b

@
|
}

o
{j’v 4’173“1” g A

r ! . ‘ _ . , o
i myﬁ mﬁ. it Estold Mm#%m s AT AL il g bl bt rudad

4 E. & IL No. 2026
0067 1947 :  CLIBRARY | (8474)
LB RA 5@3“ v | an, s R ERIRE - AR.. Technical Report

3

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL
REPORTS AND MEMORANDA

Aerodynamic Forces on Y
Simple Harmonic M

W. Pricuarp Jones, M.A.

Crown Copyright Reserved

LONDON: HIS MAJESTY’S STATIONERY OFFICE
Price ss. od. net




RATIONAL Autoau TICAL B56 ASLISHMENT

. LIBRARY
Aerodynamic Forces on Wings in Simple

Harmonic Motion

By
R W. PricuARD Jones, M.A.,
of the Aerodynamics Division, N.P.L.

Reports and Memoranda No. 2026
20th February, 1945

Summary.—A theory for'the calculation of the aerodynamic forces acting on wings of finite span and any plan form
is developed, and from it an approximate method which reduces the amount of numerical work is derived. Satisfactory
agreement with the experimental evidence available is obtained.
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1. Introguction.—In an earlier report?, a method is suggested for the calculation of the pressure
distribution on a wing of any plan form in steady motion. The theory is now extended to-include
oscillatory motion. As it is based on vortex sheet theory, it is subject to the usual limitations.
The amplitudes of the motion in flexure and torsion are assumed to be small, and the mean angle
of incidence of the wing is small or zero. :
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The flow around the wing is reproduced by a linear combination of simple doublet distributions
over the wing area and the wake. The normal induced velocity due to each doublet distribution
can be calculated exactly. A suitable combination of simple doublet distributions can then be
determined by collocation to satisfy the boundary conditions for any mode of oscillation. If the
condition for tangential flow is satisfied at » points on the wing, » complex simultaneous equations
will have to be solved to determine the arbitrary constants of the required fptal distribution of
doublets. Unfortunately, however, the solution of large numbers of simultaneous equations
with the computational aids now available is very laborious, and, in view of this, an approximate
method is suggested which reduces the number of equations to be solved. This method has
already been used to calculate the aerodynamic derivative coefficients for rectangular wifigs®.
It is applied in this paper to the calculation of aerodynamic derivative coefficients for tapered
wings. Satisfactory agreement between theory and experiment is obtained for both rectangular
and tapered wings.

List of Symbols
0X, 0Y, 0Z co-ordinate axes
V velocity of flow
x = R(y) — 0-5¢(y) cos ¢ chordwise parameter
¥ = Iy spanwise parameter
c(y) local chord
C, mean chord
€ root chord _
l reference section at y =1
s semi-span
2 (= et downward displacement
w (= We')) downward velocity
y (= I'e?) bound vorticity
e (= Ee?) free vorticity
@ velocity potential
¢ acceleration potential
o, — &, (= Ket circulation
pVy (= P, — P lift distribution
P air density
P pressure
P[2n frequency
w=20"= pcfV local reduced frequency
w, = pc,/V reduced frequency parameter

Juo), H® (o), H® (o)
C(w’') = A{w’) — iB(w’)

p(o’) =

Bessel and Hankel Functions
H® (o")[(H,® (o) + iH® (0"))

T P (o) — i ()] 6
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List of Symbols—continued.

ry=2 [cosec # — (1 — C) cot f,]

r'"=2 [cot % — cosec ¥ + 2o’ sin 29}

I = ——28ina9—|—cotg+1—;—sin2ﬁ + 2w’ sin 9
. . ., [sin (v+1) 4  sin (n—1) 19']‘
n=2...I=—2sinnd +iw [ | PR
ES = — i’ exp (i0 cos #) fﬁ' Iy exp (— i’ cos #) sin 9§ 4o
Jo
E/(n) = — 2t ju
E' = — 2io'sin ¢
E =—1do [szzﬂ + sin ﬁ]
., [sin(n4+1) 9 sin (n—1) 19:]
. %22...En—————zw[ P S | »

2. General Theory.—The axes of co-ordinates OX, OY, OZ are taken as shown in Figs. 1 and 2.
It is assumed that the leading and trailing edges, when the wing is in its mean position, lie in the
plane 2 = 0. The wing itself is replaced by a thin sheet, and the z ordinate of any point x, v
on the sheet is taken to be the mean of the ordinates for the upper and lower surfaces of the wing
at x, y. The x, v co-ordinates satisfy the relation

.x=R(y)-—C—(2l)cosﬁ, .. .. . - .. (1)

where ¢ = 0, =/2, = define the leading edge, the mid-chord line and the trailing edge respectively.
It is also assumed that the deviations of the mean surface from the plane z = 0 are small.

Let V -+ u, v, w be the velocity components of the disturbed motion of the surrounding air,

where #, v, w are small compared to the velocity V' of the undisturbed airstream. If second
order terms are neglected, Euler’s equations then give

dw_ 1% v 12p dw_ _12p 2
dt = pox’dt pdy’ dt  p oz’ . . @
d 8 2 . . .
where Z=5 T V i On integration, (2) yields
T _ '
Et—_“—q;—l-F(t)—qb’ . ce .. o .. (3)

(73204) A2
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where @, ¢ are respectively the velocity potential and the acceleration potential. The discon-
tinuity in the pressure field is related to the discontinuities* in @ and ¢ by

%(q)a—@b):—p“;pb:qsf—qsb. . . . . @

Since $, — p, = oVy, where y is the bound vorticity, and since u, — u#, = y + ¢ is the total
vorticity at any point, equation (4) yields

0

a—i(@a——-@b)::—Ve, .. e . . . . (5)

where ¢ represents the free vorticity distribution.

As the wing is describing simple harmonic
motion, let

O, — ©, = Keitt, p == Ieitt, ¢ = FEe',

Then substitution in (5) and differentiation with respect to x yield

pE—ipren=—vE. . @
On integration, (6) gives
K@) — — g.ﬂw+mm ] .
= o [ rerivan, .. x<x .
== g~V J: FetVdx, ., . ..x2>=%

where x, x, define the positions of the leading and trailing edges of the section y. It is clear
from (7) that the value of K at any point corresponds to the total circulation forward of that
point. In the wake, Ke?* is constant along the direction of flow, but variable along the span.
The discontinuity K in the amplitudes of the velocity potentials can be represented by a distri-

bution of doublets of strength K over the wing and the wake. -The induced velocity w (= We')
due to such a distribution is then given by

W(x, v, 2, jjzz <1)cixdy, O

where #* == (¥ — x,)* + (v — 3% + 2> and z,—> 0. Since the wing oscillations are of small
amphtude the doublets ¢an be assumed to lie in the plane z = 0, and K can be regarded as a
function of x and y only. Let z(= 2'(x, y)e*") denote the dlsplacement of any point on the
mean wing surface. Since the doublet distribution is such that the corresponding induced velocity

is equal to the normal component of velocity of the wing at all points, the following condition
must be satisfied :—

o , 0z’
W =apz —}-Va—x. .. .. .. .. . ©)

