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Summary—1In this report the ‘“ admittance ” method, for dealing with coupled vibrations of engine crankshait
propeller systems, is adapted to cover the case of contra-revolving propellers. The treatment is quite general in that
the propellers may or may not be equal or may or may not revolve at equal speeds.
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Case ITI.—The Two Engines in Combination

1. Equivalent Polar Mowment of Inertia.—Consider in the first instance the elementary system
" shown diagrammatically in Fig. 1. p is the polar moment of inertia of a rigid pulley attached
to a shaft of torsional stiffness ¢ and which is encastré at its other end. Let the pulley be in free
torsional vibration and let /2 be the frequency and 6 the amplitude. Then we have

s

pw20 = ch or po? =c. - .. . .. . . ce (1)
Next suppose we have a system of two pulleys as in Fig. 2. The equations of motion will be

piw20, = ¢, (0, — 6), .. .. . . . .. (9

pw = — ¢y (0, — 0)+ cb; .. .. . .. . .. 3)
from which we derive '

_5Hh €12 1 ] 2 m

[p 5t plw%>(w12~w2) WP=c, . @
where w2 = ¢;/py. '
1 —p—b (o !
Thus po=p 2+ (lez) e T (5)

is the equivalent polar moment of inertia of the system p,, p, in free vibration and acting at .

* R.AE. Report No, S.M.E. 4020 received July, 1943.
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To take the case of four masses P, Pas Ps, P, the equations of motion are

D10y =¢; (0; — 0y), (6)
Paw®0y = —cy (0 — O5) + ¢4 (0, — B3), . . . . (7)
Paw20y = —cy (6 — 03) + c5 (65 — ), R )
P = —cz (0 — ) + cb. )
Equation (6), (7), (8), may be written
(au — %) b — apdy =0, .. . . - . .. (10)
— Qopy + (Bgg — w?2) g — ety =0, .. . .. o .. oo (1
— fggby + (g5 — ©?) pg = (%/Vﬁ)o: . . . . (12)
where $1 = Vo, $2 = VPoby, by = Vaby ;
Ay = /Py, tp = (€1 + C2) /Do, agz = (Cy + C3)/Ps

ayp = Cl/ \/%Pm Agg = Cyf \/Eﬁa .

The equations (10), (11), (12), are symmetrical and are readily dealt with by the escalator!:2
method. Thus let o2 (r=1, 2, 3) be a root in »? of the equations with 8 =0, and let (¢,)
(¢4),, (¢3),, be the associated rectified modes, i.e. modes subject to the condition

7

($1),2 + ($o),2 + (3),2 = 1. .. . . . S . .3y’
Multiply (10), (11), (12), in turn by (¢;),, (¢s),, (#5),, and add. We obtain
(0,2 — 0?)[$1($1), + ba(da), + b3(43)] = (03/\/53) (63),0. .. e o o (14)
From three such equations (» = 1, 2, 3) we derive in virtue of the properties of the rectified
modes,
— U ($1)5® ($2)s ($3)5” ' .. . . 15
= e o T ey T et o) 1o
Now since ¢ = V/pj 0,, we obtain
Mo, 2 2 2 ‘ 2
Ca (05— ) = [%{wl(jl_).swz + w2(2¢-213w2 + ws(fﬂa (4)2} ~ 03:|0. ¢ 1)
Hence using (16) in (9) we find p,w? = ¢,
—p C5* (¢1)5” ($2)s” ($a)s® .
wherep, =8 =t e[t ey Tyt e WD)

from which expression we infer the general formula for any number of pulleys. If in place of
# in Fig. 1 we have a propeller the continuous mass of which is replaced by a series of discrete
masses as in R. & M. 20113, then as there shown, the coupled flexural vibrations of the pro-
peller blades and the torsional vibration about the shaft ¢ are given by an equation of the form

[Petns Lrer Jor=c (18)

N DN P =t . . . .. . ..

where s is the number of discrete masses, /27 is a frequency, .2, w2, w32,.. 0,2 correspond
to the fixed root frequencies of the blades, P,2 is the polar moment of inertia of the hub of the
propeller, P2, P,2 P,2. . P,? are quantities having the dimensions of moment of inertia and # is
the number of blades. :
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We shall designate the expression on the left-hand side of (18) by P (w?). w? P (v?) thereby
being the equivalent polar moment of inertia of the propeller system in free vibration and
regarded as acting at the point of attachment of the hub. -

2. Single Crankshaft with Two Contra-revolving Propellers—We consider first a case of a
single crankshaft driving two propellers running on contra-revolving coaxial shafts as in Fig. 3.

