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Summary.--The present report gives a correlation of the results of earlier researches into the prevention of flutter 
of spring tabs. The restrictions on the way in which tab mass-balance must be applied, which are given in the earlier 
work, are shown to be very simply derivable from the conditions necessary for the elimination of elastic and inertia 
couplings ; and from these considerations an optimum length of tab balancing arm is deduced. The recommendations 
for avoidance of spring tat3 flutter are summarised in §9. Two Appendices deal respectively with the optimum length 
of arm when the aerodynamic actions are taken into account, and the relation between the results of the earlier work 
and the recommendations of §9. 

1. Introduction.--In view of the growing interest attaching to the use of spring tabs, a review 
of investigations into the flutter characteristics of these systems, and a summary of recommenda- 
tions for the avoidance of flutter, appears desirable. 

Spring tabs were first used many years ago, being then normally called servo tabs;  at that 
time, however, aircraft sizes and speeds were not such that control forces called urgently for some 
form of assistance to the pilot, and when cases of severe flutter of the spring tabs occurred, the 
system was dropped for some years. In the intervening period, geared tabs became common ; 
nowadays, however, the advantages of the spring tab are thought to be so great that the system 
is receiving more and more attention, and the prevention of flutter is an urgent matter. 

2. Investigations relating to the Flutter of Spring Tabs.--The researches relating to the flutter 
of spring tabs, by British investigators, which are considered in the present paper, are as follows, 
in the chronological order of their appearance : 

(1) Binary servo-rudder flutter. W . J .  Duncan and A. R. Collar. R. & M. 1527, February, 
1933. 

(2) Experiments on servo-rudder flutter. W. J. Duncan, D. L. Ellis and A. G. Gadd. 
R. & M. 1652, September, 1934. 

(3) Wing-aileron-tab flutter, Parts I and II. R.A.  Frazer and W. P. Jones. A.R.C. Report 
5668 (0.251), March, 1942. (Unpublished.) 

(4) Binary aileron-spring tab flutter. G.A.  Naylor and Anne Pellew. A.R.C. Report 5828 
(0.264), (R.A.E. Report S.M.E. 3209), April, 1942. (Unpublished.) 

(5) Experiments on binary aileron-tab flutter. C. Scruton, J. Williams and C. J. W. Miles. 
A.R.C. Report 5917 (0.275), July, 1942. (Unpublished.) 

* R.A.E. Report S.M.E. 3249, received June, 1943. 
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(6) Graphical treatment of binary mass-balancing problems. R .A.  Frazer. A.R.C. Report 
6059 (0.282), August, 1942. (Unpublished.) 

(7) Wing-aileron-tab flutter, Parts III,  IV and V. W. P. Jones. A.R.C.' Report 6290 
(0.251a), November, 1942. (Unpublished.) 

The scope of these investigations, and the principal conclusions drawn from them, are very 
briefly summarised below. 

Reference 1.--This reference contains a theoretical investigation into binary rudder-tab flutter, 
with applications to a particular case. I t  is concluded that  : - -  

1 (a) ordinary mass-balance of the tab would suppress the flutter in the case considered ; 

1 (b) there are not sufficient grounds for asserting that  ordinary mass balance of the tab will 
in general suppress flutter ; it is usually difficult to cater for the rudder bar fixed and 
free cases simultaneously. 

Reference 2.--This describes a fairly comprehensive set of wind tunnel experiments covering 
binary rudder-tab flutter, rudder flutter involving lateral fuselage flexure, and the combined 
ternary motion. The results were such that  the authors would not make specific recommenda- 
tions for the avoidance of flutter ; for example, they found that  : - -  

2 (a) mass-balance of the tab would suppress binary rudder-tab flutter when there was no 
elastic constraint ; 

2 (b) when the elastic constraints, particularly that  of the control circuit, had certain values, 
flutter occurred even when the tab was mass-balanced. 

Reference 3.--This investigation is very general, and covers wing flexure, wing torsion, aileron 
motion and tab motion. Preloaded spring tabs are briefly considered, and the mechanism may 
be such that,  when the spring is effectively rigid, the tab acts as a geared tab (gearing n). The 
more detailed parts of the investigation relate to binary aileron-tab flutter where the gearing 
mentioned above is absent (n = 0) and the following important  conclusions are drawn : - -  

3 (a) The tab density, relative to the aileron density, should be small : this is equivalent to 
asking that  the tab inertia should be as small as possible ; 

• 

3 (b) any addition of mass to the aileron alone, such as ordinary aileron mass-balance, is 
advantageous (this evidently accords with 3 (a)) ; 

3 (c) the tab balancing mass, if present, must be placed at a distance forward of the tab hinge 
less than D/(N + 1), where D is the distance between aileron and tab hinges, and 
N is the ratio of tab angle to aileron angle when the system is displaced but the control 
bloater is held fixed*. 

