!, b)

Ny
it

A Be22

P} = C+D322

2
B, = E + Fe22 + Reyo
where

A = (a', c) + (b, b)

¥
B = &11 +Ra.22

¢ = (b, eq)
D = b“ + Rb22
E = (c, o)
P = 44 + R022
£ 2
and R = gtiffness ratio = iy . _CmT
Iﬂe &

The test function, obtained by equating the real and imaginary parts
of (2) to zero and eliminating ®,, when expanded gives the fellowing
gquadratic in eps.

I

2 2.y .2 S 2
(pyED - p, D" - p,"R) &5, + (pyAD + BC ~ 2p CD = p;"F) ey,

2 2
+ (py4C - »C" - p, E) = O (3)
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Equation (3) is solved for e, and the frequency obtained from
Gh? = p3/p1. If @, agrees reasonably well with the assumed value, the
critical speed 1s then obtained directly from

1 RuT
mA P Legy

Stabality Test

The eritical condition is pre-supposed in the above solution by
taking A = iw, 1n equation (2), The motion is then proportional to

elpt, that 1s sinusoidal with time. Equation (2) can however equally
well represent the general condition in which any A root has the form
A =u + iwy. In the eritical condition the speed and the value of the
variable parameter considered make the p coefficients such that a solu-
tion for A is obtained with wu = 0, Waith slightly different values

of eirther speed or parameter a solution would be obtalned with u # 0,
the resulting oscillation being stable or unstable according to whether
u is negative or pogitive respectively.

A second sclution could therefore be performed using a slaghtly
different value of speed or parameter. The stability would be indicated
by the sign of the resulting value of 1, and the region labelled
accordingly.

Standard stability tests have however been devised which avoid the
necessity for a complete solution.

The full set of conditicns for stability in this case are
(a) all coefficients p must be positive

(t) the test determinant T, must be positive,

B, P, ©
0]
By, P5

The procedure 1is therefore to examine these conditions for a slightly
different value of speed or parameter. TFor moderate departures from the
critical condition it will generally be found that condition {(a) is still
satisfiaed and the definition »f stability therefore rests upon the sign of
T3, which is zero in the critieal condition,

2. Indirect Nen-Iterative Sclution for Binary

In this case the form

I

is used, where

2
Ty = = (apg * Y}s)aﬁl vopg and Bo= opb
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Coefficients « and B are calculated for a given value of wg.

The determinantal equation (1) is expanded in the form
(8] + 8, erq + Oy Epp ey egy = 0 (4)

which, when real and imdginary parts are equated to zero, gives the two
equations,

Ro + R,;e11 + R2€22 + R3611822 = 0
(5)
SO + 81611 + 82822 + 33811822 = 0
where
RO = (a:a) - (B,B)
Ry = Gy, R2 = @, R3 = 1
S1 = 522, 82 = 511, S3 = 0
Eliminating
_ By + Roepp 5y + Speps
R1 + Rje22 81 + S3e22
then gives the following quadratic in eps:
2
(st3 - stz)e22 + (Ros3 - sto + RS, - R132)822
+ (ROS1 - R1SO) = 0 (7)

For the given value of g, equation (7) is solved for epp, ©€q4 1is
€
obtained from equation (6), and hence the stiffness ratio R = ;11 .
22

The whole process is then repeated for several values of @, and finally
R is pletted against say ess, From the curve the value of epp corres-
ponding to the actual value of R 1s obtained, and hence the critical
speed from

m ~
Vo= o~ |2
m | p Lo

Stability Test

The standard stability test given for the direet iterative solution
oould be applied, but this would invelve a separate determination of the
p coefficients. It is more convenient to use a test which is consistent
with the type of solution adopted, and for the indirect non-iterative solu-
tion the following test has been suggested.
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The principle of the test 1s to repeat the solution for a given value
of Wy but including an arbitrary small amount of structural damping.
Values of ego and R obtained from the original solution will be repre-
sented by some point on the curve of eo2 plotted against R (the cratical
boundary)., From the repeat solution with structural damping slightly
different values of ep, and R will be obtained, giving a point close
to but lying off the eratical boundary. This new point represents the
critical condition with structural damping present, and intuwitively it
follows that the side of the boundary on which the new point lies must be
the unstable region for the original condition without structural damping.

