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Summayy

Recently published mc‘l:hods1 of deducing practical valucs of
the varaous control characteristics from a knowledge of their
theoretical values increasos the luportance of the thoory of two-
dimensional con Erols in an inviscid compressible fluid. The classicel
work of Glauert® neglects compressibilaty and aorofoil thicknoss, and
while the more recent work of Goldstoin and Preston® includes thickness
effects it ignores caupressibility. Furthoxmore this lattor method
achioves accuracy for thick aercfoils at the cost of a complicated
method of calculation.

This paper presents a thoory of two-dimensional controls in
compressiblo flow which is olmost as simple to apply as Glauert's theory
and 18 asg accurate as the method of Ref. 3. An example giveon by
Goldstean and Preston is treatcd by the author's method to illustrate
this point.

1. Introduction

Definition of Syiubols

(x,7) the physical plane of zero incidence, with an Argand planc

'z :x-i-ly,l:..-'\r:‘i

(n,s) distances neasured normal to and along & strcamline
respectively
(a,0) volocity vector in polar co-ordinates
a abscluteo angle of incidence, i.e., measured fron the no-1lif't
position
n flap deflection, measured positively for a downword movasent
of the flap
Uy as suffixes to denote values at absolute mo:.dences of o

and flap: deflectlons of .n -

00 as a sui‘i}:;-gg ;to donote valucs at an infimite distance fram
the aerofoil .

U = Qo

Ay ratio of specafic heats , p SPo/
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local and stagnation densities resgpectively

plane of velocily equipotentials (¢ = constant) and

streamlines (P = oconstant) for zero circulation (o = 0),
vhere
p
dp = qds , d¢ = --gdn ves (1)
Po
locael Mach number
1
= (1 -u°)°
is defined by the equation
7z Po Po
m = (1 - Ma)z - = ﬂ - LR (2>
P p
is def'ined by the equation
q P U q
r:/ *(m+m) --d{log- )= r|- vos (3)
q.—..U PO q U
is def'ined by the equation
W o= ¢+im P ‘ eon (4)

the physical plane for an absolute incidence of a, i.e.,
ke
f = 8% o (5)
elliptioco-ordinates defined by
w = -2a coshZ = -2a cosh (8 + iY); ven (6)

the aerofoil surface 1s ¢ = 0, -2a ¢ ¢ € 2a, or & = O,
when

$ = =28 cos Yy ees (7)

aerofoil chord when n = O

the contour of the flap when undeflected meets the upper and
lower surfaces of the aerofoil at x = (1 - E)c, thus Eo
is the "flap chord"

distance of hinge from leading edge of the aerofoil
(E =+ EY) a'/
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incidence of the front part of the aerofoil measured from
the n = 0 chord line

no-lift angles for n = O and p # O respectively,
thus
o = a'+ay,n = 0 e (8)
and a = a'+al,n £ 0 ver (9)

pressure coefficient
1ift coefficient
manent coefficient

hinge moment ococefficient, such that the hinge moment is

1§ Pw IU’EE::;C2 CH

/3y, “ace\
B = (CL)a'=n=0 » 8y % E;' » B3 = %'i) ’
¢ 8'=n=0 n a'=n=0
whence to first order in o' and 7
C, = 8p+a, a' +2a, 7 e a{10)
/3G, aC,
h = - k;-- » IT.O = - -é-- ’
CL GL :n:o n CL:U:O
i.e,, to first order
Cp = -hC -ngn vod(11)
aCy {/BCH
bO = (GH)CL'=11=O ’ b1 = "a;‘— s bQ - \-a--
a'=n=6 n ﬁ':n:O
i.e., to first order
Cy = b, +ba' +b @ . o(12)
o0y
b = - —-—— .
n CLG:O

With/
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With the aid of (10) equation (12) can be wratven

t a b ba =-2ahb
1 O 1 1 2 172
% = bO - saveiss 4 e CL - | w——————————— M,

a &1 a

so that
P = emeeeeeaca- - . san (1 3)

This papor gives methods of calculating the quantities
8oy My 2y M _, hy by by, by and b defined above, in subsonic two-
dinensional flow. Corpressibility effecta on these parancters are
calculated bty a theory wore acourate than linear perturbation thecry,
but not valid above the critical Mach number. The theory is
applicable to aerofoils of noderate thickness (say up to 20, thick)
and for small values of n .

An exact method for the calculation of ag, 8, and h for
agrofoils of any thackness in incompressible flow is given in Appendix I.
The exact theory of the hinged flat plate in incompressible flow but
without restrictions on the value of n 1is given in Appendix IV.

A sumeary of formulae is given in Section L.

The independent voriables of the theory to be given in the
next section are & and y defined by equations (4) and (6), while the
dependent variables are r (equation(3)) and 6 . The quantity r
can be readily cvaluated as 2 function of q/U . It has been shown
(see Ref. 5) that when the approximation

m = mm ooo('”.}-)
is admissable, r and © sare conjgugeto harmonic functions in the w
plane, (The theory is outlined in appendix V for the reader's
convenience.) quation (14) and ean equation similar to (3) were first
used by von KSrén® to show that ¢ and ¢ are approximetely harmonic
functions in the (r,6) planc. Although the theory given below is not
really valid when M, is greater than that critical value corresponding
to the first appearanco of somic speod locally (c.f. equation (2)), it
can be stall applied with sonme confidence to calculate the subsonac
field when anall supersonic patches cxist. This point is important in
the theory of controls as a high but localized velocity peak doss occur
at the flap hinge on the upper surface when n 18 positive.

The complex number defaned by
f = r+i6 es+{15)
is approximately an analytic function of w {r and 6 being conjugate
harmonic functions), but if tho flow is incampressible, r = log(U/q),
w = ¢+ iy, and so
U Udz

fr = lﬂg - eie = log - s “es (1 6)
q aw

whence/
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whenoe it follows that f is exactly an analytic function of w, Thus
the theory of Section 2 (but not of Section 3) will be exaot in
incompressible flow.

