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1. Summary.—1.1. Purpose.—It was required to review the technique of model spinning tests
with the object of improving the reliability of model standards as applied to full scale.

1.2.. Range.—The empirical basis of present model standards was examined critically. To
obtain quantitive information, the difference between model and full-scale recoveries was
analysed on a statistical basis. Possible causes of excessive scatter were investigated by further
model tests.

1.3. Conclusions.—Some possible causes of error in assessing full-scale behaviour by existing
standards have been eliminated and the difference from model behaviour is presented numerically
as a single parameter subject to statistical variation, .e. the scale effect in units of yawing
moment, in the wider sense defined in section 4. In special cases the admission of a more complex
variation may be advisable ; especially if the model is unduly sensitive to applied rolling moments,
the corresponding constituent of the overall scale effect is separated from the rest and is allowed
for independently in arriving at a safe standard. In such cases, model results are being inter-
preted cautiously until more definite full-scale evidence leads to an eventual revision of standards.

* R.A.E. Reports Nos. B.A. 1693 received 26th September, 1941, and Aero. 1820 received 17th July, 1943.
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2. List of Symbols.—In this ceport the following symbols all refer to the model :—

S
s

A,B,C

©

S I S

gross wing area

semi-span

principal moments of inertia

—B=C 4, _C—A" _4_B
pSs3 ’ pSs3 ’ pSs?

air density at equivalent altitude of spin

mass of model

relative density = &
P

rate of descent
rate of rotation

. 0s
spin parameter = 7

sideslip velocity

o incidence of wing chord

m

A}T

N

}y.‘I » YB

sideslip angle (positive for inward sideslip)
tilt angle ; inclination of wing span to horizontal (positive if outer wing tip is up)

spiral pitch
rolling moment in body axes
pV2Ss

rolling moment coefficient =

pitching moment coefficient

yawing moment coefficient = 77255

yawing moment coefficient measured in steady spin, just sufficient to prevent recovery
~ on moving controls for recovery

mean difference between model and full-scale aircraft expressed as a yawing moment
coefficient :

probable error of this difference

individual difference for a given type of aircraft

yawing moment coefficients equivalent to an increase of 15 per cent. in A and B
correction to threshold value N for random errors in model inertias

lift coefficient

,rolling moment coefficient due to inertia of body axes

rolling moment coefficient due to rotation

rolling moment coefficient due to rotation and sideslip

; i
sideslip derivative of rolling moment = a5 U'pv

0 ——
sideslip derivative of yawing moment = Y. n'pv

~corresponding derivatives augmented by inertia terms

L — ‘:'v/yv
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3. Introduction. — The existing standard laid down by Gates and Stephens“? for spinning
models requires that they shall recover from the spin with the appropriate loading against a

- given applied pro-spin yawing moment chosen as 15 units (yawing moment coefficient = 0-015).

In this it is implied that the yawing moment is measured in the steady spin before the controls
are set for recovery. The standard is generally satisfactory but occasional lapses have drawn
attention to its empirical background. The question whether these errors are really due to
the method of model testing or to misleading flight evidence is discussed further in §9.2.

Two main problems occur : to improve the reliability of predicting full-scale spinning behaviour,
and to know at what point the risk becomes serious if the model is allowed to pass at a lower
standard, say, for example, 10 units instead of 15.

4. Factors in the *“ Scale Effect”.—The principal causes of difference between the model and
full scale may be listed as follows :—

(i) Systematic deviations from full-scale attitude and rate of steady spin even when conditions
are made as close as possible to dynamical similarity. This may be expressed for the
steady spin in three terms, viz errors in «, # and 2. To these errors, all the causes
listed under (ii)—(iv) contribute ; the remainder is mostly due to purely aerodynamic
causes, especially Reynolds number effect on lift, drag and autorotational moments.
All of these aerodynamic quantities for a given model are'functions of «, g and 1 ;
the three moment coefficients, which are the most important aerodynamic functions
in the spin, may be regarded as having errors given to the first order in terms of errors
in the geometrical and kinematical variables by the three equations

&_§6+5H_ Lo Doavalin oR g aeel o o gy

and two similar equations for ém and 6z, in which éa, 68, 84 are differences between
model and full-scale values. l/d« and the other partlal derivatives depend on both
aerodynamic and inertia coefficients and may be deduced from the moment equations
of the spin. If the main contribution to scale effect comes from the wings it is reason-
able to expect 6/ and én to outweigh ém in importance. We are in practice more
directly concerned with these moment errors than with their effect on «, g and A.
Since our scale of values is a scale of yawing moments, it is also useful to express 6/
as equivalent in a limited sense to a certain yawing moment, and it becomes important
to decide whether such equivalence also extends to the prevention of recovery. Ten-
tatively we may assume the result given in Appendix I that the yawing moment é,n
equivalent to 4/ is given by
d.m on [ol

= = e e @)

This ratio of equivalence of yawing and rolling moments extends to their effect on « and 2,

subject to the condition that L:; Z%@ isnegligible, as is probably the case, and itisobtained

by considering only small displacements of the spin from one state of dynamicequilibrium
to a neighbouring state with «, g and 4 undergoing small increments as in equation (1).
It may seem a sweeping assumption to take this displacement as measuring the influence
of rolling moments on recovery, but it must be recalled that the whole basis of our
assessment of recovery is a scale of yawing moments measured in the initial spin,
regardless of the question whether the initial state is, so to speak, the most crucial
for recovery.