Force due to structural stiffness is proportional to displacement and
force due to structural damping 1s proportional to velccity., For the
co-ordinate qq, for instance, the stiffness force is proportional to
€4199, and the damping force proportlonal to q1, or to iwngq.

The net force due to stiffness and demping is therefore proportional
to (811 + 1wmk)q , X being an appropriate constant. For an arbltrary
amount of structural damping this may be written as ey (1 + ip) qq, U
being an arbitrary quantity rerresenting the damping, ahanglng from the
undamped to an arbitrarily damped condition can therefore be represented
by multiplying each stiffness coefficient by (1 + iu),

With strustural damping equation (4) then becomes

1]
o

. . 22
|8] + 622811(1 + i) o+ 611622(1 + i) + 611622(1 + ip) (8)

and the coefficients in equations (5) are modified as follows:-
R and SO are unaltered

R, Tbecomes R1 - pS1

R2 becomes R2 - pSE

becomes R5(1 - pe) - ZP-S3

8, becomes 8, + LR

1 1 1

becomes 82 + pR2
S, becomes B8_{1 - 92) + 2“33
3

For a given ®, and a small arbitrary valuc of Y equations (6) and
(7) are re-solved for eqq, epn and R using the modified coefficients
above,

The location of the resulting point (922:R) relative to- the criginal
critical boundary then determines the unstable region for the condition
without structural damping.

3. Direct Iterative Solution for Ternary (633 = 0)

The detemlnantal equation obtained directly from the equations of
motion is
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St e B2 B3
824 80 * Cppr B3| = O (9)
831’ 552’ 633

and is expanded in the form
2
poks + p1'1\5 + p27x1+ + p313 + ph_). + psfh. +pp = 0 (10)

Coefficients b and ¢ are calculated for an assumed value of Wy,

The notation adopted for the binary is extended, (x, y, z) repre-
senting the sum of the distinct determinents of type (9) which can be
made with all possible permutations of x, y and =z taken together, each
being associated with a row of the determinant, In the general case
x ¥y * z there are six permutations, xyz xzy yzx yxz 2zXy and zyx,
so that

X11 X12 x15 x” x12 x13
%31 %32 P33 (Y31 Y32 33

When two of the three elements are equal, as in (x, x, y), there are
only three permutatiens, xxy xyx and yxx, so that

11 %12 *3 1 %2 %3 Y11 Jr2 Y43
(X, X, y) = X014 %oo x23 t 1Yo o2 y2_3 * 1 %2q oz x23
Y31 V3o 33 *31 ¥32 ¥33 *51 *3p *33

When all three elements are equal, as in (x, x, x), there is only
one permutation xxx, and therefore

X191 %12 %43

(x, x, x) = Xy Zpp o3

X X

32 X

33

In additlon, (x, ¥)4q and (x, y)p» are used to rerresent similer
permutations of x and y with respect to the minors of &y4 and &9o
respeotively in ||, TFor instance

%22 ¥23 s Yoo Yp3

(X, y)'ﬂ =
Y32 V33 *32 %33
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11 *3

(%, x)pp =
X X

31 733

Using this nctation, the values of the p coefficients are

b, = (a', a', a')

b, = (s, ar, b)

p, = (a',a',c)+ (a', b, ) + e11(a', a‘)11 + ezz(a', a‘)22
Py = (a', b, e} + (b, b, b) + 811(a', b)11 + gyp(al, b)22

p, = (a', c, ¢) + (b, b, c) + €4y {(a', c),[1 + (b, b)11}

!
+ e, f(a’, 0)22 + (b, b)gz} + By3 G4y Opp

p5 = (b, c, c) + e11(b, 0)11 + ezz(b, 0)22 + b33 811 822

1)

pg = (s 05 0) +epyle, o)y + epple, e)pp + 055 eqy epy

Equating real and imaginary parts of (10) to zero gaves the two
eguations

6 4 2 )

TPyt P BE -+ Py = 0 (11}
L 2 3

USRS = 0 (12)

By eliminating @y frem these equations and substituting €44 = Reso
a sextic in ep2 can be formed., Direct solution of this is laborious and
therefore rarely used, Instead, equations (11) znd (12) can be solved
indirectly. For a given value of eps, and hence of e44, the p cogffi-
cients can be calculated and equation 612) solved as a quadratic in wp*,
whose value 1s then substatuted in equation (11). Repeating the process
over a range of values of epp, the value for which the left-hand side of
equation (11) 1s zero can be found by interpolation. If the associated
value of wy agrees reasonably well with the value originally assumed for
the calculation of the b and c¢ coefficients, then the critical speed
is given directly by