3 (d) If condition 3 (c) cannot be satisfied, tab balancing should not be attempted. 

I t  will be seen that  condition 3 (c) imposes a most important  limitation on  the way in which 
tab mass-balance must be effected ; Reference 3 goes on to show that  conclusion 1 (a) was justified 
for the balance arm assumed, which was less than the limiting length laid down above, but would 
not have been justified if the balance arm chosen had been greater than the limiting length. 

Reference 4.--This reference contains an investigation into the same binary aileron-tab system 
dealt with in Reference 3 ; the aerodynamic constants used are rather different, and general theory 
is not attempted. A number of numerical cases are worked out, with special emphasis on the 
amount of the tab balancing mass and length of balancing arm. It  is concluded that  : - -  

4 (a) if the critical length of balance arm D/(N + 1) laid down above is exceeded, flutter of 
the system considered occurs for any added tab balance weight ; 

* The gearing N, which involves extension of the spring, must not be confused with the gearing n mentioned above. 
¢ 
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4 (b) if the arm is only slightiy less than the limiting length D/(N + 1), very large balance 
weights are necessary to eliminate flutter; 

4 (c) static balance of the tab will eliminate flutter if the length of arm is less than about 
0.75 of the limiting length ; 

4 (d) slight over-balance of the tab is necessary to avoid flutter if any backlash is present 
in the linkages. 

Reference 5 . - - In  the main, this paper describes an experimental verification of the conclusions 
of References 3 and 4, and the conclusions are borne out by the experiments with remarkable 
accuracy. The effects of fluid and solid friction are briefly considered. There is also a short 
theoretical discussion on the effect of offsetting the tab balancing arm from the plane of the tab *; 
the conclusions are verified by experiment. I t  is found that  : - -  

5 (a) the recommendations of Reference 3 are borne out by experiment ; 

5 (b) when the line from the tab hinge to the balance mass makes an angle 0 with the plane 
of the tab, the limiting length of arm, projected on the plane of the tab, becomes 
D cos20/(N + 1). 

I t  thus appears that  in practice it will be uneconomical to use an offset arm, and the balancing 
mass should be kept in the plane of the tab. 

Reference 6 . - -The  recommendations of Reference 3 were based on a stabil.ity diagram in which 
points representing inertia were plotted in relation to. a stabili ty boundary which was found to 
be nearly linear. Reference 6 gives a theoretical discussion from a graphical viewpoint of this 
stabili ty boundary, and shows that  it is in fact nearly linear, being part of a very flat hyperbola 
when the constant derivatives of classical flutter theory are assumed. It  is concluded that  : - -  

6 (a) the recommendations of Reference 3 are iustified ; 

6 (b) the recommendations are still valid when the gearing ratio n is not zero. 

Reference 7.--This reference considers also the case where n is not zero, and studies ternary 
flutter involving aileron and tab and either wing flexure or torsion. Approximate methods of 
.calculation are also given. I t  is concluded that  : - -  

7 (a) the recommendations for the avoidance of binary aileron-tab flutter are valid even 
when n is not zero ; 

7 (b) ternary flutter is very improbable if binary types have been eliminated ; i.e., if the 
aileron has been mass-balanced against wing flexure and torsion, and if the precautions 
against binary aileron-tab flutter have been taken, then flutter is unlikely. 

3. Comments on the Conclusions.--It will be seen that  there are no mutually contradictory 
conclusions given above ; but as knowledge of the subject has increased, the underlying principles 
have been more clearly elucidated and the methods to be adopted for flutter prevention 
progressively clarified. 

I t  will also be observed that  the problem involves some restrictions of a nature which are 
apparently unusual in flutter prevention. In the following sections a physical explanation 
of these restrictions is given ; it must be understood that  the explanation aims at simplicity and 
is not put forward in a form which will bear rigorous examination. 

4. General Remarks on Flutter Prevention.--Flutter (except stalling flutter, for which dampings 
may become negative) essentially involves coupling between two or more degrees of freedom ; 
and the problem of flutter prevention is therefore that  of simultaneous elimination of all couplings. 

The principal couplings in a fluttering' system are three" aerodynamic, elastic and inertial. 
In rare cases gravity or other couplings play a part. In general, however, if the three principal 
couplings could be eliminated, the danger of flutter would be removed. 

