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' SUMMARY

In order to estimate the destabilising effect of the waves likely
to be encountersed on wing surfaces which will be used with boundary layer
suction, calculations have been made of the effect of small sinusoidal
surface waves on the stability of the asymptotic suction prof‘lle.v Curves
are presented of the percentage increases in local suction flow —=

necegsary to maintain the stability of the boundary layer at the s
level as on a completely flat surface, for various values of the variebles

v
T% s height:wavelength ratio % and Reynolds number based on wavelength,

%?. These should provide guantitative estimates for more general cases.
It 183 found, as might have been expected, that the lower ;? or the
larger 2 , the larger the necessary percentage increase in ;? s

especlaiEy for low g? « 10 per cent 15 a typical magnitude for the
necegsary increase at a high Reynolds number,
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LIST OF SYMBOLS

U Free stream velocity at infainity

U‘l Velocity at the edge of the boundary layer
h Amplitude of the waves on the surface

L Wave-length of the waves on the surface

x Distance measured along surface

¥y Distance measured normal to surface

u Velocity in x-direction in the boundary layer
v Velocity in y-direction in the boundary layer
&%  Displacement thickness of the boundary layer

) Momentum thickness of the boundary layer

Ge
BH=
v Suetion velocity

v Swtion velocity for aerodynamically flat surface

ut, vt, x', y', &, o', U', dimensionless variables (See equation 3
Appendix T)

a Amplitude of fluctuations produced in the velocity at the edge of
o
the boundary layer

Bys 85y By ene Coefficients in the form taken for the velocity profile

ix

A =ace (n=0,1,2,....)
A _..v._S AL,
T U A 2my

_ 2-1/3 o
o =M , T_1+0_
Y = oy
For I, M, t and x,, see (ii) in Appendix I

UL ub*
R = Rgo =7y

R&"

5

B = T_T_
Rﬁ* erit

The suffix crit to a Reynolds number means the maximum Reynolds
number below which all 4isturbances are damped.
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1 Introduction

The minimunr suction quantities required to preserve laminar flow
in the boundary layer on an acrofoil are calculated from stability theory
in which 1t is assumed that the swface is aerodynamically clean. However
it has not yet been possible to cbtain a porous surface entirely satisfying
this condition, and it seems probable that under production and flight
conditions the presence of shallow longitudinal waves and of small
excrescences will be unavoidable. Such surface imperfections are nown
to have a destabilising effect on vhe boundary layer, and it is important
to have some estimate of the penalty in increased suction which is likely
to be assoclated with them.

The effect of protuberances is discussed in a paper presented to
the Boundary Layer Control Committee by P.R. Osen and Mass Klanfer1, and
the present paper contains calculations of the effect of surface waviness.
To avoid mathematical complexity we consider the hypothetical case of

flow over a sinuscidal surface of height y = h cos 2%5 s Wwith suction

conditions asymptotic in the sense that the boundary layer thickness and
shape is the same at corresponding points in successive waves. If the
height : wavelength ratio % were large enough such conditions would be

impossible, but for practical values of % s of the order of 10-3, a

linearised solution may be obtained by excluding squares of % . The

vrocess is thus justifiable a posteriori, The method and results are
outlined in the maan part of the paper, the mathematical details being
given in the Appendices.

A possible objection to the applicability of the results is that
asymptotiz conditions are not to be expected on a wing because less
suction is required for stability than iz necessary to produce them, and
because the boundary layer increases in thickness under the influence of
ressure gradients, However the calculations have been designed to show
the percentage increase in suction necessary when waves are present to
preserve the stability of the worst profale which occurs at the same
level as for an aerodynamically flabt surface; and it may be conjectured
that this percentage is relatively independent of the basic profile shape.
In general different relative increases in suction will be necessary at
different chordwise points, since the increase required depends on the
amount already used, which follows a definite chordwise distribution
(increasing considerably when the adverse pressure gradient is reached).

2 Stability theory for parallel flows

The mathematical theory of étability as developed by L:'Ln2 and others
relates to parallel flows with non-dimensional velocity profiles %r(y), and

considers the variation in the x-direction of the energy of disturbances
with wave numbers a [= 27/wavelength], For each profile there is a neutral
stability curve in the («, be) plane. Disturbances whose coordinates lie
within the curve will be amplified and lead eventually to transition; all
others will be damped, The cwrve is typically of the shape shown in Fig.1.
The lower branch tends asymptotically to & = O as Rgw = coj the upper may
tend to O or to a finite value, depending on the profile shape.

