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Summary.--The object of this report is to give a connected account of the methods which have been developed at 
the Royal Aircraft Establishment by  Messrs. D. D. Lindsay, R. G. Thorne and S. A. Makovski (Refs. 3, 4 and 5) for the 
prediction of undercarriage loads under symmetric landing conditions ; to extend these methods to deal with other 
landing manoeuvres ; and to formulate a simplified system of step by step computation of the loads. 
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1. I n t r o d u c t i o n . - - T h e  report is divided into three parts : -  

Part  I, " Basic D a t a ' a n d  Preliminary Calculations ", itemises the basic information 
required, either in the form of design data or of experimental results, together with the 
preliminary calculations which must be made before the load computation is begun• 

Part  II, " Equations of Motion for Standard Landing Conditions ", gives the fundamental  
equations for a tail wheel or nose wheel aircraft, together with the simplifications and 
approximations which can be made for a calculation of the landing reactions. 

Part  III,  " Step by step Methods of Integration " describes the principle of the method of 
computation illustrated by reference to undercarriage prediction• 

It  is intended to issue a supplementary report giving some typical examples of reaction 
prediction worked out in detail, and extending the methods of this report for the effects of wing 
flexibility. 

P A R T  I 

Basic Data and Preliminary Calculations 

2. General S u m m a r y . - - I n  the following sections, paragraphs 3-9, we itemise the basic data 
required for a prediction of undercarriage reactions, together with the preliminary calculations 
which are necessary to express the basic data in a form suitable for immediate use in the 
computation. I t  should be realised that  this one set of preliminary calculations can be used for 
prediction in all the conditions of landing which are prescribed in the airworthiness requirements. 
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The following s u m m a r y  shows in t abu la r  form the  basic da t a  required,  the  source f rom which  
t hey  can be procured,  and  the  results  to be obta ined by  the  pre l iminary  calculations.  

Basic data Source Results of calculations 

Paragraph 3 
Size and deflection curves of pneu- 

matic tyre. 

Paragraph 4 
Dimensions and weight of tyre-wheel 

assembly. 

Paragraph 5 
Geometry of wheel suspension 

Paragraph 7 
Dimensions of shock absorber 

o r  

Paragraph 8 
Acceleration curves for axle and main 

shock absorber cylinder. 

Pa~'agraph 9 
Weight distribution in aircraft 

Data sheets provided by tyre 
manufacturers. 

Data sheets provided by tyre 
manufacturers. 

Drawings of G.A. of under- 
carriage. 

Drawing of shock absorber 
unit 

o r  

Drop tests . . . . . .  

Weight data sheet in type 
record, or designer's pre- 
liminary estimates. 

Wheel load R for tyre deflection x,, at 
working inflation pressure, R = f(x,). 

Moment of inertia J of tyre-wheel assembly. 

Mechanical advantage and velocity ratio for 
vertical and horizontal loads at axle. 

General expression for vertical axle velocity 
in the form k=D(R-Q)  ~, where R is 
ground reaction and D, Q known functions 
of x. 

Position of C.G., weight and moments of 
inertia of aircraft. 

3. Pneumat i c  T y r e . - - T h e  " static and  dynamic  load deflection curves "~ published by  the  
Dunlop  Rubber  Co., Ltd. ,  give the  ty re  deflection x~ plot ted  against  the  wheel  load R for a 
range of inflation pressures covering the r ecommended  working conditions. 

I t  is r ecommended  t ha t  the  " s tat ic  ty re  curves " should be used in all calculations of under-  
carriage reactions,  as experience shows t ha t  t hey  give resul ts  in be t te r  agreement  wi th  the  results 
of drop tests. 

The da ta  sheet wi th  the  stat ic and dynamic  load deflection curves also gives in round  figures 
the geometr ical  dimensions of the  ty re  at  various inflation pressures. The only dimensions 
required for predict ion calculat ions are the inflated diameter ,  and the  inflated width.  

F rom such a da t a  sheet  we plot, or tabula te ,  the wheel  load R against  the  ty re  closure x, for 
the  r ecommended  inflation pressure, in terpola t ing if necessary be tween the figures given on the  
da t a  sheet. 

As an example  we give the  following figures based on the  da ta  sheet for the 9 . 5 0 - - 1 2  
In t e rmed ia t e  Aero Type  Tyre.  (Heavy  ID.11.) 

(69866) A 2 
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Wheel load R expressed as function tyre closure x,, R ---f(x 3 

Tyre 
closure 
d (ins.) 

Wheel load R (lbs.) (dynamic loading) at inflation pressure 
p (p.s.i.) 

p = 45 
(from data sheet) 

p = 50 
(from data sheet) 

p = 47 
(interpolated) 

1 
2 
3 
4 
5 
6 
6"5 

1,200 
2,700 
4,400 
6,300 
8,200 

10,200 
11,300 

1,400 
3,300 
5,400 
7,600 

10,100 
12,400 
13,700 

1,280 
2,920 
4,800 
6,820 
8,960 

11,080 
12,260 

Inflated diameter = 31.25 in., p = 45 p.s.i. 

Inflated width = 9.6 to 9.75 in. (the nominal inflated width is the first number in the tyre 
specification, e.g., a 9 .50--12 tyre has a nominal width of 9.50 inches). 

(To allow for growth of tyre in service add 4 per cent. of width to radius-- then the tyre radius 
under no load = r 0 = 15.62 + 0 . 3 9  = 16.01 in.) 

4. Tyre-wheel Assembly.--In a data sheet issued by the Dunlop Rubber Co., Ltd. (dated 9th 
January,  1942) the following approximate formulae are given for the polar moments of inertia, 
J, of Dunlop tyre-wheel assemblies (i.e., moments of inertia about the central line of the axle.) 

(i) For tyres of normal tread thickness, 

J --:- 0.60 M~.r~ 2 + 0.95 M,(R12 + 1.5rl 2) ; 

(ii) For thick tread tyres, 

J = 0.60 M~.r~ ~ + 1.01 M,.(R12 + 1.5r12). 

Here 
] 

M~ 

M, 
r2 

~o 

R1 

rl 

z 

Polar moment of inertia in lb. in. ~ 

Wheel weight in lb. 

Tyre plus tube weight in lb. 

Rim radius in ins.* 

= Tyre radius under no load in ins. 

= ½ (r0 + r2) 

= ½ (r o - -  r~) 

These formulae are stated to be accurate to :t: 4 peg cent. As the value of J is used only to estimate 
the time during which the wheels are skidding after touch down, this accuracy is quite sufficient. 

The weights of the wheel and tyre plus tube will be supplied by the manufacturers. 

* The rim diameter is given by the second number in the tyre specification, e.g., a 9.50-12 tyre has a rim diameter 
of 12 in., whence ro = 6 in. 
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5. Geometry of Wheel Suspens ion . - -The  geometric characteristics of the wheel suspension 
required for reaction prediction are its mechanical advantages and velocity ratios for vertical 
and horizontal loads applied at the axle when the aircraft is in some standard a t t i tude--usual ly  
at rest with all three wheels on the ground. In a cantilever unit these mechanical advantages 
and velocity ratios are independent of the travel of the piston, but in an articulated unit they vary 
with the position of the piston. The principle of the calculation is the same in both cases, and 
will be clear from the sketch (Fig. 1) of a typical shock absorber linkage in an articulated unit. 