Let Py(w?), P, (»?), be the equivalent polar moments of inertia of the two propellers which
are not necessarily equal. If e, «,, are the torsional angular amplitudes at the respective hubs,
the torques in their respective shafts will be P; (0?). w? o, P, (0?). 0% «, or say f; (0?) o,

So (@0?) oy
" Let Ji (@) = cyfry, fo (02) = cfra;
or 71 = 61/f1 (03), 73 = Goffs(®?) ;

then the torques in the propeller shafts can be expressed respectively as (c;/7;) oy, (Cof7a) %
Considering the shaft ¢;, let «," be the amplitude at the gear wheel end, where «,” is measured in
the opposite direction to ay, then the torque in that shaft is also given by ¢; (¢, + ;).

Hence (cfry) o = cqfoy + o), .. (19)
from which we derive : oy = oy (1 — 1) . . .. .. . o (20)
Thus . (cafry) oy = [eo/(1 — 7)) " . .. . . .o (21
Similarly (Cofry) oo = [Cof{1 — #g) Joty’ . .. .. . .. o (22)

 Coming now to the engine system, let 8, 0,, 0,, be the amplitudes of the masses p;, p,, p5'. The
kinetic energy of the engine masses is given by 7', where

2T = $101® + Pofs® + (b5 + 1Ps" 00" + 20570, 057

in which ¢, is the gear ratio between p;" and p3", ¢, that between py and p;”; and
» is the number of gear wheels 4.

Hence 9T = P02 + Py 0% + pabs®, .. .. .. .. .. .. (23

where
Ps = P’ + 10,02 " + 20,07 Ps" . . (2

We notice that angles at the gear wheels p5” which we have previously designated «,’, a," will
each be g, 85

The strain energy of the system is:given by V, where |
2V = crg (0 — 02)° + caglBy — 00)2 + [e'/(1 — ) + /(1 — 7)) 052, (25)
where cfey = 6'fcy = gy .. .. .. .. . . .. (26)
For the equations of motion, we have

d ;8T\ 8T | oV _
Zz‘z(ﬁ S =0, @)

where 8 is one of the co-ordinates.



Hence we derive the equations—

(Crg — Prw?) 0 —Cieby =0, .. .. . .. .. .. N .. (28)
— Cpfly + (Crg F Cog — Po0?) 0, — 02303 =0, (29)
— Coally + [Cay + ¢/[(1 —77) + & /(1 — 75) — p300®] 6, =0, (30)

where o2 is frequency.

We may write these equations in symmetrical form as follows :—

Let Vp; 07 = b1, Voly = do, Vo = 35
Ciafpr = G, (1 + Coa) [P = G, Crof VP1P2 = Caaf V Pals = s

The equations (28), (29), (30), then become—
(17 — ©2)d; — Ayps = 0, .. . .. . .. .. .. .. (31
— Ay + (Bgy — %Py — Aggpy = 0, . .. . . .. .. (32

1 ’ !

”“23¢2+|:53 023—}_1371—'—1%72)_602}(#3:0’ o o - (33)

Keeping #,, 7,, as parameters we may obtain a solution of equations (31), (32), (33), by the
escalator method as follows :—

Consider the equation (31), (32), with ¢ =0 ; i.e.

(@ — 0 ¢y — agds =0, .. o e e (34)

— @by + (dgp — ©2) by =0. .. .. o . . . . .. (35)
Let 2, w,2 be the two roots in w? of the appropriate frequency equation and let (¢,);, (4s);;
(¢1)3, ($a)y, be the associated respective rectified modes, i.e. modes subject to the condition

(6.2 + ($).2 = 1, (s = 1, 2). The frequency equation in w? for (31), (32), (33), may then be
expressed as

(g) 12 ()2 1 ¢ Cy o
“232[(%—2‘2;%;2‘) + @,2—2‘2;2—@2“)]  Ps [023 + (1 - 71) + (1 - 1/2)} o (3?
Now (36) may be written E (w?) = y, where |
Elwn (o)r? G S,
y = E (0 = ay? [(mlzz_lwz)jL(wzzz_-zwz)} Bt @)
1 ¢ ¢y
y‘p}[liwfrl—z?z]' O < )
But fi(w?) = ¢fry, fo{ @?) = cyftr,. Hence y may be written—
= [ file®e Jolo®e) T R £z 2
AL i< &