) The max:imum Reynolds number below which all disturbances are damped
is known as (Rgu)opiticals & Measure of the instability of a particular

rofile shape at a given Reynolds number is provided by the area included
between its neutral stability curve and the ordinate in question - e.g. by
the shaded area in the diagram.



Parallel flow 1s of course never achieved with a solid boundary,
but 1t 1s customary to calculate the neutral stabilaty curve of a profile
as the curve 1t would have in parallel flow, since the rate of growth or
decay of a disturbance 1s considerably larger than that of the boundary
layer. Saimilarly the influences of pressure gradients and suction on
stab1lity are calculated purely 1n terms of their effect on profile shape.

Suction guantities for maintaining laminer flow are calculated from
the condition that Ry, should be not greater than (RS")crlt at any
point. This condition s sufficient, but by no means necessary, since
even 1f 1t 18 not fulfalled no disturbances in the wave number range
capable of amplification may be present in the boundary layer. A
convenient measure of the extent to which the requirement is met 1s

Rye
= } 5 ]
provided by the rafao m— B (say). The present calculations have

&/ er v
beén designed to find out how much the local suction flow _ﬁi must be

increased when the surface contains waves of a given height and wavelength,
an order to maintain B at the same value (£ 1) as 1t would have if there
were no waves present. These results should be quantitatively comparable
to those which would be obtained 1f 1t were possible to deal with flow
under more general cond:rtions than the asymptotie.

3 Outlaine of calculations

The effect of waves in the surface 1s to produce a periodic variatim
of the same wavelength in the velocity at tne edge of the boundary layer
and in the velocity profile shape. In general there i1s found to be a
phase shaft in the profile shape, different at dafferent distances from
the wall. The basic velocity profile is the asympiotic profile

w=TU (1 _e_vsy/v) (1)
or, writing y' for v_s_jf and u' for % , the non-dimensional profile
1 -y'

The effect of waves is to alter the profile shape 1n a way which may be
represented by the equation

2max/L, (2)

T, |
u' =1 -e7 +£—3RF(y')e

Here the {complex) function F(y) represents a perturbation to the velocity
profile, which vanishes at y = 0, » . Using the equations of motion and
continuity, and the boundary layer momentum equation, F(y) may be calculated
in the form

- a an ye
Feel (1+odtys 24 ...) (3)
aq a, 2!
where Y = oy', ¢ being an arbatrary constant chosen to give rapid
convergence. The coefficients in the resulting series depend only on
ths non~dimensicnal variable

Vg UL
T . v =\ (say) (4)
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The analysis 1s carried out in detall in Appendix I. It 1s shown there
that the magnitude of the perturbation function F i1ncreases as M
decreases, sc that an general the shorter the wavelength or the lower
the suction velocity for a {ixed E—l- s bthe more a wave on the surface

dasturbs the profile shape. +

The displacement and momentun thicknesses &* and © and the

e .
form parameter H = & may be calculated from the velocity profile (2),

and are periodic about the mean valucs 1, # and 2 respectavely. In
Fi1g.2 examples are shown of the vcilocity profiles at different points on
8 wavelength, together wrth the varzation of H,9 and the (non-dimensional)
veloclty U, at the edge of the boundary layel, for the values A\ = 1,

= 0.125 and A = 10'3/2 0.03162. [The walwe of by = 2£h has been
chosen i1n each case to give an appreciable variation in profile shape;
for A =1 this reguires a,. = 0.1, which 1s much larger than the
practical values antic:.pated.]
The profile with lowest (Rﬁ*)crlt in a wavelength 1s that for
which H 1s greatest. (Rﬁ’* )Crlt

calculated as u function of A and £, using the fact that (Ré}*)cr
L

correspondang to this profile has been

for a_range of profile shapes investigated by several authors has been
found3 to be a single function of H., The applicability of tnis result
for a profile of the present family has been tested and found satisfactory.
[Appendix IT].

For the profiles considercd Ré,k has fo the first oxder its wvalue

for the asymptoiic profile, namely {}_I__ . Thus
8

8% u (
= 5
(Rg#)or Vs (Rgw)opat )

R

B:

For the asymptotic profile (RS*) —_— P 1d+ Thus the condition of

keeping f the same when there are waves in the surface of length L and
height h as when the surface 1s devoid of waves and the suction velocity
is Vg, » MAY be written

v v

S = i)

£ Reu) . = 4 % 1ot = (6)
(Rg*)cr 1s a function of & and A , and thus, for fixed & ana -—[LL ' !