Taking moments about the fork hinge, we find that  a piston thrust  P balances vertical and 
horizontal reactions at the axle, R v and RL, if 

P.l  = Rvl  v or Rhl~ 

Hence the corresponding mechanical advantages are 

K v  ----- R v / P  = 1/lv , 

and 
K~ --~ Rh/P = l/l~, . 

The corresponding velocity ratios are 

Cv = 1/Kv = lv/1 

Ch = 1/Kh = l f l  

These velocity ratios give the ratio of axle velocity to the piston velocity, in vertical and horizontal 
displacements of the axle. 

For displacements inclined at an angle ~, to this centre line the corresponding velocity ratio is 

C~ = Cv.cOsy + C~.sin~ 

It  is convenient to make the drawings and to carry out the calculations for prescribed amounts 
of shock absorber travel x,. Typical results for a main undercarriage shock absorber are 
tabulated below : - -  

Attitude of aircraft :--Centre line of unit raked forward 6 °, lower end forward 

Shock absorber travel, X s  • • 

Mechanical adv. K v  . . . .  

Mechanical adv. K . . . .  

Velocity ratio C v  . . . .  

Velocity ratio C1, . . . .  

0 

0.308 

0.290 

3.24 

3.45 

0.4 

0.297 

0.313 

3.37 

3.10 

0.8  

0.288 

0- 358 

3.47 

2.79 

1.2 

O- 200 

0"400 

3"56 

2"50 

1.6 

O" 274 

O" 450 

3"65 

2"22 

2.0  

0.270 

0.573 

3.71 

1.95 

2.4 

O" 265 

0.591 

3"77 

1 "69 

2"61 

0"263 

0"655 

3"80 

"55 

6. Characteristics of Shock Absorbers.--The characteristic equation of the shock absorber unit 
expresses the vertical ground reaction R, in the form 

2 = .D(R-Q-F)  1/~. 

where D, Q and F are functions of the Vertical axle travel x only. In this section we show by a 
general argument that  2 can be expressed in this form. 
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In many, if not most, types of shock absorber the balance of forces between the thrust  P in 
the shock absorber piston, the pneumatic pressure p A  of the compressed air, and the hydraulic 
resistance (p' --  p )A ,  of the damper orifices, (together with the friction f due to the offset of the 
ground reaction in a cantilever unit), can be expressed in the form 

P = p A  + (p' -- p)A~ + f 

(see for example, Fig. 2), where o 

p ----- air pressure, 

A = " air displacement area ", 

p'  = oil pressure, 
Ax ---- " oil displacement area " 

Now the pressure drop, p'  -- p, through the orifices must vary as the square of the piston speed 
~s, so that  

p '  _ p = C ~ 2  

where the coefficient C depends only on the piston travel x,. 
so that  

where the coefficient k 

Now the total ground reaction is K~P where K~ 
inclined at an angle 7 to the vertical. 

Hence the vertical ground reaction is 

R = K~P cos 7. 

where K r =  1/C~, ={C~cos}, q- Chsin y} -1. 
piston speed xs is the  velocity ratio C v, i.e., 

~ =  C v £ .  

Hence, gathering together all these formulae, we find that  

R : K~P cos 9' 

= (kv cos ~,) {pA + (p' --  p)A 1 + f }  
= (K, cos ~,) {pA + C A j q  2 + f  } 

= (K~ cos 9') {pA + (CA1/Cv2)~ ~ + f }  

Therefore R -= (K~ cos y) (pA + f )  + (K~ cos 7.CA1,/C~2):~ 2. 

Hence if 
Q = p A K v  cos 9' 

F - - - fK ,  cos 
D = Cv(K ~ cos 7.CA1) -1/2 

we can express the vertical axle velocity ~ in the form 

: D ( R - Q - F )  1/2. 

Also f must be proportional to R 

f - = k R ,  

also depends only on the piston travel x,. 

is the mechanical advantage for a reaction 

The ratio of the vertical axle velocity ~ to the 

Now the air pressure p, the air displacement area A, the oil displacement area A 1, the mechanical 
advantage K~, the velocity ratio Cv, the friction coefficient K and the angle 9' all depend only 
on the instantaneous geometry of the shock absorLer unit, and hence can be expressed in terms 
of the axle travel x. Hence D, Q and F can also be expressed in terms of x only. 
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7. Characteristics of Shock Absorbers, Deduced from Design Data.--The characteristics of shock 
absorbers can be est imated with reasonable accuracy from design data.  Three calculations 
have to be made, viz : - -  

(1) The pneumat ic  pressure/5 ; 

(2) The coefficient C in the expression for the pressure drop through the orifices, 

p '  - p  = C 2; 

(3) The friction coefficient k which determines the rat io of the piston friction f to the 
vertical  ground reaction R. 

(1) To calculate the pneumat ic  pressure p, let 

/50 = init ial  air pressure in shock absorber (p.s.i.) 

15 -= air pressure when piston t ravel  is x, (p:s.i.) 

V 0 = init ial  air volume (in. 8) 

= air volume when piston travel  is x, (in. a) 

= air displacement area (in.3) 

= equivalent  stroke = Vo/A. (in.) 

test records suggests tha t  the pressure-volume relat ion follows a law 

P/Po = (V/Vo)-" 

where n is about  1.3, (i.e., somewhat  less than  the adiabat ic  index for air, which is 1.4). This 
relat ion is therefore used for quasi-adiabatic  conditions, as in landing. 

V 

A 

S~ 

Careful analysis of drop 
of the form 

Since 
V o -- V -=- Ax, 

and  
Vo = ASE 

therefore 

/51/50 = (1 --  x, lSA -~ 

(2) To calculate the coefficient C, let 

5 
! 

g =  

V 0 

A 1 ~--- 

a 2 

CD 1 
CD8 

oil pressure (p.s.i.) 

specific weight of oil (lb./in. a ) 

acceleration due to gravi ty  (386 in./sec. 2) 

oil speed through orifice (in./sec.) 

oil displacement area (in. 2) 

orifice area (in compression) (in. 2) 

orifice area (in recoil) (in. 2) 

orifice coefficient in compression 

orifice coefficient in recoil. 
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Then the condition for continuous flow is 

~,A 1 -= voaC ~ , 

where aC~ stands for alCg~ in compression and for a~Cg~. 

p '  - p = ½ Vo /g 

Hence 

where 

in recoil. Also by Bernoulli's equation 

p' - p = 

: C:~ 2 , 

C - -  ffA12 

2 g a 2 C j  " 

The main justification for this method of calculating the coefficient C is that it is found possible 
to choose the orifice coefficient CD so as to obtain reasonable agreement between calculated and 
measured drop test performance. 

(3) It  is impracticable to give any general rules for calculating f, as the method will vary so 
much with the design of the shock absorber. 