* By the plane of the tab is meant here a plane fixed in the tab containing the tab hinge and, in the neutral 
position, the control surface hinge. 
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The magnitude of the individual Couplings obviously depends on the choice of the co-ordinates 
used to define the motions. Consider for example a fluttering semi-rigid wing having one degree 
of freedom in flexure and one in torsion. It  is possible to define its motion in terms of its normal 
modes of vibration in vacuo, and then, by definition, elastic and inertia couplings are absent. 
But the wing flutters, and the aerodynamic coupling must therefore be severe when normal 
co-ordinates are used. On the other hand, it is equally possible to choose a system of co-ordinates 
to define the motion for which the aerodynamic coupling is slight, while one of the remaining 
couplings vanishes ; the other coupling must then be severe. 

Now it is a fact of experience that  when the co-ordinates are so chosen that  elastic coupling is 
absent, the aerodynamic coupling is usually small. This is a most fortunate circumstance, since 
alteration of the aerodynamic characteristics by themselves would usually be very difficult. 
It  is this fact which explains why mass-balancing alone is usually sufficient to suppress flutter. 
For example, consider the fluttering wing mentioned above; its motion may be defined by flexure 
of, and torsion about, some spanwise axis. If the axis is chosen to be near the quarter chord, 
the aerodynamic coupling is a minimum and is so slight that  it is not capable alone of promoting 
flutter ; other couplings must also be present. But it fortunately happens that  the elastic (i.e., 
flexural) axis is seldom far from the quarter chord. If therefore the flexural axis is adopted for 
reference, the aerodynamic coupling will not be much greater than at the quarter chor& If the 
inertia coupling is eliminated by applying mass-balance, only this small aerodynamic coupling is 
left, and this is usually still insufficient to promote or maintain flutter. 

I t  is usually the case that  co-ordinates for which elastic coupling is absent are quite obvious : 
as above, flexure of, and torsion about, the elastic axis of a wing are obvious. Again, for flutter 
involving a control surface the choice is usually obvious; e.g., for wing'flexure-aileron flutter, 
flexure of the wing and rotation of the aileron relative to the wing plane are co-ordinates for 
which elastic coupling is absent: 

It  follows, therefore, that  when for any given system co-ordinates have been adopted for 
which elastic coupling is absent, the problem of flutter prevention is usually reducible to that  
of mass-balancing the system with respect to these co-ordinates. I t  will now be shown that,  
even m simple cases, there are, in general, limitations to the way in which mass-balance may be 
applied to eliminate the inertia coupling. 

5. Elimination of Inertia Couplings.--Consider the simple system shown in Fig. 1. It  may be 
regarded as an idealisation of a wing section carrying an aileron, the wing section twisting about 

I 

FIG. 1. 

its flexural axis, or as a control surface carrying a geared or trimming tab: for definiteness it will 
be regarded as the latter. The natural  co-ordinates to assume for defining the motion are the 
rotation of the control surface about its hinge, ~, relative to the plane of the main surface (not 
shown) and the rotation of the tab about its hinge, 7, relative to the plane of the control surface. 
Elastic constraints (which will normally be control cables or rods) are shown, but it is obvious 
that  there is no elastic coupling, since a pure torque applied to the control surface induces rotation 

but does not induce tab displacement. 

Now suppose an acceleration ~ is imposed on the control surface. This implies acceleration 
of the tab hinge in a direction normal to the plane of the tab. Suppose that  the C.G. of the tab 
lies aft of the hinge, then the body of the tab will tend to lag behind the accelerating hinge, and 
a rotation rj (of negative sense) will result. An inertia coupling is therefore present. 
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Next  consider the  effect of adding to the  tab, in its own plane, a mass M mounted  on an arm. 
Quite obviously, if the arm is directed backward,  the inertia coupling is increased ; only the  case 
where the a rm is directed forward will therefore be considered. Two possibilities are shown in 
Fig. 2, where A is the  main  hinge and B the  tab hinge. In the  first case a short arm B M  is 

A [D A D '  

M B • 

FIG. 2. 

shown, so tha t  in the undeflected position A D,  M lies between A and B. In the •second case 
a very long arm B M  is used so tha t  M lies ahead of A. 

In  the first case, when an acceleration # is imposed, the  mass M tends to remain behind on the 
line A D, and hence to impose a positive rotat ion ~ on the  tab ; the tab by itself would acquire 
a negat ive ~, and it is therefore possible to adjust  M so tha t  no rotat ion ~ results ; the  c o u p l i n g  
is then  removed.  

In the  second case, M still tends to remain on D A  produced and therefore to impose a negative 
rota t ion v on the  tab ; it thus increases the inert ia coupling of the  tab, and has the same effect 
as a mass on an arm directed backwards.  

