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Summary and Conclusions.—The present paper discusses the effects on the performance, of a contra-rotating
airscrew pair of the oscillatory nature of the flow round the blades. The blade sections at a representative radius
are developed into two infinite cascades in a plane, and the two-dimensional flow in this plane is discussed : for
simplicity the blade sections are replaced by vortices with strengths equal to the circulations rc;und the blades.

On this basis, it is shown that -if the two screws are.to absorb equal powers at equal rotational speeds, the mean
circulations round the blades must be equal ; however, this implies, for similar sections and equal chords, a coarser
pitch setting for the front screw than for the rear. For this condition, the slipstream .velocity has an oscillatory
rotational component ; its mean rotation is, however, zero.

In designing a contra-rotating airscrew pair, the most obvious way of assessing mean values for the local wind
speed and direction is to imagine the number of blades to become infinite, while the blade settings and solidities are
maintained ; the slipstreams are then uniform. In the numerical example given it is shown that this methed is
quite good enough ; although the local thrust variations are of the order of + 20 per cent. from their mean values,
the latter are less than 0-5 per cent. different from those given by the assumption of an infinite number of blades.

No account has been taken in the present paper of the vortices shed by the blades as the circulation changes;
it may be anticipated that their effect will be to reduce the magnitude of the oscillatory variations in thrust, etc.,
to a degree depending on the value of the frequency parameter.

1. Introduction.—In a recent paper! the writer has pointed out that the angles of incidence
of the blades of either airscrew of a contra-rotating pair vary periodically, owing to the passage
of the blades through the velocity field resulting from the circulations round the blades of the
other screw. In that paper, attention was confined to the possible effects of the oscillation
in angle of incidence on stalled blade sections. In the present note, the effects in relation to
unstalled sections are examined rather more fully.

2. The Katzmayr Effect—The Katzmayr effect has been analysed by Cowley? It may be
recalled that Katzmayr showed that when an aerofoil is oscillated in a steady stream its
drag increases ; but when the aerofoil is held stationary in an oscillating stream, the ““ drag ”,
referred to axes fixed in the aerofoil, is reduced and may even become negative. Cowley
showed that the reason for this is as follows: when the incidence increases from the mean,
the lift force increases and at the same time develops a component directed forward along the
mean incidence line. When the incidence decreases from the mean, the component of the lift
force is directed backward, but since the lift is now reduced, the magnitude of the backward
component is less than that of the previous forward component, and on the average there is
a forward component opposing the drag force. The effect may be quite large ; for example,
in the case of one aerofoil of normal section and infinite aspect ratio (Section E of the family
of airscrews®) the mean “ drag ™ is zero at a mean, “lift 7’ coefficient of 0-7 when the incidence
oscillates sinusoidally with an amplitude of about 4 4 deg.

In practice, it is of course usually the case (e.g. in flutter) that the aerofoil is oscillating in
a steady wind, so that the drag increases. In the case of contra-rotating airscrews, however,
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it is the direction of the relative wind which changes, and therefore the Katzmayr effect might
be expected to occur.

As a very simple illustration of the effect in relation to an airscrew, consider the blade section
A shown in Fig. 1. OA is normal and OB parallel to the
plane of the airscrew disc; the resultant wind has
velocity W and makes an angle ¢ with OB. 1If the

lift and drag coefficients of the section corresponding
/ W to the angle ¢ are C, and C,, then by resolution of
the forces along OA and OF the thrust and torque
,// ® grading for the screw, according to the formulae of
0 B  the vortex theory, are given by .
Fic. 1
2 aT

“oW2Ne dr

2 g .
SNy dg = Cpsing 4 Cpcos ¢, ‘

= (C,cos¢ — C,sin ¢, l
(1)

Suppose now that ¢ is increased by ¢ ; it will be assumed that W is unchanged in magnitude.
The blade incidence is therefore decreased by ¢ ; if the slope of the curve of lift coefficient
against incidence (assumed linear) is a,, the new lift coefficient is C, — aye. If ¢ is not very
large the change in €, is unimportant, and we obtain in place of (1)

2 4T :
N dr (C, — aye) cos (¢ - &) — C,sin (¢ + &), ‘

-2
.p”;gNW fg = (C, — aye) sin (¢ + ¢) + C, cos (¢ + ¢).

Suppose that regimes of flow represented by e positive and negative occur in alternation,
changing abruptly from one to the other after equal time intervals. The average values of
thrust and torque grading are then given by the arithmetic mean of equations (2) and the same
cqquations with the sign of ¢ changed. To second order in ¢ these means are

”%1\’ ciif = C,cos ¢ — C,sin ¢ - &2 { agsing — HC, cosd — C,, sin¢) }
p V=Ne .