Referring back to the results of the previous section, we can now estimate Q and D (for 
articulated units where F : 0) from the equations 

Q : pAK~  cos ~ : p0(1 -- x, /SE)- ' .  (AK~ cos ~), 
D : C~(K~ cos y CA1)-1/2 

_ C o a C ~ { 2 g }  +1t2 

A1 a/2 a K  v cos 7 

8. Characteristics of Shock Absorbers, Deduced from Drop Tes ts . - - In  the calculation of the 
functions Q, D and, F, which are characteristic of any given shock absorber, the greatest 
uncertainties arise in the estimation of the index " n " in the pressure-volume relation, 

P/Po---- ( V / r o ) - ' ,  

and of the orifice coefficients C~1 and C~2 which determine the effective area of the orifice in 
compression and in recoil. It would therefore be more satisfactory to determine these functions 
experimentally from the results of drop tests. In theory it should be sufficient to obtain 
accelerometer records of the axle and of the main shock absorber cylinder in two drop tests with 
different weights, but in practice it seems wiser to use the results of one drop test only, to assume 
a reasonable value for the index " n ", and to calculate the function D which depends on the 
orifice coefficient C~. 

In a drop test the total travel s of the main shock absorber cylinder is the sum of the axle tTavel 
x and of the tyre deflection x~, i.e., 

S : X  ~ - X  t. 

Now recording accelerometers attached to the axle and to the main shock absorber cylinder will 
register xt and ~' as functions of the time t. By the methods explained in Part III,  ~ and $, 
together with x and s can then be calculated in terms of t. Then, by cross plotting, ~ and g 
can be calculated in terms of x, so that we have as experimental results the equations 

:t : V(x) and g ---- A (x). 
Since 

: D ( R - - Q - -  F) I/2 and R - - W = - - W ~ / g ,  
we find that  

V ~ w w A ( x ) -  (x) + Q ( x )  + F(x) 
- D (x) 

Since we suppose that F(x) and Q(x) can be calculated, this equation determines D(x). 
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9. Geometry of Aircraft.--The basic geometric data required are 

(1) The horizontal and vertical distances, /3, 0 and h.,0 from the C.G. of the aircraft to 
the axle of the j th wheel in its fully extended " '~ position, relative to the agreed standard 
att i tude of the aircraft ; 

(2) The wheel track, 2b, or, in the case of multi-wheeled aircraft, the spanwise distance, b,,, 
of each wheel from the vertical plane of symmetry.  

(3) The radii of gyration k,, ky, k~ of the aircraft about the forward horizontal axis, the 
transverse horizontal axis and the vertical axis. 

From these data we can calculate the rotational factors B~ and Yi~ appropriate to a banked 
and yawed landing respectively. The rotational factors for a banked landing are 

(j,k = 2, 3 ,  . . . .  ) 

where I and h~ are the horizontal and vertical distances from the C.G. to a wheel axle in a 
? J .  . . . .  

compressed position, in which the vertical travel is x and the horizontal travel is x h, i.e., 

= lj, o - x j h ,  hj = h 0- 

Similarly the rotational factor for a yawed landing is 

ky 2 

(In this case l and h are the same for all wheels). 

It  will be seen later (in Part  II) that  the calculations are considerably simplified if the rotational 
factors Bj~ and Y are sensibly constant. This question can be examined before starting the 
calculations by  estimating the extreme values of l~ and hf 

P A R T  I I  

Equations of Motion for Standard Landing Cases 

10. General Summary.--In the following sections we explain first the general notation which is 
needed to describe the undercarriage geometry, the att i tude of the aircraft and the ground 
reactions. Next we establish the working approximations by means of which the equations of 
motion can be considerably simplified. We then construct the equations of motion for drop 
tests, .and for standard landing cases, adding an account of the supplementary calculations on the 
spinning-up of the whe41s. 

11. General Notation for all Landing Cases.--(a) Aircraft Axes.--To describe the location 
and extension of the undercarriage we shall use a system of perpendicular axes fixed in the 
aircraft and described as the " aircraft axes " The origin of this system is at the centre of 
gravi ty  of the aircraft G. The directions of tl~e axes are chosen so that  they are " principal " 
axes, In the sense that  the product of inertia for each pair of axes is zero. The longitudinal 
axis Gx is drawn forwards from G as in Fig. 3, the transverse axis Gy is drawn sideways to 
starboard, and the normal axis Gz is drawn downwards. The all-up weight of the aircraft will 
be denoted by W and  the principal moments of inertia about Gx, Gy and Gz respectively by 
Wk, 2, Wky 2 and Wk, 2. 
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(b) T a i l  or N o s e  U n d e r c a r r i a g e . - - T h e  axle of the wheel of the tail or nose undercarriage in its 
fully ex tended position before touch down is located with reference to the " aircraft axes " by 
the co-ordinates, 

x = l l ,  0 , y = O  , x = h , o  , 

ll, o being positive for a nose undercarriage and negative for a tail undercarriage. 

After the  tail or nose wheel  has made  contact  with the ground the axle travel  is xha in the 
negative direction of the longitudinal  axis, (i.e., approximately  horizontally) and x I in the negat ive 
direction of the normal  z axis, (i.e., approximately  vertically upwards). Hence the co-ordinates of 
the wheel  axle are now 

x = l I = / 1 , 0  - -  X h , 1  , y = 0 , Z = h 1 = hi, 0 --  x 1 . 

The tyre  radius for the nose or tail wheel is r 1 initially. 
the ground the tyre  deflection is xta and the axle height  is 

J ' l  - -  X t , l "  

After contact  has been made  with 

Hence the co-ordinates of the centre of the  contact  region are 

x = l  1 , y = O  , x = h  l + r  1 - x , , j .  

(c) M a i n  U n d e r c a r r i a g e . - - W e  shall number  the wheels from the starboard as " 2  " ,  " 3  " ,  
" 4 " etc. (the number  " 1 " referring to the nose wheel or tail wheel). 

Considering the " k ' - t h  wheel of the  main  undercarriage, the  co-ordinates of the wheel axle 
in the fully ex tended equil ibrium position before touch down are : - -  

x =  l~, o , y =  b i , z =  hi, o . 

After touch down the axle travel  is xj,~ in the negat ive direction of the longitudinal  x axis, 
(i.e. approximately  horizontally), and xj {'n the negative direction of the normal  z axis, (i.e. 
approximately  vertically upwards). The upward displacement of the wing at s tat ion " j  " ,  
just above the j - t h  leg of the  main  undercarriage, is x~,j relative to the C.G. of the  aircraft. 
Hence the  co-ordinates of the  wheel axle are now- -  

x = = l j , o  - xh, , y = z = h i = h ,o - -  x j  - -  

The tyre  radius is rj initially, and the subsequent  tyre deflection is x,,~ so tha t  the axle height  is 

rj --  x~.~ , 

and the co-ordinates of the contact  region are 

x -= l i , y -= b 5 , z ~- zj ----- hi + rj - -  x,, ~ . 

(d) R u n w a y  A x e s . - - T o  describe the mot ion of the aircraft on the ground we employ a system of 
axes O X Y Z ,  fixed relative to the runway  and described as " runway axes ". The region 0 
coincides with the C.G.  of the aircraft at the momen t  of touch down. The longitudinal  axis 
O X  is drawn forwards, horizontal  and parallel to the  length of the runway. The transverse 
axis O Y is drawn horizontally sideways to starboard. The normal  axis O Z  is drawn vertically 
downwards.  