I t  follows that ,  for this common case, there is a limit to the length of tab balance arm, namely  
the length A B  ; however, the  use of a tab balancing arm longer than  A B  would in practice be 
out of the  question. 

The l imitat ion is, of course, implicit  in the  usual formula for the  product  of inertia, which is 

P = Z x ( x  + D ) a m ,  . . . . . . . . . .  (1) 

where x is the  distance of the  element of tab  mass am aft of the  tab hinge and D is the  length A B. 
For  the tab alone 

2 x ( x  + D ) $ m  = 2x~.~m + D 2 x ~ m ,  . . . . . . . .  (2) 

and both terms are positive when the  tab C.G. is aft of the hinge. If P is to be made  zero, 
therefore, M must  be added forward of the  tab hinge ; if the length of its arm is ~, its contr ibut ion 
to  P is 

( - -  4) ( - -  ~ + D ) M  : M ~  2 - -  M ~ D  . . . . . . . . .  (3) 

Obviously this can only be negat ive provided ~ is less than  D. 

The expression (3) has its m a x i m u m  negative value when 

d ( a 2 _ a D ) = 0 ,  or a = ½ D  . . . . .  (4) 
d~ . . . .  

Thus, to make  P zero with min imu m mass, the length of the arm should be half the  length of the 
distance between the hinges ; in practice, however,  it is often expedient  to use a shorter  arm, 
since it is difficult to make  a long arm sufficiently rigid. 
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6. Couplings in the Case of the Spring Tab. The essential physical difference between the case 
of spring tab flutter and most other flutter problems is that, if the ordinary " obvious " 
co-,ordinates (see §4) are adopted to defifle the motion, an elastic coupling exists. Consider the 
simple spring tab system shown in Fig. 3. 

F • . J • 

C 
FIG. 3. 

t 

AB is the control surface and BC the tab ; the tab is operated by the rod DE. A D is the tab 
bloater, hinged at A and connected to A B by the spring G. F, shown diagrammatically as a 
spring, represents the stiffness of the control circuit. 

It is at once apparent that for the usual co-ordinates shown, namely ~ and ~, an elastic cross- 
stiffness exists. For, suppose the control surface A B is held fixed (8 zero) and BC is displaced 
through ~, then DA is displaced through ~ B E / D A ,  and the spring F is compressed (for ~ positive). 
This compression produces a moment tending to increase ~, i.e., displacement of the tab produces 
a moment on the control surface. 

Thus the cross-stiffness is due to the spring F, and if this elastic coupling is to be avoided, 
the spring F must not be brought into play. This requires that, in an otherwise general displace- 
ment, A D  shall not move;  the condition of no coupling therefore obtains when BC tends to 
rotate with A B  so that ~BE ---- gAD. In this condition the centre of rotation of BC is at J.  
Now by definition A D / B E  ---- N ; hence 

B J  A J _  A J  
~ N~'  

whence A B __ N + 1, . . . . . . . . . .  (5) 
BJ 

since the angles are all assumed small. 

Now if the inertia couplings for these rotations are also to be eliminated, acceleration of the 
system must produce no force from the tab tending to move A D. This implies that there must 
be no tension or compression in the rod DE, i.e., the tab must have a natural tendency to rotate 
about J ,  even if DE were absent. This can only be achieved by loading the tab so that its C.G. 
is forward of the hinge B by an appropriate amount. Moreover, it follows exactly as in §5 
that the added mass must lie between B and J,  i.e., on an arm of length 2 not greater than 
1 / (N+I)  of the distance D between tab and control surface hinges; further, the minimum 
mass is required when the arm is of length D/2(N+I) .  

7. Comments on the Aerodynamic Coupling.--In the foregoing section, the limiting length 
of arm for the balance mass of a spring tab has been deduced purely from consideration of the 
elastic and inertia couplings. Since the same rule is deduced in References 3 and 4 above, when 
the aerodynamic actions are taken into account, it appears that, in so far as prevention of flutter 
by mass-balancing is concerned, aerodynamic coupling is not important in this rather unusual 
case as well as in the more normal cases mentioned earlier. This view is further supported by 
the fact that some of the aerodynamic terms assumed in References 3 and 4 were quite considerably 
different. 
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8. Effect of Offset in the Balance Mass.--By the  simple arguments  a l ready put  forward it is 
possible to deduce the same conclusion as t ha t  of Reference 5 in relat ion to an offset balance mass. 

