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SUMMIRY

Solutions of both dynamic and therrmal bcundery leyecr equations have
been obtained for two dirensional isctherral incorpressible lamnar flow
over semwi-infinite wedges for a range of wedge angles and anjection aquenti-
ties. These solutions arc epplied $o the cstimation of cooling air injec-
tion velocity required by an effusion-cooled turbine blade, using an
approxamate n?thod and also a rethed siinlar to that described by Eckert(1)
and Manglor(2 . Proposals are given enabling cslculated isothermal results
tu be epplied to non-igothermal flow,

In the turbulent regire, a working hypothesis i1s given eanabling the
heat transfer coefficients end required ¢ccling air velocity to be calcu-
lated, though the method rust be regearded as tentative,

Details of the application of the theory are gaven in the main text
whilst the full mathematical theory and rethods of solution of the result-
ing egquations are given in the Appendices.

The above treatrent 1s epplied t5 the design of two effusion cooled
nozzle guide vanes for a high tempcrature gas turbine, In these designs,
the "insulating" effect of the injected cooling air ig such as to reduce
the coefficient of heat transfer by about one-third as cumpared with the
internally cuvoled case, The designs show the need for a great variation
of covling air injection velocity with chordwise posation, if umiform cool-
1ng 18 to be achieved, The theory gaven an this rmenorandum cannot yet be

checked by comparison with experiment, experircntal data not being avail-
able,

An ebridged version of this memorandunm was presented at the General
Discussion on Heat Transfer (London 1951)\3),

*tEffusion cooling" has been tentatively czdopted at N,G,T.E, for cooling by
injection of gas through a permesble wall: "sweat cooling" is being
restricted to the injection of liquid through a permeable wall and "anjec-
tion cooling" is being uscd as the generac term,
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1.0 Introduction

Decause of the complex nature of the equations governing the boundary
layer, it is 1mpossible with our present knowledge to obtain a mathemati-
cally exact solution to the aerodynamic dssign problems of effusion cooled
blades, We are therefore obliged to seck an approximate method or an
empirical method, As no accurate experimental data concerning this problem
have been published, the latter course cannot be explored,

It has been shown(k) that exact solutions of the i1sothermal boundary
layer equations can be obtaaned for flow over semi-infimte wedges and
flow through certain kinds of channels without fluad injection. As fluid
injection and abgtraction alters in no way the mathematicel reasoning lead-
ing to the above conclusion, we can obtain a range of corresponding solu-~
tions with injection ond obstraction, a special case of whaich, wath no
injection, being the solution usually cuoted.

It 1s proposed to apply these solutions to a body of more corplex
shape such ag a turbine blade by approxamating the velocity daistribution
over its surface to either a single wedge or a scrics of wedges.

2.0 Theory of two dirensicnal, incompressible, isotherrmal lamonar
flow over sem-infinite wedges with gas injection

For flow over a sem-infinite wedge, the boun?gsy layer equations
resolve to a non-linear total differential equation

et (n) + £ () f"(n)=5{f' (71)2-1}-- . e (1)

with boundary conditions

i
Q

n =0, f' (1) =0, f(n)

1l
—_

N oo, £' ()

end where 1 1s the non-dimensional distance normal to the surface and
{(n) 28 the dimensionless velocity parallel to the surface (sec Appendix I
for list of symbols).

For completcness a devcloprﬁnt of this equation from the boundary
layer equations 1s given in Appen {I Sgveral solutions of thas
cquation have been published, Ft 7,, 8, (95 and further solutions required
werc caleuletod by the method outlined by I. Foxt10) (sece Appendix 11L).

The temperature boundary laycr solution can be computed from the
following equations knowang the values of f(n).