(e). R o l l i n g ,  P i t c h i n g  a n d  Y a w i n g . - - T h e  changes in the a t t i tude  of the aircraft due to rolling, 
pi tching and yawing are described by the relations between the aircraft axes and the runway 
axes. Fig. 3 shows, not  the actual runway axes O X Y Z ,  but  a parallel system of axes G X Y Z  
drawn through the instantaneous position of the C.G.  of the aircraft, together  with the  instanta-  
neous aircraft axes G x y z .  
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Starting with the directions of the runway axes G X Y Z ,  rotate this system about the vertical 
axis GZ through the angle of yaw ~0, so that  G X  becomes GX1 and G Y  becomes G Y  1. Next rotate 
about the horizontal transverse axis G Y  1 through the angle of pitch 0; so that  GXI becomes 
Gx and GZ becomes GZ v Finally rotate about the (nearly) horizontal longitudinal axis Gx 
through the angle of roll ¢ so that  G Y  1 becomes Gy and GZ 1 becomes Gz. 

The angles ¢, 0, ~o are all small, and their positive senses are those shown in the Fig. 4. 

( f ) Ground React ions.--The whole purpose of the present scheme of calculation is the calculation 
of the reactions exerted by the ground on tile undercarriage. The main reaction on the contact 

~ ¢  • , ,  • • • • . . . • 

area of the wheel 2 is a force - R J  acting in the direction Gz. In addmon to this there are 
forces -/~iR~ ill the direction Gx and k~R ~ in the direction Gy. The magnitude of these forces 
are conveniently described as the " vertical reaction ", the " drag force " and the "-side force ", 
although, owing to the roll and bank of the aircraft, their lines of action are not strictly vertical 
and horizontal. The drag forces can be considered to act at the wheel axles, since the motion of 
the wheels is considered separately (see paragraph 14). 

The calculation of the "ver t i ca l  reaction " Rj. depends upon the acceleration of the C.G. in 
the direction Gz. This is, of course, equal and opposite to the acceleration of the point of contact 
(x, y, z) along Gz in tile system of aircraft axes. To calculate this acceleration we proceed as 
follows : -  

If u, v and w are the velocity components of the point (x, y, z) in the rotating system of axes, 
the acceleration along Gz is 

zO + 0)1 v - -  o~2U , 

01, o) 2 and % being the angular speeds of rotation about Gx, Gy and Gz. Now 

v = # + 0 ) 3 x -  ~ lz  

w = ~ + 0 ) l y - -  0)2 x" 

Hence theaccelerat ion along Gz is 

+ 2o)i# -- 2 0 #  + g)lY -- o;~x + oJ10)3x -- 0)12z -- 0)22z + 0)2,o3y • 

This expression for the acceleration of G along Gz is considerably simplified by the approximations 
introduced in paragraph 12. 

The calculation of the " drag force " # R  and of the " side force " k R  depends upon the 
J J . 1 1 . . 

coefficients ~j and k i. These are, of course, zero when the tyre is off the ground. When it is 
on the ground their values depend upon whether the wheel is slipping or not, and on the angle 
of yaw of the wheel. Our information about the values of ~ and kj is very meagre. There is 
little doubt that  ~j approximately equals the ordinary coefficient of friction ~ when the wheel 
is slipping and zero w}mn it is not slipping. The value of kj is much more uncertain. When the 
wheel is slipping k~ is presumably approximately equal to ~a~, where a~ is the angle between the 
plane of the wheel and its direction of motion. When the wheel is not slipping k i is probably 
of the form fiat, but the value of the coefficient fi is unknown. Experiments on small tail wheel 
tyres suggest that  the value of f~. is between 3 and 6 in lb. per lb. per radian, i.e. 2~ to ~ in lb. 
per lb. per degree. 

12. Working Approx imat ions . - -The  completely general equations of motion of an aircraft 
landing in a banked or yawed attitude, and subject to the effects of rolling, pitching and yawing, 
are so complex as to be almost intractable, even if we had satisfactory information about the 
side forces on the wheels. I t  is therefore imperative to reduce these general equations to a 
practicable form by making every reasonable approximation. 
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The standard of accuracy at which we shall aim in constructing these working approximations 
is ~ 5 per cent., a very moderate requirement from the standpoint of the computer, but one 
which is amply sufficient for stressing purposes. 

(a) The Vertical M o t i o n . - - T h e  working approximations are based on the broad general rule 
that  in any reasonable type of landing the vertical acceleration of the C.G. of the aircraft rises 
to its peak value, of say ng, in a short interval of time T according to a roughly linear law, and 
then remains fairly constant at the value ng for a further interval T, during which time the vertical 
velocity is reduced to zero. 

(A typical value of T is 0.10 second, and typical values of n are 2 to 3). 

According to this rule, when t is less than T,  the acceleration is 

ngt/ T upwards, 
the velocity is 

V - -  ½ugt2/T downwards, 
and the distance travelled is 

Vt - -  ~ngt~/T downwards. 

Hence at time t = T, the velocity is V - -  -~ngT and the distance travelled is V T  - -  ~ n g T  2. 

When t lies between T and 2T, the acceleration is g upwards, the velocity is 

(V  - -  ½ngr) - -  ng(t - -  T) downwards 

and the distance travelled is 

( V T  - -  ~,ngT 2) + (V  - -  ½ngT) (t - -  T) - -  ½ n g ( t -  T) ~. 

Hence if the velocity is destroyed by time t = 2T, the initial velocity of descent is given by 

V = ':JngT , 

and the total  distance travelled by 

D : L~ngT 2. 

(With the typical values T = 0.10 secs. and n = 2.5, we find that  V = 12 ft./sec, and 
D = 17.6 ins.) 

We note that  
D / T  = ~I V.  

Perhaps we should state explicitly that  all the above formulae give merely rough approximations. 

(b) The Rotational Mot ion. - - - I f  an aircraft (with no side slip) touches down simultaneously 
on all the wheels of the main undercarriage and the tail undercarriage (or nose undercarriage) 
the subsequent rotational motion is normally due to a slight rocking on the tyres. But if the 
aircraft touches down on the main undercarriage wheels alone, or on one only of the main 
undercarriage wheels, or comes in with side slip, the subsequent rotational motion will be much 
more violent. In these latter circumstances it seems reasonable to take the angular accelerations 
to be of the same order of magnitude as the vertical acceleration of the C.G. divided by some 
representative length, such as the semi-wheel track, b. 

According to this rule 

bO = ngt /T ,  if t is less than T, 

or rig, if t lies between T and 2T. 

Now, initially the angular velocities are zero. Hence 

bO = ½ngt2/T, if t is less than T, 

or ½ngT + ng(t - -  T),  if t lies between T and 2T. 
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Also, if the  ini t ia l  value of 0 is 0 o, its value at any subsequent  t ime is given by 

b(O -- 0o) ~ngta/T if t is less than  T 

o r  

~ngT 2 + ½ngT(t --  T) + ½ng(t --  T) ~ if t lies between T and 2T. 

Thus the  angular  velocity is 

{ngT/b = ½V/b at t = T, 

and ,. 
= ~ngT/b ----- V/b at t = 2T. 

The change in the  angular  displacement  is 

1 D 
0 - - 0 ° - -  11 b a t t = T  

and 
7 D  

0 - - 0 ° - - 1 1  b a t t = 2 T  . 

All these values are, of course, merely  rough approximations to the absolute values of ~, 
0 o r 0  - - 0  0 . 

(C) The Axle Mot ion . - - In  order to est imate the  impor tance  of the  various terms in the  full 
expression for the acceleration of G along zG we still need some rough idea of the  magni tude  of 
the  axle velocity, ~. 