1 m
V oa — 4
Cm J P & @22

Stability Test

For the standard test the full set of conditions for stability of the
sextic (10) are

(a) coefficients D, P4 and pg must be positive

(b) the test determinants Ty, Ty, T) and Tg must be positive,
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T = |P1 %
P3 P2
TJ+ = P 1 po C 0
P} P2 P1 PO

The procedure, as for the binary, is therefore to examine these

Pg

conditions for a value of speed or parameter slightly different from the
eritical, The stability will generally be determined by the sign of TS:
which is zero in the critical condition,

4. Indirect Non-Iterative Solution for Ternary (e3sz = Q)

As for the binary, coefficients

given value of

mm,

The determinantal equation (9) is expanded in the form

8] + 8, e

1

+ A

oo Sop * 533 €11 22

0

2 and B are calculated for a

(13)

which, when real and imaginary parts are equated te zero, gives the twc
equations (5) but in this

case with

H]

i

1l

(a,
(a,

(a,

o, [1) - (0.'., HJ B)

@1 = (8, By

% = (B By
«, ) - (B, 8, 8)
)11

Bloo

Using equations (6) and (7), the sclution then proceeds exactly as

for the binary,
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Stability Test

Applying the structural damping test, the solution is repeated with
eq4 and epp, in equation (13) each multiplied by (1 + ip). The seme
modifications are made to the coefficients of equation (5) as in the
binary case, but using of course the original values appropriate to the
ternary as given above.

For a given @p and a small arbitrary value of § equations (6)
and (7) are re-solved using the modified coefficients, The location of
the resulting point (epp, R) relative to the original critical boundary.
then determines the unstable region for the condition without structural
damping,.
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APPENDIX TIT

Interpretation and Use of Resonance Test Results

The fact that a relationship frequently exists between the still air
modes (i.e. normal modes) of wibration of an aireraft and its flutter
characteristios has been apfreciated for some time. In recent years this
appreciation has been acknowledged by the requarement for resonance tests
to be made before flight on each new prntotype arrcraft, as a safety pre-
caution against flutter.

The technique of the tests, as described an R & M 21551, is now
fairly generally understcod but there =re still many widespread mis-
conceptions as to the practical uses of the results. The resonance test
results cannot, at the present stage, be interpreted so as to supply 2
complete picture of the flutter characteristics of an aireraft, nor does
the fact that the ainterpreter chtains a negative result from the analysis
necessarily imply that the aircraft will be free from flutter. In the
light of past experaence, from a careful consideration of the results it
1s of'ten possible fto assess the likelihood of the aireraft aveiding
flutter trouble, and 1f a flutter incadent or accident does occur the
results may provide an immediate indicaotion as to the best cure,

In what follows the salient points of the resonance test analysis and
the applicatinn of the results are discussed; and, in particular, the
application to theoretical investigations is described and exemplified by
a sample normal mode calculation on a hypothetical aircraft.

Analysis of Resonancge Tegt Results

In recent years experience has heen to the effect that main and
auxiliary control surfaces almost invariably play the predominant part
in flutter troubles that occur in practice and as a result the usual
practice in the analysis is to concentrate on phenomena which are known
to be relevant to the flutter of these items., However it i1s quite con-
ceivable that waith the radical changes of design now taking place the
emphasis in the future may be on the flutter of the main structure, and
therefore for any particular analysis all aspects must be kept in mind.

The two major features indicative of possible control surface flutter
that are locked for in resonance tests may be classed broadly as

(a) ineffective mass balance, and

(b) a proximity of any two of the natural frequencies of the main
. and auxiliary controls and the aireraft structure,

Since the purpose of mass balancing 1s to eliminate inertia couplings
between the control swrface and main surface motions it should be strictly
related to the actual medes experienced in flight when a vibration eccurs.
If the mass balancing i1s effective the vibration is damped and flutter is
avoided, Mass balancing criteria given in A,P,970 are related to assumed
medes of a simple type and are to be regarded as first approxamations only.
Normal modes as cobtained from resonance tests represent on the whole a
much closer approximation and provide a useful check on the mass balancing
system adopted, For aircraft in which concentrated masses are used for
mass balance the resonance test results are analysed for .modes in which a