L L
of -—_L-Isi only, Thus for fixed % and U;[‘ the value of YG'_.S. corresponding
to a given 2 was found graphically from equation (6). The regults,

in the form of curves of -2 against -ﬁﬂ, for four values of == in
8p

the range 6 x 109 - j06, are shown in Fig.3.
v Va’ Vg
In the curves shown —— s as —=< >0, The value of -— 18
vso U vso
however rather meaningless under these conditions; vy ltself still has
a amall finite value. If vy werc plotted against v, , the result would

be a series of lines of slope approximately 1, with J.n%eroepts on the v

- 6 -



ax1s determined by %-, and tending to 1 as % tends to 0. The curves
for %% = 3 x 10° grawn 1n this way are shown Fig.3(e).

L Nuwerical example

Curvature gauge readings obtained by D. Johnson on the wing of a
production Vampire, and by Dr. Lackmanr* on the wind tunnel model of the
sleeve for the Handley Page experiments suggest that vhe irreducible

minimm of 2 1s approximately 102, The surfaces in both cases are by
no means pure sinuscidal, although such a shape might well be produced
by stringers at regular chordwise intervals. A harmonic analysis of the
surface shape would strictly be necessary to find the wavelengths and
their heights in the form assumed in the analysis.

As an example, consigder an axrcraft cruising at 350 knots at
40 000 feet, and a part of the wing where the local suction {low

E 0.0014. The Reynolds number per inch is 105 For a wave 3 inches
long and 5/100(} inch high U—} =3 X 105, %- 10 3, and the required

v,
1ncrease ?_s_ 18 1.07, 1.e. 7% more suction is required to maintain

Sg

the same stability at the worst point in the profile as an the absence
of waves. With this increase, the profile wall actually be more steble
than before at all other points. On the other hand, for a wave 10 inches

long and 1/400 1nch high, %" = 10° while % 1s st111 1077, but less than

1% 1increase in suction 1s necessary. Thus the longer the wave, the
smaller the necessary increase.

v
Conversely if -TEQ- 1s smaller, a larger percentage increase 1s
needed for waves of the same length and heaght. Thus with the above data,

v .
suppose _g_o_ = 0.0007. Mor waves 3 inches long -‘%S-— = 1.15, and for waves
(o]
10 inches long :—s = 1.07.
So

5 Discussion ,

The results should provide an upper lamit for tie percentage
increase 1n suction necessary to preserve stability over a wavy swrface.
In fact with the calculated incresse in suction the profile will actually
by considersbly more stable than for the flat surface at all points in a
wavelength except the most unfavourable. A typical value for the increase
would be of the order of 10 per cent. However the 1limit depends on the
particular level of stability chosen in calculating the suction necessary
without surface waves, as well as on the variables already mentioned. It
might be expected that rather smaller increases in suction than this limit
would be sufficiert to counteract the effect of waves, since regions of
rising and falling pressure alternate along the surface. When the pressure
is falling & disturbance will be damped considerably more than at the most
"unfavoursble" point in a wavelength, for which the calculations have been
made. Afttention might be drawn to Pretsch's? interesting explanation, for
boundary layers without suction, of the fact that increase of Reynolds
number can lead to transition suddenly jumping forward a whole wave length.
Disturbances in the wavelength ahcad of that in which transition tock place
at the lower Reynolds number, which were insufficiently amplafied for
transation in the adverse gradient, and subsequently damped in the favour-
able gradient, are at a higher Rcynolds nunber sufficiently emplified in
the adverse gradient. This could alsc apply to flow with insufficient
suotion to preserve a stable profile at all points in a wavelength.

-7 -



The fact that waves on the surface, by disturbing the velocity
profile in a periodic marmer, themselves provide a potential instability,
has not been considered in these calcuwlations, since 1t is asgumed that
sufficient suction will be applied to damp out all oscillations whatever
their source, Thus the results obtained are fundamentally different from
those of Fage®, which express the maximum permissible wave height in
terms of the length of laminar flow before transition, and Reynolds number,
on an aerofoil without suction. In Fags's case the waves themselves are
responsible for the instabllity.

v

The behaviour of the boundary layer in the limit when ij’i =0 is

not given by these calculations, since asymptotic conditions cammot then
ocewr. In fact Quick and Schroder! have shown that separation will occur
fairly rapidly for waves of sufficient "size" % .