Ini t ial ly ~ is zero, but  as explained later in Part  III, it varies as t -~ for small values of t. 
A representat ive s tate  of affairs is obtained by  taking ~ to vanish when t = 2T  and we are 
thus  lead to write as a simple approximat ion to the axle velocity, 

whence 

~ = c [ t l  ~2 t 1 ,~-~j .{1 -- 2-T 

' C{ ( t ~  -1/~ 3 ( t ~ 1 / 2 } .  

2 T, and its m a x i m u m  value is Thus ~ at ta ins  its m a x i m u m  value when t = 
- .  

x ,~. = 2C/3V',~ . 

The axle t ravel  is given by  

= 2 T C  - -  3 ] ' 

and the tota l  t ravel  is 

Hence 
5 x,, . . . .  0 .7  x,,~. 

~ ~ '  = 4 4 V 3  T --T-" 

Once again we must  emphasize tha t  these formulae are the  roughest  approximations and give 
only a general idea of the  size of the quanti t ies  involved. 
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(d) Effect of Rotation on Vertical Accelerat ion. - -We can now re tu rn  to the exact  expression 
for the acceleration of G along zG obtained in paragraph  11 (f)  and  est imate the order  of magn i tude  
of the various terms which it explains. We rewri te  the full expression in the form 

+ 2m12 
+ ~ l ~ x -  (~12 + ~ 2 )  z + 0 )2~Y 

--  2c%2 

and we note  from paragraph  11 (c) tha t  at the  point  of contact  of the j - t h  wheel, 

X-----lp 
y = b j ,  

z =  h~ + r j - -  x,,j . 

We expect  2 to have  the order of magn i tude  given by 

2 = ng t /T  if t is less t han  T 

or ng if t lies be tween T and 2T. 

The angular  accelerations /01 and ~5 2 are expected (by paragraph  12(b)) to have the  order of 
,magni tude 

~ol, ~o~ = ~/b. 

Now x and y are comparable  wi th  b. Hence the t e rm 

/oly --  ~b2x mus t  be retained.  

y has the constant  value b, so tha t  the t e rm 2oJ13~ is always Zero. 

F rom the results of (b) the angular  velocities, o)1, 0)2, 0)8, are of order  ½2 t/b if t is less than  T, 
- -  :~ 2 T / b .  or 2 (t ½ T)/b if t lies be tween T and 2T,  i.e., the  angular  velocities do not  exceed 

Also, x, y and z are of order b. Hence any  one of the terms 

~ l o ~ x  - (~1 ~ + o~2~)z + "20)8Y 

:, 27 D is of order ~ 2 rig. T 2 / b - -  
• ' 2 2  " b 

a 
Now the ratio of D, the  total  ver t ical  t ravel  of the C.G., to b, the  semi-wheel tracl/, is clearly 
" small  quan t i t y  " so tha t  all these four terms can be neglected. 

F ina l ly  we come to the te rm ~%2. We have shown that ,  as regards orders of magni tude ,  

b0) 2 -= ½ ngt°"/T if t is less t han  T. 

or ng(t - -  ½T) if t lies between T and 2T. 

Also 
_ 15 x~a ~ 1/~. 2r} 

After some calculation we now find tha t  

~%2/2 never  exceeds ½ x .... /b , 

an undoub ted ly  small quant i ty .  
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Hence our final conclusion is that  a sufficient approximation to the acceleration of G along zG is 

+ 61y -- 6~x 
= - - - + - -  l 0. 

l~ is not a constant. Its value is lj, o - -  xh.~ but it is usually sufficient to write 

lj - -  mean value of (li, 0 -- xh,j) 

unless the horizontal travel x~,~ of the axle is a substantial fraction of lj 0, the horizontal distance 
of the axle forward of the C.G'. 

(e) R o l l i n g  M o m e n t s . - - T h e  rolling moment due to the vertical ground reaction on the j - th  
wheel is -- Rjbj ,  and the rolling moment due to the side force is 

F, ociRjz ~ if the wheel is slipping, or 

fj%R~z~ if the wheel has ceased to slip. 

In the first case the ratio of the moment due to the side force to the moment due to the vertical 
reaction is 

(With the typical values ~ ---- 0.8, ~ ---- 6 degrees, z~ ---- .~ b:, this ratio is about 5 per cent.) 

In the second case the angle ~j, which is approximately the angle of yaw ~, will have diminished 
a certain amount. The ratio will now be fj~ (z/bj),  and, in our present state of ignorance as to 
the value of fi we can only assume tha t  as before this ratio is small. 

We shall therefore always take for the rolling moment due to ground reaction the approximate 
expression - -  Rjbj . 

(f) Y a w i n g  Forces  a n d  M o m e n t s . - - T h e  calculation of the yawing forces and moments acting 
on the aircraft is difficult as it involves a reasonably accurate knowledge of the magnitude of the 
side forces on the tyres. But fortunately the yawing forces and moments either do not enter or 
can be neglected in the equations of vertical motion, or of rolling or of pitching, and are the] efore 
not required for the main part  of the calculations. This is perhaps the most fortunate circumstance 
in the whole scheme of prediction. 

(g) Changes  i n  L i f t . ~ T h e  rapid destruction of the vertical velocity of descent after touch down 
produces a rapid change in the effective angle of incidence of the wings and tailplane. (The 
effect of the pitching motion is negligible in comparison with the effect of the vertical acceleration.) 
The corresponding change in the lift is approximately 

A L  = - -  L o (V/Uc¢) 

where V = vertical speed of descent just before touch down, 

U = forward speed of aircraft, 

L 0 = lift just  before touch down ----W = all up weight, 

and c¢ = effective angle of incidence just before touch down. 

In terms of the maximum ground reaction R, the change of lift is 

A L / R  - -  V W 
Uc¢ R 

= -  v/(n v) 

= - -  ~gT/(Uo~) by § 12(a). 

Taking the typical values T = 0.1 sec., U = 100 m.p.h., and ~ -  17 degs. o r 0 . 3  radians, 
we find tha t  

a L / R  = -  
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If we also consider the " ground effect " we find that  the lift increases somewhat as the 
aeroplane glides down to earth. The combined result of the " ground effect " and of the loss 
of lift due to destruction of vertical velocity is that  the lift may be taken as constant and equal 
to W to the order of approximation required in these calculations. 

(h) W i n g  F l e x i b i l i f y . - - T h e  effect of wing flexibility is usually negligible in a level landing in 
which the reactions are the same on the port and starboard undercarriages, but it may be 
substantial in a banked landing in which all the reaction is initially on one of the main under- 
carriage legs. 

The reason for the small effect of wing flexibility in a level landing is that  the main under- 
carriage legs are usually attached to the wings near the nodes of the fundamental  symmetric 
mode of wing vibration, so that  this mode cannot be elicited by the ground reactions transmitted 
up the legs. The symmetric flexural overtones are usually ineffective because of their relatively 
high frequency and the antisymmetric modes are naturally not elicited by symmetrically 
distributed reactions. The effective modes are usually the torsional modes in which engine 
noding is the dominant feature. However in the present types of aircraft with weights up to 
60,000 lb., it is usually sufficient to treat the wings as rigid. 

This conclusion may be no longer true in the case of much larger aircraft. The importance of 
wing flexibility in those conditions is still unknown, but  calculations are in hand to assess its 
importance. 