In the same way our working hypothesis is to regard all small perturbations of the spin as
ultimately expressible on the scale of yawing moments for the purpose of assessing
recovery.

(793064) A2



4

(ii) Failure to achieve exact similarity of loading. This takes the form of error in equivalent
altitude, and error in weight and moments of inertia. Some error in' altitude is to
be expected, and a further departure from similarity results from the fact that the
model is held at constant altitude, whereas the full-scale aircraft is necessarily changing
during the spin. Errors in moments of inertia are regarded as materially affecting
the precision of the results, and are further discussed in § 7.

(iif) Difference between left- and right-handed spins (see § 8).

(iv) Accelerations of the tunnel due to unsteadiness, or intentional accelerations required
to keep the model in the test section.

(v) Control movements are not exactly represented. Aerodynamic balance is not attempted
on the models, and there is no restriction of the automatic movement of controls
either by appreciable hinge moments or by the discrétion of a pilot. The optimum
use of controls may remain undiscovered in either model or full scale.

Factors (ii) and (v) are already partly eliminated because higher tunnel speeds are available
than heretofore, enabling the rate of descent at sufficient altitude to be balanced against tunnel
speed, and on some models improved mechanisms allow the controls to be moved separately
as they are in full scale. These factors cannot be considered on all models retrospectively,
but it is intended that in future the standard should be applied to the best use of controls for
recovery. Misuse of controls is a contingency that can best be allowed for by ensuring a margin
of safety with normal use, except that if tunnel work indicates any specially dangerous condition,
a warning may be issued.

5. Theoretical form of the Failure Curve.—Experience of the model spinning standard has not
hitherto been given satisfactory numerical expression. What has usually been attempted is to
estimate by comparison with spinning trials or accidents what yawing moment must be applied
to make a particular model fail, especially in cases where the aeroplane fails to recover. The
largest value so found has been taken as a basis for the standard to be reached in future, but it
is our purpese to find a better expirical basis if possible

The model usually spins more steeply and recovers from the spin more easily than the aeroplane.
The application of a pro-spin yawing moment makes the model recover more slowly, the measured
time of recovery progressively increasing according to some curve like that of Fig. 1, and there
is a yawing moment, N say, such that all larger values will wholly prevent recovery. This
yawing moment is called the threshold value for the particular model, loading and senss of spin.
In what follows N usually refers to a mean for left- and right-handed spins.

The main problem is to make the best use of measurements of N in deciding the probability
of failure to recover from full-scale spins. The applied yawing moment brings the model
behaviour into better agreement with full scale by making the steady spin flatter and faster.
These changes generally diminish the initial effectiveness of the rudder, and the extra pro-spin
moment is a handicap against which the remaining rvdder power must work in stopping rotation.
We may therefore visualise a full-scale curve of recovery time in Fig. 1 displaced borizontally
but qualitatively similar in shape to the curve for the model. It is assumed here that the model
times are multiplied by the square root of the linear scale ratio, in order to represent the times
on a common scale.

The magnitude of yawing moment required to equalise the model and full-scale times of
recovery is a convenient measure of the difference between the spins and will be denoted by Z.
This cannot be measured directly unless the aircraft is on the borderline, that is, recovers from
spins in response to correct control movementsbut only in an abnormally long time. The practical
importance of such cases is therefore considerable. In cases of non-recovery, Z must be redefined
and can be thought of as that applied moment which will bring the steady spins into agreement.
In either case it can be understood as the distance along the yawing moment axis in Fig. 1 between
the curves for the model, and if it could be obtained, for the aeroplane. The only point actually
resulting from full-scale observation is P. Similar curves could be obtained with, for example,
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the moment of inertia B as the independent variable, and this has been done in particular cases
by the use of the ballast tank ; but yawing moment happens to be the most convenient variable
to manipulate for models although there is no corresponding technique for aeroplanes.

We now suppose that Z is the linear resultant of a fairly large number of independent small
constituents, such as those enumerated in § 4, and that its values are distributed among various
types of aircraft according to the normal error law. Then, in addition to its direct determination
in some few cases, Z can be thought of as having a mean value X and a probable error Y (Fig. 2).

The probability that Z exceeds N is the same as that the aircraft will fail to recover if the model
threshold is N, neglecting for this purpose the mere lack of sufficient height to recover in defining
the probability. It is represented as the shaded area to the right of N in Fig. 2, and is plotted

against N in Fig. 3. This is the curve of the error integral, values of which are given in standard
mathematical tables.