* The suffices a, b refer to the flow above and below the surface respectively.
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Let the bound vorticity distribution be represented by

r=v [( Fo’ + FOH) z 'Cll'vn ‘Am + Z ['n z Cmn Am:” T (10)
m=1 He=1 m=1
where I')/, I\, T',, efc. are defined in the list of symbols, and where A,, 4,, efc. are simple
functions of the spanwise parameter. The corresponding doublet distribution is then represented
by

K = 17 !:(K(], _i'- Kﬂ”) Z C[)m Am + Z}: Kn Z} Cnm Am:|7 A (11)
where ,
K,/ (%) = e*"f”"Vf ry ey, . ... x <z
i
- 12)
=T i)ty X = X,
i J
and .
' K, == c¢sin ¥, I

K, = f(sin P sin Zﬁ.) |

2 2 > ... . o (13)
_cfsin(n41)9  sin(n— 1) 9
n>2. .. K =g( ).

o

It is shown in the Appendix that

K/ - ¢S(9) = c. exp (iw’ cos ¥) ‘:Xoﬂ + 25 (=i X, sin %ﬂ] ,

where
X, =CJ (o) —i(1 = C) J, (o).

Values of S(#) for various values of w(= 2«’) are given in Table 1. Tt will be noted that K,”,

1 - - - K, are independent of the frequency parameter. When o = 0, K,/ = ¢# on the wing
and ¢z in the wake. If W, denotes the amplitude of the velocity induced by- the doublet
distribution K, A4, at the point x,, y,, z,, then by (8)

W,WI:%HK,@AMG—Z%GM@. T

The evaluation of integrals of this type is discussed in detail in the appendix to R. & M. 21451,
Values of W,, for various values of # and m are given in ;Tables 3-5. The induced velocity
W, corresponding to K" 4,, which can be calculated as shown in the Appendix to this paper,
'is given to sufficient accuracy by Cicala’s method (see §4). Hence the total induced velocity
W can be expressed as ‘

lV = V [Z Com (W70WL, + WO‘WL,I) + Z Zh C”VW"L WMTIL :' .. (15)

where C,,, C,,., elc. are‘arbitrary constants which can be determined to satisfy (9) at a number
of points on the wing. When their values are known, the pressure distribution ¢V I" is given by
(10) and the aerodynamic forces can then be calculated.
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3. Lyon’s Theory.—In this theory * 4, the bound vorticity distribution is given in the same
form as (10), but '

r'=2 |:cosec ¢ — (1 — C) cot %] )

where C is here a function of y as well as . The vorticity distribution is represented by a system
of superposed rectangular vortex sheets with constant vorticity strength in the spanwise direction.
For any given value of o, the function C is determined so that a vortex sheet extending from
—y to -y with a chordwise total vorticity distribution Iy’ + E, gives zero induced velocity

at the mid-chord mid-span point. This complication appears to be unnecessary, for (10) reduces
to the form :

A

I' = B, cot 5+ > B, sin und,
=1

where By, B, . . . B, are functions of y and », whether C is a function of ¥ or not. As the
method is also based on rectangular vortex sheet representation of the vorticity distribution,

it cannot be applied to the calculation of derivatives for tapered or swept-back wings without
considerable modification.

4. Cucala’s Theory® ¢-—This method is in effect an extension of Glauert’s lifting line theory
to oscillatory motion. In two-dimensional vortex sheet theory, the normal induced velocities
corresponding to K, K", K, . . . K, are 0, 1, £+ +cos 9, ..., cosnd respectively, and
Cicala assumes that the induced velocity W due to (10) can be expressed as

MWl

W =17V I:LVDI __!__ z COm,Am + (% + COS 19) Z_; C mAm + Z: cos nd Zl CnmAm:l’ .. (16)

where

VW(,'—:.-.fyzf_s(y_lyl_%z«*o)%fyfdy, e

and K = VK/(x) > C,,4,. It should be noted that K,(x), as defined by (12), is a function
m=1
of w. Cicala’s function F is given by

V) =[en(3+y—n/gtedX, . .. .. (9

where ¥ = I@ (¥ —v,). When Y is negative F(Y) = — F,(— Y). The values ot F, for a

range of values of Y are given in R. & M. 21422, When p = 0, as for steady motion,
(17) reduces to the usual formula for the downwash induced by the circulation K. By the use
of (9), (16) and (17), the arbitrary coefficients C,,, C,,, efc., can be determined when the induced
velocities W, due to the spanwise distributions K,'(x,) 4, have been calculated. However,
it is shown in Table 3 that the assumption on which (18) is based is not justified for wings of
aspect ratio 6, since the velocities corresponding to K,” 4,, K, A,, K, A, are not A,
A, (% - cos 9), A, cos nd respectively. For wings of large aspect ratios, however, this method
might give fairly accurate results for low values of w, since in the limiting case when w =0
it reduces to Glauert’s lifting line theory.
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5. Alternative Theory.—In this method, which was first suggested in A.R.C. 47057, it is assumed
® that the induced velocities due to K|/ Am, K/ A4, K A, K,6 A, are proport1ona1 (but not
equal) to the values 0, 1,  + cos &, cos n# appropnate to the two-dimensional theory. On this
basis, the velocity dlstrlbutlons are given approximately by

I/VO»Z (y’ ) - WOmI(y) WOm (y’ ) '— WOmH(y)’ 1|
[Vlrn(y’ ﬂ’) = VVlm(y) ("% + Cos ﬁ?’ j . ‘o : (19)

n 2 * an(y’ ) = an(y) Cos %?9

where W, (v), Om"(y) W..(y), efc. are dependent on v but not on ¢. They are chosen to
satisfy (19) for a particular value of ¢ which need not necessarily be the same for each relation.
Equations (9), (15 ) and (19) then give

. I4 a 4
(L_E)‘i -]_ _Z' == Z [Com Om(y) + Clmwlm(y) (% —I_ Cos ﬂ) + . l_ CmnWmn( ) COs %79]. i (20)

c ox

For the section y = y,, (20) yields the relations

Z CDmWo:n y1 - 1J 1 — €0 <1/w2 %) d'{)’,
and .. .. .o (21
Z CowW m(yy) = ZJ (mz g—;) cos nd do. J

The values of the coefficients C,, are determined to satisfy (21) at the required chordwise
sections. -

When w,—>w, W, — 0, and even for @, values in the neighbourhood of w, = 3, the error
introduced by the assumptlon that W, = 0 is not large. The velocity distributions w,.”,
W, etc. are independent of w,, so that the assumption that W, is zero simplifies the problem
considerably as shown in §6. At low values of w»,, however, the trailing vorticity effect repre-
sented by the W, terms cannot be neglected.

Formulee for the calculation of aerodynamic derivatives by this method are developed in the
next section.