8 ka , I(m) l -F(m) an, F(m) = PrJ{” £(m) an, e=$g:$: .. (2)

Appendix IV shows the deraivation of the above solution. Further
mathematical manipulation required to convert the solutions into & more
practicable form 18 also included in this Appendax,
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Some known solutions of equation 1 are shown graphically in Figures
1 to H for a Prandtl nunber = 0.71. Other characteristics of the boundary

Nu, 1 .
layer, namsly .ﬁie—x’ 3-(-;7 and 85, the momentum thickness were calculated and

are plotted in Figures 6 end 7. From these graphs, the dependence of the
boundary layer thickness and the heat transfer coefficient upon the pressure
digtribution and injection coefficient can be clearly seen,

3.0 Application of theory to blades with gas injection

Two methods of application of the above regults to the solution of any
blade design problem may be used, the one chosen depending upon the accuracy
desired, The simplest is to replace the given velocity distribution over
the blade surface by a single curve corresponding to the flow over a semi-
infinite wedge. The choice of wedge angle moy be made by trial end error or
by plotting the velocity profile on logarathmic exes and determining the

average slope of the graph. This gives m = Z-L which 18 the parameter govern-

ing the wedge angle, If we require the body to be cocled to a uniform tempera-
ture, the injection perameter C is constant (because in Appendix IV equation
10, J(e) is independent of x) and therefore we know immedastely the velocity
of injection at any point, and the local heat trensfer coefficients,

This approximation leads to the largest error at the leadang edge
although this can be reduced by calculating the exact heat transfer and
injection quantities at the nose as in Section 7 and fairing in the curves
to 1nclude this point.

A second and more accurate method, suggested by several writers, is
to split up the profile into a large number of sections and fat a wedge
velocity distribution to each piece, The sections are Joined together by
assuring the contimuity of a function of the boundary layer, As it as impos-
sible for one paramster to describe fully all the characteristics of & boundary
layer, there remains the choice of a parameter which, as well as agreeing with
other methods and experiments, is also convenient to use, The parameters
usually adopted are the boundary leyer thicknesses of which the following are
the four most common: -

1. Displacement thickness &%

2. Momentum thickness 4,

3, Nomingl thickness

L. Temperature displacement thickness 5t%

The first two f‘ugcé-tlonsxm.'e inca_)nvenient to.use for the sub 'eg‘& of thas
note as the relation Z¥¢ to M¥® is ambiguous for high velues of B (2% and A\ ¥

are functions of the dynamc boundary layer corresponding to Z4% and Mi® in
the temperature.boundary layer),

The temperature displacement thickness has been used below although no
doubt the nominal boundeary layer.-thickness-would be Just as suitable,
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In this analysis described in more deteil an Sectron 7.1, we procced
to draw a graph of the dirensionless temperature displacement thickness

o

. JRey egainst the distence x/ g from the blade stagnation poinv, using

the 1socline retlind, Equations 3 and 9, Appendix IV, are particularly surt-
able for sclution by the isocline method, as at arny point on the graph, i.e.,
5% a {(u/vy)
knowing 'ﬁies and ---(--Z——9-)—
s a ¥

Equation 8, Appendix IV. Fron a chart, described later (Figure 9), we can
N =——

a (ot /S JRSS) "

& (% s)
(Equation 9, Appendix IV), Thus we may plot a series of short lines through

we can colculate the function of M¥ from

2
obtain the value of (1-0) 2t¥ enabling o be obtained

3
selected values of &t [ﬁes at each x/s station (the positions of these
8

should of course be carefully estimated), each line being at the slope pre-
dicfed,

*
As the initial value of o= Jﬁes at the stagnation point (8 =1) is
s

known from Equation 8, Appendax IV, and as the slope there 1s known to be
zero, we can sketch the most probable path of the curve {see Faigure 12,

no injection, Figure 13 with injgection),

4.0 Description of attached figureg

N

The most convenient co-ordinates for obtaining the function (1-pB) Z2t*

are At* and Zt“z, the difference between the co-ordinates being the desired
function and the inversc slope being B. The calculated values of the above
co-ordinates were plotted and graphed, the parameter being C (FPrgure 8).

The injection parameter C is difficult to evaluate at any point except by
trial and error becoause it iz a function of x, the origin of which is upually
unknown, The paramster is thersfore changed using Equation 10, Appendix IV,
and the graph re-plotted with the temperature ratio as a parameter (Figure 9).
Other paramcters could be employed but they suffer from a disadvantage in
that they hove singular poilnts.