2. Basio Mathematioal Theory

The theory of this section is quite general and applies to
aerofoils with or without deflscted f'laps.

If & and 6 are measured from the direction of flow at
jnfinity, .., if 0 o 84, = O, it follows from equations (3) amd
(15) that e

foﬂ - fa'x = 0 . .‘I(17)

Now f is an analytic function of w and therefore (see eguatior (6))
it is an analytic function of &. In fact, as shown in Ref. 4%

1

£(g) = - - fﬂ log sinh 3(iy® - Z) de(y*), «s(18)
™

b=

where 6(y®) 4s the value of & on the aerofoil surface. TRguation (18)
is the no-lift solution. If-the aerofoil is placed at o small absolute
angle of incidence ., then on the Joukowski Hypothesis, as in Ref. 5,

sanh #(Z + 2ia)
fa(é) = £(Z) - ia - log =---- el s .eee(19)

in which it is assumed that the trailing edge is at y = =, and the
stream direction is from x = -oo{see Fig, 1), The form of equation (19)
shotrs that the effect of incidence on the front stegnation point is to
displace it from ¥y = 0 to y = «2a.

Important auxiliary equations can be deduced by considering the
form f, takes near infinity. From equations (18) and (19) it follows
that

1 R . i s .
£ o= +- f (24 + log 2) ao(y™) - -- / y* a8 (y™)
* sz'qt n sz-’}t
. 1 p= avE
+ e+é 2ie™® sin a 4 - [ o aa (y™)
™ d_ K
Y =%
1 T A 3
]
+ e+ & ie+aim gin 20 + --./ e-aly da(y“) + O(e+a;).
er ¥

*see also Appendix V. Comparing/
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Compaxing this with equation (17) we conclude that

o
/ de(yn) = 0, «.o(20)
==
and
bis ” rw
f y* ae(y*) = = j 6(y*) ay® = o. eee(21)
y¥emn -t
Equation (20) is the obvious requirement thet 8(y®) = 6(2% + y%),

while equation (21) fixes the orientation of the acrofoil for the no-lift
positions If § is measured from the aerofoil chord then
6 = 8 +ag, and {21) yields

1 R
0y = _-..f o(y) ay*, cee(22)

I~
end oy

which fixes the value of the no~1lift angle.

From equation (6), w->c implies that [~ =0, and we find

a a
e+z;=--+0— ’
W W

and so the expansion for £, can be written

a ) 1
fq = = =<2ie™% gin q + - ] emiv* as(y*)

w I S

a ¥ . 1 = i a
+] = 1ev?1% gin 2a+--/ e T 30(vE)N + 0 = | o wee(23)

W 27 et W

From this equation we conclude that

f" cos y* 26(y%) = f“ sin ¥ a8(y) = O, vee(2)

)}i—'o"'?\'- -0
a
otherwise when a = 0, £ will have a term O - |, sxd since from
w
equation (3)
q
. -T
- ""_" [2] /ﬁoo 2 [ X2 ( 25)
U

/U /
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q/U will be of the form 1 + A/|w| for large | w|, and a lift-
producing circulation will exast. (An alternative proof for the case
of incompressible flow appears in Appendix I.)

Fanally it follows from equations (1) and (7) thet on the
aerofoil surface

_______ ay P ...(26)

where the origin of s 1s taken at the front stagnation point.

This completes the account of the basic mathematical theory.
The numerical application of this theory to the calculation of the
compressible flow about aerofoils i1s given in Ref'. 5.

3+ The Aerofoil with a Hinged Flap at Small Angles of Deflection

The theory to be given below is only valid for small values of
N, the flap deflection angle, Unfortunately a simple theory valid for
large values of » Esay > 20°) is not possible, except in the case of
8 hinged flat plate (Appendix IV), 1In general if 7 is large the
only recourse is to find the flow about the aerofoil and flap ab initio
for each value of ®., The author's volygon method” described in the
previcus section, would be very suitable for such a galculation.,
However, as shown below, a relatively simple theory applicable even to
comparatively thick aerofoils can be developed when terms 0o(n*) can be
neglected., :

3.1 The Velocity Distribution

Subscripts o and 7 will be used to denote values when the
aerofoal is at an incidence absolute o with a flap deflection n,
while the absence of subscripts denote the casc o = n = 0,
Consider the aerofoil, for which a = 7 = O, shown in Fig. 2(a).
We shall suppose that the solution has been obtained for this case, and
that therefore we have or can deduce o/l and s/c as functions of vy
(defined by equation (7) and in Fig. 1). If the polygon method has been
used to find the solution, o/U and s/c will be immediately available
as functions of y ({see cxample (b) an Section 5); otherwise suppose
o/U is given as a function of s, then the equation

$ z s/c q /s
- = =008 Y = - [ -3 - | -1, .« .(27)
2a 2a | dq Uite
whach follows from (1) and (7), enables s/c = s/c(y), and hence
o/U = q/U(y) to be calculetud. The constant {cU/2a) must satisfy
cU p/e q /s
2a ‘0 U C

Fs

where p 1s the perimeter distence from the leading to the traxling
edge.
In/
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In Fig. 2 the flap surface is shown starting at C, where

Y = N, end F, where y = -A . VWhen n = 0, eachof C and F
correspond to & value of x/c of 1 -~ E, The hinge will be taken to
be at x/c = 1 - E', and of course for thin aerofoils E & E',

The most important increments (@ s say) to © due to the
deflection of the flap are shown in Fig, 3. They are due to (i) the
front stagnation point shifts to same point B, vhere Y = A say,
and consequently the flow direction between A and B 1is reversed,
ie., O is decreased by = in 0 €y < A, (1i) the deflection of the
flap reduces 6 by n in =% € ¥y £ -A, Ao € ¥ € x, and (ii1) o
is increased by aj - o, in -x { ¥ € m due to a change in the no-
1lift angle from oy to ag. Unfortunately these are not the only
inorements to 8, for the modification to the velocity distribution
which they produce (equation (39) below) slightly distorts the relaticn
between s and ¥ (equation (26)) and consequently causes a slight
change (48) in 6(y). e can thus write 8 for n £ 0 as