_ In  Fig. 4 let BC be the  tab,  wi th  hinge at  B, 

~ F  " and let X be the point  which it is desired shall 
• be the  centre of ro ta t ion of the  t ab"  thus  X 

× j ~ ,  ~0/ e~*-,,,8 ~7~ C corresponds to A in Fig. 2 and to J in Fig. 3. 
Fro. 4. Let  the  velocities of ro ta t ion  about  X and B 

be ~ and ~} respectively. Then the mass M 
has components  of veloci ty normal  to X B  of 

1 ~ cos $ --  r;~ cos 0 
and parallel  to X B  

l ~ sin $ + r~ sin 0. 

Now from the  geometry  of the  system, if X B  = a, 

l cos ¢ = a - -  r cos 0 

l sin ¢ ---- r sin 0. 

Hence if T is the  kinetic energy of the mass M, 

T = ½M{(I ~ cos ¢ --  r ~} cos 0) 2 + (1 ~ sin ¢ + r ~ sin 0) 2} 

= ½M{(a --  r cos 0)~ --  r cos 0 ~}2 + ½M(~ + ~})2r2 sin20 . . . . . .  (6) 

The coefficient of ~; / in  this  expression, namely,  the contr ibut ion of M to the product  of inertia,  is 

M{r ~ sin"0 --  r cos 0 (a --  r cos 0)} = M r {r --  a cos 0}. 

This is only negative,  provided 

r < a c o s  0 

or ~ = r cos 0 < a cos~0 . . . . . . . . . . . . . . .  (7) 

Thus, whether  the  l imit ing distance for tile ordinary case is D or D/(N + 1) (i.e., plain tab  
of §5 and Fig. 2 or spring tab  of §6 and Fig. 3), when the tab  a rm is offset by  0 from the plane 
of tile tab,  tile l imit ing distance 1 (measured in the plane of the  tab) is reduced by  the factor cos20. " 

9. Conclusions.--The present t r ea tmen t  confirms in an ext remely s imple  way  m a n y  of the 
conclusions o f  the  more thorough invest igat ions  listed in §2 and gives a clear picture of the  
physical  meaning  of the  recommendat ions  for the  avoidance of f lut ter  of spring tabs. To sum 
up, these conclusions from all the  invest igat ions m a y  be set out as follows : - -  

(a) The tab  inert ia  should be as small  as possible. 

(b) Ordinary  mass-balance of tile control  surface is necessary. 

(c) The tab  mus t  be mass-balanced,  and the mass  should be placed at  a dis tance forward 
of the  tab  hinge not  greater  t han  D/(N+ 1) when the  mass is in the  plane of the  tab. 

(d) If  the  line joining tile balance mass to the tab  hinge makes  an angle 0 with the  plane 
of the tab,  the  radial  distance from the  mass to the  hinge mus t  not be greater  than  
DcosO/(N + 1). 

(e) The op t imum length  of tile tab balance a rm is about  half  the  m a x i m u m  length  given 
in (c) and (d). 

( f )  In  view of (d), .the least added mass will be necessary when placed in the  plane of the 
tab  ; offset balance masses are not  therefore recommended.  
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(g) I t  appears from the more complete analyses that,  in the absence of backlash, flutter 
will usually be eliminated by static balance of the tab in the manner laid down above ; 
to cover the possible development of backlash, however, it is recommended that  a 
balance mass 20 per cent. in excess of that  necessary to give static balance of the tab 
be used. This extra mass will be a valuable safeguard when backlash is absent. 

APPENDIX I 

10. The Optimum Length of Balance Arm.--In §6 it was shown that,  from consideration of the 
elastic and inertia couplings only, the optimum length of arm for the tab balance is one half of 
the limiting length. I t  will now be shown that  this conclusion is valid also when the aerodynamic 
actions are taken into consideration : the result follows directly from the work of Reference 3. 

/ 
o 5 

F I c .  5. 

Fig. 5 shows diagramatically the stability 
boundary deduced in Reference 3, in which 
the limiting length D/(N + 1) was first postulated. 
The ordinate is the quant i ty  544 , which represents 
an effective tab moment of inertia in a transformed 
system of co-ordinates; similarly/5 is the corres- 
ponding product of inertia. The stability boundary 
IS very nearly linear and has a slope slightly 
greater than unity. 

If the point J (/5, 544 ) for the unbalanced tab 
lies above the line, flutter is possible; if below, 
binary aileron tab flutter is not possible. 