In contrast to the effect of surface protuberances1, which becomes
more serious as suction is increased, it i1z seen that the destabilising
effect of surface waves 1s allceviated by increased suction. FPresumably
for a suface not completely clean aerodynamically, and containing waves,
a compromise must be found betwsen the 0 requirements. There 1s also
the possibality of a resonance effect between the periodicity of the
profile and of the swface itself, for mave numbers near the critical.
Seme calculations of the suction quantitics for which this might occur are
given in Appendix IIT,
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AFPENDIX I

Calculation of Velocity Profiles on a
Wavy Surface with Asymptotic Suction

Consider the boundary layer flow over a wavy surface, with free
stream velocity U at infimity and Uy at the edge of the boundary

layer. The height of the surface 1s given by ¥y = h cos 2—?) , Where

% is small and its square negligible.

The equations of motion and of momentum are respectively

du 2
Qv Qu _ —1 QU
uax+vay U4 dx+vay2 s (1)
av Ju v
de, . (H+2) o 1 - ¥ (-—) ) (2)
U & g \ey, Uy
&
where H = 5
If non-dimensional varisbles defined by
‘ _u P v 1 2T ll_f,ﬁz !_VSB
ur_U,v_vs,x—L,y—v,B-———v
L * U
w1 _ Vgl _ 1
6 - v 3 u1' - U (5)
are introduced, the equations may be written
2
¢ du' Vy UL ., du' _ .. oW VY UL a4 (&)
u' — ==y =y -+ | =] ==
9x' U 2%y dy' dx y/ 2rv ay'e
1 2
ae' gt duy' Vs) UL [ (au‘> i
—_— H+2) — = { — e | — -
ax' (H+ )u1' dxq 41 2Rv \J.1'2 3y'/ y'=0 u1| (5)

Dropping the primes, end introducing the non-dimensional paremeter

¥y /UL
N by (6)



the equations are

2
2u Gui a2 | _ [ ou
Wax T WM g TN |:a2 V oy @)
¥
du
48 4 (He2) & L= a2 [——1 (Q‘i) - —1-—] (8)
a
ax u, 4x u12 ayo 1
With boundary conditions u = %}% =0, v=-1, at y = 0, waves on

the surface will produce a fluctuation in the velocity at the edge of
the boundary layer sco that

u1=1+aoeix=1+Ao,say ()

(We work throughout with complex quantities, of which only the real
parts are relevant).

dU.1
-CTX— = :Laoelx = iAO 3 (10)
where a, 1s of the order of % . A reasonable form for the velocity

profile 1s then

~

_ 2
u=1-e7 & g“oelx-e"Y (8y + aqY + a2'§_3+ ees) 8%
-y ~Y Y2
=1 - e + Ay ~ e (AO+A1Y+A2-§-§-+ ---), (11)

]

where Y = cy and ¢ 23 some sultably chesen constant. A, = anelx and

da
-é--ll = . Squares and products of the A 's will be assumed negligible.
X

This form may be made to satisfy any number of boundary conditions at
v = O,(l.e. at ¥ = 0}, cbtained by differentiating the equation of motion,
and 1t automatically satisfies the boundary layer equations at the outer
edge. Thus by findaing all the coefficients of the infimite series, an

X
exact solution would be given, since the functions 1_1_1'1_ e~ form a complete

set from O tow.

Practical values of A may be amall comparsed with 1, and wrth the

obvious cholce of o = 1, 1t 1s found that the quantities Z‘-—n- increase as
(o}

7\.n/5 ; 80 that a very large number of boundary conditicns must be used
to secure convergence of the series in brackets. Apart from the numerical
diff'iculties thus raised, boundary conditions obtained by repeated
differentiation with respect to y become increasingly inaccurate because
of the anherent approximation in the boundary layer egquation. It as,
therefore, desirable to use as few terms as possible, and this may best

- 10 -



be achleved by equating o to a negative power of A . The relation

-1
=3 (12)
has been chosen.
The calculation now proceeds as follows:-

(1) The quantity HT'-Z- 1s calculated as a function of A by means

o)
of the momentum equation and the equation of motion.
(12) 4g 18 related to —E by considering the potential flow past a wavy

wall.