8p = 8o+ ep + 40,
where 0,5 1is the value of 6 when n = O, For a thin aerofoil the
distortion in the (s,¥Y) relation wall result in quate small values of
A8 eaway from the nose of the aerofoil as 40 = As/R, where As is

the change in s. The largest values of A6 will be near the nose,
but these will have a comparstively small e¢ffeot on the velocity
distribution over the flep, and therefore on Cg. Thus only a small
error will be introduced (except in the velocaty distribution near the
nose) by writing

en = 60 + ep . nc-(28)

Now 6, satisfies equations (20), (21) and (24), and since 8, rust also
satisfy these equations, this must also be true of 6,. The increment

6p 1is a step function with jumps in value as set out in the following
table:- R

Jusp in 8, “N + Qg = %o | 7 “% [ R =0 [N -ad+a,

e - e W e P - b - - - .-J-.-.--—- -

and consequently the Stieltjes integrals in equations (21) and (24)
degenerate to

2x{n = ad + 0.0) - T}(?\i + 7&0) +xh = O «es(29)
n(cos lo - QoS8 11) + ﬂ(1 ~-cosA) = O ...(50)
T?(sin7\0+sin?\1)-7csin7\ = 0, eea(31)

Equation/
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Equation (20) is obviously satisfied by 6,. Equations (30) and (31)
yield

Ao =A, = A . ..(32)
] n
and sin v = - sin}g ..o (33)
I
where Ap = ;l;(xo +N), ceo(34)

These equationa imply that we ocannot fix the positions of C and F
(Pig. 2) independently. It is convenient to regard 7T and Ap as the
dependent varisbles. Eguation (29) fixes the value of (ag - a,), the
change’ in no-1ift angle due to the flap deflection. Using equation (33)
and ignoring terms O(n®) we find

: Ay sindg
ag = %y = M1 = er b meme , .o 35)
= T
3(ad - a,) Ap  sin g
whenoce | ccemecwmeaa = 1 = em f mmeean . oo o(36)
an b '

n=0

In Appendix ITI it is shown that these equations are exact for
incampressible flow about a flat hinged plate,

Substitution of equetion (28) in equation (18) yields

n sinh 2(Z - i) sinh %%
fo n(;) = £(g) - «n - aé + ao) + = log rrrrewrcecrena—- + log —-—-—mmemmn e,
? = sinh (g + ili) sinh 3{Z - iA)

If the aerofoll is now placed at an absolute incidence of o the front
stagnation point will be displaced from y = AN to Yy = A - 2a, and
hence (c.f. equation (19)) we will have

n sinh 2(% - irg)
fa,n(;) = f(é) - i(T} - CI-C; + CLO + 0:.) + = 10f ~emeceevencas 2_
x sinh 2(g + 1},)
. sinh %
+ 10g ~mmmesscemsesosooeo o e(37)
. " sinh % + 2ia - 1h)

On the aerofoil surface, § = O, and equation (37) becomes, with the -
aid of (32} and (3L)

n sin%(y-%?u-%n) sin 3Y
I'a"n(Y) - I‘(Y) + - 103 A —— log 7 —— = .o-(jB)
o sin 3{y - 2\ + A n) sin (Y + 2o - M)

where/
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where XA and M, are related by equation (33). The velocity
dastribution now follows from equation {(3). At low Mach numbers the
approximation (25) 1s valid, when equation (38) yields

/%8 ) 1/8
4, (¥} g (sin #(y « 3 + 0g) | femn Ey + 20 =) 7 ()
cmdenme 2 m € emmemeem——————— J T (e s . «o(39
U U {sin 3(y - 2 - Ay) | sin %Y

In the calculation of the various derivatives appearing in
equations (10), (11) end (12) it will be convenient at first to regard
@ and 7 as independent vardables, Subsequently o will be replaced
by (equetions (9) and (35))

o = a' +tay+ Nl = -t - ’ .o+ (40)

so that o' and n become the independent variables.

1? aa

3.2 Calculation of CL,.aO, a

The lift coefficient, Cp, 1s defined by the contour integral
taken round the aerofoil surface '

1

Cy, = --fcpcoseds,
c

where the pressure coefficient Cp is a function of y, 7 and o.
Thus, since

1 oos 6 (Za\ 'b cos O
- 08 6 d8 = eeee-= d¢ = - (---—-—— sin y 4y,
c c q \yc

2a T U cos 8
CL z = =-- j. Cp in y | w=em=—- dy . ---(#1)

If v is the ratio of the specific heats, C_ is given by

P

2 f[ p -1 G A L”ﬂhi
G = =aced |4 = wmeem 1@ 22T o g -1y,
P M 2 WU
v 3| |

from which it follows that

.._6_(3?_ = -2 E f . oo(B2)
3(o/V) KP P, 1t/
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It 15 easily dcduced from equations (3), (33) and (38) that