5.0 Application to non-isotherimal flow

There are two methods in general use for co-relating non-isothermal
and isothermal heat transfer cocofficients, One method is to choose the
temperatures at vwhich the physical data arc token such that the relatzon-

ship Ny can be aindependent of the blade-gas asbsolute temperature ratzo.

Re

Alternatively, the relation i
Re
t1ions and a correction footor introduced which 18 a function of the blade-

gas absolute temperature ratio,

can be calculated using free stream condi-
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If the first method were used, the relevant values of the physical
data used for the calculation of the injection paremeter C would be the sub-
Ject of pure speculation, Rether than adopt this practice, it was decided
to adopt the second process, first determining the hest transfer coefficient
for 1sothermel flow at the main stream temperature, correcting only for the
change in G, of the cooling fluid and then applying this heat transfer
coefficient™to the non-isothermal case wath a suitable correction for the
absolute tempersture ratio,

This procedure leads us to a modified vaelue for the temperature para-
meter

_(Tb - Tc)" EEb.C. Pr
(.[‘g - 5) GPg

e e ee ee e (3)

Heat transfer coefficients and cooling air mass flows are modified by a

T
factor depending on the ratio 59, the wvalue of this functzon being taken as
g
T T
£la2s 0.7+ 0,5 |5 O €'
g g

T
for O.5<-i7?-<1. This equation must be considered approximate as 1t 1s
g
deduced from only one set of experimental data(11).

6,6 Turbulent boundary layers with gas injection

At present, nothing 1s known regarding the behaviour of an undeveloped
turbulent boundary layer when a gas 1s injected at the wall wath regard to
modification of 1ts velocity profile, thickness, and heat transfer, although
& little information is available on the heat gransfer to the wall of a
porous tube with undeveloped turbulent flowfaz . 1t appears that the Nusselt
nurber is reduced only a small amount by air injection. We could therefore
expect that the heat transfer in the turbulent regime of the blade would be
sorewhat less than that calculated for no injectzion; the actual fraction
depends on the amount of injected air. It is suggested that the coefficients
should be calculated on a b g}s tgat there 1s no inJection in the turbulent
region using Young's methodl3)s\W)  Thig is probebly an over-estimate of
the coolant required for various reasons and should be modified ag experi-
mental data becomes available,

I{ should be noted that Young's rethod postulates sudden transition to
turbulence whereas in practice 1t 15 found that trensition takes a finite
drstance to complete,

7.0  Procedure for calculatinag the heat flow and required injection
velocity consistent with maintaining a constant blade temperature

In order to calculate the boundary layer thickness and heat transfer
coefficicents, 1t is first essential to obtain accurately the potentiel velocaty
dastribution over the blade surface by either experiment, ocalculation or
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a u/u,

aX/ s

electrical analogy. From these results U/U  and are tabulated at

cloge reguler intervals,

a v/,

At the nose %7 13 calculated from the noge curvature using the
d
8

following equation derived from elementary potential flow theory:

d U/'UD g U (r_)
= L * .S * 0 L -)
a*/ R Y out

the ratio I;I—;Ji-l%- being calculzted from the blade angles assumng inconpres-

sible flow,

7.1  Procedure

(1) Given Ty, T,, and T, calculatc the

g
™, -T C
ratio ( b c; Pby ¢ py
T -T C
z b Py

(2) At the stagnation point where B = 1, we
can obtaan the function At® using Magurc 9

and. the temperature ratio calculated above.