(111) By mesns of the relation between H and (Rgs) found by Lan,

] h Cr‘fﬁ;_.' v
(RS*)crlt 15 caleulated for a number of values of £, Uh and .U_S as
described in the main part of the report, (Section 3). Y

(1) Coefficients 1n velocity profile

For tre profile (11),

eV 4 oY [8g + 4T + ...]

1l

U.1—u

Tohyt T A+ Ay o+ o] (13)

1

1
o= [ (- o
(@]

0= f“(‘H ~u) dy = f {e-y (1-e7) - 2™ g agre..]
u
1
o]

c

r et [y + AqY + ...ﬂdy )

J

(excluding squares and products of the A's),

1 1 It
1.e. 9:-2—+-G:Z(1-21: ) An o, (14)
n=0
_.O- . nd
where T'-'1+0.! a
H__S_"‘__ 2 (1 n+1 )
=5 =2-2-% | - 4T ) Ay (15)
n=0

- 11 =



By differentiating (11) and putting y =Y = 0 , we obtain

(g_:%;) _ (_1)P+1E + oP i (-1)F (§> '[Lr] . (16)
r=0

Differentiating the equation of motion (7) with respect to y
twice we obtain, on putting y = O and inserting the boundary conditions,

4 3
and (a_u> 38_ (9&) - ¥ /5_:_1> . 531. (%‘_1.) +(a—‘—;> ] (18)
3 fy=g 9% N A=g Ny g 3% VAo \0y?/y=0

If the series expansion in {11) 1s terminated after the tem n Yh,
equations (7), (8), (17) and (18) form four linear equations sufficient
to determine An: A4 by A3 P4 .

Making use of (16), together with the fact that

i(%;">0=-§?c [+ oa, - &) =10 (4 - 44) ,

the momentum equation, the equations of motion and the two remaining
equations become respectively

% i (1 - 21:“”)An + 2iA, = 2 [o{ay - &4) = 4,] (19)

=0

- an, =% [o(ho - Ag) - © (B, - 24, + )] (20)

0 = Bo2(h, - 28+ Ay) =07 (Ay = 34, + 34, = 45)] (21)

i (AO - A1) ?\_2[0'5(AO— 5.[3.1 + 3A2‘ A

i}

3)
- oM(Ay = hay+ 6hy =4+ A )+ 20(h, - 4y)]

22
- 12 ~ ( )



We now solve these equations approximately for small values of A .
The curve of B against A for the solubtion so obtained will later be
Joined on to the value fer N = ¢ = 1, for which the equations are
easily solved. Putting 2 = o0, (12), and excluding o4 and higher
powers in comparison with 1, the c¢quations become

[2"';17 (1'2'”)]&0*:7- (1‘212)&11*';;]: (1-213)a2+-}_ (1~ 2¢l+)a3+%_(1-21¢5)a4=0
- 14 + --g-+.-.1-. a J__ a, =0
° 0""4‘ 0'5 1 0J+ 2

(23)

With the same degree of approximation, the solution of these equations s

N AU R TR P 6t + 87)

)
[+2

a2 (10207 - 6t o 120) + A (6e 2 s F (1~ 20) + 2
ol & 9 o

= a '1(1-2¢5)+—1—(‘10+2'r2-617)+-16¢5) {21)

2" o OJ_;.

- .3 - 5 _ A _ 5 1 2 5_ 5

a3.6(1 27”) cr2(1 21:)+0.4(61: + 607 - 12¢7)

=, L 20 ¢ 6%+ (1 2+ L (8122 w60 124
o o -

o3

Substituting these values 1into (15), we obtain for small A,

s

:*fo‘?(-"rs:—_"_{iﬁlf + 415 )+ <T2("-'lP = "5)

—- AL

F 1 Lo

(25)
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For » =1 , the equations (19) to (22) become particularly sumple,
with the solution

8 1 C49+1) =2y (32 +701) =a, {31 +211)=9.3 : (30-281) = 8yt (- 40+ 42)
« o (26)

The valus of ‘%—;—2— s for this case and that for N = 0.4 are plotted

in Fig.5, together with the curve obtained from (25) for smeller values
of M. ’

The variation of H along the surface 18 given by Hs= 2+‘H-—2|e
say, where & 1s some phase angle. The stability is least for the prefile
with greatest H , so that in calculating the maximum Reynolds nuamber for
staebility at all points 1n a wave-length, 1t 1s sufficient to use the
curve of Fig.6 with

1{x+€) ,

H=2+ |[H-2] .