6. Aerodynamic Derivative Coefficients.—For simplicity, it is assumed that the mean wing sur-
face is flat, and that each chordwise section is rigid in bending. Let the flexural and torsional
modes of distortion be f{r) and F(y) respectively when referred to the line* x = x(y). Theampli-
tude of the displacement at any point x, y is then given by

7 =) +. (v — %) O'Fln), .. .. .. .. .. (22

where ¢, 0’ denote the angular displacements in flexure and torsion at the reference section
n = y[l = 1. Alternatively, (22) can be expressed as

2 =1'f+ (i —0-5co8 8) c(v) O'F, .. .. .. .. (23

where mc(y) = R(v) — %/(y), and where 7% may also be a function of the spanwise parameter.
On substitution for 2/, ( 0) yields after reduction and a comparison of the coefficients

= C,. W 0,,; ml‘f’erm (m+ )‘io'FJra'F]
and | } @)

T, ,,

- l
. Z CIMWIm(y) - 200 0 ;,Z:' J

* This is usually taken to coincide with the flexural axis.
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The terms-W,, for » > 2 are not required. Let

C[)m - chlﬂqs EOm + Z'CU()O,G
0
and . . . .. (25)
Tw,0’ :
Clm = - izo_ Dlm .

O —i— B’R[)m

Then the conditions to be satisfied at various points along the span may be written as

z EOMWOW" = f’ Z Gﬂmwfom - <’17’l- —*-— l) i FJ ]
4/ ¢,
L (26)
Z RDmVV(]m = F, lemW]lm S Cg F’ J

0

where E,,, G,,, R,, and D,, are arbitrary coefficients which can be determined by collocation.
Since W,,, == W, + W,,”, where W, ' is complex and a function of the frequency parameter,
the complex coefficients E,,, G,, and R,, will also vary with frequency. However, when
w,—>w, W, ' —0, and W, — W, which is real and independent of frequency. The
systems of equations in (26) would then be real instead of complex and more readily soluble.
When E,,, R,,, elc. have been determined by collocation, the coefficients C,, and C,, can be
calculated. The appropriate pressure distribution is then given by (10).

The amplitudes of the downward force and the pitching moment per unit span at y = /n
are given by

6Z’:-pVJFdx:-—P—CzIZrFSin sdo, |
0
and
5M'=—pr1’(x-—5cf)dx, - .. .. ..o (27)
Ve? m — . .
=-p4 jof(Qm—cosﬁ)51nﬁd0

Let C,= > C,A, and C,= > C, A, and assume that

met  [TTTTE
cA,,,=s(%) Jl—ys—z = sT,. 28
Then, on substitution for I" from (10), (27) gives
82" = — mpcV?® [aC, + BC,,
(29)
M’ = — mpc®V? [yCy + 6C], .
where
7 — C
O(:~C—|—-if, y—_—ma_z‘;’
, (30)
tw
f="¢g, 86———z(:>< ~g)- 1

and C is defined in the list of symbols.




If
6 = Z Enm m? Z G()m 24 7OEZROW m z D]m m

then by (25)
zCOme_zw queO +Z OgOG ~|—7’0 1

ond P e
tw,d, 0’ o
ZCIHL[m: —0)_02—1' J

The local force and moment are given by

i

62" = — mpsV* {al:%cl—e‘i/)— + (7, + iwogo)O’} — z—wf'%l—li}
0
and .
M’ = — mpesV? {'y [-Zw“ig"(/)— + (, + iwﬂgo)ﬂ’} — mizbi&]’ . (32)

0

Since «, f, y and 6 are functions of the local frequency parameter (= pc/V), they will vary
along the span, except when ¢ = const. as for a rectangular wing. The amplitudes of the flexural
and torsional moments at the reference section are given by the integrals

of
= [ szwyin
. 0
and : : .. .. .. .. . .. (33)
— [ smiray,
[}
If 9" = ¢,9’/l, the aerodynamic moments can be expressed in the form
L’ ,
"VZZa L12 (}S —l_ L3419
and . .. .. .o (34)

M’ ,
;‘VEZEC_D::‘MWSI’ + My,9

where the airload coefficients L,=L, +iL, efc. are given by

tw,s [ h
le:ncwo J‘o 600Lfd?7,
0 .
s (s . ) d
L, = Z— . '{“[70+@w0go] —%}ﬂim
o 4 ‘
y 51 . -~ v . (35)
M, ="~’§’-ﬁ§ [, e (5 ) Fan
0
and ‘
s [ . Tw,0d c
_ M34 = E;; . {?’ (7, + 10o8] — _“’02_1} (E)Fdﬁ- J
o
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AS wy— o, let e,—> &y, go—> By» 7o —> 7o, and write d, for d; which is independent of w,. Then,
in the limit, (35) yields

SR IO .
b= gt =i [ 5 (F-g)a] () Fan |

which are the formule for the aerodynamic inertia coefficients in still air. Derivative coeffictents
of the classical type are then given by

L,— L, =¢, + twyb,
L,—L,=c,+i0,b,
M, — M, =k, i,
M, — M, =k, + i,

(37)

where ¢,, b,, efc. correspond to the derivatives used in R. & M. 17828,  The corresponding funda-
mental derivative coefficients 4, 45", u,’, p#;/, efc. are such that '

s/t s/t
¢ = A, jo fidn . bh=4 i cfo I

e =1 Z" cfo fFidy ., b=14; f:”(c‘io)z FFdy

vﬁ
o3
e

Ry = uy f:ﬂ iden » D= HE J :”(C-cijdn

ky = uo'. f:” (Cﬁo)z Fidy,  Ja=w f:“ (CC_()‘”’ Frdy ]

Similarly, the fundamental aerodynamic inertia coefficients 43", 43, uy’, " are given by
, sl c 2 . , s/t c 3
a4, :2.‘4) jo (a}) fzdﬁ, LZS = 2."; J’o ('c—o de’ﬂ

b=y [P(E) sFan, o= [ () Foan

By the use of (37) and (38) the values of the fundamental derivatives can be calculated when the
airload coefficients are known. The values of 4, 1;, efc. refer to the reference point of the
reference section. If this is at a distance 4c behind the leading edge, the fundamental derivative
coefficients* referred to the leading-edge point of the reference section will be given by the usual

formulee }-qg — Aqs’; Ao — 2'0, + hld,l, Py = Iud)' + h}.¢1,
Po =g T h(”dr, + 19,) + A Zd»”

and so on,

*}4, A}, etc., correspond to the fundamental derivative coefficients of R. & M. 17828,
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7. Numerical Applications.—The aerodynamic forces acting on a symmetrically tapered wing
A and a tapered wing B with its 0-3 axis at right angles to ¢he root chord are considered. Both
wings are of aspect ratio 6 about (exact value = 5-84) and have the same taper ratio. The local
chord ¢ is defined in terms of the root chord ¢, and the spanwise co-ordinate as stated in Fig. 3.
In the calculations the reference section is assumed to be at the wing tip (I = s).