6. Empirical Determination of the Failure Curve.—The relevant data for correlating model and
full-scale tests are collected in Table 1, in which N is the threshold measured for the model with
normal inertias. Y is the measured yawing moment equivalent to an increase of 15 per cent.
in B. Previous practice has been to use N — 2Y, as the parameter both for establishing the
standard and for predicting full-scale behaviour. The probability of failure can be estimated
by sorting each group of models having similar values of the parameter. The histogram of
Fig. 4 shows this done, with borderline cases counting 3. A mean curve has then been drawn,
of the theoretical form described in §5. Fig. 5 shows a histogram resulting from the revised
method of correcting N ; the separation of passes from failures is hardly better but a rather

safer standard is set. It may also be concluded tentatively that inertia errors are not the
predominant cause of ‘“scatter ”.

7. Inertia Errors.—The most important constituents of Z due to loading errors are those for
deviations of all-up weight, pitching moment of inertia B, and rolling moment of inertia 4.
It may be assumed that comparisons with full scale are made with the model weight correct,
apart from altitude error. With 4 and B it is otherwise because the full-scale valués are not
measured directly and a statistical error results. Usually this possibility has been allowed for
by supposing B increased by 10 per cent. on the model. However convenient this may be, it is
liable to lead to an eventual lowering of the standard which will defeat its purpose ; it is more
rational to compare model and aeroplane at the same loading or as near as possible. ~Systematic
errors in the inertias can be minimised by a simple procedure. The mass of each item is entered
in a table in which the individual moments of inertia are calculated. Systematic errors in the
resulting radii of gyration are unlikely, so that the moments of inertia will also be free from
systematic error if the total weight is all accounted for in the inertia sheet. This is checked by
agreement with the known weight. If the weight proves incorrect, the calculated moments of

inertia can be scaled proportionally. The final errors in moments of inertia may then be assumed
to follow a normal error law. )

The problem now is, to make use of the fact that, although 4 and B themselves have unknown
errors, the effect of a given error in either can be measured on the model. In Appendix II it is
argued that such effects can be regarded chiefly as influencing the precision of the error integral
curve. The model normally loaded corresponds to a certain full-scale loading, from which the
actual A4 and B in spinning trials differ positively or negatively. Therefore in going from the
scaled-up model loading to the actual loading we must pass to a flatter failure curve, so situated
that for a given N the probability of full-scale failure is brought nearer to 50 per cent. The
probability 50 per cent. throws the least light on full-scale behaviour so that if the loading
condition is a dominating variable, only a correspondingly large measured value of N would
enable any confidence to be placed in the prediction of full-scale recovery.

This procedure based on Appendix II is adopted in Table 1 and Fig. 5, in which it is seen that

the Moth Minor and Bristol 133 are over the borderline, leaving only the Typhoon and Wellesley
erroneously passed (but see §9.2).
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8. Other Individual Errors.—8.1. Difference between Right and Left Spins.—The difference
between the two directions of full-scale spinning is probably due to aerodynamic and gyroscopic
effects of the propeller, to manufacturing tolerances leading to minor asymmetries, and to design
asymmetries if there are any. Model differences are not correlated to any very marked degree
with the sense of rotation of the idling propeller and are dominated by tolerance of manufacture.
Thus it is reasonable to use the mean model result and, in comparing with the worse full-scale
case, to make a calculated allowance. In Table 1 the comparison is between the mean model
result and the worse full-scale result, so that the allowance is already present in the resulting
failure curve. The magnitude of the full-scale effect on modern aircraft is discussed elsewhere.®

8.2. Rolling Moment Effects.—It has been suggested that the model in a given condition will
generally spin steeper and, at a given incidence with more outward sideslip than the corresponding
full-scale aeroplane. In that wing tip vanes flatten the spin, the scale difference of attitude
may be thought of as due to Reynolds Number effect on yawing moment. If so, a constant Z
would be a physical representation of aerodynamic scale effect, and we should then have to
reckon with the statistical variability of the true Reynolds Number effect according toaeroplane
design. ,

Error in sideslip requires rather more detailed consideration. This may be partly, indeed
largely, due to scale effect on rolling moment, since /, is usually larger numerically than #, in
the spin. In fact it is probable that Reynolds Number effect has a fairly large rolling component
in body axes, since not only are tangential forces on stalled thin aerofoils fairly small but it is

known that /' tends to be the major component, taking the aircraft as a whole.
Evidence has therefore been sought that models are unduly sensitive to rolling moment errors.

9. Experiments with Applied Rolling Couples.—9.1. Measurements on the Wellesley and other
Models.—The Wellesley model seemed a suitable model for this enquiry as full-scale behaviour
has caused serious doubt of its ability to recover by normal use of the controls (Appendix III).
The original model tests by Alston and Coben 1933* and subsequent repetitions all point to good
recovery with the largest margin of safety so far recorded.