*
This enables us to determne -6-2* [Res ot this point by the use of

Equation 8, Appendax IV, Ve then proceed to complete the curve as
described at the end of 8ection 3.0 (us:mg the methed of 1socllnes) over
the whole of the concave surface and up to the point of maximum velocity
(or mnimm pressure) on the convex surface.
=
We then tebulate the volues of it—— ’T{es at the chosen points, ond

=]

N
proceecd to calculate e and. 1 e as in Table I:-

Re
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The poant of transition to turbulence on the convex surface s
assumed to be the point of maximum velocity or minimum pressure., We can
then calculate the momentum thickness of the laminar boundary layer at thais
peint ag follows: -

9 5t% Az
— Re = wa— [Rgo ~—= R e e . 'y X 6
- g < J & oK ’ €g (6)

A2 being read from graph 7. The heat transfer coefficients in the turbu-
lent region are now calculated as in References 13 and 14,

As before
: 4 N ol
Nu (B Nu 1 = M (Tb—tf.‘c)cpb_Lc_P
—— =l | == == -_— e = = r
..fRe 2 ke isothermal Q JIE ,‘\(T g-'rb) Cp g

ve ee s (N

T
The value of the function f1 EE 1s unknown, 1t is therefore assumed that

this function 1s the same as that used in the lamnar flow case.

8.0 Design of an effusion cocled nozzle guide vane for
g high temperature gas turbine

As the blade under consideration 1s subject to turbulent flow as
well as laminar, it is difficult to maintain a constant blade teuperature
under all operating Reynolds numbers,

The blade must be designed at the worst estimated conditions so that
under other more favourable conditions, the blade wall be over cooled.
The potentisl velocity distribution over the gurface of the W2/700 nozzle
guide vane cascade, the first exomple taken, together with relevant physical
dimenszions, are given in Figure 41,

As further design data 1s unavarlaeble concerming the example gaven,
1t has been assumed that the design condition is Re = 2 x 105,

The pressure distribution round the blade was obtained assumng the
flow to be incompressible, The cutstanding design figures are tabulated
below; -

Equivalent ges temperature at exit (Tg + 0,86 8,) 1,000°,

Total " " noow 1,012°C,
St at 1c H] ] " ] 92700'
Coolant temperature 60°C,

Mexarum blade temperature 600°C,
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Static pressure at exit 25 1b./sq. in, gauge
Cooling air pressure 40 1b,/sq. in. gauge
Exat gas veloeity 1,465 £,p.3,
Temperature parameter 0.86

The required solution of the boundary layer equations has already been
obtained (Figure 13),

If {the blade material is of constant permeability and if the pressure
distribuvtion, internal pressure and the injection velocity profile are known,
the relative wall thicknesses can readily be calculated (Faigure 16).

The scaele of this graph 1s dependent upon the permeability of the
blade material,

Wath & permeability of 5 x 10 Cin.2, the required thickness et the
stagnation point 1s approxamstely 0.00h 1n, giving a maximm blade thickness
of 0.077 in, It may be neccssary to increase the wall thackness at the nose
to ease stressing and renufacturang dxfficulties. This msy be achieved by
using a larger blade nose radius, a higher coolant pressure, or by allowing
the nose temperazture to rise above that in the specification,

Alternatively, the wall con be made of a material of variable perme-
ebility using a constant blade wall thickness,

The percentoge cooling air requaired is dependent upon the Reynolds
nurber, the ocalculated faigures being 1.22 per cent at Re = 5 x 105 and
1.71 per cent at Re = 2 x 105,

These figures are higher than would be usual in gas turbine practice
because of the close spacing of the blades.

Thie E§ocess was repeated for a similar type of blade of much greater
thicknesst 12) as it was considered that the first blade, which was designed
for an uncocled turbine, was unsuitable for this methed of cocoling.

The relevant design dato is as follows: -

Design Reynolds number 2 x 10°
Equivalent gas tempersture at exit (Tg + 0.86 &) 1,200°C.
Total " m woo 1,207°C,
Stotic " " n n 1,159°C,
Coolant temperature 60°C,
Maximum blade temperature 600°C,
Static pressure at emt 28.4 1b,/sq. in, gauge
Cooling air pressure 5y 1b,/sq. in, gauge
Temperature parameter 0.555

The corresponding figures are Figures 17, 18 and 19,
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The cooling air quentity reguired to effusion cool the blade 1s
1.12 per cent and the quantity of air to indirectly cool the blade at 400
per cent cooling efficiency xs 1.56 per cent., In Faigure 19, the units of
wall thickness are 0,004 in,, for a materaal of the same permeability as
mentioned previously.