-

1 W.c. Molyneux apd E.G. Broadbent. "Ground Resonance Testing of Aircrafi”,
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balance weight is in close proximity to a nodal line, A balance weight
on a nodal line serves no useful purpese in that particular mode and
accordingly the greater the number of balance weights the less is the
likelihood of trouble from this cause, for in any particular mode in
which there is a loss of the effectiveness of one weight there might
quite possibly be an increase in the effectiveness of the others., The
single mass is that most likely to give trouble, and the likelihood of
trouble is enhanced when the balance weight is remote from the surface In
such cases for it is possible for the weight to act in an anti-balance
sense by virtue of a nodal line existing between the weight and the
surface,

Certain of the phenomena leading to tab flutter may also be classi-
fied under {a). Geared and trimmer tabs frequently carry no mass balance
on the assumption that no degree of freedom separate from that of the
main control is possible and on such a system any resonance mode in whick
there is excessive rotation of the tab relative to the main contrel is at
once suspected. Such rotation may be due to backlash or undue flexibility
in the tab circuit,

Modes under case (b) above have been definitely identified in a
number of cases as being a contributory cause of flutter trouble and it
appears that frequency proximity may lead to flutter even on a fully mass
balanced system, Fhenomena of this type are apparent from the resonazr s
test results for it is general practice to obtain "amplitude-frequency”
ocurves for the comtrol surfaces in addition to those of the main structure,
and from these curves an estimate of the proximity of the relevant fre-
quencies may be obtained,

Spring tabs are in a special category since, because of their intrin-
sic freedom relative to the main control, a degree of mase balance of the
tab is normally required {spring tabs in fact need special treatment :n
this respect and the optimum weight of mass balance may well be zero in
certain cases). Troubles associated with spring tabs may therefore occur
under (a) or {b). The same is of course true of the main control when
the stiffness of the control circuit 1s considered. In the case of the
main eontrol, measurements on the control column will distinguish a
resonance of the control circuit from bodily movement but it is not se
easy to distinguish between the two for a tab, In any case coupled
rotation of any kind is suspected since whatever the cause the rotatinn
iz likely to influence the flutter characteristics.

Aotion Following Analysis

The mere fact that the resonance test analysis indicates a suscepti-
bility of the aircraft to some particular type of flutter is not neces-
sarily conclusive, It may be that flutter, if it occurs at all, is at a
speed beyond the range of the aircraft, or the mass balance may still be
sufficient to render the system immune from flutter despite some loss in
effectiveness; or whatever has been suspect may prove after all to be
adequate, A possible approach to the problem would be immediately to
modify the aireraft so as to remove the adverse resonance characteristies,
but this vould certainly lead tn many unnecessary modifications if applied
wmiversally, However, this approach has its applications in cases where
flying is required urgently and the risk of flutter cannot be tolerated,
and in particular for cases of flutter that have occurred in which the
general form ef the flutter is known, For the general case the most
satisfactory procedure is to examine partioular suspected cases en a
theoretical basis, as a result of which suitable modificatliens may if
necessary be made,
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4s mentioned earlier it is quite possible that, despite all the pre-
cautions taken prior to flight, flutter may still occur on the aircraft.
The fallure of resonance test results to forecast failure in such cases
is a measure of the present undeveloped state of the analysis, but each
case of flutter that occurs adds to the fund of knewledge and extends the
range of the analysis, Developments in analysis result fer instance when
flutter nccurs in which the modes involved may be of a type for which no
previous experience exists to demonstrate susceptibility to flutter.
Such modes would not in the first instance appear sigmificant. Proximity
of the resconance frequencies of components is another feature about which
there is much to be learned, for 1t 1s difficult at the moment to knew
what degree of proxaimity is to be regarded as serious., However, when
flutter troubles occur, the resonance test results will, in many cases,
give an indieation of the souwrce of the trouble and will indicate the best
line of attack for effecting a cure, When the flutter is of a form too
complicated for the test results to give any direct indication of the beat
line of attack the normal modes are nevertheless of considerarle value in
any theoretical investigations that Are made.

Application of the Results to Theoretical Investigations

When thecretical investigations are undertaken, either prier to
flight ag a result of resonance test indicatlons of flutter susceptibility
or after an incident has occurred in flight, the normal modes obtained
from the resonance tests are generally used for the calculations.