With the model loaded to represent the aeroplane in the condition which gave trouble, a
peculiarity of the spin is the large outward tilt. This must certainly make the centrifugal rolling
and yawing couples more significant than they usually are for monoplanes. In fact there seemed
to be a strong case for further investigation of the lateral behaviour. The actual investigation ,
took the ferm of an analysis of the spin with rolling moments applied, as in Fig. 6, by means of
auxiliary vanes placed in the same plane as the wing. The first attempt failed because with
pro-spin rolling moments the spin did not appear steady enough for photography, and also
because of experimental difficulties in determining the rolling moment when 4 1s large, as in this
model it is. Tests were therefore made with anti-spin rolling moments. These showed a marked
effect even allowing for some interference between the two vanes placed, as these now were,
close together on a wire attached to the inner wing-tip. In the steady spin, the results of Figs.
7 and 8 apply to the effect onincidence, whereas those of Figs.9 and 10 apply to the effect on sideslip.

Referring to equation (2) we now find that the value
J =06m[él =0-4

is in reasonable accord with the experimental results over a range of incidences. There is no

reason to expect 7 to be constant and this value may be in error, as a result of mutual interference
of the vanes, by perhaps 25 per cent.

A continuation of these tests included an investigation of recovery from the spin with rolling
moments applied. These did not show an effect of the same magnitude as in the steady spin,
thus contradicting the hypothesis of § 4.1, probably because (a) the rolling moment doss not.
vary during recovery in the same manner as the yawing moment, and (b) probably j is in any
case not constant during recovery.
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Eventually recovery tests were made with pro-spin rolling couples applied to several different
models. These results certainly seemed to show that the effect is not consistent but is corrslated
with the sign of (4 — B) as it would be if the ““ equivalence ’ formula were true. It is noted
that if 2 is sufficiently large, equation (2) leads to the simple formula

o G

gt gy |

The measured ratio 7 on the other hand appears to be numerically less than this, as shown in
Table 2, probably because in fact the /, term is not negligible in comparison with @4* sin «.

=1 — BJA

TABLE 2
Equivalent Y awing and Rolling Moments

Tvpe ' 7 (measured for ! 7 (calculated for (1 — BJ/A) in
P ‘ recovery) I I, =—02) model test
Defiant o —0-32 | —0-3 —1-68
Bristol 133 . I i = { 0 —0:02
Bristol 133 .. | +0-14 +0-3 +0-49
Moth Minor .. | variable 0-05 0-11
Wellesley . oo 0-25 0-13 0-37
Typhoon . .. .. ‘ 0-19 0-07 0-19
|

It also seemed that the value of Z was correlated with 4 — B in the sense that when 4 > B
the model tends, on the simpler interpretation, to an over-optimistic conclusion about the
recovery of the aeroplane and vice versa, especially in the case of Defiant, Spitfire, Bristol 133,
Wellesley and Typhoon, whereas for the Moth Minor the correlation was negative. A critical
examination of these cases, however, makes the list much less impressive, for in three of them
the over-optimism could easily be due to statistical causes and experimental error, whereas
the other two are complicated by doubts of the elevator operation to recover.

The results in Table 2 are presented graphically in Fig. 11. In ignorance of the true relation
between 4/ and én we might naturally search for some line with which the intersections of these
graphs would give an improved separation into passes and failures. However, the number of
authentic cases is insufficient. Tt is noted that in the present routine tests, the applied moments
are in a fixed ratio given by 6/ = — é»n tan 40°, and if there is a valid equivalence ratio 7 we
expect the corresponding deviation on the scale of yawing moments to be given by

(6n + jol) — (6n — 7 tan 40° 9n) = 7 (6] + on tan 40°) .

Column 6 of Table 1 is based on an assumption of equal values for 6/ and é%, but further
progress requires an experimental investigation of the scale effect on autorotational moments,
as well as more data for statistical analysis.

9.2. The Wellesley and Typhoon Spinning Tests.—The Wellesley was placed on the borderline
in Table 1 on the evidence of a flight ‘report (Appendix III) which appeared to receive some
corroboration from a later fatal accident. Against the full-scale evidence is that it is not the

result of systematic spinning trials, but of an accident to a particular aircraft that appeared,

on the showing of the same report, to behave exceptionally. At the stall, most production
Wellesleys did not tend to spin at all whereas this one did so. With this reservation the evidence
points however quite clearly to unsatisfactory behaviour in the spin.
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The aerodynamic criteria for the Wellesley are low ; b = 0-24, damping coefficient = 0-007,
unshielded rudder volume coefficient = 0-004. There is an inadequate number of other cases

with so low a value of b to arrive at any fair comparison ; it is doubtful whether the graphs
of Ref. 5 are applicable here.