9.0 Comments on practicability of effusion cooling

It con be geen by reference to Figure 16 that it would be dafficult
to manufacture such a blade with thin sections as are requircd at the lead-
ing and trailaing edges,

A great deal could be done in alleviating the design problems in a
high terperature turbine blade, darectly cooled or sweat cooled, by investi-
gation into unorthodox blades of relatively lorge thickness with a view to
their use 1n simlar designs to the above.

In cooling a blade darectly by injecting cooling air through the
blade walls, the heat transferred from the gas to the blade walls 1s only
about 2/3 of that transferred to a bladz at the same terperature but
internally cooled, The saving of coolang ear would probably be greater
than 1/3 because of the difficulty in obtaining sufficreni heat transfer
1n the blade using indirect methods to enable the cooling air to be
efficrently used,

Providing carc is taken ain filtering the cooling nir, trouble due to
overheating of the blade arasing from blocking of the pores of the metal
vath foreign matter should not cause any diffzculty.

410.0 Conclusicons

A process has been outlined for the thermal design of an effusion
cooled gas turbine blade such as would bc employed in a high terperature
gas turbinec,
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APPENDIX I
Syrmbols
Dinmensions

Blade chord ft,
Injection parameter defined in Equation 9,
Appendix II, Dimensionless
Specific heat at constant pressure CHU 1‘0.-‘l oc,
Heat transfer correction for temperature ratio
in a lamnar boundary layer defaned in Equa-
tion 13, Appendaix IV, Dimensionless
Heat transfer correction for temperature ratio
in a turbulent boundary layer defined in Equa~ .
tion 7, main text. Dimensionless

Functyon of m defined by Equation 7, Appendix Jl. Dimensionless
Function of 7 defined by Equation 3, hAppendix IV, Dimensionless

Function of n defined by Equation 3, Appendix IV, Dimensionless

Conatant in Equations 4 and 5, Appendaix II, Dimensionless
Wedge parameter = -2—% Dinmensionless
Nusgsgelt number ot Dimensionless

Dependent variable in Equation 2, Appendix IIX

= P! (n). ft, sec.™
Prandtl number —p:—ip- Dimengionless
Coolant mass flow per unit area per sec, = VP 1b, f‘t."z sec."1

Mainstream mass flow per unit area per sec, at

blade exit =Ugp |i.e. Up at e}u‘t] 1b, £t.72 sec,™

Blade noge radius %,

Reynolds nunber Ucp Dimensionless
B

Daistance from stagnation point to trailing edge

measured along curved surface, or an arbitrary

standard length in the ocase of a wedge. t.
Temperature (absolute), °K.
Velocities parallel to surface in boundary layer, %, sec.

Velocity parallel to surface at edge of boundary
layer, ft, .sec."‘I
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Symbols

Velocity normal to surface in boundary layer.
Velooity normal to surface at wall,
Distance measured along the surface

Distance measured normal to the surface

Dimensions

£t. sec,™!

ft, gsec. ™
4.

b 8

Dimensionlesg temperature boundary layer thick-

nesa defined by Equation 6, Appendix IV,

Heat transfer coefficient

[Includ.ed wedge angle]

s

Constant in Equation 4, Appendax II
Temperature boundary leyer thickness
Dimensionless momentum thickness
Constant in Equation 5, Arpendix I1
Thermal conductivaty

Form parameter defined by Equation 8,
Appendix IV,

Density

Dimensionless temperature in boundary layer
defined in Appendix ITT.

Viascogity

Dimensionless distance perpendicular to sur-
fave defined by Equation 7, Appendax II.

Stream function, see Equation 7, Appendix II.