The modes considered are (i) f =, F = "%, and (ii) f = »? F = 5 ; and they are referred
to the mid-chord axis of wing A and the 0-3¢ axis of wing B. Both symmetrical (S) and anti-
symmetrical (A-S) motions are considered.

The calculations are based on the method suggested in §5. 1In the first instance, fundamental
aerodynamical derivative coefficients are deduced for the case when W, = 0 for a range of
values of w,. The values obtained are given in Table 6, and wyl;, w.u; and u, plotted for
comparison with various experimental results in Figs. 4-7. By use of these curves as guides,
more accurate values of the coefficients corresponding to the case when W," terms are included
can be estimated when the true values are known for two or more values of w,in the practical
range. In steady motion, W’ corresponds to the velocity induced by the trailing vortices
and cannot be neglected. For oscillatory motion, however, the induced velocity due to the
vorticity in the wake is not as important, and for large values of o, it can be neglected altogether.

The values of 1; were determined with particular care, and it is believed that the values obtained
would not differ appreciably from the values which would be given by the exact theory of §2.
The validity of the assumptions made in §5 is confirmed by the insensitivity of the results to the
values of 9, chosen in (19). For instance, the values of 1; obtained are practically the same
whether the normal velocity conditions defined by (26) are satisfied along 0-3¢ or along 0-75¢
of wing B. They are also the same when the values of W ,'" along mid-chord of the symmetrically

tapered wing A, which are easier to calculate, are used instead of those corresponding to 0-3c¢
of wing B (see Table 7).

Values of the remaining derivatives are also given in Table 6. They are épplicable for wings
of thin symmetrical sections. In general, however, they might well be dependent to some extent
on thickness and shape.

The aerodynamic inertia coefficients 13, efc. for the modes considered are approximately
0-755 of the values given by two-dimensional theory as compared with 0-744 for a rectangular
wing and 0-87 for an elliptic wing of the same span and area® 10,

8. Experimental Comparisons.—Values of the fundamental flexural damping derivative
coefficient 2; for rectangular and tapered wings have been measured recently by Bratt!l
Experimental values for the fundamental torsional damping derivative coefficient w;" for a rigid
aerofoil oscillating about its 0-5c axis have also been determined in the Compressed Air
Tunnel'?. These results are in good agreement with the theoretical values of this paper as
shown in Figs. 4—7. Experimental values obtained by Jones and Lambourne!? from tests
carried out on wing B with distortion modes f = 5, F = 4'* (Mode I) are somewhat higher than
the theoretical values. This is not surprising as the experimental results include the apparatus
damping and frictional effects present in the system.

Further confirmation of the theoretical values for i;, efc. for rectangular wings as given in
R. & M. 21422 can be deduced from the experimental results of R. & M. 11554, It has now been
established that the modes of the model wing used were as shown in Fig. 8. Both the flexural
mode and the torsional mode can be represented approximately by f = #"/* = F. No theoretical
. values of the fundamental derivative coefficients corresponding to these modes are available,

but they should not differ much from the values givenin R. & M. 21422 for the modes f =u = F,
as derivative values are not very sensitive to mode variations. From the derivative values given
in R. 83 M. 1155, the following leading-edge fundamental damping derivative coefficients were
deduced :—

Ay =1-13, 4;=1:08, p; = 0:35, u; = 0‘_56.
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They correspond to a mean frequency parameter valucof o == 0-7. The corresponding theoretical
results from R. & M. 21422 for w =% are

Ay =1-24, 2, = 1-12, p; == 0:30, p; = 0-54.

The cxperimental value of 4; is lower than the theoretical value, as one would expect, since
for a parabolic flexural mode, 7; == 1-01. In R. & M. 1155 it is stated that L; and M; were
difficult to measure, but that L, + M; could be measured with reasonable accuracy. The
corresponding mean experimental values of 4; + p; is 1-43 as compared with the theoretical
value of 1-42. The values of L, and M, were measured statically, and they give 1, = 1:48;
and p, = 0-34 as compared with the theoretical values 4, = 1-45 and u, = 0-36 respectively.

In Ref. 15 it is pointed out that the stability derivative L, = 2L; approximately. On the
basis of this assumption it can be deduced that the non-dimensional stability derivative coefficient

L; 1o
—_— ’ Zoe
Z/, pVS"Cm ¢ o Co n* dy,

where ¢, is the mean chord and # = y/s. If the local chord is defined by ¢ = ¢, (I — ),
it is readily proved that

L (L =0758) 40,
=X =0:55) T 3 (c)

where ¢, is the chord at 0-75s. By the use of measured values of /,, the fundamental coefficient
2; can then be estimated. The experimental results given in Ref. 16 yield a value ofl, = —0-44
for a rectangular wing of aspect ratio 6, and give /, = —0-46 for a tapered wing (¢, == 0-5¢)
of the same span and aspect ratio. Hence, for a rectangular wing, 1; = 1-32, and A, = 1-66
for the tapered wing. These values correspond to low values of o, and are in fair agreement with
the theoretical and experimental values given in Figs. 4 and 5.

Since the values of [, for the tapered wing and its equivalent rectangular wing are nearly
equal, it can be assumed without serious error that [, = —0-45 for both wings. This leads to
the relation

5(R) =50 (F)

where A;(R) and 24(7) refer to the rectangular wing and the tapered wing respectively. It is
interesting to note that Bratt’s mean experimental values 14(R) = 1-15 and 4,(7) = 1-35,
‘which correspond to values of w, in the practical range, also satisfy this relation approximately.
For wing B, g = 10/21, and ¢ /c,, = 0-844, and if the value 2;(R) = 1-151s assumed, the above
relation gives 4;(7T) = 1-36.

Acknowledgment.—The writer is greatly indebted to Miss Sylvia W. Skan and Mrs. L. A. Toms,
who were responsible for most of the numerical work of this report.
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APPENDIX

Evaluation of Integrals.—(i) Doublet Distribution K,.—On substitution for x in (12), the
following expressions for K, are obtained :— '

' ¢ , : .
K = g exp (10’ cos 9) joﬁ I'y exp (—iw’ cos 9) sin & d9,

[cosec 4 — (1 — C) cot ?] exp (—iw' cos 9) sin ¢ dd, L .. (39)

= cexp (io’ cos 9) fﬂ 5

0

= cexp ({o’ cos ) Jﬁ’ [C — (1 — C) cos #] exp (—iw’ cos ) d¥,
0 .