2 do — (‘ 3 C' d) 9 1 C . d) C . ]
SNy dr sin ¢ + Cp,cos ¢ — e2{ a,cos¢ + HC, sing -+ C,, cos ¢)J

If « varics sinusoidally instead of abruptly, the coefficients of 2 in these equations are halved.
However, under all operating conditions (except perhaps near static, when ¢ 1s small and C, may
be large) the expressions in braces are hoth positive ; the effect of the oscillation is therefore
to increase the thrust grading while decreasing the torque grading.

On consideration it will be cvident that the energy required to produce the apparent increase
in efficiency is provided by the oscillating airstream ; and in the case of a contra-rotdting pair
of screws, this energy must be supplied by the other screw. On the whole, therefore, it is not
to be expected that the oscillatory effects discussed above can give rise to an overall increase
in efficiency®*; the work done against profile drag cannot be avoided. Nevertheless, the
oscillations evidently affect the thrust and torque grading, and an investigation of the mutual
interactions of the blades is therefore desirable.

* There will, however, be a gain in cfficiency duc to reduction in slipstream rotation.
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3. The Cascade Analogy.—Consider a pair of contra-rotating screws each having N blades :
take a cylinder coaxial with the screws and of radius ». It will be assumed that there is no
component of velocity normal to the surface of this cylinder : this is the assumption of the
vortex theory of airscrews, which has now been superseded ; however, it is approximately
true except when the rate of advance is high and the number of blades small. The performances
of the blade sectiens at the surface of the cylinder can be determined by developing the cylinder
into part of an infinite plane and considering the two-dimensional flow round the two infinite
cascades into which the blade sections develop,

As'an approximation, the blade sections will be replaced by vortices with strengths equal to
the circulations round the sections. Consider the single infinite cascade of vortices part of
which is shown in Fig. 2. :

e D\K

s z(x,y)

f.} K

Fig. 2

Each vortex is of strength K (positive when the circulation is clockwise) and they are disposed
in the z-plane at the points z = 0, 2 = 445, 2 = -+ 2is, ..., where s = 227/N. The velocity com-
ponents at any point z are therefore given by

\

. K (1 1. 1 | 1K 7z :
Z¢_Zv_§7;lz+z4—is+z—z’s_‘_"']_‘QECOth(s)’ " 3)
or :
. K sin 27'”7 . K )
“ ._‘ 2s (COSh 2n& — cos 2751’/) - ~2:f(§, 1/)’ o o o . (4)
and
. K sinh 2z ¢ K ,
¥ = 95 (cosh 22 — cos 2my) 2 B ), ©)
where E=xls, n=ys.’
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The local velocity components at any vortex due to the remaining vortices of the cascade
are, by symmetry, zero. To check this, superpose on the system of Fig. 2 a vortex of strength
— K at the origin : the velocity components then become, by (3)

o= () - - B fon () (5]

The limit of this expression as z becomes indefinitely small is zero.

4. Instantaneous Velocity Components for the Double Cascade——In §§4-6 we shall consider
only the conditions which exist at any given instant, so that the variation of conditions with
time will not enter into the discussion.

The two cascades of vortices representing the blade sections of the contra-rotating pair are
shown in Fig. 3. The distance between the planes of the airscrew discs is % ; each cascade of

) Y ~K,
DS :

, 7 /lf\ r,
S Y-ro, |

A% -

Y A
0 | |
< R >
|

e
f\vKl l
|
FiG. 3 :

vortices has the spacing s. At the given instant, take the y-axis along the front cascade, with
one vortex at the origin ; let one vortex of the back cascade be at the point (4, v). Suppose
the vortices of the front cascade each to have strength K, and those of the rear cascade — K,,
and let the speeds of the two cascades in the positive direction of y be — »Q; and rQ,,
respectively.