In Reference 5 it is shown that,  when a balancing 
mass is added to the tab on an arm of length 
Zsec0, offset at an angle 0 to the plane of the 
tab, the increments in /5 and aa4 are respectively 
proportional to 

($fi - ~  3, 2 s e c  2 0 (N -1- 1) (n + 1) -- ID(N + n + 2) -1- D 2 

D cos 2 0 D-co~2 o/ . . . . . . . .  (8) 

a a 4 4 = 2  2 s e C 0 ( N +  1) z - 2 , ~ D ( N +  1) + D 2 

= D~sin20 + D~cos20 {1 2(ND cos 2 + 1)}z0 . . . . . .  . . . . . .  (9) 

Consider the point J shown ; let it lie in the possible flutter region. Now let a mass be added 
to the tab on an arm of zero length;  by (8) and (9) J will be displaced both horizontally and 
vertically by a distance proportional to D z, to the point J1 : it will thus move closely parallel 
to the stability boundary. 

If the length of arm is increased from zero to the value given by 

1 2 ( N  + 1) _ 0 ,  . . .  (10) 
D cos20 . . . . . . .  

then J1 will move to J~, where the difference between the ordinates and abscissae of J and J2 
is now proportional to D 2 sin 2 0. 



In fact, by  elimination of ~ between (8) and (9) it is easy to show that  the locus of the new 
inertia point, as ~ is varied, is a parabola : this parabola must pass through Ja and J2. By con- 
sideration of the inertia point for ~ very large, for which the increments in abscissa and ordinate 
are respectively proportional to 

(N + 1) (n + 1) 
and  4 2 (N + 1) ~, 

it follows that ,  since N >  n, the disposition of the parabola must be as shown in Fig. 5. Only the 
part  of the parabola for ~ positive is shown ; it therefore starts from J1 for ,1 = 0, passes through 
J2 when (10) is satisfied, and so to infinity. 

It  is now apparent that  only between J1 and J2 is tile locus nearer tile stability boundary than 
the point J ,  and the balance arm ~ (projected on to the plane of the tab) must therefore lie between 
the limits 

D cos 2 0 
0 < 2 < N +  1 '  . . . . . . . . . .  (11) 

which is the result of Reference 5 and of §8. Moreover, the closest approach to stabili ty (or the 
deepest incursion into the stabil i ty region when the parabola cuts tile boundary) occurs when the 
tangent to the parabola is parallel to the boundary. If the slope of the latter is taken to be 
uni ty  this gives 

d (d a44 ) _ d (b a44) d ~  _ 1, 

whence by differentiation of (8) and (9) with respect to X it is found that  

D cos 2 0 
-- 2 (N + 1) . . . . . . . . . . . . .  (12) 

Thus, as in §8, the optimum length is half the limiting length. 

If account is taken of the fact that  the slope of the boundary is slightly greater than unity, say 
1 + e, then the optimum length is, from ,Fig. 5, slightly less than half the limiting length. 
The optimum given by (12) is in fact reduced by the factor 

1 ( N +  1) 
N - - n  

A P P E N D I X  II 

11. Further Remarks o~ the Bearing of Earlier Work on the Recommendations for  Avoidance of  
Spring Tab Flu t ter . - - In  the present Appendix the results of the References of §2 will be more 
closely examined in relation to the conclusions of §9. 

11.1. The Effect of Variation of  Tab Iner t ia . - -Recommendat ion  (a) of §9, which requires 
that  tile tab inertia shall be as small as possible, was first put forward in Reference 3. Support 
for the recommendation is also provided by work described in certain of the other references. 
Some experiments described in Reference 2 have an indirect bearing on recommendation (a). 

Consider the effect of adding a mass m at D in Fig. 3. From the geometry of tile system it is 
seen tha t  the kinetic energy of m will be given by 

T = ½m (~AD --  ;tBE) 2, 

and the contributions of m to the ordinary moment of inertia of the control surface, product of 
inertia, and tab moment of inertia are thus 

m A D  2, --  m A D . B E  : - - m A D 2 / N ,  roBE 2 = m A D 2 / N  2, 
( 7 4 6 4 0 )  • B 
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respectively. The addition of m thus increases both moments  of inertia and decreases the inertia 
coupling. Now increase in the control surface inertia is beneficial ; so is reduction in the product 
of inertia. In spite of these beneficial effects, Fig. 5 of Reference 2 shows clearly that  when the 
rudder bar is fixed (spring tab case) increase in inertia of the control lever A D causes a considerable 
reduction in critical speed until a large control lever inertia is reached. This reduction must be 
attributable to the increase in effective tab inertia. In fact, the critical speed does not tend to 
rise, for curves 2 of Fig. 5 and 6 of Reference 2, until the moment  of inertia of the control bar • 
reaches 80 × 10-6 slug ft. 2 approximately. ' This represents a contribution to the product of 
inertia of - - 8 0  × lO-6/N slug ft. 2, i.e., - - 3 5  × 10 -6 slug ft. ~ approximately, since N = 2-3 
(deduced from Fig. 2 of Reference 2). The product of inertia of the unbalanced flap is 6.22 × 
10-6 slug ft.2 (Table 2 of Reference 2) so that, in effect, the tab is very greatly over-balanced 
when the critical flutter speed begins to i.ncrease. At the same time, however, the contribution 
to the tab inertia is 80 × 10-6/N 2 = 15 >; 10 -~ slug ft. 2, and it can be deduced from Table 2 
of Reference 2 that the unbalanced tab has an inertia of only 0.50 × 10 .6 slug. ft. 2. 