Dynamic vascoaity

Dimensionless

CHU £t.72 °¢.~1 sec -t

Dimensionless

Dimensionless
bl

Dimensionless

Dimensionless

cHU f‘t:,nit °C.—1 sec.-1

Dimensionless

1b, £t.-5

Dimensionless

1b, ft.”1 ses.™

Dimensionless
pig¥ .2 sec, ~1

i‘t.2 :-wc."'1
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SUFFICES
gas or fluid

blade or body

coolant
blade exat
ox U
value at point x, e.g, Nuy = = Rey = _Eﬂ
a8 Uns
value at point =, e.g, Nug = — Reg = —2 P

the convex blade surface

the concave blade surface
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Solution of the dynamic boundary layer equations

The boundary layer equations for two dimensional incompreszible,
isothermal laminar flow are:

du , _du_ . 3% au . 4
uax+vay vay-z-l-U-— . . . ()

gu av

—ax + """""ay = O e * 0 L ] - - n - (2)

y=0,u=0,v=yV

Y - 00 u=71 .s . . .o s .r (3)
I%{ has been shown that in order that "gimilar" solutions of the

above equations may be obtained, the velocity dastribution over the surface
considered must be of the form

U = K4 [(2~f~e)§]?%7 ce ee e (&)

or, in the special caac where 2y -8 = O
g x
U = Kze & 8 (REfEI‘eme [J-) . e - (5)

If ¥ = 1 in Equation 4, we obtain the velocity distribution az over a gemi-
infinite wedge of included angle fw, Although solutions have been obteined
for other values of Y, the only value of interest in this report is v = 1,
and Branging from 0,1988 to 1.,0000,

Equation 4, re-written with v = 1 gives us

U=K(§)T%'_E e e e e e (6)

Equations 1, 2, may be readily converted anto a non-linesr total
differential equation by changing the varaables from u, v, x, y, to n and
(1), the latter functions being defined by:

1 {7

o= r__-z-'—"_ﬁ. ;; N

¥ =J2-B Jvaf(n) e e e an (7)

Note: u:gﬁ{-v::-ﬂ-
oy dx
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Hence = = £' (n)

and

v.—:ﬁﬁg{f (n) + (B - 1) nf (n)}

and equations 1, 2, resolve to

premer@e(mep {rm -1} L

with boundary conditions

ﬂ=°’f'<n>=o,f(n>=-m§f"§

i
Q
L ]

1
-

oo I (Ti) =

.. (8)

. (9)

This BEquation may be solved by a relaxation process {see Appendix III).
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APPENDIX ITI

Note on the method of computing simlar solutions

of the boundary loyver equations

It has been previously shown that the i1sothermal dynamic boundary
layer equations may be transformed to the non-linear total dafferentisl
equation (see Appendix II),

P11 (m) + £ (m) £ («.»,)=s{f' (m)@ -1} Y (1)

As equations of odd orders are difficult to solve by relaxation pro-
cesses, equation (1) is integrated to give the second order egquation

¥

Ti
p't o+ p! f(O) +f pdn -B p2 -1 = 0 .o . ve (2)
o}

where f' (m), the dependent variable, 1s replaced by p.

The quantity is squared brackets (Equation 2) at any poant 7 is
replaced by the symbol g, to simplafy later formmlae.

We can replace Equation 2, by a finite dafference equat10n&16) the
equation becomng

2 2
pn+ h(1+ Zhgy) + ™ - b{(1 - T hgy) - 2pn -8R (pn” 1) + £ =0 ..(3)

where A, the difference correction = - %f 630 —é%&ho + %% 650 +9%;669.. (%)

and the interval 18 h,

Equation {3) is solved by successive approximations; the left hand
side being called the residual R, end the relaxation process being to
reduce this regidual to zero, The relaxation equation or the equation
connecting the change in residual with the change an p is obtained from
this equation neglecting the effect of a change in p on the difference
corrections.