Thus we may, for convenience, plot the two equations (37), (39), in y and »?, and determine
from the cuts of the resulting curves, the applicable values of »?2 for the frequencies of the
system comprising engine and propellers.
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A simplification arises when the two propellers are equal in all respects. In such a case
Ji(@?) = fo(w?) and, therefore, ¢y/r, = c,/r; or 7, = cyry/c;.  In these circumstances we may use
the single parameter 7 = 7, as follows : —

5 1 ¢y Cy * | :
E(w)_%[l'“7+.1~%J T 1))
€1
and f(0?) = fi (0¥ =cfr. .. .. .. .. .. ... @D

To take a numerical example in which the two propellers are equal, let the equations
(28), (29), (30), with A written for w2 x 10~ become in figures

(9-47 — 7-834) 6, — 9476, = 0, . .. .. . .. .. (42
— 9476, 4 (14-14 — 8-244) 6, — 466, =0, .. . . .. (43)
5-44 0-664 _
—4 6762+[4 67+ 22 4 O 4 07/1}63—0, L (44
or in symfnetrical form
(1-209 — 4) ¢; — 1:1794, = O, .. . .. .. . .. (45)
— 1:179¢; +(1:716 — 4) ¢y — 0-8064¢4, = 0, .. . . .. (46)
1-337 ;  0-1631 -
—08064¢2+[1_147+1_7+1__O_122y—/1}¢3_0. (47)
To solve these equations we first take the equations
| (1:209 — ) ¢, — 1179, =0, .. .. .. .. .. .. (48
— 1:179¢, + (1:716 — A) ¢ = 0. .. .. .. .. .. .o (49)
The two roots in 4 are found to be
A, = 0-2566, Ay = 2-6684,
and the respective rectified modes are given by
(P1)1/($2)1 = 1-2879 = — (do)/(¢1)s ;
and since ($1)® + ($a)s” = 1, ($1)e® + (o)e® = 1, _
we find that (¢1)12 = 0-605118, ($y),% = 0-394882,
($1)o% = 0-394882, ($,),2 = 0-605118.
Equation (36) thus becomes
0-2568 0-3935
- A—1-14
02566 —7) @66 —7) 147
_ 1-337 0-1631
T (1 —7) +‘(1 —0-122%) " (50)

* We notice that since ¢;"/c,’ == ¢,/c,, then if

¢ = oJl 1) +¢1 ~§fr),

’ ’ ! 49
, = ﬁ.i_@__c_x'i\/@_l’;@_)ﬂ_c_ﬁ
25 4 2¢c,’ 22
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Now since 4 = w? X 1078, the corresponding frequency is given by
f= o2z = 15915V 7 ;

hence we may plot f against the parameter » and the resulting frequency curves are shown in
Fig. 4. We notice that given any value of 7 there will be two values of # both of which are
applicable.

The complementary propeller frequency curves will be given by the plot of the appropriate
equation f (? = ¢,/r, which will be of the form given by (18), and by means of which we
similarly plot frequency against the parameter 7.

3. Two Coupled Crankshafts with Two Contra-revolving Propelleys.—Referring to Fig. 5 the
p’s represent polar moments of inertia of appropriate gear wheels; the ¢,’s represent torsional
stiffness of appropriate shafts——thus Cg10 Tepresents the torsional stiffness of shaft between the
gear wheels pg and py4; the g,s represent appropriate gear ratios—thus ¢, ,, represents the gear
ratio, between the gear wheels p, and #,,; and the ¢8’s represent appropriate angular displace-
ments. Both crankshafts are equal and their dynamic systems are as shown in Fig. 6.

The equations of motion for the crankshaft system are :—

Pr0%0; = 15 (6; — 0y), .. .. (51)
Pow?0y = — €15 (01 — B5) + a3 (6 — B3), (52)
Paw?0y = — Ca5 (0 — O3) 4 Cgq (65 — 04), (53)
Pawy = — 34 (05— 04) + ¢45(04 — 05), (54)
Psw205=— 45 (0, — 05) + ¢56 (85— 0), - (59)
Pe®0g=—C54 (05— 0g) + g7 (05— 05), (56)

where /27 is frequency.