No reasonable interpretation of §9.1 seems likely to bring the model over the borderline.
The question now is whether model tests throw any further light at all on this puzzling discrepancy.
Two salient facts are :—(a) The Wellesley model is sensitive to loading of the fuselage such as
ballasting of the tail to bring the C.G. to its aftmost position, or accidental rearward movement
of a large mass. However, model tests indicate that such a weight would have to be of the order
of 1,000 lb. to make the spin dangerous. A comparable error in estimating B is hardly a
possibility.  (b) The misuse of controls to recover is important. Use of the rudder to recover
1s not essential ; use of the elevator is quite essential. Because of the former, we can ignore
any suggestion that the rudder failed to work. In the case of elevator we ought to ccnsider

whether the pilot could be mistaken in thinking he had applied it, e.g. by failure of the control
circuit or excessive stretch. :

Similar considerations apply with greater force to the Typhoon. In this case (Appendix IV)
the pilot’s definite impression was of excessive stock forces; this evidence is to be taken in
conjunction with the observation that on the model Typhoon as on the Wellesley model the
stick movement is a very important factor in recovery.

The following threshold values are observed with the model loaded to represent approximately
the condition of the machine on the occasions in question when difficulty was experienced :—

TABLE 3
Recovery as Affected by Elevator M ovement

Controls for recovery I
Model : . Threshold N
Rudder ‘ Elevator s
Wellesley .. s Reversed Down 47
Central 20
Half up 12-5
Up 0
Fixed Down =36
Typhoon .. it - Reversed Down 19
Central 14
Up : 3
Central Down 13

It may be correct to explain the Typhoon experience on these lines but the Wellesley should
perhaps be left as an open question as there was no independent evidence of control troubles.

10. Conclusions.—(a) The basis of the spinning model vane technique is empirical and must
remain so until more is known of scale effects in the spin.

(b) The difference between models and full-scale aircraft can be broadly represented as a single
parameter subject to statistical variation on a scale of yawing moments.
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(c) Analysis of results of full-scale spins can eventually lead to a knowledge of the variation
of this difference as well as its mean value and any exceptional values. Inertia errors can be
regarded as chiefly diminishing the precision of predicting full-scale behaviour.

(d) The Reynolds number effect can probably be represented principally by a rolling moment
and a yawing moment. The moments applied in model tests are of this nature but the rolling
component is in all probability of the wrong sign. In principle this can lead to an unduly large
“scatter 7 on the yawing moment scale. A full investigation of the factors affecting the
magnitude of the scale effect by direct experiment is very desirable.

(¢) In practice the measured effect of applied rolling couples is usually not large, but it is
correlated as theory would indicate with the value of A — B in sign and magnitude.

(f) In cases where the ratio of equivalence of yawing and rolling moments is such as to indicate
that the routine method of testing may be in error, attempts have been made to explain full-scale
behaviour in terms of a revised method of testing models. This is thrown into doubt by the
full-scale evidence and by alternative explanations of crucial cases. The only immediate
practical outcome is to maintain a watch for exceptional sensitivity to applied rolling couples,
and to use caution in applying model results. Eventually a revised standard may be possible.
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APPENDIX 1
Equivalent Rolling and Y awing Couples
According to the simple theory of spinning, the pitching equilibrium of the model in a given
condition is determined by only two variables, the incidence « and spin parameter i(= 2s/V),

so that in steady spins 2 1s a function of «. On the whole it is found that this function is not
- markedly changed by the application of rolling couples to the model.

The effect of the rolling couple at constant o and 2 may be found from the equation of rolling
moments -

ai*sinx. 0,4+ 0p+ pl,=0,

where 6, is the inclination of the outer wing above horizontal, and g is the sideslip angle, so that

ﬁ - ﬂy — X
; ¥ C.
where x, the spiral pitch, ==L |
2u i
Hence 0, = ZM_:_Z'??

! a’?sin o + I,

In this expression the coefficients are functions of « and 4, so that if these are fixed and /'p is
increased by the application of an extra rolling moment 6/, there will be a new equilibrium
with 6, changed by an amount é6,, where
— 3l

, | SR Y, NIt o A
4 ai*sin o + [,

¥
= — 63_/41” 7

where 4, takes the place of the ordinary sideslip derivative /, and includes the inertia term.

Such a change in ¢, and g will produce an unbalanced yawing moment é,# due to (i) change
in #'v resulting from the change in g, and (ii) a change in the inertia yawing moment :—

om = n,bp + ci® cos o . 49,
= (n, + cA® cos a) 0
=00

in which », is the total derivative of directional stability and replaces the ordinary aeredynamic
term #,.

Hence dm = — élv,[2,
and the ratio 7 of equivalent yawing and rolling moments, is given by

J= =l
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The validity of the initial assumption that « and 2 are unchanged by 6/ may be examined by
taking o, # and 1 as independent variables, and considering the effect of applied moment co-

efficients o/, 6m and én ; these satisfy linear equations derived from the equations of equilibrium
of the three moments '

A9 al al al
0—.63 —}—a—aéoc—f— _Bﬁéﬁ_{—a_ﬂaz
) om am om
0—-6m+—ﬁéoc+-§§6ﬁ+-a_idﬁ
= on on on
O_an+@aa+a_‘gaﬁ+ 55 o

to the first order in da, 88 and 84, where 8l/d« etc. are derivatives involving both aerodynamic
and centrifugal terms.