13. Equat ion ,  s o f  M o t i o n  f o r  a n  I d e a l i s e d  L a n d i n g . - - I n  constructing the equations of motion, 
we begin with the simplest possible case, viz. an idealised landing in which the aircraft touches 
down without bank or yaw and in which no subsequent pitching motion occurs. We shall find 
that  many of the complex landing cases can be resolved by reference to this idealised case, and 
that  the variation in the vertical reaction which occurs in the actual landing cases can be obtained 
by applying a suitable scale factor to the results of the idealised case. Moreover it will be shown 
that  the idealised landing case closely simulates a drop test " under airborne conditions ", so 
that  it is possible to use the experimental results of such a drop test instead of the theoretical 
calculations for the idealised landing case. 

As we have shown in paragraph 11 (c) the height of tile C.G.  of the aircraft above the ground at 
any instant  is 

z = h  + r - - x ~  

-= h o --~ r - -  x - -  x w -  x t 

where we have suppressed the suffix " j  " ,  since in an idealised landing the aircraft lands 
symmetrically, and all the main undercarriages experience equivalent reactions and displacements. 
The nose (or tail) undercarriage is supposed not to make contact with the ground. The actual 
vertical travel of the C.G.  since the moment of touch down is 

s = h 0 + r -- z (downwards) 

= x +xw + x ,  

-- axle travel + wing travel + tyre deflection. 

The equation of vertical motion of the aircraft is 

( W i g )  "s" = - -  R , 

R being the ground reaction vertically upwards. The initial conditions are 

x = 0 ,  x ~ = 0 ,  x ~ = 0 ,  

= 0 ,  ~ = 0 ,  ~ =  V, 

where V = vertical rate of descent of aircraft. 
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Furthermore, we have the " tyre equation " 

R = f(x,) ; 

the " shock absorber equation ", 
£ =  D ( R - - Q - -  F) 1/2. 

where D, Q, F are tabulated functions of x; and finally the "wing equation ", which will reduce 
to the simple form 

x~----O , 

if the positions of at tachment  of the main undercarriage legs were chosen so that  the lowest 
symmetric modes of wing vibration are not excited. We shall suppose this condition to be fulfilled 
as otherwise the values of x, x~ and xt would vary from leg to leg by reason of the variation of 
wing deflection along the span. 

In carrying out the calculations it is necessary to allow for the effect of ground friction as 
shown in the following section. 

14. Spinning-up of Wheels and Braking.--From the first instant  that  it touches the ground each 
wheel skids longitudinally until  the drag force exerted by the ground has spun it up to a speed of 
rotation at which it can roll without skidding. I t  will be assumed that  the drag force is equal 
to #R where ~, is the coefficient of friction between the lyre and the runway, while R is the vertical 
ground reaction. TypicaI values of ~ are 

Dry, ribbed concrete 

Hard dry grass 

Wet concrete 

Wet grass 

, u = 0 - 8 t o  1.0 

# = 0 . 6 t o 0 . 8  

---- 0"4 to 0"5 

/, = 0.2 to 0.4 

I t  has been shown by Mr. S t r angof  the Bristol Aeroplane Company that  the total torque on 
the wheel, allowing for the backward displacement of the line of action of the vertical reaction 
is ,, Rjq~ where qj is the effective rolling radius under load R~ (ref. 9). Hence the angular momen- 

tum of the wheel after time t is t~Rj. q~dt. When the wheel is fully spun up its angular 
0 

speed is V/o~j, where V is the forward speed of the aircraft. Experiments (ref. 9) at low speeds 
and light loads suggest tha t  "approximately 

~oj = r~ -- i x,,~. 

Hence, if J is the polar moment of inertia of the wheel and tyre, the angular momentum when 
it  is fully spun is 

( j / g )  . 

Therefore the time t taken to spin up the wheel is given by the equa t ion  

ej ~ R j  . ~j . d t  - -  J V  
o g 

= a constant for all wheels at a prescribed landing speed on a 
specified runway. 

qj and Ri ail vary witl~ the time, and the integral is easily evaluated numerically at each 
1/100th of a second during the landing, run, the calculation being continued until the expression 
on the left-hand side of this equation attains the value of the right-hand side. The wheel is then 
fully spun up and the frictional drag force sinks to zero. 

(69866) B 
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This spinning up calculation is mainly of importance because it determines the drag forces 
acting on the undercarriage. I t  is also of subsidiary importance in determining the variation 
of the angle r which the total reaction R; makes with the vertical. During spinning up, 
tan ), -----/z ; afterwards during roiling 7 = 0. Reference to paragraph 6 will show that  the coeffi- 
cients O and D depend on the angle 7, and will therefore experience abrupt changes in value 
at the instant  when the wheel becomes fully spun up. 

There are two special cases in which this calculation is not required. 

(1) In a landing with " brakes on " - -on  emergency precaution occasionally required to 
prevent over-shooting the runway- - the  drag force remains equal to t~Ri throughout 
the landing run, and the angle 7 is constantly equal to tan- l~ .  

(2) In a landing after a bounce the wheels may be presumed to be already spun up during 
the previous touch down. Hence the drag force is now zero and the angle ), is also 
zero throughout the landing run. 

I t  is convenient to note here the effect of the brakes on the reaction transmitted through the 
undercarriage legs. When the brakes are not applied the torque due to any drag force at the 
contact area of the tyre is almost completely balanced by the rotary inertia of the wheel so that  
almost no torque is transmitted to the undercarriage leg. But when the brakes are applied so 
as to produce a braking torque C, there will be a drag force D acting at the contact area and a 
force D 1 acting forwards on the wheel at the axle. The reaction on the undercarriage leg will 
therefore consist of a torque C plus a drag force D 1 acting at the axle in addition to the vertical 
reaction R. 

The equations of motion of the wheel £re 

(J/g)O = D o ' - -  C 

and 

D - -  D 1  = ( w / g )  , 

where w is the weight of wheel and tyre and u is the forward velocity of the axle. Now, 
considering the whole aircraft 

(W/g) ~ = - -  D - -  D A , 

where D A is the net aerodynamic drag. Hence 

= D - -  

- - = D +  w I D 2 r - D ~  } , 

so that  D~ is approximately equal to D. (These equations apply to each wheel considered 
separately). 

When the wheel is slipping D is equal to / ,R,  but, when the  wheel is fully spun up, its rotary 
inertia is negligibly small* and 

Dq --  C 

The time taken to spin up the wheel will of course be lengthened since the spinning couple is 
reduced from # R e  to # R q  -~ C. 

J, 

* For (J/g) O is approximately J if/(rg) o1: say ~J/r, while C is of the order of ¼W/r, and the ratio (nJ/r) - (IW/r) or 
4nJ/lVr ~ is negligibly small. 
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15. Equations of Motion for a Drop Tes t . - -The present standard form of drop test differs in 
two important  respects from an idealised landing : - -  

(I) In an idealised landing the weight W is neutralised by the lift L, but in the drop test 
there are no forces corresponding to the lift 

(2) In an idealised landing on horizgntal ground a drag force ~R acts until  the wheels have 
been spun up, but  in the drop test the unit falls on to an inclined plane of angle 
~, = tan-~# and a drag force approximately equal to /~R acts throughout the whole 
of the test. 