Case I—Node at the Gears.—For this case we put 0, = 0 in (56). The solution of equations .
(51) to (56), with 0, = 0, will then give the frequencies and associated modes. ILet all the p’s
be equal and let ¢y, = ¢y, €45 = €55 = 8-591 x 10%; ¢,y = 7-88 x 108 and ¢4, = 8-695
x 106 Ib. in. rad.

Let the equal p’s be designated p and the equal ¢’s as ¢; and let ¢gy = 754¢, ¢4; = 74;¢, the
7’s thus being pure ratios. Let also

pow?lc =2(1 —cosa) =4sin% a.

In these circumstances the frequency equation is given by (see Strength of Shafts in Vibration?,
page 127)

A 1
9 - 1 — 1
[(nn - ) cos (n — 1) a — cos (n + %) oc] [(72%2“ = 1) cos (n — %) a
- Cos(%—l—%)oc}—'—coszéoc———(), .. .. .. .. . (A
Yon20 + 1

where 2% is the number of equal #’s.

The relative appropriate modes will be given by

0 (S — 1 to n) — cos (n + %‘)OC - (1 — 72n.2n+1) Cos (n - %)O(' cos (s — .l) o
’ sin o sin # o * . (B)

0, (s =n 4+ 1to2n) = [sin(2n —s + 1) « — (1 — 75,9, , 1) Sin (2w — s)o ]/sin «
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In the particular case n — 3, 1/rgy = 1:091, 1/r4;, = 0-988 ; with these ¢ values we find

7 1 2 3 4 5 6
Oy 13° 55’ 41° 11’ 69° 5’ 95° 33’ 124° 35 147° 28’
0,108 1-34 11-27 29-4 50-6 71+4 84-1

But in view of the fact that the two unequal ¢’s are not far removed from the equal ¢’s, we
shall have a close approximation if we take all the ¢’s equal to their average value viz. ¢, =
8:49 x 108 In these circumstances the frequency equation becomes

cos (2n + 1) e =0,

and the frequencies are given by «/2#, where
pwlfc, =2 (1 — cos o) = 4 sin? } «.

We thus obtain :(—

4

1

2

3

4

5

6

&y

13° 517

41° 33’

69° 15

96° 57

124° 39’

152° 117

w,2/108

1-31

11-32

29-1

50-55

70-6

84-9

Comparing this table with the corresponding one given previously, we notice that the greatest
- error is 2 per cent. in the square of a frequency, which means 1 per cent. in frequency and this
only with the fundamental.

The relative modes in the *“ equal "’ case are given by
cos 3a: cos 14e; cos 24o. . ... ... 1cos (2n — %) «

and these will be of the same order of approximation to their actual values as the frequencies
were found to be in the particular case. We find that the fundamental frequency is 184 c.p.s.
on the more accurate basis and 182 c.p.s. by the ‘“ equal ” approximation.

Case II—Engines Taken Separately—We next consider the case of the two engines not being
geared together, auxiliary gears being neglected. Taking the bottom engine in Fig. 5, we have,
in addition to equations (51) to (56) the equations derived from the energy terms involving
67, 08’ ViZ. :_

(P7 + 2 025 $8)0,2 + § (2025% P10 T 07,10° ibn)_gs2
+ % Cer (06 — 07)% + 3 X 20467 Cg10 (67 — 05)° + %(1—‘:0_7) e7,11" 0%
in which a node has been assumed at a point on the propeller shaft at a torsional stiffness c,/r

from the hub, ¢, being the torsional stiffness of the appropriate propeller shaft. From these
energy terms we derive the equations :—

— Cerf¢ 1 [ Car 1 20787 Ca 0 — (P7 + 2075 Pg) 2] 03 — 2045% €519 05 =0 .. (57)
— @q7% Cg10 07 [076% Cg0 T % 97,11.2 ¢/ (1 —7) — (@98 Pro + %97,112?11)“’2] bg=0... (38)

(&0

P
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Reverting now to equations (51) to (56), with the p’s and ¢’s equal, we have in the general

case of #» masses :—
(1 —pw?fc)b, — 6, =0, . . .. .. .
— 0.+ (2—poe)0,  ,—0, ,=0 (s=1ton—2), ..
— 0, 1+ (2 —pa¥c)8, =0, ,=¢,say.