As explained in Section 2 of this report, flutter investigations are
normally made by restricting the calculation to a specified number of
degrees of freedom of the aircraft, and to obtain reliable results these
must be chosen such that when coupled together with the appropriate ampli-
tude and phase relationships (to be determined implicitly in the calculation)
the final motion agrees closely with the true physical motion under flutter
conditions, If the modes are well chosen a good answer will be abtained in
quite a small number of degrees of freedom, but if the modes are ill chosen
that number may be greatly increased, and when it is realised that the
computational labour increases roughly as the factorial of the number of
degrees of freedom chosen it will be appreciated that a gnod choice of
modes becomes a matter of prime importance,

It is still very much undecided as to whether normal modes will in
general permit greater accuracy than the equivalent approach hsing
"arbitrary” modes, but for certain specified cases the resonance modes are
a virtual necessity. These occur for instance when resonance tests give
a mode in which the nodal line is sugpiciously close to a mass balance
weight; for then the obvious flutier conditien to investigate is ene
having a mode similar to the resonance mode, which is therefere taken as
one of the degrees of freedom. In cases of this kind the flutter frequency
is often in close agreement with the frequency of the normal mode. If an
arbitrary mode is chosen in such an instance there is a greater likelihood
of a large error in nodal shape, and the associated stiffness is parti~
cularly unreliable as it depends on the second differential of the mode.
When simple arbitrary modes of the fundamental type are used the associated
stiffnesses are usually not even related to the mode itself but are repre-
sented by statie stiffnesses appropriate to the application of a concen-
trated load at some "reference" station., With a normal mode the stiffness
is given simply and accurately by the measured frequency and the inertia
characteristiecs,

Other respective advantages of the two metheds are of small impertance.
On the one hand the normal mode approach eliminates the cross—inertias and
cross-stiffnesses (except, of course, for the control surface degree of
freedom) whereas the simple modes render the serodynemioc treatment somewhat
easier,
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As an illustration of the type of investigation carried out with
normal modes & sample calculation is given at the end of this Appendix.
The investigation is applied to a hypothetical aircraft on the presump-
tion of a suspected inefficiency of the elevator geared mass balance
weight (which from Fig.1 is seen to be close to a node in the fuselage),
and the calculation is based on only two degrees of freedom, namely, the
particular normal mode and elevator rotation. But although the treatment
of the normal mede is typical of current practice it must not be thought
that the example 1s typical of a flutter calculation as a whole, The
scope of the calculation {for simplicity) has been restricted far too
much to be used for direct application, and in practice at least three
degrees of freedam would have to be used for a calculation of this s-rt.
The degrees of freedom normally considered for symmetric elevator flutter
arei=-

(1) First normal mode involving fuselage bending
(2} Second " n " " "
(3) Elevator rotation -
(4) Pitch of the whole sircraft

(5) Vertical translation of the whole aircraft,

Of these five the last can usually be neglected as its effect upon the
flutter speed will usually be small. In some cases a further simplifi-
cation may be effected by making use of the fact that for a conventional
aircraft the wing motion asscciated with (1) and (2) will be almost pure
flexure which will be heavily damped in flight. The flutter condition
will therefore be that in which this demping is a minimum, i,e. modes ~
(1) and (2) will combine to give as little net wing motlon as possible,
In the caiculation below the full wing motlon is assumed and the Pact
that the system still possesses a fairly low flutter speed may be
explained by the fact that a very bad case has been chosen, with a heavy
elevator and almost zero effectiveness from the mass balance weight.

Sample Normal Mode Calculation

The ensuing worked example has been carried out on 2 hypothetical
aircraft for which certain assunmptions have been made to simplify the
arithmetic, The wing and ftailplane arc both assumed rectangular and in
general the modes are supposed to be expressible as simple algebraic
furctions, This will in faot be very nearly true for fundamental modes
of vibration even in practice though the inertia data will often be
available in such form as to make analytical integrations for the inertia
coefficients not very easy. Diagrams of the assumed (normal) modes of
vibration are given in Fig.1.

f,

The complete normal mode of the aircraft may be expressed ag

5]
)

efs () q 3 = 1,2,3

=
H

F, (n) q, jo= 1,2

q4 1is the generalised ¢o-ordinate of the degree of freedom corresponding
to the normal mode, so that 5q1 is the amplitude at the reference sec-
tion where f(ﬂ) is unity, For cormvemence the wing tip is chosen as the
reference section and £ is put equal to one foot, fq n, fz(Tﬂ and
f3(Tﬂ repregent the flexural modes of the wing, tailplane and fuselage
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respectively (all corresponding to unity at the wing tip), Similarly
FH(Tﬂ, F@(ﬂ) represent the torsional modes of the wing and tailplane
respectively, corresponding to a unit value of f(m) at the wing tip.