Thus the two relevant equations are:-

2 2
pn + hi1 + $hg)) + p1 - B(1 ~ T hgy) - 2 pn - BR(pn” ) + A =R .. (5)

bp, + h(4 + ¥ hgy) + Op, - (1 - & hgy) - 20p, - 2°h° php, = R .. (6)

o)
The 1ntegra{J[— pdn 1s evaluated in the later stages of the relaxa-
8]

tion process using central difference integration formula,
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( A a4 A 7&27—
/ _ bp . A ge L M e A 5 2 7
] pdn = B ifo 73 20 * 935 870 " g5ms 0t 3768800 © © (7
o}

'fo, the first sum a1s adjusted so that the integral at m = O is zero, 1,e,
s =-1-6' " 53

O 12 O_-?Eé‘ H *"er .. . ') ) - .. . .a (8)

gn can easily be evaluated knoﬁlng the above integral, as the value of
£(0) = C is known.

Details of methed of solution

T Values of p were guessed at intervals h., The interval h was chosen
asg eirther 0,5 or 1,0, the larger intervals being chosen when the value of n
at which p approached unity was expected to be large,

If other solutions are available with values of B and £{0) near to
that requaired, a close approximation to the values of p may be obtained by
interpolation or extrapolation,

7l
2, The integral [ pdm in the first instance was obtained using Simpson's
o
rulc, The difference method of antegration could not be used at this stage
becouse the difference table was unreliasble,

3.  The residuals (1.e. the left hand side of Equation &) were calculated
at each point, the difference correction being neglected at this stage. One
more figure was kept in the residuals than in the values of p,

L., The residuals calculated in 3 were relaxed using Equabtion 6 to almost
zero neglecting the dependence of the function gn on p,

5. Steps 2, 3 and 4 werc recpeated until the successive values of p,
correct to two decimal places, were very nearly equal,

6. A difference table was made of the function p up to the order at which
the differences ceosed to vary smoothly, It is necessary to estimate the
drfferences at the beginning of the table by extrapolation, The process
adopted was to plot a graph of the first order differences against m and
assume the dafference zero at n1 = 0,25,

Any central differences rcquired werc obtained from the arithmetical
mean of the adjecent forward and backward differences,
™
T The integral f pdy, was integrated using the central dafference formala
SO
(Equations 7, 8). One more figure was kept in the integral than in p,

8. The residuals were again calculated (Equations 3, 4) incorporating as
many terms of the difference correction as necessary,
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9. The residuals egoin relaxed to nearly zero as in 5

10. Steps 6, 7, 8 and 9 were repeated, increasing the number of decimnl
places as the accuracy of the solution increases,

Comments on solutions obtained

For smnll and negative volues of § the process took longer as large
changes in p were necessary to relax a smoll residual, Also the residuals
had to be caleulated to more decimal places thon weould be needed 1f § were
large, With negotive values of f the usual solutions could be obiained up
to a critical value of f{0) but the reversed flow solubtion could not be
obteaned unless the 1nitial estimate of p was made with very high accuracy.

When 8 = 0, the boundary layer thickness increased very rapidly as
£(0) approached -0.8, No solutions werc obtained for £{0) < -C.8 becouse of
the extremely large values of m et which p-1.
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Solubtion of the thermel boundary layer equation

When solving the differential equation controlling the temperature
field for high speed flow it 13 usual to neglect those terms concerning das-
sipation, dassipation being allowed for by considering the effective tempera-
ture of the moving gas to be the static temperature plus 0,86 of its kinetic
temperature at the edge of the boundary layer,

Thus the equation we have fto solve is:

H

2
u?-q"--i- V'-a-rg-:—b'-— % .. e s X e (1)
Ix 8y pGp 3y

with the boundary condaitions

¥y =0, %

It

T

T

Y- o0 t g

It

Substaituting the variables m and f{n) from Appendix IT end replacing

T - Ty

_—
Tg - J‘b

second degree, first order equation which can be readily solved by separating

T by €, 8 being defined as we transform Equation {1) into 2 simple

the variables and integrating.