In forming the equations of motion for a drop test we must therefore allow for the vertical 
distance x, through which the contact region of the tyre descends as it rolls down the inclined 
plane. The height of the mass dropped above the initial point of impact is therefore 

z - -  h + ( r  - x , )  c o s  r - 

---- ho  - -  x + (r  - -  x , )  c o s  - -  % 

The actual vertical travel of the mass is 

s = x + xt cos ~, + xg 

= axle travel + vertical component of tyre deflection + ground 
sinkage. 

The equation of vertical motion is 

(W/g) ~ = --  R + W , 

and the initial conditions are 

: x = 0 ,  x ~ = 0 ,  x ~ = 0  , 
~ = 0 ,  x , =  V . 

We also have the geometrical condition : -  

horizontal axle velocity ~ = ~g cos r -- xt sin r (see Fig. 4). 

Hence 

= ~ + % cos ~, + (~, tan ~ + ~, sin r tan ~) 

-- ~ + ~, sec r +/~xl, = # + ~xh, say wher e y = vertical mass travel 
relative to point of impact. 

16. Comparison of Idealised Landings and Drop Tes ts . - - In  spite of the differences between an 
idealised landing and a drop test i t  is possible to choose the conditions under which a drop test 
is carried out so tha t  the behaviour of the shock absorber closely simulates its behaviour in an 
idealised landing. These conditions are : - -  

(1) that  the same amount of energy is absorbed in each case by the tyre and shock absorber 
: in bringing the mass dropped to resL and 

(2) tha t  the time of operation is the same in each case. 

When these conditions are satisfied we say that  the drop test is  carried out " under airborne 
conditions ". 

The fact tha t  a drop test carried out under airborne conditions does exhibit shock absorber 
characteristics very similar to those shown in an idealised landing can be generally substantiated 
by carrying out step by step calculations and comparing the variation of the vertical ground 
reaction R with the vertical axle travel x in the two cases. The agreement between the R, x ~- 
curves is so satisfactory that  the present standard form of drop test can be accepted as an 
experimental representation of an idealised landing. 
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The detailed form of the " airborne conditions" can be obtained as follows, extending the 
analysis given by Makovski (Ref. 8). 

In an idealised landing the energy absorbed by the tyre and shock absorber is 

E 1 = fRdx,  + fPdx~ (in the notation of para. 5) 

Rd~, + f(Rdx + ~dx~) , 

where F is the horizontal force on the wheel axle. 

Now x , + x = s ,  andR--- - - - - (W/g)  

so that  

fmx ,  + fRdx  = - (W/g) f~.  ~, at = ½ W1V12/g 

where W 1 is the weight and V 1 the vertical rate of descent. 

Also 
F - -  : ,R = (w/g) (a - -  M , 

where w = weight of wheel and tyre, and u = forward velocity of aircraft. Hence 

Now the horizontal axle velocity xh is initially zero and is usually small by the time that  k = O. 
The retardation of the aircraft is approximately t*gR/W, so that  

W (w/g) fqidx~,~. --. ~ w f R d x h , a n d  

f F d x ~ = - ( 1 - - ~ ) : , f R d x h  

- -  : , ;R dx,, 

Therefore in an idealised landing the energy absorption is 

E 1 = ½ WaVa2/g + ~fR dx~, , 
V a being the impact velocity. 

To estimate the small correction ~fR dx,, to the main term ½ W1Va~]g, we may assume that  

f R dxh + f R d s -  x,,,,/s,, 

where x,,,, s~,, are the final values of xh and s~, i.e. the total horizontal axle travel and the 
total vertical travel of the C.G. respectively. Then 

and 

E 1 # (1 + I~Xh,,/S~,,). { WiVa2/g • 
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To calculate the energy absorption in a drop test we first consider the forces acting on the 
wheel as it rolls down the inclined plane (see Fig. 4). Let T be the reaction of the plane 
perpendicular to its surface, S 1 the reaction parallel to the plane and S~ the force exerted in the 
same direction by ~he wheel fork. Then, ignoring the difference between rolling radius and 
axle height, 

~s~ = jo ,  
where 0 is the angular rotation of the wheel. Also 

so tha t  

Hence 

s , -  s, = (~/g) ~ (~/g) ~o 

s~ = (J /~  - w~/g) o 

fs~ax, -- f ( j  - we~/g) oo dt - ( j  - wo~ Vg) (½0n) = 0 ,  

i.e., the force S 2 does no appreciable work. 

The energy absorption in a drop test is 

E~ = f Tdx,  + f Pdx, 

= fR ~ ~. a~, +J(R d~ + ~R d~) 
But 

and 

so tha t  

i~dx~ = dxg -- ~ sin 7 • dx, 

sec 7 dx, + #dx~ = dxg + cos 7 .  dx, , 

Ez  = f R(dx + dx, + cos ~ dx,) 

= fRds 

= -(W~lg) f~. ~dt + w.fa~ 

s~  being the total  travel of the mass from the moment of impact, V2 the impact velocity, and 
W~. the weight of the mass dropped. 

Now in a drop test 
Sg.~ = y , ,  -{- #X~** , 

y~ being the maximum vertical mass travel relative to the point of impact. Ym will be 
approximately the same as sl~ in an idealised landing. Hence the first " airborne condition ", 
E 1 = E~,  becomes 

(1 + ~ - )  1 w ~ v ~ _  1.w~v~ + w~(yo + ~ ) .  
y , ~ / 2  g 2 g 

We also note that  

1 +  ~xh~ -- 1 + 
Ym 

/~Xt, m 

S2m ~ 12Xhm 

1 
1 --/~xh,~/s2, . 

(60s66) c 



22 

To deal with the second condition, ~iz. that  the times of operation should be the same, we 
assume that these times are proportional to the total travel of the mass dropped divided by the 
impact velocity. This implies that  

y~ _ y,~ + ~xh, 
V 1 V 2 

i.e., that 
111 

V 2  = 1 - -  ~Xhm/S2~ 

From the preceding equations we can determine the values of W~ and V 2 in a drop test which 
correspond to an idealised landing with prescribed values of W l and V 1. 

Laboratory drop tests on to an inclined plane are usually carried out for angles ~ which 
correspond to values of/~ of about 0" 4. In the corresponding idealised landing the time taken 
to spin up the wheels would exceed the time for a complete stroke of the shock absorber, so that  
comparable drag forces/,R act in both cases for a complete stroke. 

17. Classificatwn of Actual Landing Cases.--We now pass from the idealised landing case, in 
which there is no rotational motion, to the actual landing cases, and we consider these in order of 
increasing complexity. The factor which determines the mathematical complexity of a landing 
case is the number of degrees of freedom which are involved. We shall therefore discuss the 
actual landing cases in the following order, remembering that  although a nosewheel aircraft 
may pitch forward on to its nose wheel, a tail wheel aircraft hardly ever pitches backwards on 
to its tail wheel during the initial stages of the landing run, with which we are alone concerned. 

A. Aircraft with Rigid Wings, or Wings in which no Effective Modes of Vibration are excited by 
Landing Shock.--(1) A symmetric landing, free from yaw and bank, in which a tail-wheel aircraft 
pitches forward on all the main wheels. 

(2) A level yawed landing, in which a tail-wheel aircraft pitches forward on all the main wheels. 

(3) A banked landing, free from yaw, in which a tail-whee! aircraft rolls and pitches forward 
on one main wheel. 