For a torsionally rigid elevator the local elevator angle 1s given by
E = EO o -a

where E, and &, are the angles of the elevator and tailplane respectively
as measured at the elevgtor lever section.

Hence '
£ = Gy + (F2 - F2) 9y

where 0y = Fz' 4y, B = 9.

The vertical digplacement of the mass balance is
z - B = 6f3 q, r(q2 + F, q1)

where =z 1is the displacement of the mass balance hinge, B is the rotation
of the mass balance arm relative to space, and r is the effective mass
balance arm. The value for B depends on the gear ratio between the
elevator and the mass balance, which has in this case been taken as wnity.

As in equation (1.7) of Section 3, if p/2n  is the flutter frequency
then

2,2 v2
m sz

where @, is the mean frequency parameter corresponding to the wing mean

chord cy. For the wing the local frequency parameter w, = p %? . For
c
the tallplane the local frequency parameter wg =p -t

v'

' . s Cm

If ?\:;me_lpv
°x
then W = A —
w S

c

and iwt = A .
®m

Inertia Coefficients

Using the same notation as in Section 3 the equation for the total
kinetaic energy may be constructed as
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il

where the dashed derivatives refer to the tailplane and the undashed to
the wing,

The moment about the leading edge M and the elevator hinge moment
H, may be similarly expressed.

Proceeding as in Section 3 the aerodynamic coefficients may be
obtained, The aerodynamic stiffness coefficients are as follows:

** 2z, and zy are leading edge displacements of wing and tailplane,
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hycy, hyey are the distances from the reference axis to the leading edge
for the wing and- tailplane respectively.
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As in Section 3, the b and ¥ coefficients for any given order are
obbained from the ¢ coefficients of the same order by including the

2
appropriate factors =2 , <£L> within the integrals and using appro-

Cm Cm
priate damping and virtual inertia derivatives.

For the hypothetical mode of Fig.1 the main structural distortions
are expressed as mathematical functions, and the integrals may be deter-
mined exactly, In practice the integrals would be determined by some
approximate method, and usually by a summation on Simpson's rule,

The values of the various constants are as follows:—

8. = 20 ft
sy = 7.5 ft‘
sp = 20 ft
e, = ¢ = 8 ft
Cy = 5 ft

§2 = 4,05 f%
K, = 1.25 1%
x; = 0.5 ft
B, = 1.0t /
%, = 1,75 't
hwqw = 2 ft
hyop = 1.25 1t

r = 2 ft

The mass distributions my, My, Mg, I, are &s shewvn in Fig, 2,

f-;('”) = 1,5 712 - 0,5 17’1 (n) = 0 Fuselage slope
5 at % chord
£,(m) = 0.72 M + 0,78 Fy(n) = -0,128) Positions
£3(M = (1.287M° - 0.5, 1N=1,01t0 n=0
(2.0 12 = 0,5, 7M=0 to M= -0.625

In the determination of the derivatives the elevator chord aft of
the hinge is 2,0 ft and the elevator chord forward ef the hinge is 0.5 ft.
A value for the frequency parameter of 0,5 has been assumed,

The absolute (theoretical) values of the derivatives have been
factored as follows:-—
Absclute value of hy factored by 0.65
" L éé factored by 0,75 o -
" " " 21l stiffness derivatives factored by 0.5.
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These factors should not be regarded too seriously as they are based
on a single comparison1 made with experimental values obtained by Fraszer
and Duncan many years ago., As mentioned in Section 2, further work is
required in this direction.