On the instantaneous velocity field due to the two cascades, superpose a uniform velocity
having components U, V in the directions of x, y, respectively. The component U is the usual
axial velocity component, and will be assumed to include the axial interference velocity. The
component I/ can be determined from the condition that far in front of the two cascades,

i.e. at ¥ = — oo, the total resultant flow must be purely real, since there is no rotation in the
stream approaching an airscrew. The total imaginary component at x = — oo is, on use of (3),
— K, K,
O=V+ 5 = 9
whence
K, — K,

V=28 O (5
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We may now write down the velocity components at any point of the field, and in particular,
may evaluate the velocity components at any vortex due to all the remaining vortices of hoth
cascades and to the uniform velocity. Thus at the point (%4, y), there is no contribution from
the other vortices of the second cascade, and there are contributions given by (4) and (5) due
to the first cascade : there are also contributions U and V, where V is given by (6), from the
uniform velocity. These are the total contributions to the velocity components relative to
the fixed axes. Relative to the vortex itself, however, there is an additional component equal
to the reversed translational velocity of the vortex, i.e. a contribution — Q, in the positive
direction of y. Hence if the components relative to the vortex are u,, v,

%2:(]—]—%]‘(17), .. .. .. .. .. .. .. (7)
02:_¢92+52;K1_§§F(;]), O )

where f(n), F(n) are written for f(¢, n), F(&, ) when & assumes the constant value A/s.

In a similar way, the velocity components relative to the vortices of the front cascade are
readily shown to be

K
ul.:U+~2—§(n), .. .. .. .. .. .. .. 9)
| K,— K, K
'Z)IZ TQl—i_ Tl— Z—SzF(T/>. .. . .. .. .« (10)

If the resultant of u,, v, is W, and of u,, v, is W,, and if these resultants make angles ¢4, ¢, with
the planes of the screws, then (see Fig. 4)

Y
A
0 X
W,
' ¢'1 vy
u, Fic. 4
u; = W, sin ¢, .. .. .. .. . (11)
vy = W, cos ¢, .. .. .. .. .. .. oo (19)
and Uy = W, sin ¢, .. .. . .. . (13)
— vy = W, cos ¢, .. .. . .. .. . o (14)

the negative sign being introduced in (14) so that ¢,, as is conventional, shall lie in the first
quadrant.
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5. Instantaneous Thrust and Torque.—The lift force on a vortex of strength K in a stream of
velocity W is oWK and is at right angles to the direction of W: the drag force is zero.
Accordingly, the force components along the thrust axis due to the N vortices representing
the sections of each screw give the thrust gradings as

ar
,,d}l, = oNW K, cos ¢,
= oNK v,,
arl,
= oNK,( — v,),
a7 eNK,( — vy)

on use of (12) and (14). Similarly, the torque gradings are
01 oNK

dr
dg% = ot NK,u,.
Substitution from equations (7) to (10) gives
Pl\, T R D)
;v N A . BT
and MIN '[iz% _ UK, + ,Kég:%f(,,), O b s
p}j\[- We v+ By . my

Though the equations so far obtained relate only to instantancous conditions, some interesting
deductions may be made from them.

The individual thrust gradings due to each screw in the absence of the other are found by
putting K, = 0 in (13) and K; = 0 in (16). The results are

1 4T, K2

il S £
oN dr = rO K, — o5
1 47, ) K,?
olN dr ! Q,K, — 95 ! -

and these equations are, as would be expected, independent of 4. The second term on the
right-hand side in the two expressions represents the loss in thrust due to slipstream rotation.

The total thrust grading due to the two screws in the presence of each other is obtained by
adding (15) and (16) ; it is therefore given by
AT+ Ty (B — Ky)*
oV dr 2s )
This exceeds the sum of the individual components given above by K,K,/s; the increase is
due to the reduction in slipstream rotation. The magnitude of the slipstream rotation is
determined by the velocity parallel to Oy at x = + o : this is
_K,—K,
o s

= rQ K, + rQ,K, — (19)

K, K, .
V- ot 4 O £ 0)
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on use of (6). If K, = K,, there is no slipstream rotation, while the efficiency of the system
under consideration is evidently a maximum. Moreover, when K, = K, there is no torque
reaction from the screws, as is evident when (18) is subtracted from (17).*

We may also compare the contra-rotating pair with a pair rotating in the same sense. In
practice such a pair would be locked together, and would probably be identical and coplanar ;
however, the general result can be simply obtained by reversing the signs of both Q, and K, in
the foregoing discussion. As regards the thrust-grading, this is, by (19)

1 (T, + T,)
eV ar
This thrust is less than the sum of the individual thrusts by the amount K,K,/s ; the decrease

is due to the increased slipstream rotation, the magnitude of which is determined by (20) as
a velocity — (K; + K,)/s parallel to the planes of the screws.

=¢91K1+792K2_(_&i2i$£2f. e

6. Conditions for Equal Power Absorption.—The most common operating condition for a pair
of contra-rotating screws would probably be that for which the power input to each is the same.
The rates of absorption of power by the sections are ,dQ,/dr and Q,dQ,/dr ; if these are equal
then by (17) and (18) '

0= U(Q,K, — QK,) + (Q, — Q) Kfz Fn). 2
-There is no unique solution of (22), but an obvious case which satisfies the equation is that for
which Q= 0, =0, . .. . . .. . .. .. (23)
K,=K,=K. .. . . . . . . (29

These yield the advantages specified in §5; and in addition the engines deliver equal power
at equal rotational speeds.