As a solution of (59), (60), (61), we assume
0, =A,cos(s — 1) o+ B,sin (s — 1) «,

where pw?fc = 2 (1 — cos o) = 4 sin? § «; then from (59)
A,(2cosa — 1) — (4, cos e + B, sin o) = 0, i
or B, = — A, tan} o .
Thus 6, = A, cos (s — L) a/cos Lo .

From (61) we find 4, cos (n + 3) afcos L o= ¢ ;

so that 4, = ¢ cos g [cos(n + ) o

Hence 0, = ¢ cos (s — }) afcos (n -+ 3) «.
Thus in the particular case where » = 6 and ¢ = §,, we have
6g = 0, cos 5% a/cos 61 «. .. . ..
Now using (58) and (64) in (57), we obtain the frequency equation
— Cg7 €OS 5} afcos 6F o+ [cgr + 2 0767 Cg g9 — (P7 + 2 075% pg) ©?]
— 2045 €102 [ [ 078 Co10 + F 070 Cof(1 — 1) — (075 P + F 072 Prr) 02 ] = 0.
Taking numerical values, we have

p = 145-71b.in.2 0,s = 18/31, 0,52 = 0-33715,

; = 19-2 0,11 = 0-2186, 07117 = 0-0467,
pg = 98-2 Do+ 2045 Py = 85-216 = 0-585p,
Pro=17-9 078" P10 + 307117 P = 1456 = 0-1p;
P11 = 365

g7 = ¢, = 8:49 x 1081b. in.[rad., ¢g,9 = 8-81 x 108,
078° Cg10 = 2°97 X 108 = 0-35¢,, 29,4% €192 = 0-245 ¢,
Cor + 20442 €510 = 14-43 X 108 = 1-696
30,1176 = % < 0-0467 x 15-36 x 108 = 0-0422c, .
Thus, since w? = 2¢; (1 — cos a)/p, (65) becomes
- €0s 5% afcos 64 o« + [ 1-896 — 0-385 X 2 (1 — cos «) ]
= (-245/[ 0-35 4 0-0422/(1 —7) — 0-1 X 2(1 —cos &) ],
which may be written 0-15 4 0-2 cos « + 0-0422/(1 — 7)
= 1/[2-147 + 0-69 cos o — 4-07 sin « tan 6} « ],

in which frequency f = 1 C_; sin 4 o = 1507 sin § « in c.p.s.
g

(59)
(60)
(61)

(62)

(63)

(64)

(65)

(66)

(67)



For the top engine we have

P’ = 19-21b. in.2 s . c&m’ = 52-64 x 108 Ib./in./rad. ,

P’ =104-2, Py 4 20q4% P’ = 89-462 =‘}0-614p s

1510’ = 1,4'1 s 9782 ?10' -+ %@7,112]511' = 13-498 = 0'0926P s
by’ = 8745,

078% €19’ = 17-748 X 109 =2:09¢,, 2p,4" c519'2 = 8-74c,2,
Cr 1 204757 Cg19’ = 43986 X 108 = 5-18¢,,
30711%¢, = % X 0:0467 X 4163 x 10¢ = 0-0114c,.
Thus (65) appropriately modified becomes
— €08 5% o/ cos 6% a4 [ 5-18 — 0+614 X 2 (1 — cos «) ]
=874/ 2-09 4+ 0-0114/(1 — ) — 00926 x 2 (1 — cos « ], . . .. (68)
which may be written
| 1-905 + 0-185 cos « + 0-0114/(1 — ) |
= 1/[0-452 + 0-0261 cos « — 0-114 sin « tan 6} « ]. . .. .. (69)

We may thus plot the ‘“admittance” lines by selecting various values of « (corresponding to
appropriate frequencies) and ascertaining the associated #’s.