J
where o' = 21—5% == 120 Furthermore,
exp (—iw cos #) = J, (o) + ZZ (— 9" J (o) cos nd, .. .. .. (40)
and by differentiation with respect to o’ this gives
cos 9 exp (—iw’ cos 9) = § [ ], (") + 2> (—ip ) (@)cosnd), .. .. .. (4])
o ‘ : ,
where [ ' = -J—gg?—) It is then readily deduced that
, . S in 7d
jf [C — (1 —C)cos?]exp (—iw’ cos 9) d) = X9 + 2Z(-2)"Xn sm%n o (42)
where |
X, =CJ, (o) =i (1 =C) ], (o)
and
2]1z, == ]n—l - Jn—|~1’
If _ _
S(9) = exp (ia' cos?) [Xbﬂ +2>(— 1) X, ili;f_ﬁ] .. (43)

equations (39) and (42) then give ‘
K =cS(9). . .. .44
At the trailing edge, ¢ = =, and

e

K(,':ce*f“”Xon::;, . .. . .. .. o (45)
where 4 = ¢*'/X,. But, by definition,
Xo = cjo + (1 — C)JI

H1(2)]0 _ Ho(z)J1 2
H® 1 HP = zo (H® 10 . .. (46)
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!

so that u = Z5- e (H,” — iH,*). In the wake, I/ =0,

- 1 .
and K =e-V [ ) etV dx,
. xl
zc
—— — r—.xVV
= ¢ i ‘e . .. .. . .. (47)

When o’ = 0 as for steady motion, (44) and (47) reduce to K,/ = ¢# over the wing and K, = zc
in the wake respectively.
(i) Calculation of W, .—The normal induced velocity W,," is given by

(Wl * 1

W, 7 - ap"*' Hiﬂ’" o cBNaxay, .. .. L s

where the integral extends over the area between the leading edge of the wing and infinity down-
stream, and z, — 0. Firstly, consider the integral

40, = — 2, [ Ky 4, B ]
. J_ | ncd,, [©e :; USIN
Since exp (in’ cos )= J, (o) + 2 z i J, (') cos 79 and = _2— = HZ Smn%ﬁ the fllnétlon

S defined by (43) can be expressed as

S =], liXm 49 i“ (— i) X, Smn%ﬁ}
n=1

+ 2> ] cosrd [X(,ﬁ — 2> (X, — (— )" X)) S‘“ﬂ”ﬂ . (50)
pe=1 =1
It is then evident that

f 7N (17 dx j cS (9 Sll’l & dd
B 27

(51)
can be expressed in terms of integrals of the following types :—

fﬂ ? sin @ dd f sin #9 sin ¢ 4o J cos #d sin 9 do
(1] ’ 0 l)3 ’ 0 ‘l)3 ’
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where

D? = (a — cos 9)® + b* = 4¢%/c?, ]I

ac = 2 [R(y) — R(y),] + ¢, cos 9, .. .. . .. (52)
and - be = 2V (y — 3,)* + 2%

Integrals of the first ‘two types are expressed in terms of elliptic integrals in Ref. 1. The third
type of integral can be evaluated by means of reduction formule. If

I =

7 fﬂ cos'® sin 9 d¢ (53)

— D
0
then it can be deduced that

I~l[ a1 a—1 ]
A (o ) VA [ o Va4l

- 1 1
Il-—_'aIO —I—[(a’i_ 1)2—]—62]1/2 - [(a__ 1)2+62]1/2 »

(61 € 1)2 4 b2]1/2
(d - 1)2 + b2]1/2,

]2=(6Z—-1)I1_“Io+logez:{_—}i‘[%

and

o \ . (____1)7—-1

1’]1, = [u&l (1’ — 1) — 6l] ],_1 —_ (7’ — 1) (ﬂ —]— b) I,__2 -_ [(d __}__ 1)2 + 62]1/2
1

+ [(d . 1)2 + b2]1/2 .

Since
L]
cos nd = 2"~! cos” ¥ — %—-1—2'—— cos" ~* 4
. — 7 -=b
+ % 2!3'2 cos"™* 9 — etc.,

the required integral can be expressed in the form

7 cos nd sin ¢ dod n . 23
L = =2 I, — = Ly + et y L (B4

By the use of the preceding relations and the results of Ref. 1 the integral defined by (51) is
given to sufficient accuracy by a finite number of terms of the series expansion for S(#) for a
value of o’ in the practical range (0 < o' < 2).

Next consider
O 5 =ip (8= 2)[V © —ipX [V % —ip (% = x) [V
f e 3 ' dx:eiﬁ(";*-ﬁ’”’f : e d.:( __ _J't e 3: ax
# ¥ o (X + (¥ — ) + 0¥ # 4

where X = x — x,.

, .. (35)
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The second integral can be expressed as

4 exp o/ (Lt cos 0)jsin 0 _ A’ (- [] o 12 >0 s cos m} sin o d
2 . 19)] D3 - 02 J ?9’1 B D3 >

(56)

Lo

which can be integrated in the same way as the integral of the third type already considered.
The first integral in (55) can be expressed in terms of Bessel Functions. Let x = pX/V, and
o« = pI(y — ) + 2°))/V* Then ’

"w e~ XV g X L J"" e dx

Yo (X2 (y—p) + 277 o (& )

= K,(o) — iT,(2), ... (57)

where Ky(a) denotes the usual modified Bessel Function of the second kind. The function
T,(%) bas been discussed in the Appendix to Ref. 17. There it is shown that

7T a

To(o) =5 1o — L) | Ky(o) dox + Koo | 1,(2) das,

3 5

4 o oL ed :
::ilo(oc) —-‘1—2 —Pgi—fz—gz—? —etc., . . (58)

where I,(2) is the modified Bessel Function of the first kind. The asymptotic form of Ty(«)
is given by

) 1 1* 123 1:3%5?
To) = > + 5+ o e (59)

o o

By differentiation with respect to «, (57) yields
J’“’ e~ dx K (2) —iT (o)

o (x2 + a2)3/2 - o ? .. ' .. .. .. .. (60)

where K, = — aé{gg and T, = — ?‘a’%'

From the preceding formule, it is evident that @,,” can be expressed in the form
&, =z L fly — v, 2)dy, . . .. .. (81)

where f— o when z;, =0 and y— ;. The corresponding induced velocity distribution is
given by

wo =l (s D= s

where g has a singularity at y = y, when 2z, == 0. The above integral can be evaluated by the
method given in Appendix IT of Ref. 1.