The derivatives used in the investaigation can now be obtained as:

Wing
& = 0,785h; e = 0.35927; ~mge = 0,3927; -mg = 0.2209
2 = 1.6321; & = 2.1266; my = 0. BULO; -m; = 0.7062
¢, = 0.1455; £, =1.1972; -m_ = 0.03636; -m, = 0.2993
Tailplane
& = 0,785k; . = 0,3927; & = 0.0197
& = 1.806; €, = 0.7112; & = -0.7958
¢, = 0.0N8; €, = 1.273; O = 0.9126
-y = 0.3927; —mz = 0,2209; -mg = 0,0141
-me = 0.6021; :m& = 0,5705; . = ~0.00369
“m_ = 0,02296; my = 0.3183; “mg = 0.3751
~hy = 0.01969; -he = 0,01412; —hg = 0,00197
-h, = 0,01581; ~h: = 0.02939; -hy = 0.01278
-h, = 0.000603; ~h , = 0.008357; ~hy = 0,0089

The values of the various coefficients may now be determined and are
given below,

Inertia coefficients

6

ay, = 0.1427 + 0.797 x 10°°M
| 2 = 0.0059214 ~ 15,9 x 107K
ay, = 0,007971 + 318.8 x 1076

I3

where M is in 1b,

1 . Jahn. "Comparison of the Experimental Wing-Aileron Derivatives of

H.A
R & M. 1155 with Two-Dimensional Vortex Sheet Derivatives."
R.A.E. Tech, Note Wo, S.M.E. 276.
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The term in M in ayy (and similarly for a42)" is obtained from
& f "2 (where 8f3 is the fuselage displacement at the balance

2pcnf'gﬂ 2
1
weight) and not from L (8f5' -r FZ') as quoted earlier,
2pCp Sy

This is & usual procedure as some simplification is effected in certain
cases and the error involved is negligibly small, since it is a function
of the fuselage curvature between the elevator and mass balance hinges,

Stiffness coefficient

33,5534 x 107
v2

9 =

It should be noted that the value for €44 1is that appropriate to
zero mass balance weight, and is assumed to remain constant with variatien
in M. In point of fact variation of M would produce some change in
mode and frequency but sinee these are assumed to remain constant the same
assumptien is applied to €14+

Aerodynamic coefficients

fyq = 0.005041; b,, = 0.013735; cy4 = 0.00567
¥,, = 0,000295; b,, = =0.01264; c,p = 0.02993
Ypq = 0.000295; by, = 0,000584; cpq = 0.000167
Tpo = 0.000113; byp = 0.00117; cyp = 0.00131

As in Section 4 the values of the functions p, to P, are now
cbtained as follows:-

0,0011556 + 46,908 x 10‘6M

p; = 0.0003588 + 4.1875 x 10‘6M

o’d
i

P, = 0,0000683, + 2,2883 x 10_6M + 0,008084 ey * %18.8 x 1OH6M ey

0.000009261 + 0,00117 €41

JP
il

0,000002429 + 0,00131 e

L
t]

11
The eliminant py po P35 -~ Po p32 - p12'ph = 0 reduces to the following:-

(1.5619 G e112 + 109,2346 M e e 1811.82 e 2)

11 11

+ (0,006035 M eqq - 2.2659 Me,, = 138, 163 ey)
+ (0. 000061 W - 0.001072 M - 0.0001852) = 0
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For a given value of M this equation reduces to a quadratic in eq4 from
which the value of V may be determined,

The correspending value of the frequency perameter is derived from
the equaticn

P=
w 2 = =2
m p1

In Fig.3 a curve is shown of {lu.icr speed plotted against mass balance
weight, from which it is apparent that the speed increases with increase
of weight, Values of the frequency parameler have been determined for
various values of the balance weight, ard 1T may be seen that the fre-
quency parameter decreases as the weipght increases, The deviation of wy
from the assumed value of 0,5 is quaite large Tor values of M greater
than 30 1b, However, a value for the balance weight of 25 1b would give
static balance of the elevaior 2nd +thig velue is not likely to be greatly
exceeded in any mractical case., Therelors the asgsumed and final values
of w, are in sufficiently gocd agreemeny within the practical range of M
for lg to be unnecessary to revise lhe i1mitial assumed value of 0.5,

It 13 a usual practice to allow a sofety margin of about 20% on
theoretical flutter speeds, 24 on this basis, wilh the foregeing assump-
tions, this particular aircraft could be cleared to about 450 knots with
a statically balanced elevator, This, of course, omits consideration of
the effect of compressibility, and in fact for aircraft flying at speeds
where compressibility effects are pronounced the permissible speed should
be reduced.
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