3(q/U) 1 (q\/ am, \R,

------ = e=| =l mmeeem 1D GOt zY,
@ ‘a=n=0 ﬁm \U/‘\m M m‘«/’ P
and
/
{8 g/ U™ 1 q\!f 2m, \ P, (1 sin z{y - A_) sin Ay 1 )
------ ) =« em| = ommemme e e log mememsmmooese 4 —oe-es cot §Y>,
L A B \U/\m+m, /P i< sin 2(y + M) = |
and hence from equation (42)
/6Cp 2 [aq : )
(--- = - --%{ - | cot 7Y, oo o(83)
aa' q:n:o BCQ U
and | ;e 1( )
5, 2 /g% 11 smd(y-n) =inny L
B - --X.( =}~ log mmmmmmmanas Tt cot Ty S, +e.(bh)
an/a:nzo 8e \U/ = sin z(y + 7)) 0
where
anG
X = °~T=e== ’
m o+ m
1s a function of ¢/U. This function is given in Table 2 of Ref. 5 for
M, = 0.5, 0,7 and 0.79. Differentiating equation (41) wath respect
to o and 7, and making use of equations (43) and (44), we find
K--- o s f x| - cos © cos® By dy, oo (45)
V80 Jyunig Ba\Ue/ J T\ U
and
’
/8CL 1 {h-a o q
f__.. O /. ¥ -ces 9 |siny
\ an S B \Ue/ J_"\U
1 sin (Y - Ag)  san Ag ‘L
X ¢ - log ====- ————— 4 —————— cot By dy .
= sin (Y + 7\1.1.1) b3 f
o {L6)

If the polygon method of calculating g/U has been used, (4a/Uc),

q

-(y) ond 6(y) will be known, %(y) can be readily deduced from tables
U

such as those given in Ref. 5, and so the integral in (45) can be

evaluated numerically withmit diffioulty. A ocalenlation of this type
appears in Ref. 5,

&/
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A simple epproximation can be found by writing

X = -cos 0 = 1 _._(471

in the integrals of equations {45) and (46). e find

Bl 2n [ 4a
e - = - - ¥ ll-()+8)
\8 Jacp=0  Paor UC,
/801,
and ( . o. o (49)
aT,‘ G,::n:O
Equation (49) is in any case obvious since Cp depends only on a,
Fram
facy, ‘a0t
Cy, = ay--- + | —-- s
\ac" Cl.::n:O anffq,zr;zo
end equations (40), (48) and (49) 1t follows that
2r ua\j Mg sin g\l
Cr, = == == |42+ a' +N{ 1 = == # =rmwe- .
B, Uc/‘\ ﬂ = I
A comparison of this equation with equation (10) yields
2n f La
8.0 Z e= --\ flo t--(BO)
BﬁL\Uc /
2% { La
8‘1 = - bt ‘.'(51)
B \Ue
P«
and
A sin A
m
&2/&1 = 1 - mm ok mEm-- E]‘ ] o..(52}
= =

It is well-known that for thick aerofoils in incompressible flow
equations (50) and (51) are exact (see Appendix I), while in Appendix IV
it is shown that equation (52) is exact for the flat plate in
incompressible flow., An approxamation for the parameter (Aa/Uc),
which occurs throughout the theory, is given in Appendix IT.

33
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5.3

Calculation of Cp, h and m,

The equation corresponding to (41) for the moment coefficient
about the leading edge is

(JQa ﬂ ’/x y /v
Cm = - .[ Cp - + - tan 8 [ - ¢cos B lsin vy dy,
\U \ ; /

- C C \\ q

where x/c

is measured from the leading edge. Differentiating this
equation with respect to a and 7 and making use of equations (43) and
(44) we find

ac /

- 2 [ ha L I q 3 4
—— = - _-( - ./ X\\" + - tan O - cos O |cos” zy dy,
9a a=n=0 Boa '\Uc FAR e °© ¢ v
and
BCm 1/ 4a L X ¥ q
——— = —e| —- '[ X! -+ - tan 8 - cos O
an a=n=0 Qx: Uc - c ¢ U
1 sin %(Y - Km) sin ;
X< « log --"-1— ------- T e cot Y2 sin vy dy s
x sin z{ Y + Ap) i

which can be evaluated directly when ¢/U has been celculated by the
polygon method,

Approximations to these equations can be found by writing
Ux = 2a + ¢, which leads to

X , La
-~ = Tt (1 -cosy),
c Ue
J
1gnoring the very small " - tan 6 " term, and using equation (47).
c
The results are
3 A
aCy, x (h.a
- - - ——— - s
da, a=n=0 2{3‘:0“ Uc | ‘ & (5 )
| . . ea 3
: oo\ e f@a T o
and o = e [ R 1YY lh(1 -cos A},
Y a“af AR M + i m
Y, o 2" \\Uc .

/

but/
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but Cp = a,a, and so it follows from equations (48), (53) and the
definitions of h and n, that™

1{hba \
h o= = --
L\Uc
. .o a(54)
1 f1a\
mg = =-=| == | sin A (1 - cos Ag) .
2Bw Ue
v

3.4 Calculation of Cy, by, b, and b,

—

By couparison with the equation for € given in Section 3.3
it is olear that the coefficient of the hinge moment, Cy, is given by**

N\
2a \ 1 =Ay ® x ¥ U
Cyg = - —;[ +/ Cp--‘i+E’+-tan8 - cos 8 | gin y dy,
\Uc /E*\/ . ho ¢ c q
«.+{55)
the hinge being at x/c = 4 -« E', vhere y = Al, say. Fronm
equations (32) and (34),n -> O icplies A, ~> Ay = Ap. Thus
ha \ 1 =Ny v x y U
(cy) 7?0::%—_ Y f +[ Cp——‘l+E'+-tarL8 - coz 8 |sin y dy,
==
Uec /B -t ?"1_’; ¢ c q
0-0(56)

which has to be calculated nuzerically Jjust os in the exact treatment of
equation (45)

Differentiating/

e e o o T m m o B o o W m B e W a e MR OB o wt e e o T e am e EE o my me e my

*In incampressible flow this eguation for h glves results aocurate to
within 0.01c provided the maximum thickness is less than O.1c and ooccurs
in the range OJo € x € 0.6c., A more accurate equation for h in
incompressible flow is given in Appendix III,

"*Note that the "non-dimensionalizing" distance for Oy is Ee, not E'c,
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Differentiating cquation (53) we find, with the aid of
equations (L3) and (1), that