The calculation of W, by the above method would be very laborious. Fortunately, however,
the values of W, are relatively small in comparison to W, and they can be calculated to
sufficient accuracy by Cicala’s method. The values of W, given in Table 2 were calculated
by the latter method with x assumed to be constant and equal to its mean value along the span.
This is equivalent to the assumption that the tapered wing can be replaced by a rectangular

wing of the same span and area. The calculation of W, for a rectangular wing is described in
detail in Ref. 2.
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TABLE 1

Values of S(9) (= K,'Jc)

li{} w=04 w =208 w=1-2 w=16 o=20

0 0 0 0 0 0

1 0-1195—0-0985¢ 0-0660 —0-0865: 0-0418—0-0725; 0:0294 —0-0616¢ 0-0227—0-0534¢
2 0-2410—0-1975¢ 0-1335 —0-17375¢ 0-0852—0-1458; 0-05925—0-1240: 0-0445—0-1073¢
3 .0-3675—0-2955¢ 0-2055 —0-2620: 0-1313—0-2205; 0-09125—0-1876¢ 0-0670—0-1622i
4 0-5000—0-39307 0-2840 —0-3515: 0-1833—0-2978; 0-1280 —0-2540¢ 0-0939—0-2197¢
? 0-6425—0-4885¢ 0-37175—0-44275¢ 0-2438—0-3785¢ 0-1725 —0-3251¢ 0-1285—0-2827:
6 0-7955—0-5815: 0-4720 —0-535252 ‘0~3i58—0-4628i 0-22775—0-40175¢ 0-1725—0-3530:
7 0- 9630;—0 -6700¢ 0-58825—0-6275¢ 0-4033—0-5503¢ 0-29675—0- 48325 0-2284-—0-4294¢
8 ~1'1465—0-75T15i 0-7245 —0-7175¢ 0-5110—0-6383; 0-3850 —0-5674: 0-3029-—-0-5091:
9 1-3475—0-8220s 0-8850 —0-8005: ‘0-6448—0-7233¢ 0-50025—0-6510¢ 0-4044—0-5899:
10 1-5675—0-8780¢ 1-07325—0-87125¢ 0-8112—0-7992¢ 0-65075--0-7286¢ 0-5427—0-66771
1 1-8055—0-9160: 1-2915 —0-91675: 1-0147—0-85584 0-84275—0-78941 0-7252—0-7316¢
12 2-0605—0-9295:¢ 1-53925—0-9405¢ 1-2575—0-8788¢ 1-08075—0- 81556 0-9587—0-7608:

81



TABLE 2

Values of W,,," for Wings* of Aspect Ratio 6

=3
I

3

—HOOOOO
SWLWOIN

0-1727—0-2972¢
0-1795—0-2978:
0-2023—0-2991¢
0-2489—0-2990¢
0-3438—0-2842;
0-838410-1125¢

0
0-1028—0-1323:
0-2239—0-2665¢
0-3589—0-3908¢
0-5653—0-5001z
1-224 —0-2068¢

—0-2001 +0-1696¢
—0-1626-+0-1298;
—0-0447 4-0-0095:
+0-1727—0-18707
0-5398—0-4419:
1-490 —0-3463:

0
—0-0821-+0-0524:
—0-0911+0-0403;
+0-0464—0-0918;

0-4700—0-3791;
1-723 —0-4859;

—0-03954-0-0471
—0-06634-0-0625¢
—0-1091-40-07644
—0-0466—0-0015¢
+0-3683—0-2950¢

1-924 —0-5836:

0
—0-02814-0-218¢
—0-07984-0-05147
—0-08694-0-0287¢
+0-2711—0-22444

2-108 —0-6828:

SN

0-0363—0-19607
0-0411—0-1993¢
0-0584—0-21044
0-0979—0-2315:
0-1929—0-2590¢
0-91934+0-1152¢

0
0-0321—0-1009:
0-0796—0-2086¢

© 0-1434—0-3186¢

0-2843—0-4413¢
. 1-121 —0-16407

—0-09634-0-1580:
—0-0820+0-1245¢
—0-0337+0-0219¢
+0-0692—0-1559¢
0-2864—0-4112¢
1-300 —0-3211¢

0
—0-0487--0-0560:
—0-06254-0-0540:
—0-:0019—0-0619:
+0-2523—0-34007

1-453 —0-4602¢

—0-0108-40-0388:
—0-0284 +0-0558:
—0-06204-0-0772;
—0-044440-01312
+0-1969—0-26914

1-594 —0-5689i

0
—0-0140--0-0217¢
—0-04704-0-0555¢
—0-0669-+-0-0444¢
+0:1415—0-1950¢

1-723 —0-6720¢

—_—oo0ooQ
SWOH RN

—0-0109—0-0968;
—0-0092—0-0989;
—0-0046—0-1077
+0-0153—0-1372;

0-0752—0-19514

0-9814-+0-08607 |

0
—0-0018—0-05557
+0-0062—~0-1182¢

0-0213—0-1899:
0-0905—0- 30057
1-064 —0-1000:

—0-02394-0-1044:
—0-02304-0-0857:
—0-0172-0-02507
+-0:0074—0-0939:
0-0959—0-2965¢
1-158 —0-23544

0
—0-018740-0425¢
—0-02774-0-0491¢
—0-0173—0-0229¢
+0-:0944—-0-2269¢

1-242 —0-3488¢

+0-00384-0-0198:
—0-0044-0-0348:

—0-0233-+0-0589:

—0-02974+0-0237:
+0-0715—0-1822;
1-325 —0-4446:

0
—0-00434-0-01220¢
—0-0167+40-0430¢
—0-0363--0-0484¢
--0-0509—0-1189¢

1-401 —0-5348¢

—_o OO OoO@
SO

—0-0161—0-0599;
—0-0148—0-0602;
—0-0077—0- 06244
—0-0031—0-0902;
40-0284—0-1515¢

1-005 4-0-0617;

0
—0-0087—0-03647
—0-0081—0-0772¢
—0-0054—0-1236¢
+0-0268—0-2133¢

1-049 —0-0698¢

—0-0041+0-07197
—0-0056+0-0606:
—0-0071-+0-0226¢
—0-:0056—0-0610:
+0-0292—0-2202;

1-107 —0-1835:

0
—0-00934-0-0302¢
—0-0130-4-0-03817
—0-0116—0-00442
+0:0460—0-1482;

1-161 —0-2756¢

0-0057 40-01142
0-0012 40-0233:
—0-0088 +0-0444:
—0-01790-+0-0235:
+0-0313 —0-12372
1-216 —0-35662

0
—0-0015+0-00807
—0-0061+4-0-03132
—0-01684-0-0458:
+0-0279—0-06532

1-269 —0-4347¢

* For rectangular and tapered wings of the same span and generalized aspect ratio.