If we now change to 6/, dm and o as independent variables we find

da 10 (m,n)
ol — " Jo(p 2’
o (I, m, n)
where ] == m ’
do _ 1 /omon _ om on
so that a—-— j a_ﬁﬁ ﬁa__ﬁ ’
g, L (0 O T W
on J\opoer eaap/’
Hence if ém/9p = 0 or is negligible by comparison with 2m/84,
dafou _ _omfol _
ollom  2pl op T

and j then gives the ratio of equivalence of 6 and 6/ both as regards changing (when o and 4
are constant) and changing o (when first 6/ = 0, then 6 = 0). A similar argument shows that

04 [o2 .
alen
but it is untrue that
0B [oB _ .
ol | on
This equivalence therefore, has reference only to features of the spin which are independent

of the tilt angle. Neglecting minor effects, it is probable true that incidence and spin parameter
are the important variables and that they influence recovery more than does the initial tilt angle.

APPENDIX II
Allowance for Random Errors of Inertia
The function shown graphically in Fig. 2 is the normal probability density
_ 1 _a
(%) = Py e

X = 0-477 (?_%i") J
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and Y is the probable error of Z relative to it mean value X. Y may be defined as the probable
error in absence of errors of inertia. 1f such errors are present the curve of Fig. 2 will be flatter
through a change of scale given by replacing Y by 4/(Y? 4+ Y,* + Y;%. In this expression
we are assuming that 4 and B have independent probable errors of 15 per cent, and that Y,
and Y, are the measured equivalent yawing moments.

The function given in Fig. 3 is defined as }{1 — &(x)},

where ?(x) = irg—s” dt .

7
This function equals § or %, if N differs from X by the relevant probable error.

The chance of full-scale failure is now given by the flatter of the two curves in Fig. 3, in which
N is the measured threshold. In order to reduce all aircraft to a common basis, i.e. the steeper
curve with probable error Y, we have to decrease N by a quantity 6 (Fig. 3). For corresponding
points the argument of @ must be the same and so

N Sl N - X
Y VT F LT
therefore 0 = (N — X) !1 i it |

i V(Y Y2 Yl
Since 6 cannot be calculated without first knowing X and Y, the determination for Table 1

was done by successive approximation, using a preliminary estimate to give tbe first set of
values of 6.

It is noted that the allowance for Y, is always adverse if the model bas N > X. 1In the
previous routine, no allowance was made unless Y, was negative.

APPENDIX III
Accrdent to Wellesley K.7737, 5th July, 1937

While carrying out a routine production flight test on this machine, and after having done
normal adjustments to the rigging and chassis, the machine was taken up to rated altitude and
speeds carried out at 8,500, 13,000, 13,400 and 12,600 feet.

After the speeds had been carried out steep turns were carried out in both directions and
general handling. '

During the general handling the machine was completely stalled at a height between 9 and
10 thousand feet as a lateral stability test. This test has been carried out on all the 19 Production
Wellesleys which I have tested, and the normal behaviour is that one or other wing drops and
the machine commences a slow spiral of anything up to one turn from which recovery is practically
instantaneous. -

On this occasion the machine commenced a spiral to the right and controls were set for recovery
before a turn was completed. Opposite rudder was applied and the stick held slightly aft of the
central position. Instead of recovering from the spiral the nose lifted and the machine com-
menced a gentle spin to the right at a fairly flat attitude.

Opposite rudder alone was held on for about two turns and then the stick held hard forward
also. The machine continued spinning for about five turns and then full engine was applied in
bursts and the stick rocked violently fore and aft.
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This method was continued for some time—but by this time the machine was down to between
four and five thousand feet and I did not consider there was time to attempt lowering the flaps
owing to the slow action of these. On the first attempt to leave the machine I felt a tendency
to go out forwards on the right-hand side and owing to the danger of hitting the propeller I got
back in the cockpit and switched off the engine.

I finally left the machine at what I estimated to be between three and four thousand feet,
over the left-hand trailing edge.

(Signed) J. K. QUILL.

6th July, 1937.

APPENDIX IV

The following is a copy of a flight report by one of the contractors’ test pilots.

FR/L. 680
Test Flight Report

Aircraft—Typhoon R.7692
Subject—Spinning, C.G. normal* and extended aft.t
Date—28th July, 1943. Duration - - -

As a result of Seth Smith’s report that he had experienced difficulty in recovering from a
2-turn right-hand spin (see Flight Report No. FR/L.679) further spinning was carried out by
myself at the same loading.

On the first flight, six spins to the right were made, three 2 turns, then increasing to 2%, 3 and
4 before starting to recover, but in no case was any trouble experlenced It must, however, be
pointed out that the aircraft did not stabilise itself on any one of the spins before startmg to
recover, including the 4 turn.