0Cy 2 [ha M n ) X v
- =--—--(- f +f 4= =1 =E'+ = tan 0
da/ _ ﬁmEg Uc c c

= T]:O \ A 1 4 A

2
xt = cos 8 leos® 4y ay

and

g 1 La -y = J}c Ng ] q
-(-:E) = me— --\ / +;'Ir --1-E'+-ta119f—cose siny

2
M /oepe0 B E*\Ue )

- Jnm c c U
sin N 1 sin »(y - ?xm)l
X —m——— cot 5y + = log —-e——mer————— Y
™ = sin Z{y + 2

Equations (57) can be evaluated numerically, but for thin aecrofoils
travelling at speeds such that 1L as vell below the critical iach number
the following approximations 111be sufficiently accurate. Ve wrate

x y q ha
4= = 1T - E' + -~ tan o - COs @ %-‘- (COSK,}I-COSY):

le C WU \Uc

vhich results in

/acH 1 La a

o et - ————— T

| :
a‘q‘/aznmo ﬁwEa U
x {sin ?\m(‘l + & cos A - cot At )+ (m=hy) (cos A} - i,
and
aCy 1 /ha\? )
&n O;-‘n:O 2N% Ue

x {{m= ;) (1= cos ) - sin ?\m('] + cos A = 2 cos 7\;&)].

Now/

¥This cxpression negleects 2 very small term due to the dependence of tho
limais of the integrals in oquation (55) on n.
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Now

aCH\ BCH\
CH = (CH)CL=T]=O + € -—-) + 1Y ===

[
80. 0‘,:7]:0 an q,:n:O

and using equation (40) we have

( a0y Eon
CH = i(CH)a.sz:O.Fao —— +a' | ---

0a /o= n=0 90 fo=n=0

— + .- >0

da a=1=0 on

/ Ay sin Ay 2 Cy 9Cy ]
o el
= T]:OJ

Camparing this equation wath (12), and using the values of the derivatives
found above, we conclude that

3 ™
(e o (2
b = (C ———| -—-
Hlg=
° G QJEQ Uc
{sin 7\11(1 + ¥ cos Ap - ©os 7‘1;1) + (- Ap) (cos AL - )1
1 [La\ 1 1
by = - et Sl {sin >\.m(1 + T cos -Am - ©co8 7\;) + (71: - ?\m) (cos ?\111 - —2—)1 f
B E*\U
1 ha, a 1 . 1 .
b, = - —eeee] - f(r = Ay) sin A, + 7 sin Ay = (2 - cos AY) (= - Ay) i,
‘K‘B,\:IE Uc }
«++(58)
while from Cp = o,a eand the definition of b we have
1 {1y ‘ ’
b = E;F;-ﬁ—; I}; sin 7&131{(71‘. - 7\m)(1 - cos 7\1_,_) - 8in ?»m(1 + €08 Km - 2 cos 7\113)} .
--¢(59)

L, Bumary of Formulae

The formulae given in Section 3 for the control characteristics
are of two types:- ag the accurate integral forrulae, such as
equations (57), and (b) the approxuations, such as equations (58).
The integral forrulae are relatively simcple to apply, particularly if
o/U 1is calculated by the polygon nethod , but they do involve a few
hours camputation. The author considers that they are sufficiently
accurate for most purposes for aerofoils of thickness ratio less thea 204
travelling at speeds such that M. < Ilgpit. The approximations, which

wall/
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will be summarized below, will, in the author's opinion, give reliable
results for aerofoils of thickness ratro less than, say 107, when

M., < (llgpig, - 042). As far as thickness effects are concerned it

appears from the example in the next section that these approximations

are more accurate than the method given in Ref. 3 called “Approximation ITI,
Simple Theory", which iavolves numerical integration as in the author's
more accurate ncthed,

The ratc of change of the no-lift angle is given by
£
d(al « a.) A, sin Ay
{ 2 ° 1 - = o meee——— ¥ ouo(56)

ﬂ S

/fj
'
1
f
fa1 N |
=0
1
]
|
'
i
[
i

where, froa equation (27) N, satisfies

cos A, = 1 -2{ -- -af - |, ...{60)

in which s is the distance fram the front stagnation point to the
colxienocment of the flap. The ratio (4a/Uc) is given approxiretely
by (equation (90), Appendix II)

s

La 1 C Yy~ 7
(2 Ll e T, o n(61)
‘\Uc e, g x{c - x)

{(the suffices u and 4 referring to the upper and lower surfaces
respectively) or alternatively, froa equation (27)

La

= /p/c ?a ?\ voo(62)
UcJ/ i) C

0

In cquations (60) and (62) s/c can be replaced by x/c for thin
acrofoils.

The numbers a,, a ond a, arc given by

1

©oon {ha
&y = é- &j)(mo, ...(50)
o - c '
) '
2n [ ha. '
&1 = é- I‘;" P .o '(51)
C
c3
Ay samk,
and 32 = &i 1 - :; + --::“- ’ ..-(52)

where,/
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where a, is given approximately by (equation (91}, Lppendix IT)

! 3L

Uc 1 ge (v, +y.)
a, = (-, - ] __,:_E__--EE-- dx . «eo(63)
\\ha T

The deravatives h and m, (equations (54)) are given by

1 fha
h = - -], <o o(6L)
L \Uc
3
1 La
and mg = =---{=--] sin Rm(1 - cos hm) ’ e s o(65)
QQﬂ Uec

while b, b, b, and b, are given by equations (58) and (59) of the
previous section. Usually 1t 1s sufficient to write Ay = A, when
the equations for by and b become

2

1 La
b, = =~ =eec| == fsin 3 (1 - Z Cos Ag) - (x - Am)(% - cos A )}, «.(66)
E*B . \Uc
1 [ka\ Np s A
and b = =e=e- == | s A {1 - - - S (1 - cos lm)- .+ o(67)
2E*3 . \Uc T =

The derivative b, then follows from equation (13).