TABLE 2—continued.

splv | " 7 8 9 10 11
?7] \\

0 —0-01794-0-0240; 0 —0-0106-+-0-0151; 0 ~0-00724-0-0106
0-2 —0-0268--0-0301; —0-0122+0-0107; —0-0144-10-01863 —0-00714-0-0067; —0-0090++0-0132
0-4 —0-06684-0-0523; —0-04434-0-03217 —0-0371 4003224 —0-0248--0-0197; —0-022340-02117
0-6 —0-1065--0-05547 —0-1049+0-0553; —0-0989+0-0592; —0-0865--0-0508 —0-0759-4-0- 04861
0-8 10-1804—0- 15744 40+ 1034 —0- 10534 +0-0399—0- 05977 —0-0109—0-02647 —0-04954-0-0019;
1-0 2-976 —0-7612% 9-434 —0-84147 2-581 —0-9085 4+2-722 —0-9772 42854 —1-037 -
0 —0-0034-+0-0188; 0 —0-0016-0-0116; 0 —0-0009+0-0080;
0-2 —0-0086--0- 0252 —0-0051+0-0102 —0-0034-1-0-0152 —0-0027--0- 0064 —0-0011--0-0107;
04 —0-0349--0-0505; —0-0238--0-0333; —0-0175--0-0299; —0-0121+0-0199; —0-0095--0-01907
0-6 —0-0720--0- 06311 —0-0703-4-0- 0644 —0-0627--0-0633i —0-0551 00563 —0-0463-4-0-0507
0-8 +0-0881 —0- 13547 +0-0425—0- 08173 4-0-0044—0-0409; —0-0260—0-00707 —0-04904-0- 01794
1-0 1-844 —0-7583 1-957 —0-84317 2-064 —0-9165 +2-166 —0-9898i 12963 —1-055;

0 0-0030--0-0089; 0 0-0022-+-0-00547 0 0-0016-+0-0037;
0-2 0-0011-4-0-0138; —0-0020--0-0031; +0-0021 -+0-0083; —0-0017--0- 0008 4000270 00583
0-4 —0-0108--0-0360 —0-0064 400240 —0-0038-4-0-0198; —0-00204-0-0134; —0-00124-0-0117;
0-6 —0-0356--0- 0563 —0-03314-0- 05815 —0-0281 +0-05284 —0-0237 100483 —0-01904-0- 0408
0-8 +0-0270—0- 07863 10-0067—0- 03464 —0-0106—0-00694 0025200199 —0-0352-4-0- 0363
1-0 1-475 —0-611% 1-546 —0-6877; 1+1-613 —0-7527; 1-1-678 —0-8199; +1-741 —0-877%
0 0-0038--0-00515 0 0-0028--0-003% 0 0-0022--0-0023;
0-2 40-0025-4-0- 00854 —0-0002--0- 00244 10-0028+-0-0055; 0-0001 40-0016% 0-00324-0- 00384
0-4 —0-0031--0-0256; —0-0013--0-01647 —0-0004-+-0-0132 +0-0004 +0- 00857 40-0003-1-0-0073;
0-6 —0-0179-4-0-0457; —0-0135-4-0-0502 —0-01274-0-0412; —0-0083--0-0406: —0-00764-0-0309;
0-8 +0-0122—0-0419; +0-0043—0-0028i —0-0073--0-0127; —0-0140--0- 03647 —0-02114-0-0443;
1-0 1-320 —0-4995 1-370 —0-56783 +1-418 —0-6229 +1-465 —0- 68384 1+1-511 —0-73264

174
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TABLE 3
Values* of W, along the Mid-chord Axis of Wing A

—~ B
\ 1 2 3 4 5 6 7 8 9 10 11
1
0 2-446 0 —0-1059 0 —0-:0139 0 —0-0062 0 —0-0041 0 —0-0033
0-2 2-516 05504 +0-0155 —0-:0269 —0-0263 —0-0119 —0-0100 —0-0045 —0-:0054 —0-0025 —0-0038
0-4 2-630 1-137 0-3912 +0-1106 +0-0073 —0-0176 | —0:0230 | —0-0180 —0-0154 —0-:0107 —0-0095
0:6 2-600 1-677 0-9896 0-5586 0-2912 +0-1385 +0-0505 +0:0059 | —0-0177 —0-0261 —0-0297
0-8 2286 1-981 1:-638 1-328 1-054 0-8235 0-6302 0-4738 -+0-3463 —+0-2459 -+0-1656
1-0 1-318 1-546 1-727 1-893 2-043 2-185 2-317 2-443 2-563 2-679 2-789
Values of W,,"" along 0-3¢ and 0-75¢ of Wing B
Values along 0-3¢ axis Values along 0-75¢ axis
w
1 3 5 7 9 11 1 3 5 7 9 11

T

0 2-444 —0-0086 | —0-0134 | —0-0060 | —0-0040 | —0-0028 | 2-849 —0-0907 | —0-:0127 | —0-0058 | —0-0039 | —0-0028
0:2 2-546 +0-0226 | —0-0245 | —0-0096 | —0-0053 | —0-0037 | 2-518 +0-0327 | —0-0224 | —0-0092 | —0-0050 | —0-0035
0-4 2-635 0-3933 |"+0-0117 | —0-0208 | —0-0145 | —0-0091 2-619 0-4068 | +0-0190 | —0-0180 | —0:0132 | —0-0084
0:6 2-603 0-9871 0-2954 | +0-0562 | —0-0130 | —0-0262 | 2-587 0-9993 0-3100 | +0-0672 | —0-0058 | —0-0218
0-8 2-299 1-636 1-053 0-6352 | +0-3553 | +0-1775| 2-263 1-626 1-059 0-6480 | +0-3718 | 40-1945
1-0 1-239 1-618 1-907 2-157 2-380 2-585 1:112 1:-483 1-762 2002 2-217 2-414

* These values correspond to the aspect ratio 5-84.
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Values of W

T

TABLE 4

along the 0-3¢ Axis of Wing B

* Values along 0-3¢ axis of wing B due to circulation asy~/ VI — 2.

Jr 1 3 l 5 7 9 | 1

n R R -
0 2-147 —0-0581 —0-0072 —0-9033 —0-0023 —0-0017
0-2 2-249 +0-0438 —0-0128 —0-0053 —0-0030 —0-0021
0-4 2-339 (-3593 +0-0270 —0-0089 —(-0078 —0-0051
0-6 2-309 0-8603 0-2734 }-0- 0680 -1-0-0044 —{0-0114
0-8 2-029 1-394 0-8955 0-5482 0-3185 -4-0-1722
1-0 0-9941 1-230 1-416 1-580 1-727 1-864

TABLE 5 ‘
Values of W, (= W,/ -+ W,,”") for Steady Motion*

N 1 3 5 7 9 11

KRN
0 3-230 —0-4913 —0-1116 —0-0551 —0-0347 —0-0243
0-2 3-331 —(-2759 —0-16835 - —0-0732 —0-0428 —0-0293
0-4 3-420 +0-3777 —0-1745 —()-1448 —0-0880 —0-0558
0-6 3-388 1-443 +0-2820 —0-0969 —0-1698 —0-1518
0-8 3-084 2-751 1-810 +1-035 -+0-4946 +0-1511
1-0 2-024 3-582 4-558 5-348 6-031 6-644



TABLE 6

Fundamental Derivative Coefficients Referred to the Leading Edge.