The spins were particularly violent, the aircraft pitching and yawing alarmingly. On the
first two spins entry was made at between 120 and 130 A.S.I. but on the subsequent spins the
aircraft was stalled in at approximately 90 A.S.I. as that was the condition of entry when
Seth Smith experienced trouble.

Recovery was effected in every case in between 1} and 24 turns (including the 4-turn spin)
by applying full opposite rudder and after about } turn easing the stick forward.

The rudder was light and ineffective for the first movement but very heavy for the last few
degrees and considerable pressure had to be used to hold it hard on.

On the next flight the aircraft was spun from between 25,000 and 25,500 ft. On this flight
three spins to the right were made and one to the left. The first three were to the 1ight, recovery
on the first two being made after 2 turns and on tbe third after 3 turns. Again no difficulty
was experienced. Entry was not quite so severe and the aircraft stabilised itself quicker in the
spin than before, being quite stable after the third turn during the last spin. Recovery in each
case was again good in between 1§ and 2} turns depending how soon the stick was eased forward
after applying opposite rudder.

Recovery from the spin to the left was similar, the same techique being employed.

*6-8 in. forward of datum, wheels up. t5-3 in. forward of datum, wheels up.
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On the third flight the aircraft was spun from 28,000 ft., one 2}-turn spin to the left being
carried out and two 2}-turn spins to the right.

On this occasion recovery from a left-hand spin was not quite so quick. After applying full
opposite rudder the stick was eased forward whereupon the spin speeded up and there was
considerable yaw inwards. The nose, however, progressively went down and recovery was

effected in about 3 to 3} turns at about 23,000 ft. It was also noticed that the elevators were
very much heavier.

Recovery from the right-hand spin was just as good as before, in fact, if anything, it was
slightly quicker. In every case the aircraft was out in level flight by 24,000 ft.

Afterwards, various methods of recovery were investigated and it would appear that to ensure
the quickest recovery the following points are important :—

(1) Before applying opposite rudder the stick should be pulled hard back and held there.
(2) The rudder is heavy for the last few degrees and care should be taken to ensure that
full opposite rudder is applied and held on.

(3) There should be an appreciable pause after applying oppcsite rudder before moving the
stick forward.

(4) It is not either necessary or advisable to push the stick hard against the dashboard.
It should be firmly and progressively eased forward to approximately central and
then held there.

(5) At least 180 to 200 A.S.I. should be attained before attempting to pull out of the resultant
dive, otherwise the aircraft may be stalled and tend to spin in the opposite direction.

The aircraft was then loaded to the extended aft limit. All-up weight 10,500 Ib. C.G. 5-3 in.
forward of datum, wheels up. -

Only one spin to the left was made, starting from 20,000 ft. Entry was perfectly normal,
the aircraft pitching violently and yawing from side to side. ~After 21 turns full opposite rudder -
was applied, when the aircraft suddenly became very tail heavy and the stick came hard back.

Both hands were used to try to centralise the stick but it was impossible to move the stick
more than an inch or two forward and gave the impression that the control circuit had jammed.
The rudder was therefore held hard on and with both hands a pitching movement was built up
until finally the nose was pitched down and the aircraft recovered. There was a considerable
yawing oscillation during the period of pitching the aircraft out, and when the nose finally went

down the spin speeded up rapidly and the aircraft yawed inwards. Recovery was effected
between 13,000 and 14,000 ft.

It is impossible to be very concise as to exactly what happened but my impression was that,
bad I allowed the stick to remain back, a very flat spin would have then developed. It must
be appreciated that the aircraft was still pitching violently when opposite rudder was first applied,
so it was never possible to get an idea of its relative angle. :

(Signed) P. G. LUCAS.




16

*SIOLIF] ®1}IAUT 10] FUIMO[Y JO PO QALJEUIY G *OI]

0— N
0s ov oe o2 o] o]
N .
/ (LN3D ¥3d)
4 os
38 N4
NIV
geA ‘y2A= / 40 ADN3ND3YS
= ool
940 LN0 ANOLIVASILYSNN 2 —=———== 2| 30 N0 A¥OLIVISILVS +
WRTE R | TIvL
| | | 3N1T¥30%08
PN
% .
"SIOLIF] BI}IDU 10] SUIMO[[Y JO POUIRI JUSSAI] ‘F 9L
A6, -
0 ob e A% Noa g °
(LN3d ¥3d)
08
37v2¢ N4
N\ WMV
g=A' %2 = AN 40 AON3MD3YJ
/
ool

1130 4NO AYOLIVASILYSNA pme— ——==— 4O LAO ANOLOVASILYS |

; NN

vd

INM Y3080

SSvd

'9AaIn) aInjre,] ayj jo adeysg [eaneroay ‘g o1

N QJI0HS3I¥HL Q3¥NSYINW

ax] o x' A
1

Q3SVYIYONI BodN3I 318VE0Nd
A= ¥0W¥3 318v80¥d

“(reonjeoay )
sodA ], JuaRyI(] Suowre 7 Jo SanJeA SMOLIEA JO UOHMQLISK] G "OLI

37¥3S TN3ANY1300WN N33ML38 3ON3¥3J4I0 g

(LN3D ¥3d)
0s
(N<2)
3IV28 14
3ANV4 20
AL1118v¥80¥d

001

N X ]