The equations given above for the control deravatives differ
from those given by Glavert? cnly by

(1) the compressibility term, 1/Qm,

La
(11) the 'thickness' term,( --), and

Ue
(ii1) the meaning to be assigned to' Ay, (A, is the anguler
co-ordinste of the hinge in the (¢,)) plane in the author's

theory, whereas in Glauvert's theory Ay, 1s the angular
co-ordincte of the hinge in the (x,y) plane.)

In Ref. 11 Perring extended Glauert's flat plate theory to
plates with wultiply-hinged flaps, The analysis of this paper is
eagily extended to aesrofonrls with such flaps. If Perring's results
are modified as described in (i), (i1) and (2ii) ubove there will
result  the author's approximete equations for this type of flap.

54/
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5. Exauples
(a) fn Example gaven an Ref, 3
Goldsteain and Preston gave as an exacple of their method, the

calculation of b, b, and b, for a symmetrical "roof-top" aerofoil
for which the velocity dastribution 1s defaned to be

q [1.13557 + 0.1213 x 0 ¢ x € 0.6
= 7

11.206L - 0.9706(x - 0.6) 0.6 ¢ x < 1.0,

The flap comsences at x%/c = 0.8, and the flow 13 incorpressible. If
it is assuied that x/c 2 s/o 1n equations (60) and {62), then from
the given velocity distribution (nornally this would have to be
calculated as a first step), it 13 easily found that

La
Ay o= 132°1',  and -~ = 17,1070,
Uc
X La
In Glavert's theory h, = 180° - cos™ (0.6) = 126°52', and -- =
Uc

Thus fro- equations (63), (36), (50), (51), (52), (6&4), (65),
(66), (67) and {(13) we find respectively

da.!

o
a, = 0, |e-= = 0,503, a, = 0, a, = 6,95, a,/a, = 0,503,
o /n=0
h = 0.277, myg = 0.760, b, = -0.376, b = 0.572, and b, = -0.,763.

The values of by, by and b given in Ref. 3 are compared with those
given above i1n the following table.

0.450 0.923 0.648 Glauert

Q4349 0.739 0.547 Ref. 3 Jpprox, ITI gsn_mple theory)
2 i \Approx. I1T (complex theory)

0.376 0:763] ~0.572 Theory of this paper

The -approxiinate: theory of "th1's-paper appears from this example
to be very satlsfactory, partlcularly as~this aerofoil is 155 thick,

{b) Aerof011 RAE 104 at M, = 0.7

The‘cm1preu31ble about the symmetrical aerofoil, RAE 104
wag calculated ih Ref. 5 by the polygon method. The f0110w1ng
figures taken from Table 6 of that report apply to A, = O0.7.

Table,/

Te



v fol s 5 | s 21 | 27 ‘P 3 | 45| 55| 65

___________________ A T T S e ke bl
/Ul 1,181 11479 |1.478 1 1.167 | 1,110 [ 1.053 | 1.005 | 0,967 | 0.927 | 0.878
___________________ o e i i o i e o el o o o e e e e e e e e e e e e 0 e s e

y° 1 175 180_
___________________ ks

x/c | 0,997 | 1.000 - = 1.,1200
----- [ o o UC

it e o - -

We shall calculate the control characteristics for a flap
commencing at x/c = 0,75, By interpclation in the above faigures we
find that at x/c = 0.75, vy = Ay = 125°40', Also 1/B__ = 1.4003,
and hence fran the equations given 1in Section 4 we find théj

e
a = 0, - = 0.561, a, = 0, a

N [re0

9.854, a /a = 0.561,

i

h = 0.280, m, = 1.129, b = -0.624, b = 0.783, b, = =-1.133.
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LPFENDIX I

An Exact Method of Calculating a, and h in Incompressible Flow

The oriﬁm in the z plane wall be taken at the 'centre of the
aerofoil profile'®, which iz defired by the equation

Lam (Uz ~w) = O. ...{68)

W=
It is shown in Ref. 4, 819 that \

1U T
Uz = w - —- f y{y*) coth (¥ - iyay*, .o (69)

2 V.

the oconjugate equation to which is

U e sﬁL X
Uz = w = == f (%) - - >ooth (g ~ 1yNayt,
2r J g U)!

vhere x(y*), y(y®) are the aerstoil co-adinates. By addition of these

results, and taking Lim , which is equivalent to ILim (equation (§)),
A Wadcs

we find that the origin must be taken in the 2z plane so that

i i
[ (Pay* f Sy = 0. ...(70)

- -

If the exis x = O is taken to satisfy equation (21), then the
z plane is completely fixed in position.

If (X,Y) is the force acting on the aerofoil, and M is
the nose-ug moment about the origin (defined by (70)), then the theorem
of Blasius® is that

it

+]
dw dw
a o
X -1y = '%“ip / ~e= | dzg , M+ iN %p /. Zg [ === dz, ,
c dz, .Jc dza

i.e., fras equations (5) and (16)

It

-1y = %:i.pe"m'U [ =R+t gy s M+ AN %pe"aia’U / ze"afa"'f dw ,
C c

vee{71)
where/
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where € 1s any closed contour about the acrofoal. The only

contributions to these integrals arise from thc coeffacients of
the expansions of the integrands.