It should be remarked, however, that even when both conditions (23) and (24) are satisfied,
v, and — v, are not equal, though #, dand u, are (see equations (7) to (10)). It follows that
the angles ¢, the resultant speeds W, and the lift coefficients, are all unequal for the front and
- back blades. Substitution from (23) and (24) in (7) to (10) and use of (11) to (14) gives

25U + Kf(n) -
tan¢1_2379—KF(n)’ . .. . .. . .. .. (25)

25U + Kf(n) ’
ta;n by = 250+ KF(r) .. .. - .. . .. .. (26)

Now for all values of #, F(y) is positive; hence ¢, > ¢,, also W, > W,, so that for equal
circulations and chord, C;; > C,,. For similar sections, this implies a larger incidence for
the front screw as well as a larger angle ¢, so that the front screw always requires a coarser
pitch setting than the rear screw.

Again, though the torques are equal and opposite, the thrusts are unequal. Substitution
from (23) and (24) in (15) and (16) gives

1 4T, K®

NG —G Fe), )
1 4T, K® 0
N g KA P (29)

so that the thrust of the rear screw exceeds that of the front screw.

* The torque reaction is given by the difference, and not the sum, of (17) and (18), since each component is
measured in the sense of rotation of its own screw.
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7. Conditions During Motion.—The analysis of §§4-6 is concerned with the instantancous
conditions occurring during motion of the screws ; and the results of §6, based on the conditions
(23) and (24), only apply at the given instant. It is evidently possible to maintain the
condition (23) throughout the motion, but the magnitudes of the circulations K, and K, depend
on the mutual interactions of the blades, and would be expected to vary differently throughout
the cycle 0 <y < 1. We now proceed to examine this question. .

If the pitch setting of a blade of the front scre:W, referred to its no-lift line, is 0,, the incidence
relative to this line is 0, — ¢,.  The lift coefficient is accordingly

C, = aysin (0, — ¢,). .. . .. .. .. (29

In cquation (29) the slope of the lift curve at no lift is written a, ; the theoretical value of ay
for an isolated aerofoil is 2z. Tor aerofoils in cascade, this is modified4, but in the case of
airscrew blade sections the spacing is so wide that the theoretical valuc would be only very
slightly less than 2z. However, in practice, for an isolated aerofoil under steady conditions,
ay is only about 90 per cent. of the theoretical value. Moreover, it has been shown! that the
frequency parameter of the oscillatory changes for a contra-rotating airscrew pair is of the
order of unity, so that a reduction in @, of the order of 40 per cent. may be expected?: this
reduction, however, would only apply to the variations from the mean incidence. TFor
simplicity this complication will be omitted in the present paper, but its effect would probably
be to reduce by 30-40 per cent. the magnitude of the oscillatory variations in thrust, etc.,
found in the present discussion. '

2
Since the circulation round a scction of the front screw is K, equation of the expressions
for the lift force gives

oW K, = 1oW,2,C,, G 1)
which with (29) reduces to

@yCy

K, = W sin (0, — ¢,). .. .. .. . .. .o (8
Similarly, for the sections of the rear screw,

AgCo

2

If we expand the sines in (31) and (32) and use equations (7) to (14) we optain the following
equations for K, and K, :

K, = W,sin (0, — ¢,). .. .. .. . .. .. (32

AK, 4 BK, =C,, .. .. .. .. .. .. .. .. (33)
AK, + BK; = C,, .. .. .. .. .. .. .. oo (34)
where A, = 4s 4 sin 0, .. .. .. .. .. .. .. .. (89
Aoly
4s . ,
A, = —+ssin 0, .. .. .. .. .. .. .. .. (36)
T gl

By = fcos 0, + (F — 1) sin 0,, (37)
By = fcos 0, — (F + 1) sin 0,, .. . . . .. (38)
Cy = 2s(rQ, sin 6, — U cos 0,) (39)
Cy = 25(rQ, sin 0, — U cos 6,). (40)

bl
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In these equations the functional dependence of f and F on 5 has for convenience been omitted.
The solutions of equations (33) and (34) are

A,C, — B,C, | al

K= 14— BB P )
. 1C2 2C1 42
K, = _HAAlAz. BBIB;, PO %4

Equations (41) and (42) determine the values of K, and K, for any given values of blade setting,
rotational speed, etc., as functions of #, which defines the positions of the blades relative to each
other. It will be seen that K, and K, depend on 5 through the quantities B, and B,, which alone
involve the functions f and F of #.