Model:— ,=1u, F=7%""; Mode Il :—  f=1n? F =9
Case W, Ay A Ag A 7 73 U Remarks
045 | 0-116 | 1-808 | 1-691 | 0-460 | 0-025 | 0-414 | 0-370 | 0-385 1ng A, Mode ITI—Symmetrical. Reference axis at mid-chord
1 0-9 0-227 | 1-559 | 1-547 | 0-985 | 0-050 | 0-357 | 0-349 | 0-505 (m = 0 Values of W,,," calculated along the mid-chord axis
1-8 0-357 | 1-353 | 1-458 | 1-244 | 0-079 | 0-309 | 0-371 | 0-566 and Wom neglected Wim = Wen". (See Ref. 1))
2-7 0-424 | 1-272 |1 1-435 | 1-309 | 0-095 | 0-294 | 0-435 | 0-583 ‘
ag =0-595. 1y =0-297, uy=0-297;  py=0-1675.
0-45 | 0-116 | 1-808 | 1-688 | 0-396 | 0-028 | 0-444 | 0-411 | 0-390 | Wing B, Mode II-—Symmetrical. Reference axis at 0-3¢ behind the
o 0.9 0-227  1-559 | 1-541 | 0-929 | 0-055 | 0-383 | 0-375 | 0-521 leading edge Values of W,," along mid-chord of Wing A used
1-8 0-357 | 1-353 | 1-447 | 1-196 | 0-087 | 0-333 | 0-352 | 0-587 and Wy, neglected. W, = W,,".
2-7 0424 | 1-272 | 1-420 | 1265 | 0-104 | 0-312 | 0-345 | 0-605
Ay = 0-595. 5 = 0-281 uy = 0-309 uy = 0-166
0-45 | 0-116 | 1-810 | 1-976 | 0:424 | 0-025 | 0-419 | 0-467 | 0-404 | Wing A, Mode II—Antisymmetrical. Reference axis at mid-chord
3 0-9 0-228 | 1-561 | 1-803 | 1-044 | 0-050 | 0-362 | 0-426 | 0-557 (@ = 0). Values of W,,,"” calculated along the mid-chord axis
1-8 1-358 | 1-355 | 1-690 | 1-357 | 0-080 | 0-313 | 0-397 | 0-638 and W,  neglected. W, = W,,". (See Ref. 1.)
2-7 0:425 | 1-274 | 1-658 | 1-438 | 0-096 | 0-294 | 0-389 | 0-660
Ty — 0594, 45 = 0-297.  uy = 0297 -y =0-169
4 0-9 0-095 | 1-266 | 1428 | 1-283 | 0-028 | 0-267 | 0-321 | 0-580 | As for Case 3 with W,,,” terms included.
2-7 0-342 | 1-110 | 1-431 | 1-360 | 0-104 | 0-228 | 0-373 | 0-656
0-45 | 0-122 | 1-746 | 1-968 | 0-436 | 0-031 | 0-437 | 0-492 | 0-417 | Wing B, Mode 1—Symumetrical. Reference axis at 0-3¢ behind the
5 0-9 0-234 | 1-503 | 1-801 | 1-052 | 0-058 | 0-376 | 0-450 | 0-571 leading edge. Values of W,,” for mid-chord axis of Wing A
1-8 0-358 | 1-310 | 1-689 | 1-362 | 0-089 | 0-328 | 0-422 | 0-649 used and W, " terms neglected. Wy, = W,,".
2-7 0-420 | 1-237 | 1-657 | 1-443 | 0-105 | 0-309 | 0-414 | 0-669
iz =0-593. 1y =0-303. uy =0-296. w =0-171
045 | 0121 | 1-732 | 1-980 | 0-430 ; 0-030 | 0-433 | 0-495 | 0-416 | As for Case§, but with W,,” values along 0- 30 axis of Wing B used
0-9 0-232 | 1-492 | 1-807 -048 | 0-058 | 0-373 | 0-452 | 0-571 and W, terms neglected. W,, = W,
6 1-8 0-355 | 1-300 | 1-694 | 1-360 | 0-089 | 0-325 | 0-424 | 0-649
2-7 0-417 | 1-228 | 1-662 | 1:442 | 0-104 | 0-307 | 0-415 | 0-669
ap = 0-588. 2y —0:302. py =0-294 5 =0-170;
7 2-7 0-420 | 1-237 | 1-661 | 1-443 | 0-105 | 0-309 | 0-415 | 0-653 | As for Case 5 with W,,"” values along 0-75¢ and W, values along
0-3c used ; W,," neglected. :
o 0-9 | 0-141 | 1-336 | 1:506 | 1-250 | 0-039 | 0-329 | 0-371 | 0-59%4 | As for Case 5 with W,,’ terms included.
8 2-7 0-359 | 1-150 | 1-471 | 1-398 | 0-102 | 0-274 | 0-362 | 0-638
9 o 2.7 0-360 | 1-138 | 1-466 | 1-390 | 0-109 | 0-270 | 0-363 | 0-618 | As for Case 7 with W,,,” terms included.
_;0 0-9 0-181 | 1-527 | 1-756 | 1-516 | 0-062 | 0-370 | 0-437 | 0-721 | Wing B, Mode I—Symmetrical. Reference axis at 0-3c¢ behind the
2.7 1-357 | 1-892 | 1-663 | 0-265 | 0-320 | 0-502 | 0-770 leading edge. Cicala’s method used.

0-697

e
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TABLE 7
Values of 1; for Tapered Wings.  Parabolic Mode in Flexure ; f = »*
o 0-45 0-9 1-8 2-7 Remarks
[l 1-808 1-559 1-353 1-272 | Wing A, Mode I1, S; W, = 0. (See Case I of Table 6.)
J 1-810 1-561 1-355 1-274 | Wing A, Mode 11, A-S; W, = 0. (See Case 3 of Table 6.)
A- ST 8 [ s Pl (R s el o Tz prmmp—t -
* ) — 1-266 —  1-110 | Wing A, Mode 11, A-S; W,," #0. (See Case 3 of Table 6.)
— 1-290 — 1-118 | Wing B, Mode 11, S; W, = 0. W,,"” values along 0-3c axis

L used.

S = symmetrical motion ; A-S = antisymmetrical motion.

Linear Mode in Flexure, f = » ; Symmetrical Motion Only

|
[N 0-45 0-9 1-8 2-7 Remarks
1-746 1-503 1-310 1-237 | Wing B, W, = 0, and W," values along 0-5¢ of Wing A
used. (See Case 5 of Table 6.)
1-732 1-492 1-300 1-228 | As above with W,," values at 0-3c of Wing B used. (Sec Case 6
of Table 6.)
— e e 1-237 Asvabove with W,,” values at 0-75¢ of Wing B used. (See Case 7
of Table 6.)
}(j, gJ = el [ — = b B s ———— - e S et
— 1-336 — 1-150 | Wing B, W,,,’ =0, and W,," values along 0-5¢ of Wing A used.
(See Case 5 of Table 6.)
— 1-331 — 1-151 | Wing B, W,,.” 0, and W,,," values along 0-3¢ of Wing B used.
— — — 1-138 | Wing B, W,,,’ #0, and W,,," values along 0-75¢ axis of Wing B
used.
* —_ 1-527 — 1-357 Cicala’s method ; Wing B, reference axis at 0-3c.

* In Cicala’s method the values of W,,," corresponding to K, 4, are assumed to be given by 4,,. (Sce §4.)
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