Thus, these experiments support recommendation (a) strongly. 

In Reference 5 variations in tab inertia alone are not recorded ; however, the tab was made 
heavier, relative to the aileron, by cutting lightening holes in the latter. This had the effect 
of reducing the critical flutter speed, and thus provides support for recommendation (a). 

11.2. The Effect of Variation in Control Surface Inertia.--Recommendation (b) of §9 also 
originated in Reference 3, but was given there in the form " any addition of mass to the aileron 
is beneficial in helping to prevent binary aileron-tab flutter." It was, of course, evident that 
such additions of mass must be in the form of aileron mass-balance weights, if the wing aileron 
flutter characteristics were not to be adversely affected. 

Reference 2 records experiments supporting this recommendation also. Fig. 3 of Reference 2 
shows that, for binary serve-rudder' flutter, increase in the moment of inertia of the rudder 
alone always results in an increased critical flutter speed. 

Reference 5 quotes a series of experiments wbich show that in all cases, addition of mass to 
the control surface alone resulted in an increase in the critical flutter speed. 

Reference 7 examines, theoretically, the effect of addition of mass to the aileron for ternary 
wing-aileron-tab flutter, and shows that  elimination of the appropriate wing-aileron product of 
in('rtia is necessary if ternary flutter is to be avoided. This work led to the formulation of 
recommendation (b) as given in §9. 

11.3. The Effects of Tab Balame Weight and Position.--References 3, 4 and 5, all consider fully 
the effects of position of the tab balancing mass in relation to the limiting distances laid down, 
and the results do not need comment here. Reference 3, as has been stated, also examines the 
conclusions of Reference 1 and sho,~,s that  they are consistent with the more recent work. 

It is of interest to consider the experimental results of Reference 2 in the light of recom- 
mendations (c) and (d) of §9. 

From Reference 2, p. 6, it may be deduced that the distance between rudderand tab hinges 

is D =0 .307  ft. ; 

also, from Fig. 2, approximately 

N = 2 . 3  

,~ sec 0 = 0.05 ft. 

0 = 40 deg. 

and Z = 0"039 ft., 

where ,tsec0 is the radial distance from the tab hinge to the balancing masses. 
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The  l imit ing (radial) length  of a rm allowed by  (d) is 

0.307 × 0.766 = 0.071 ft., 
(2.3 + 1) 

so t ha t  the  a rm was 0 .75  of the l imit ing length, approximately .  The improvement  in the  f lut ter  
character is t ics  due to the  addit ion of balance weights,  shown by  curves 2 and 3 of Fig. 5 of 
Reference 2, is therefore to be expected. 

The values of the  inert ia  couplings present are also of interest.  The formula for the  product  
of inert ia for two axes d i s t an t  a apar t  is, for the tab  and balance masses (see §8), 

P (M, a) = aXxdm + Xx2~rn -- 2aM~ + 2M~ 9 sect0, 
t t 

where X denotes 
t 

P ( M , D )  = 

D 
P(M'  N + 

D 
and ~ M ,  N + 

In  part icular  

summat ion  over the  unbalanced tab.  Thus, 

DNxdm + Zx2~m 2DM2 + 2MI ~ sec 2 O, 
I t 

D M1 + 2M1 "sec20, 1 ) - - N + D  1Xtx~m + 2 t x 2 ~ m - 2 N - +  1 

N D (2txOm -- 2M2). 1)  = P ( M ' D )  N + ~  

D 1) = p  (O,D) N DZxOm. P(0, N +  N + 1 l 

Table 2 of Reference 2 gives the  following da ta"  

(a) Tab unba lanced"  

P(0, D) = 6 .22 × 10 . 6  slug ft. 2 

2x~m = 2Xbm = 0.024 × 7 .75 × 10 .4 = 18.6 × 10 .6  slug ft. 
t t 

Hence 
D 

P ( O ' N +  1) = ( 6 . 2 2 - - - -  

(b) Tab sl ightly overbalanced"  