When tables or curves of K, and K, have been found as functions of #, these can be used
in conjunction with equations (15) to (18) to determine the variation of thrust and torque

grading with 7.

We may remark that, to determine the performance of either screw in the absence of the
other, it is sufficient to imagine the chord of the other blade to become indefinitely small.
Thus, if ¢, is made indefinitely small, the quantity 4, tends to infinity. Equation (42) then
shows that K, tends to zero, while (41) reduces to

K,=0CJ4,, - .. .. .. .. .. .. .. o (43)
which is, as would be expected, independent of 7.

Equations (41) and (42) also show that it is not possible to maintain equality of circulation
throughout the cycle 0 < < 1. The conclusions of §6 accordingly require further examination.
It is, however, evident at once that, since the circulations are not always equal, slipstream
rotation cannot be always absent. If the mean torques on the screws are equal and opposite,
the mean slipstream totation must evidently be zero, but it is now apparent that in this case
the angular velocity of the slipstream will oscillate about its mean value of zero. It is
interesting to note that as a result there will probably be a true Katzmayr effect on the wing
roots and tail surfaces of an aircraft with contra-rotating screws : these surfaces will tend to
extract any oscillatory energy from the slipstream. It is also conceivable that breakaway on
wing root surfaces which might be present in a steady stream would be removed by the known

unstalling effect of oscillatory motion®.

8. Conditions for Equal Mean Power Absorption.—We now proceed to examine afresh the
conclusion of §6, that for the two screws to absorb equal powers the front screw requires to be

" set at a coarser pitch than the rear screw. This conclusion of course implies equal rotational

speeds and chords ; we shall therefore use equation (23), and shall write ¢ for ¢, and c,.

The condition for equal mean power absorption is exlfidently that the time integrals of the
rates of power absorption shall be equal over a complete cycle. Since the speeds of rotation
are constant with time, the time integral may be replaced by a space integral, so that the

condition is
v 404 1o 40,
J’OQ 0 dn = JOQ - an.

On use of (17) and (18), this equation reduces simply to

j:Kldnzf:KZdn, L

which is the generalisation of equation (24). We may note that since the mean powers are
equal and the rotational speeds are equal, the mean torques are equal, so that the mean slipstream

rotation is zero.
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We may regard the condition (44) as fixing some relation between the quantities defined by
equations (35) to (40). In practice this relation would usually be between the blade settings
6, and 0, In a practical application of the formulae, the dimensions of the screws and Q
and U would be regarded as fixed, and (41) and (42) would then be used to obtain curves of K,
and K, as functions of 5 for a range of values of 0, and 0, ; corresponding pairs of values of 0,
and 0, would then be chosen from the curves of K, and K, which satisfied (44)

To obtain more general insight into the question of blade settings, howecver, we shall
introduce a simplification into equations (41) and (42). Suppose both blade settings (which are
referred to the no-lift lines) to be reduced until the thrust on each vanishes ; there is then no
circulation round either blade and no interaction between them. Equations (33) and (34)
then show that €, = C, = 0, so that, by (39) and (40) (and on use of (23)) both blade settings
become equal to ¢,, where

Wy sin ¢y = U, .. . .. .. .. . .. (45)
W, cos ¢y = 7Q, . .. .. .. .. . .. (48)

and W, is the resultant of U and »Q.

FFor the general settings, let
0, = by + 60, N 1 )
0y = ¢o + 60,, .. . .. .. . . .. (48)

and let 60, and 60, be small. If these equations are used to substitute for 6, and 9, in
cquations (35) to (40) then to a first approximation it is found that

C(A60, — B,60,)

K == R k" .. .. .. . LY e . 49
! A%* — BB, (49)
C(A 60, — B,50,) . '

K,= >%-"2 —2771 . .. .. . . .. (50

2 A% — BB, (50)

where , A = sin 950»{——(?2—, .. .. .. o . .. (8

0

B, = fcos ¢y — sin ¢, 4 F sin ¢,, .. . . .. .. (52

B, = fcos ¢y — sin ¢, — F sin ¢,, .. . .. . . (83)

C = 2sW,. .. . .. . .. .. .. .o (54)

If now we substitute K, and K, from (49) and (50) in the condition (44) and rearrange, we
obhtain
Y A+B, , 1 A+B1_‘_d
601 5 2727;_7‘8 E‘d}'} == 602 J’OTH)__ABIBz n. s . o . (55)