Bquation (1) becomes

2
g._g'l'.l’?r f(ﬂ)@ =0 .sn e e Y vs v e (2)
dn dn

with the boundary condibions

1]
(@]

T]=O,e

it
Y

TN es ©

And the solution for o is

8 = _Jl(z%; J{(n) =f1 & #(n) dan ; F(n) = Pr JF £(m) an

J{co

ce e we (3)
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™

Nuy 1 1
We can alsc find that =
JRex Jz - B J(e)

R e

It 13 important to note that the above solution amplies that Ty and Tg are

constant, If one or both of these temperatures vary, important changes in
the temperaturc profile and heat transfer may occur,

We define the displacerent thickness of the temperature boundary

layers os:
(o]
st% = (1 -0) ay
Jo
50
= 2 - P }lﬁﬁ‘/ (1 -08) an  +. . (5)
0
oo
or, on wrating Zt® for (1 -~ 8) an
0
, PES
(¥ = -JZ - R J—&- VAL
where Zt* 1s a function of G, # and Pr . . ‘e . .. (6)

As the origin of the boundary layer i1s indetermnate, 1t 1s desir-
able to elimnate x from the above expression, Because the flow 1s that
over a sem-infinitte wedge we have

8
:-g" = K /—]5)2 k
Ug \s
Dafferentiating we obtain L= 2 U/U, e s . ‘e (7)
s 2-p 4(u/U)
a (¥g)

Squaring Equation (6) and eliminating x using (7)

2
ﬁzf“'z = QﬁJElM:m“,. .. (8)
8 j a (¥/s)

where At™ 18 a function of C, 8 and Pr only,.
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Differentiatang (6) with respect to x, Zt* and [} being constent we
obtain

Substituting for 5t from (6) the above equation becomes

& (66%/y) freg . (4 - p) %
a (¥ U/U, 6t /s [Reg

In order that we may solve the boundary layer equations we still
require a connection between C and Zt* or , The expression for a constant
surface terperature 1s obtained as follows:-

The heat balance eguation for the surface cooling is
7500 (Tp - o) = & (T - Ty)

Substituting for o from (4) we obtain the relationship

Nu 1 Ty - T
X - b GPJ:‘C [N ) LN ) 1]

J(e0) 'I'g - Ty

. (10)

Note that the left hand side is a functaon of C, # and Pr,

The connection between C, Zt%*, 8t™ and the function 2 fRe for isothermal

flow is obtained by elimunating x between the two equations.
VU
==z *53 N2 - p

and 5t% = fo o JHX z¢*

U

0

: v /Uos c zt* (11)
ivang —_——— TR, = Y s .y
U v ot s fﬁes
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By a similar means we can show that:-

Nug zt" 1

JFes 5674 JRes 36

Ty =Tg .. V
=_—_—P -~ e . e 2
Tg T T, r 5 fﬁes (12)

If the flow 18 non-isothermal, modafications to the above equations
are necessary,

The heat balance equation becomes:

Vob Cpp,e (T, - T,) =0 (Tg - 7))

Assuming that both the heat transfer coefficient and cooling air mass
flow are reduced in the same proportion by the temperature ratio, this
equation may be resolved into a simlar form to equation 10, 1,e.

AT R [T S R |

The values of % and %.IR& may be obtained by multiplying the iso-
e

T
thermal value gaven by Equations (11) and (12) by a function of TB’ tenta-

tively given by the equation: :
£ 13‘2 = 0.7 + 0.3 %—‘; S € &)
1.2. Ejﬂ:sz-f I ——C—Zi— . AR & K E:Y
Q Tg/ &t/4 JEE
Nu . Ty, 7% ¥ _ (Tb"’ Tc) Cob,c . EJRE; .. (12a)

rE

1) 887, JFes Ie) | (T, - T) Cp | Q
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Note on porosity, permeability and pressure drop in sintered materials

A porous materisl has two characteristics, the porosity and the perme-
ability, the former being the ratio

Specific gravity of netal - apparent specific gravity .. (1
Specific gravaity of metal

and the latter being defined by

a
Mass :E‘low/unit area = permeebility g2 . .o o (2)
B odal

and permeability has the unats ft.z. The permeability is constant only af

the flow is lammnar in the pores. As the temperature variation through the
blade thickness is small the flow through the metsl may be assumed to be
isothermal, Hence pressure drop

_ Mass flow/unit area x 1 x u meon
B permeability x ¢ mesn

e ee e (3)
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