Hence 

2-3 0.307. 18.6) 10 -6  = 2 . 2 4  × 10 -6  slug ft. 2 
3.3  

P (M1, D) = - -1"42 × 10 - °  slug ft. 2 

2 x d m -  2MI~ = -  0"006 × 16"1 × 1 0 - 4 =  - - 9 " 7  × 10 .6  slug ft. 
l 

2.3  0"307. 9.7) 1 0 - 6 =  + 0 . 6 5  × 10- 6 slug ft. t D 1) _-- ( _  1:42 + 3--.-.~. P (M1, N + 

(c) Tab overbalanced" 

P (M~, D) = -- 4.61 x 10 -G slug ft. ~ 

X x O m -  2M~2 = - - 0 . 0 1 1  X 19.6 x 10 . 4 =  21.6  x 10 -a  slug ft. 

Hence 
2 .3  D 1) = ( _ 4 . 6 1 + ~ _ ~ .  0.307. 21.6) 10 - ° = 0 .  P ( M ~ ' N  + 

I t  will be seen t ha t  case (b) corresponds to a reduction of the product  of inertia,  in the  modified 
co-ordinates for which the elastic coupling is absent,  to about  O. 3 of the  value for the  unbalanced 
tab,  given in case (e). Since the inert ia coupling is still present,  however, the  occurrence of 
f lutter is not  unexpected.  
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For case (c), however, the modified product of inertia happens to be iust zero, so that  in this 
case neither elastic nor inertia coupling is present ; no flutter was obtained for this condition. 

Thus, it is Seen that,  in these experiments, a fairly considerable overbalance of the tab is 
needed to eliminate flutter when the balance arm is about three-quarters of the limiting length 
I t  seems justifiable to assume that  elimination of flutter could have been achieved with less 
balancing mass, if the arm had been in the plane of the tab and of half the limiting length. 

11.4. Effects of Variatiou of Elastic Stiffuesses.--The principal source of information on the 
effects of variation in elastic stiffnesses is Reference 2, Figs. 3, 4 and 5. The first figure shows 
that  when a spring G (Fig. 3 of the present report) is added, i.e., when the system is converted 
from a pure aerodynamic servo to a spring t ab - - a  rise in critical speed results ; the percentage 
rise remains roughly constant as the control surface inertia is varied. This result is obtained in 
the absence of tab mass balance. 

Fig. 4 of Reference 2 contains some usefui information. I t  shows that,  whether the circuit 
stiffness is operative or not (rudder bar fixed or free), increase in the stiffness of the spring G 
(present report, Fig. 3) results in increased critical speed. Fig. 4 of Reference 2 contains another 
very interesting curve; it relates to the condition of slight mass overbalance of the tab, with 
respect to the true hinges, fie., to condition (b) of §11.3. As is shown in §11.3 the tab is under- 
balanced with respect to the axes for which elastic coupling is absent, and the curve of Fig. 4, 
Reference 2, shows that  flutter occurs. There is, moreover, only one elastic constraint, namely, 
that  of the control cables, so that  the critical speed should be proportional to the square root of 
this stiffness. This is closely true, except where the stiffness becomes very small, when the 
critical speed jumps to infinity. This behaviour appears to be due to the fact that,  with the 
vanishing of the main stiffness, the elastic coupling also vanishes, and for the usual co-ordinates 
which would be used in the absence of elastic coupling the system is overbalanced and stable. 
The same physical system is, in fact, the limiting case of the spring tab as the stiffness tends 
to zero (system underbalanced and critical speed also tending to zero), and of the ordinary 
geared tab as the stiffness of the constraints tends to zero (system overbalanced and critical 
speed infinite). I t  seems probable that  some small variation in the condition assumed, e.g., a 
small non-linearity in the equations of motion, effectively changes the unstable spring tab system 
to the stable system when the stiffness becomes very small. 

Fig. 5 of Reference 2 (curves 2 and 5) shows that  the addition of a spring constraint G raises 
the critical flutter speed ; this remains true as the control bar moment of inertia is varied. 

Fig. 2 of Reference 4 gives a theoretical variation of critical speed with the stiffness of the 
spring G for a number of cases where the balance arm is longer than the minimum for the 
avoidance of flutter. The critical speed rises as the stiffness is increased, though the rise is 
only slight. 

All the evidence, therefore, points to the fact that,  if flutter occurs, increase in the spring 
stiffness of a spring tab is beneficial and there is no evidence to suggest that,  if flutter has been 
eliminated, change in the spring stiffness may be dangerous. 

(74640) Wt.917116 8/46 Hw. (}.377/! 
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