1472

On inspection of these equatioﬂs it will be evident that in all practical cases A2 — BB, is
positive and that 4 + B, and 4 + B, are also positive, while

A+ B >4+ B,

for all values of », since F is positive. It follows that the integral on the right of (55)'15 greater
than that on the left ; and hence

80, > 60, N £+ )
This supports the conclusion of §6.
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We may evaluate the integrals in (55) approximately as follows. We first note that in view
of (3), (4) and (5)
1 . 1 72 1 (ein 7z nz
fO(F —if) dy = jocoth (?)d/r, =l coth(k-)d(?),

since & is constant. This gives

1 o1 sinh(m dimy 1,
fO(F“lf) dn = los( T ) = foeg en— 1.
Hence fFazT,:-q, R 77
. .
jlfcz17=o, T .1
0

independently of the value of £. It follows that the mean values of B, and B, in (52) and (53)
are 0 and — 2 sin ¢, respectively ; while from the forms of F and fit is evident that the varia-
tions of B, and B, from these means will not be more than a unit or two unless & is very small.
On the other hand, since s/c is usually large, 42 will be of the order of 102 ; accordingly we may
without' much error replace B; and B, in the denominators of the integrals in (55) by their
mean values. The equation then gives at once

06y _ 01— o __ A4S + ax¢ sin ¢, -
602 92-—960 4S_aocsin¢0, .. e e .. ..

in confirmation of (56). This simple equation gives fair agreement with the more exact results
obtained by the method indicated earlier. ’

9. A Comparison between Oscillatory and Steady Motion Cases.—In the discussion of the
Katzmayr effect in §2 it was assumed that the incidence was the only variable. In the case
of a contra-rotating airscrew pair, the local velocity is also a variable; and from the form of
the equations it is evident that the analytical determination of the mean incidence and speed
presents considerable difficulty. The simplest way of assessing mean values for these quantities,
and the way which would probably be used in determining blade settings for a contra-rotating
pair, is to imagine the number of blades to become indefinitely large, while the solidity remains
constant. The airscrews then become sheets of vorticity, and the velocities on each side
become independent of circumferential displacement.

In the cascade analogy, it is evident that, instead of reducing chord and spacing indefinitely,
the same result may be achieved by increasing indefinitely the distance % between the cascades.
In the present discussion we shall assume that the chords and rotational speeds of the two
cascades are respectively equal,-and that, when % is indefinitely large, the blade settings are
such that there are equal circulations K, round each : the power inputs are then equal (see §6).

Equations (4) and (5) show that when & becomes indefinitely large, J becomes zero and
F unity ; these values agree with (57) and (58). On substitution in (37) and (38) we obtain

By =0, .. e . . . (60)
By = — 2sin 6, = — S, . . .. . . .. (8]
and when these values are substituted in (41) and (42) these equations readily yield
4,Ky = Cy,
or, in full, (62)

(gfc— 4 sin 61) K, = 23({!2 sin' 0, — U cos 6,),
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and (4, — S) K, = C,, ]

or ( s sin 92) K, = 2s(rQsin 8, — U cos 0,).
doC

Equation (62) is the same as (43), which defines the circulation round the front screw blades
when the rear screw is removed. Equations (62) and (6’3) in the present instance, respectively
define ¢, and 0, for a given value of K.

When 9, and 6, have been fixed in this way, the distance 4 may be made to assume its actual
finite value ; in equations (35) to (40), 4,, 4, C, and C, are then given fixed quantities, while
B, and B, are given functions of . Accordingly, K, and K, are given as functions of 4 by (41)
and (42), and may be compared with the steady value K, they assume when % is infinite ; while
the differences between K, and the integrals of K, and K, over the range 0 to 1 of # may be
regarded as the ““effect ” of the oscillatory character of the motion. When K, and K, have
been determined as functions of y, the oscillatory variations in thrust and torque grading may
be found from equations (15) to (18).

In view of (62) and (63), the equations (33) and (34) become

A.K, + B K, = 4,K,, .. .. . .. . .. (64)
AK, + B,K, = (4, — S) K,, . .. . . .. (65)
. . K, A4,— B(4;,—5) “ '
which yield K, = A BB, .. .. .. .. .. (66)
K, _ 4,4, — (B, + S)4,
Ky~ A4, BB, (67)

which are rather more convenient for computation than (41) and (42).