X
|

1 |
I |
| |
1
L]

(reoni00y 1)

S3INVIONOW
v
INOWY Z 40
JIN3¥AEN0
30 AIN3ND3IY4

S9AINY) AI9A003Y O[BIS-[[I,] PUR [PPOJY JO UOLISOJ JALR[OY ' *OL]

MO LN3WOW ONIMVA 03NddY
N 2

|
ﬁ
_
_
ke G 2
|
_
_
|
|
_

_
_
_
|
I
1300 |
_
_
I
|
|

37v2S 14
_A¥3A003¥
40 3NIL




8

PRO-SPIN ROLL

RESULTANT

T

i ] -
j PR
—{ 60

3 )

40 %ﬁ b_ Beed 50
YAWING (] 40
h?gMENT /—_—-—__ ®

30
gy /___/;'-—_:__..-—'___.—-—-—"' : %
P e = |
20 ’)ﬂ/ ° J..-:-"""
_____.--'IO ]
. T ANTI-SPIN
// -‘hh\"‘""--—--._..H)LLING MOMENT
10
0
z 30 7
5 w = » INCIDENC O( 16)%.'6. i o

(793¢4

F1c.7.. Effect of Applied Rolling Moment on Steady Free Spins.



60

18

'EQUIVALENT

YAWING

MOMENT

n+04 L
20|

50 55

60

INCIDENCE o DEG.
Fic. 8. Yawing-moment Equivalent of Rolling Moment in Free Spins.

)-0-8

bt

5o

A=03

et
£

i

BO 100

120

TOTAL £ DUE TO BOTH VANES
' F16. 9. Effect of Applied Rolling Moment on Tilt Angle 6,.




19

1
!
_hv =
Q-5 [ ] ]
—
]
o - -
Q-5 o6 Q-7 Q-8 I\ Q-9 -0 I\

F16. 10. Sideslip Derivative of Total Rolling Moment Due to Aerodyamic
and Inertial Couples ;

. fas e
z.=g'(rpv+m).

APPLIED
YAWING 3
MOMENT g

50

% FIGURES ARE
~ VALUES OF 25

- a0 -20 ) 20 40 60 80 100
APPLIED ROLLING MOMENT 103 £

Fic. 11. Effect of Rolling Moment on Measured Threshold.

(79364) Wt. 10/7116 1/48 Hw. G.877/1



R. & M. No. 1967
(5335 & 6893)
AR.C. Technical Report

Publications of the |
Aeronautical Research Committee

TECHNICAL REPORTS OF THE AERONAUTICAL
RESEARCH COMMITTEE—
1934-35 Vol. I. Aerodynamics. 40s. (40s. 84.)
Vol. II. Seaplanes, Structures, Engines, Matcrials, etc.
2 40s. (40s. 84.)
1935-36 Vol. I. Aerodynamics. 30s. (305. 7d.)
Vol. II. Structures, Flutter, Engines, Seaplanes, etc.
30s. (30s. 7d.) :

1936 Vol. I. Aerodynamics General, Performance,
Airscrews, Flutter and Spinning.
40s. (40s. 9d.)

Vol. II. Stability and Control, Structures, Seaplanes,
Engines, etc. 5os. (50s. 104.)

1937 Vol. I. Aerodynamics General, Performance,
Airscrews, Flutter and  Spinning.
40s. (40s. 9d.)

Vol. II. Stability and Control, Structures, Seaplanes,
Engines, etc. 6os. (614.)

ANNUAL REPORTS OF THE AERONAUTICAL RESEARCH

COMMITTEE—
1933-34 1s5. 6d. (1s. 84.)
1934-35 1s. 6d. (1s. 84.)
April 1, 1935 to December 31, 1936. 45 (4. 44.)
1937 2s5. (2s5. 2d.) :
1938 Is. 6d. (1s. 84.)

INDEXES TO THE TECHNICAL REPORTS OF THE
- ADVISORY COMMITTEE ON AERONAUTICS—

December 1, 1936 — June 30, 1939
Reports & Memoranda No. 1850. 15 34. (1s 5d.)
July 1, 1939 — June 30, 1945
chorts & Memoranda No. 1950. 1. (u. 2d.)

: Prices in brackets include postage.

Obtainable from

His Majesty s Stationery Office

London W.C.2: York House, Kingsway
[Post Orders—P.O. Box No. 569, London, S.E.1.]

Edinburgh 2: 13a Castle Street Manchester 2: 39-41 King Street
Cardiff: 1 St. Andrew’s Crescent ; Bristol 1: Tower Lane
Belfast: 80 Chichester Street
or through any bookseller.

S.0. Code No. 23-1967