From equations (27) and (71) we find

1/w in
Consider first the force (X,Y).

in f
£ i i Yx
X -1 = - mapd d4i sina - --- j. e dﬁ(y“)},
l % ==T J
and since this oust vanishwhen a = O

; we have an alteraative proof
of equations (24ys Thus

X = 0,Y = banpU sin a,

and the 1ift coefficient is given by

Y La
CIJ - ? ------ - 2‘“ - Sin G .00(72)
z pe U? \Ue
This equation is a well-lmown text book result, but the corresponding
result for G, given below is possibly new.
Prom equation (71)
«2iq ! -2f +f
M+ iN = 4 pnie « | cocf, of - in Uze™ "o . e e(73)
W
Equations (16), (23) and (24} yield
Udz a® o \ [a ¥
f = logl| ~-- = mees [ s"’lyx ae(y") + 0(\- .
dw 2TW yxzan W
and hence with the a1d of equation (68), we have
9 2
=1 ™ “aiyx % a
Uz = W = === f © aly™) + 0 -] . eeo(74)
2w _— w
From equations (23) and (24) it follows that
3
Lai . a
“-nfa‘.i-f = 1 - i sin o - Y
W W
x ¢21e™1% gin 2a + 8e¥?1% 5in® o + -- / e as(y®) > + ol -] . ,..(75)
2n ;1 |
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Now Cp = ==-m==-- , Where Cp 1is the moment coefficient about the
1 g3

zp C
origin defined by equation (70), and so from (73), (74) and (75) it
follows that

2
=~ f La
C!' = «| == |sin 2o

4 \Uc
1 o cot 2o 3
x <4 - m [ 005 2y% A8(Y%) - momen- f sin 29% A0(YE) 5. .au(76)
ern Y‘“‘-—-’K 2m ==T

The conjugate equation to this was given by Laghthill? for application to
the problem of aerofocal design.

An alternative form of this equation can be found thus. From
equations (6) and (69)

dz Ui s
Uer =2 1 o memmeccren [ y(y¥)cosech® (7 - iy¥)dy*

dw Bam sinh Z -

ial yid a\
= 1+ -e-s [ oiY y(y’it)dy"'c + O(- ,

nw - w

Udz ~ial = . 3 a

i £ .y log - = f = - y(yx) e:"yi dyic + 0 - »
dw x W - W

Camparing this equation wath {23) (with &« = 0) we conclude that

i

B Ua Py ;
/ cos 2y® d6(y*) 8| == ] «(y"®) sin y* ay* <L)
o) o

y®=-n

b.s Ua s
and / sin 2y* ao(v®) -8 1:; / 3-)-r(y“) cos yT dy® . .o d(78)

=70

Thus equation (76) can be written in the form

L{ Ue Y L cot 2af Ue
02) [ o 222

- c ¥ \\hﬂ.

[1‘ 3-r(v") cos y* Ayt > ,

12/ ess(79}
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If the polygon method of finding the velocity distribution about the
x ¥y

aerofoil has been used then the functions -(y™), -(y®), 6(y®) =and
c c

(40/Uc) will be immediately availeble, and COp and Cp, ocan be

calculated directly.

Suppose the centre of the profile lies at a distance X then

e
h = x- [ == , epproximately

\aCL/d.:O
i.e., from (79),
_ 1 Aa\ L [ Uc Y % . %
h = x - - —-/) 1 - =l o= (/ -(y ) sin ¥y ay . .o +(80)
4 \Uc T\ ha o ©
If we write Ux £ 2a+¢ = 2a(t-cosy), .e.(81)
- 1/khe ( 84 [/Uc¥
h :—- X - - —-—— 1 - -—— - , ...(82)
' L\ Uc xc® \ La

where A 1s the area of the aerofoil, but tins cquation requares knowing

_ Lo Le _

X - ( ->. The numbers (.".> and x are discussed in Appendices II
Uc Uo

and IIT respectively.

APPEIDIX II

La
The Value of ( »-)
. Ug

This amportant ratio occurs throughout the theory. In the
olygon method® 1t is calculated as an essential atep from
Fc.f. equation (26})

_______ dy, ...(811-)
¢\ 4a o q

H
nj=

- - -

pfcU /'mUsiny

where/
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is the distance between the stagnation points measured along

where p
Integration of equation (48) by parts results in

the upper surface,

1 g i .
o(y) = - / 5(v¥) oot Hv% - v) &%,
2K -Te

on the aerof'val surface, and the appreximation (25) then yields

1 b
I f 8(y%) cot By - y) dy% . 0o (B5)
eni,, ¢

For aerofoils of moderate thickness p £ ¢, and hence from (84) ena (85)

cU 1 = . i ,
ez ] 4 wm—-—— / e(y") sin Y’E log I tan "gy“ | dy]'E . ...(86)
La 2rB 4
If we make use of the approxamation (81) then
i U dy Uc \ 2y
fe(y") sin y* ay® = | -- f—-dx = | - -,
2&./ dx ba ) ¢
and so integrating (86) by parts we have
/
ka 1 nfy\ 4y
( - % 1 + === / - - ; . l.l(87)
mB. Vg \o/siny

\Ue /

It can be shown from equation (69) that this equation is exact in

1ncompressible flow.
Fraa (87) 1t follows that the effect of compressibilaty on

La
( --> 18 given by

Ue
{ ha 1 he
1 I B ... (88)
Ue B Ue /| ;
La
where ( --) iz the value in incompressible flow., Thus, for example,
Uc/,
i
2 (cquation (51)) 25 related to (31)1 by
QTEJ 1 {(a, )y \
U S R L S . «++(89)
i
8.1 B\ 2 J o



A useful approximation for -- | follows from (81) and (87).
Uc
If y, ond ¥, denote values of y ot opposite points on the upper and
lower surface respectively, then we find

"""""" dx -00(90)

Uc 2rf
o

“{le
—_
+

1
]
1
1

La, 1 /c Yu = ¥e

Approximations to many of the equations given in this paper
can be found by using equataon (81). For example consider equation (22)
for a,. Making use of eguations (24), vhich are clearly independent
of the origin of ¢, we can write

1 s
ay = - = [ 0(y¥) [1 - cos y¥} av%,
2% ~

-

uwirch after some calculation reduces to the approximate form

/fUc /2 1 c ¥, + 7

u e

0"0 = ,_W - / -_t ---------- dx . .|o(91)
\ s/ = Jy %o - x

When (Uc/l’-x-c'.) is taken equal to unity this eguation is in agleement
with the usual formule of than acrofoil theo:y10.