We may obtain general insight into the effect of the oscillatory character of the motion by
considering the case where % is large but finite. By equations (3) to (5)

— if = coth @ (¢ + n)

— 2l + 4
L4 e7®em N ()

T 1 et
If % is large, we may write
e = ¢, . .. . - . .. .. (69)
where ¢ is small ; to the second order in ¢, (68) then becomes
—if =1 4 2ee™ 2in | 2% dmin, -
or ' F — 1 = 2¢ cos 2nn + 2&2 cos 4ay, .. .. .. .. .. (70)
f = 2¢ sin 2y -+ 262 sin 4ay. .. .. .. . o (7

We shall neglect powers of ¢ higher than the second in the followmg analysis. Equations (37)
and (38) give, in view of (70) and (71),

B, = 2¢& sin (2ny 4 0,) -+ 22 sin (4ay + 04), (72)

, By = — S 4 2& sin (2ay — 0,) + 22 sin (dan — 0,). .. .. {73)

Write K, = Kyl + a,e + b2, (74)
K, = Ko(l'"}‘ dge - bye?). (75)
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We now substitute from (72) to (75) in equations (64) and (65) and expand to second order
in ¢ ; equation of the coefficients of the powers of & in the two equations yields four equations,
the solutions of which are given by

14,40, = — A, sin (2an + 04), .. .. . .. .. .. (76)
14,440, = — Ajsin (2an — 0,) — S sin (2ay -+ 04), .. .. . (77
3A,24,%, = — A A2 sin (dny + 05) + 444y | cos (0, 4 8,)
— cos (4mn + 0, — 0;) } + A,S{ 1 — cos (4an -+ 26,) Lo (8
14.24,%, = — A,24, sin (dan — 6,) — A,4,S sin (dan + 6y)
+ 4,4y + S)_{cos (6, + 04) — cos (4an 4 6, — 02)}
+S2{1—cos (dmn +20) }. .. .. .. .. .. (1)

Eqﬁaﬁons (74) to (79) define the way in which K, and K, vary with ». We may use these
equations to find how the mean values for a complete cycle depend on ¢ ; from (74) and (75)

L PRy =14 [adn e [0dn, . L 80)
KOO ‘ 0 0

,Lszd,?:1+8f@2d,7+ngbzdn; U )
KOO 0 0 '

Equations (76) and (77) show that the coefficients of ¢ in (80) and (81) both vanish; the
difference between K, and the mean values of K; and K, is thus of the second order in e.

We find

1 ' 9.2 ‘,
Ié—ojo Kidnp =1+ Alziélzz"{ A Ay cos (B 4 0,) + A,S ¢+, .. . .. (82
'leKd”:1+£’1A(A+S)COS(9 o)+ S L (89
Kylog ® Az2Az7 |70 2 1 o | |

The coefficients of &2 in these equations are evidently small quantities; accordingly it may
be anticipated that the mean values of the circulations will differ only very slightly from the

steady value of K,,.

Except for the radii at which the sum of the blade angles considerably exceeds 90 deg., both
coefficients of % in (82) and (83) are positive. We may accordingly conclude that the effect
of the oscillations is to increase the mean circulations. The increases, however, are not equal

for the front and back screws.

By substitution from (74) and (75) in equations (15) to (18), and use of (76) to (79), the
variation and mean values of thrust and torque may be obtained also. It will be sufficient
to remark here that the changes in mean thrust and torque grading are also of the second

order in e.

10. A Comment on the Theory.—In the analysis of the present paper, it has been assumed
that the strength of a vortex in a perfect fluid can change. This, of course, is not strictly
valid ; however, if it is assumed, it must also be assumed that vorticity is shed when the
circulation changes ; the total strength of the vortices shed in a given time being equal to the
change in circulation. In the present theory, no account has been taken of the velocities
induced by the shed vortices ; however, if the variations from the mean circulation are small,
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the velocities induced by the shed vortices will also be small. It follows that the present
theory can only be expected to apply when the distance between the screws is sufficiently large
for the variations in circulation to be reasonably small compared with the mean circulation.

It was remarked in §7 that the magnitude of the oscillatory variations in thrust and torque
would probably be reduced by the frequency parameter effect. This effect results from the
velocities induced by the vortices shed by an aerofoil in oscillatory motion ; it therefore secms
possible that the effects due to the shed vortices may be represented with sufficient accuracy
by a reduction in the amplitudes of the forces corresponding to the given frequency paranieter.

11. A Numerical Example—The numerical values assumed for the present illustration are
based on data applicable to a particular contra-rotating airscrew pair. The conditions assumed
correspond very roughly to cruising at 240 m.p.h. at 15,000 ft. The numerical values adopted
are

N=3

¢ = 0-7ft.
o= 0-75 ft..
v = 4 ft,

s = 2ar|N = 8-379 ft.
2né = Nhjr = 0-5625

U = 360 ft./sec.
rL = 540 ft./sec.

a, = 5-6.