For the modes we have
(1) for both engines
6, (s = 1t06) = 0, cos (s — ) afcos 6% «; e 0)
(2) for the bottom engine

B = 0,/[ 0-429 + 0-571 cos o+ 0-121/(1 — #) ]; @

(3) for the top engine
0g" = 0,/[0-909 4 0-0855 cos « + 0-00545/(1 —#)]. .. . . . (72

Case 111—The Two Engines in Combination.—In this case we have, neglecting auxiliary gears,
for the energy terms involving 6, 0, 64/,

%[(P7 + 1b7') + 29782 (2’58 + lbs') 1 072’
+ % (2045° 2 97,112 ibu) 982 + % (29782 P + 97,112 1) 93'2
+ 3 X 2047 (0 — 07)2 + § X 20457 [ Cgr10(0, — 05)% + cg10 (07 — 05")%]
+ 7}‘:‘97,112 G 982 + % 9'7,112 %
(1 —=7) (1 — %)
. Gy

in which we assume nodes in each propeller shaft for which the torsional stiffness of the shaft
between the propeller hub and node is ¢,/ in each case, the propellers being assumed dynamically
equal. *From (73) we derive the equations

— Cgq0¢ + [ Cor + 0782 (500 + Cg10) — {3 (P? + P7) + ezs® (Ps+ Pg) } 0] 0,
) — 075%(Cs 1098 + €510'05) = 0, .o (74)
— 07881007 + [ 075> €g10 T 3€711° Co/(1 — #) — (078 P10 + 30710 Pr) @] 05 =0, .. (75)

’ ’ C; ’ ‘ ' ’
— 978208,10 0+ [@782 Cg10 + %@7,112 C£/<1 — ”) - (@7321510 + %97,112 Pu )‘02} 0g"=0. .. (76)'
0

(74661) ‘ B

b5, .. .. .. .. .. (13
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Using (64), (75), (76), in (74), we obtain the frequency equation
— Cg7 €08 53 x/cOs 6% a0 + [ ¢y + €75° (cg10 + €510) — { & (P2 + 27) + 098® (Ps + P5') } @?]
— 025" 08,102/ [ 07¢® Cg10 T %97,112 o/ (1 —#) — (078 P10 + %97,1122511)“’2]

! > 4 ) C 4 ’
—05% Cg10 2/[ 078% Cg10 307117 Ci/<1 - C*' ”) — (078 P10 + L ou’Pn )w2:| =0. .. (77)

0
Taking numerical values we have
Ce7 = Co» Co7 T €7a° (Cga0 + Cg10) = 3-44e,, ¢;fcy = 0-271,

3 (P2t P7) + eq5% (g + pg’) = 0-6p, all the other quantities being already known. With these
values (77) becomes ‘

— €08 53a/cos 6% o + 344 — 0-6 x 2 (1 — cos a)
= 0-1225/[0-15 4 0-2 cos a + 0-0422/(1 — #) ]

+ 4-37/[1-905 4 0-185 cos o -+ 0-0114/(1 — 0-2717) ], .. .. .. (78)
or 2:24 4 0-2 cos o — sin e tan 64 « = 1/[ 1224 + 1-63 cos « -+ 0-346/(1 — 7) ]

+ 1/[0-435 4 0-0423 cos o + 0-00261/(1 — 0-2717) 7. .. . .. . (79)
For we have the modes -

6, (s =1t06) = 6, cos (s — 2) «/cos 6} a, .. . e .. (80)

g = 0,/[0:429 + 0-571 cos « + 0-121/(1 —7) ], .. .. .. .. .. (81)

bg" = 0,/[0-909 + 0-0835 cos o + 0-00545/(1 — 0-271+)]. .. . .. (82)

We notice from the form of (79) that for any given o there are two values of #, so that having
chosen an « value we have a quadratic equation in 7 to solve for the appropricte #’s, both of which
are applicable. It may also be noticed that the frequencies for which the trigonometrical solution

is valid must be such that these «’s do not exceed = ; i.e. in our particular case for frequencies
not exceeding 1,507 c.p.s.

To gain some idea of values we consider the case when » = 0, i.e. for two rigid propellers of
infinite moments of inertia. In such a case we find that the lowest value of « to satisfy (79) with
¥ = 0 is 43 deg. approx., which corresponds to a fundamental frequency of 1507 sin 2% deg. =
39 c.p.s. approx. Ior the associated modes we find from (80), (81) and (82), that

0,/0, = 1-145, 0y/0, = 1-138, 05/0, = 1-124, 0,/0, = 1-103,

050, = 1-075,  04/0, — 1-041, 046, = 0-8926,  64/0, = 1-003 .
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Engine Contra-revolving Propeller System. Equivalent Dynamic Data.
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