(ii) Velocity fluctuation at infinity

In this section 1t 1s more convenient to work with dimensional
quantities.

The flow over the wavy surface with boundary layer present may be
represented by the potential flow, with uniform velocity at wnfinity over
a surface of height

y=m+ 8,

where mn =
6* = ;'— i1 - AO + 'é'. (Ao + A.1 + A2 + A3 + All")} fI‘OHl (13)
= =— {1+ AA}, say, where A= 0(1),

L
== {1+ aoﬁez‘mx/

1. (27)

The flow 13 calculated by representing the swface by & source
distribution of magnitude

Al

3 U 251 27wix/L y
il I O ER L W) (28)

1

The velocity in the x direction at a point (x4, y_]) 1s then

-] 2 - L
Uom [ (¥4 - x)e T/ L
* L y12+ (x1 - x)T

-0

[h+ v——‘; agh] (29)

- -



Writing t = x - Xy this may be written

S S N a4 VI
_——I—J—E. h+;—aOA‘i —""T‘—-"é""- (30)
s y_,l + %
To evaluate the integral consider
co l}-l-t
e \
1= [ % (31)
¥q + 1t

-0

This may be integrated round a semi-circle of large radius R 1n
the upper half plane. The contribution from the curved part is o(%),
The only pole inside the semi-carcle 1s at t = iy,, where the residue

1s e_“y1/21Y1

b -
I=— e M (32)
Y
gL: - ﬂe*ple
au
" 1telptdt (33)
' t2 - 2
Thus, 3 2mit/1
‘( W A LTME .‘-.‘1\ ] M: e—27ty1/L (34)
i t2 2 .
-t +y1 -

and the velocity due to the scurce distribution i1s

kY

_ onU v 2max/L  -2ny,/L
U.1 -UHT{h-‘- —saoﬁ}e 1 (55)
Now let us choose ‘yT .8¢ that :
T << 1
, (36)
vSy'] > 5
v

-15 -



From Fig.6, for this valwe of H (R5*)cr1t = 4.1 x 10* Lin's equation
has two roots,

It

Yo, = 0.084 and ycz 0.293

1

For these

B, = 0.6296 , u

o 0.2071

i

€2

The former of these corresponds to (RB*)crlt = 3.26 x 107, the latter

to (R6*)crit = 1.36 x 10h. It seems reagonsble to treat the lower of
there as the relevant value On thas basis (Ré*)crlt 1s estimated to

within 20% of 1ts correct value and log10 (RB*)crlt ., & gquantity which

means more, to within 2%%. Higher accuracy in stability theory would be
quite forturtous.

The slope and curvature parameters

_61(@}1)
U \ady =0 ’

2 s2
-5
Ay =0

for the profile are respectively 0.512, -0.674. The value 0.674 for -m
1s much larger than those of profiles investigated by other authors, and
1t mught at farst seem surprising that such good agreement with the

[(RS*)cr s H] curve 18 acheved in thns case. However the profile

&
1

i1

curvature could be arbitrarily changed in the neighbourhood of the
origin gquite suffaiciently to bring m info the range of values usually
considered, with nggligible changes in the value of H , and without
affecting the outer root of Lin's equation at all.

- 18 -~



AFFENDTX TIY

Surface Waves as a Source of Disturbance

As is pointed out in section 5, regular waves on the surface, or
indeed any discontinuities with which a wavelength can be associated,
vrovide disturbances which could be amplified under critical condations.
The suction quantities calculated ia the report are large enough to
prevent these condltlons ever arising, 1.e, Rge < (RB*) rit always, but

it is interesting 'to compare the length of the surface waves discussed
with that of the craitical disturbance.

For the asymptotic profile, exact computation is stated in
Reference 3, Figure 21, to give the critical wave number

[rd 2= .
o 0.17
Here
« _ 2zd
)
ar
and
v
B+ = 7
8 .
Thus
o 2my 1
er Vs 17

And if the surface wave 1s of critical wavelength, ebr =L,

v
8 UL
T = <T>

Thus for”the ﬁalues of EE vlotted in Figure 3, thﬁ surface will provide a

eritical dlsturbance for the following values of Eo,

2 x 10k 6 x 103

12.3 61.7

The calculatlons have not taken into account the p0531b111ty of a resoname
between profile- and swface-disturbance at this wavelength, but it now
seems ressible that some such effect may play a part in the transition
caused by surface excrescences.
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