The value of » chosen is very nearly 0-7 of the tip radius of the airscrew pair, which is 11 ft. 6 in.
in diameter. The rotational speed corresponds to 2,400 engine r.p.m. nearly.

We shall commence by a determination of the blade angles 0, and 0, (referred to the no lift
lines) at » = 4 ft., on the assumption mentioned at the beginning of §9, namely, that each
airscrew carn be treated as a sheet of vorticity, so that there are no oscillatory effects. The
blade angles are then defined by (62) and (683). In these formulae we shall assume

K, = 100 ft.?/sec.

a value which gives the cruising lift coefficient of the blades as about 0-45 at » — 4 ft. This
lift cocfficient is low, but the total solidity of the screws is correspondingly high; and the
thrust of the screws, computed from the formula

T =08 [7§I—J ,
dr * = OTR

is found to be of the correct order of magnitude for the value of K, chosen.
With K, = 100, equations (62) and (63) give
0, = 38-53 deg.,
0y = 37-87 deg.,
so that the difference in blade angle* is 0-66 deg.

* 1t should be remarked that the theoretical difference in blade angle is based on the assumption that the
streamlines lic on the surface of a cylinder.  In practice this is probably not true, with the result that 0, — 0,at a given
radins » may differ appreciably from the theoretical value.
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Retaining these blade angles, we shall now compute the variations with » of K, and K, as
determined by equations (41) and (42). As a preliminary the variation of the functions. f(3)
and F(y) will be found. For the given data these become, by (4) and (5)

sin 2ny

F0) = 11694 = cos Znn °

05926
F0) = 177624 — cos 2nn°

_ and graphs of these functions are given in Fig. 5.

By means of (37) and (38) the variation of B, and B, with 5 is next found, and then (41)
and (42) determine the circulations K, and K,. Curves of these quantities are also given in Fig. 3.
It will be seen that the variations from K, = 100 are of the order of + 20 per cent. Mean
values of K, and K, have been found by Simpson’s rule, with ordinates spaced 1/48 apart where
the variation is rapid. They are

| "K dy = 100-45 ft.%sec.,
) |

[ Kudn = 100-33 ft.2jsec.,
1]

and it will be seen that the difference from K, is trifling. It may be remarked here that the
accuracy of this application of Simpson’s rule may be estimated by using it to determine a mean
value of F(y), ordinates of which are known at the same abscissae as for K; and K,. The mean
value should be unity ; Simpson’s rule gives in the present instance

1
j F(y) dy = 1-00055.
0 .

The formulae (82) and (83) also lead to the conclusion that the differences between K, and
the mean values of K, and K, are trifling, although the value of ¢ given by (69) is too high for
any accuracy to be attached to- the results. Equations (82) and (83) give

1 |
& | Kydy = 1-0028,

1 1
—— | Kydn = 1-0022.
KOJO 2

We may conclude that, so far as blade settings and overall performance of a contra-rotating
pair are concerned, it is quite accurate enough to’assume that the screws can each be replacéd
by a sheet of vorticity as suggested in §9. .

From the values of K, and K, at each given value of #, values of u,, v;, u, and v, were
calculated, and these were used to determine the curves of variation with » of the thrust
grading at » = 4 given in Fig. 6. These also vary by about + 20 per cent. from their means ;
the means, found by Simpson’s rule, are given by ’ :

6”;1 dn = 53-64 X 103

'
A

1 (tdT, ,
—_— PR oy jacnd 4' 3
pro 2y = 5477 % 10
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and these also are only slightly different from the values 53-40 x 103 and 54:60 x 103
obtained on the “ vortex sheet ” assumption. It will be observed that the thrust on the back
screw (assuming it to be proportional to the thrust grading at » = 4) is only just over 2 per cent.
in excess of that on the front. The difference would, however, increase at lower rates of
advance, that is, for the climb and static conditions.

"The angular oscillation in the slipstream at a large distance behind the airscrew pair is, by
equation (20) determined by the angle

8= an (B ).

for the particular radius considered. In the present example A varies from - 0-60 deg. to
— 0-18 deg. For comparison, an equivalent single six-bladed screw working under the same
conditions would give the constant value A = 3-8 deg. It will be noticed that for lower rates
of advance and higher lift coefficients, the values of A given above would be correspondingly
increased.

Iinally, curves of ¢, and ¢,, obtained from the components of the local velocity, are plotted
in Iig. 6. It will be seen that the range of variation, which is the range of variation of
incidence, is of the order of 4 1 deg.
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