APPENDIX I11

An Approximatisn for h

If the centre of the profile is at a Aistance x from the
leading edpe, then taking the origin of the (x,y) plane st the
leading cdpe, we find from cguat%on‘(?O)pthat

— 1 ﬂ ; -
X = .--<f x{y) ay’.
ar 4 .
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in inlegration by parts results in

1 7% dx ds dg

T -oo-- [y lay
2% o da d¢ dy
a n U
g C = == f - ysiny dy,
M J g
a¢ dx ds
since -- = 2asmmy, - 7 1 &nd e~ = -,
dy ds as q

If the value of U/q from tne incoupressible forn of

cquation (85) is now substituted in this equation for x , then with the

aid of (24), 1t 1s found that

_ 2a Za s
%2 = C e o= § =m / 8(y) sin y log cos Ty dy.
U U

=K

Writing 6 = dy/dx, and integrating by parts we have

_ La 1 o
o = 12V [Ty ey
Ua 2r 4 o

Finally from equations (80), (87) and (92) it follows that

7

1 1 n /Yy Yo \/ 1 + 2cos ¥y
h1=—+-—f (-E--é \2siny-— ----------- dy .
b2 g \‘c c j 2 sin y

In evaluating the integral 1t 1s usually sufficient to write -

/ 2£\

cos Y = k 1 = =a |,
iy

b

.. .(92)

.. .{93)

Jhen h_, the incompressible flgw value of h, has been found from {93},

1t folldws fron {c.F. equation (89))

11/ 1)

h = -+ --{h
{ 1
LB, 4

APPENDIX IV

o o(94)
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APFENDIX IV

The Exact Theory of the Hinged Flat Plate in Incompressible Flow

Fig. 4(a) shows the flat plate at the no-1ift position, while
Fig. 4(b) shows the relation (6,)0, vhich should not be confused with
the relation shown in Fig. 3(b) where the meaning of y 1s slightly
, different,

Equations (24) lead to sin 3\ = - sin M
7
1
where Ag = 2(?k1 + 7\0):

‘while equation (21) leads to the value

for the no-1lift angle, From equations {16) and (18) we find that the
velocity distribution is given by

/R
q sin 3y sin 3(y + A, ) /

U sin F(y + A) | sin 2(y - A)

and hence from equation (26) the (s,¥) relation is given by

50 v san 3y - 1) |77
cos wY 8in F(Y + A) | memmemmnnais ay.

Substitution of the (e,y) relation in equation (?6) leads to

'I(.(i-l-a 2 n \\\
Cl = -1 - sin 2a - cos{2a - A) {sin A - - san ZijI,
J

4 '\UC

i
and so
( ac, %
\.acu n=a=Q 2
acrtl 1
_— = -7 san M (1 - cos N.),
&n n=a=0

as it is easaly shown from equation (86) that oU/sa = 1 + 0(n7).
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HPPENDIX V

Basac Mathematical Theory

The theory is based en the equat10ns7

a6 1 3q 08 1 Bdg
-+ (1 =¥) e e = 0, == = = w= = 0,
an q 08 ds ¢ on

which with the a1d of equations (1), (2) and the transformation

dar = (1 -3)7% afiog - },

0

can be written in the form

26 or a6 1 ar
- = Me== = Q, == + - == = O, «s+(95)
oy ag 3¢ m 3y

From (2) it is readaly found that in subsomc flow

v+t 1 q q
mo= m, {1 e M| == + 0 - - s
28 U i
q

80 that for thin aerofoils | =~ 1] at high subsonic Mach mmbers or
4)

thick aerofoils at lower subsonic Mach mmbers, von Kermdn's

approximation

m o= m_, -..(96)

1s plausible. This approxamation ensbles (95) to be written as the
Cauchy-Riemarm equations

. a6 dr 515} dr
..... - e = 0, == 4 == = 0,
Omer) A 2  a(my)

Since, 1n any application we shall make, these four derivatives exist
and are continuous in the cpen domaan outside the aerofoil contour,
we can write

r + 38 = £, (o+amy),

or 1f w, Gt M, ¥,
f(.h = fCI.- (W'U)), 00|(97)

vwhere tho suffix o denotes the appropriate incidence (measured from
tho no-laft angle).

A particular case of {97) is the no~lift solution
f = f(W’) » . sew (98)
ow
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Now for small angles if incidence (only such angles are important
in the paper), we mako the assumption that w, 1s an apalytic
function of w, i.e., that (97) can be written

£, = £ (w). ees(99)

for incompressible flow (99) is exactly trus, since both w and w
are analytic functions of =z . It 18 important to notice that the
approximation involved in (99) is merely one of the location of the
solution £, , and it is similar ip character to the approximation
commonly made in enginecring applications of the Kérmin-Tsien
method (cf. reference 7, pP«183). The approximation receives some
experimental, verifaication in reference 5. Further verafication of
ite plausibility is to be found in the approximate equations of
section L, where 1t yields the same compressibility factor, 1/B. .,
as that predicted by the linear perturbation theory.

It can be verified that the modified definition of r
given by equation (3) is consistent with the approximation (96).
It is an empirical modification made, because as shovn in
reference 5, it leads to improved agreement with experiment.

With the aid of equation (6) it is found that the value
of £ given bty cquation (18) satisfies equation (97) and the
appropriate boundary conditions, When the aerofoil is placed
at an angle of incidence o , on the aerofoil surface 8, is
given by

6(y*) - a, -x{YFLT
6(1.( *) - 000(100)
+ 7 s b y0< y* < O,

where the = +term 1s dve to the reversal in flow direction caused
by the displacemont of the front stagnation point fram y* =0 %o
Y* ==y, « (By the Joukowski Hypothesis the position of the rear
stagnation point is unchanged.) The value of y_ is fixed by the
condation that the flow at infinity must bo undisBurbed. It is
not drfficult to verify that £, given by (19) satisfies

equation (99), the boundary conditions (100} and leaves the flow

at infinity undisturbed. Tull details of the proof of these
results from equation (99), is to be found in reference L.
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