(4) The next stage in a symmetric, yawed or banked landing of a nosewheel aircraft, after it 
has pitched forward on to the nose wheel, and is pitching and rolling on all its wheels. 

B. Aircraft with Flexible Wings.--Investigations are now proceeding with a view to simplifying 
the theory and standardising the calculations, and a further report will be issued later. 

18. Symmetric La~ding of a Tail-Wheel Aircraft with Rigid Wings.--If  all the undercarriage units 
are similar to one another and are similarly mounted, they will all behave in exactly the same 
way and need not be distinguished by special suffices. 

In a synmletric landing there is no tendency to roll or yaw but there will be a tendency to 
pitch. Reference to Fig. 3 and paragraph 12(d) and (e) will show that the upward vertical 
acceleration of the C.G. of the aircraft is 

- - ~ - -  ~ , - - l ~  , 
while the pitching moments are 

R1 and -- t*R]~ 

using R for the vertical reaction on any one undercarriage unit. 

Hence the equations of vertical motion and of pitching motion are 

N R  = -- (W/g) (:~ + :~, + lO), 

(N being the number of main undercarriage legs) and 

N R ( l  - -  = 
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where Y =  1 + l (1-- h)/ky 2, 
paragraph 9. 

Therefore, eliminating the pitching acceleration 8, we find the working equation 

N Y R  = - - ( W / g ) ( 2  + 2,) I 

is the rotational factor, as in a yawed landing, introduced in 

The forces acting on each undercarriage unit are the vertical reaction R, and the drag force ~R. 

It  is clear that  the vertical reaction R can be deduced immediately from idealised landing 
calculations or from drop test observations, if the rotational factor Y is sensibly constant, by 
dividing the calculated or observed values of R by Y. 

19. Level Yawed Landing of a Tail-Wheel Aircraft with Rigid Wings . - - I t  has been shown in 
paragraph 12(e) that  we can neglect the effect of the side forces on the rolling moments. The total 
rolling moment is therefore 

- - M :  --  (b~R~ + b3R ~ + b~R~ + . . .) . 

In the case of a level yawed landing the reactions Rj will be distributed symmetrically over the 
port and starboard undercarriages. Hence the moment, M, of these reactions about the longi- 
tudinal axis of the aircraft must always vanish. I t  therefore follows that  there is no rolling 
motion in a level yawed landing. 

We shall assume that  all the undercarriage units are similar to one another and similarly 
mounted, so that  they will all behave in exactly the same way and need not be distinguished by 
suffices. 

Reference to Fig. 3 and paragraph 12(d) and (e) will show that  the upward vertical acceleration 
of the C.G. of the aircraft is 

- 2 - - 2 , - 1 8 ,  

while the pitching moments are 
Rl and --  ~Rh  , 

using R for the vertical reaction on any one undercarriage unit. 

Hence the equations of vertical motion and of pitching motion are (exactly as in the previous 
case of a symmetric landing) 

MR -~ --  (W/g) (2 + 2, +16)  , 

(N being the number of main undercarriage legs) and 

N R ( l  --  t~h) = (W/g)ky~8 . 

Therefore, eliminating the pitching acceleration 8, we find the working equation 

N Y R  = --(W/g)  (2 + 2,,) ] 
i 

where Y -- 1 + l(1 -- tth)/ky 2 is the rotational factor for a level yawed landing. 

The vertical ground reaction in a yawed landing can therefore be deduced immediately from 
idealised landing calculations or drop test observations, by dividing the ground reactions in the 
drop test by the factor Y,°which is approximately constant. 

The other forces on the wheels are the drag force ttiR~ and the side force kiRk, the values of 
the coefficients #~ and kj are briefly discussed in paragraph 11 ( f ). 

(69866) C 2 
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20. Banked Landing of Tail-Wheel Aircraft with Rigid Wings.--In a banked landing the aircraft 
touches down on one main wheel, here taken to be the outer starboard wheel, and then 'rolls 
over until the other main wheel touches the ground. Thereafter both wheels usually remain 
on the ground, although there is a possibility of rocking from one main wheel to the other. 

In the first stage of the landing, while only one main wheel is in contact with the ground, 
the equations of motion can be formed as follows : -  

Reference to Fig. 3 and paragraph 12(d) and (e) will show that  the upward vertical acceleration 
of the C.G. of the aircraft is 

- -  2 3  - -  ~2,, + b2~  - -  1 ~  , 

while the only rolling moment is --R~b v The pitching moments-are 

R21 z and -- ~R2h 2 
where 

12 - -  12, o - -  x2, ~ 
and 

h 2 : h2, 0 -- x 2 , 
(the drag force being considered to act at the wheel axle). 

Hence the equations of vertical motion, rolling motion and pitching motion are 

- -  R 2 b  2 : ( m l g ) k , ~  , 
and 

R212 - - / , 2 R ~ h 2  --- (W/g)k ~ . . 

If we substitute the values of ~ and ~ in the equation of vertical motion we obtain the working 
equation 

B22R : - -  ( W i g ) ( 2 2  + ~,,) 

where B~ 2 is the first rotational factor for a banked landing, 

B22---- 1 + b22- 122--/~12h~ 
k~ + ky~ 

introduced in paragraph 9. 

This equation is of exactly the same form as the equation of vertical motion for an idealised 
landing, the only difference being that  R 2 is now multiplied, not by unity, but by t h e "  rotat ional" 
factor in curly brackets which allows for the effects of rolling and pitching. This factor is not 
constant, since l 2 and h 2 both vary with the time, but it may often be treated as constant, if 
x2,h/12, o and x2/h2, o are small, or if the uncertainty in the value of ky makes it superfluous to 
consider variations in l 2 and h 2. 

If the " rotational factor " B~2 is treated as constant we can immediately use either. 

(a) the experimental results of a drop test (with appropriate load and initial vertical 
speed), or 

(b) the numerical calculations for an idealised landing, and obtain at once the variation in R 2 
with time by dividing the drop test results by the value of the rotational factor B 1. 

In the second stage of the landing, when two or more main wheels are on the ground, the 
formation of the equations of motion is a little more complex. 
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If we consider the case of an aircraft with only two main undercarriage legs, we shall have two 
expressions for the upward" vertical acceleration H of the C.G., viz., 

and 

(b a being ~negative and equal to --b~). 

The equations of vertical motion, of rolling motion and of pitching motion are now 

R~ + R 3 - -  ( W / g ) .  ~I , 

- -  R~b~ - -  Rab a = (W/g)k ,~6 , 

We now substitute the values of ~ and ~ first in one of the expressions for ~//, and then in the 
other. We thus obtain the working equations 

Bg~R~ + B2aR a = - - ( W / g ) .  ( ~  + ~,,) 

Ba2R= + B3aR8 = - - ( W / g ) .  (~3 = ~8,,) 

where Bg~, B=a, Ba~, Baa are the " rotational factors " of paragraph 9. 

Finally we consider the case of an aircraft with three main undercarriages. After touching 
down on the starboard main wheel the aircraft will roll over on to the central wheel (in accordance 
with the first working equation for R~), then roll further with both the starboard wheel and the 
central wheel on the ground (in accordance with the second pair of working equations for R= 
and Ra), and finally rock on all three of th~ main wheels. 

In the last stage of the motion there will be three expressions for the upward vertical accelera- 
tion of the C.G. viz. 

= - -  :~ - -  ~.,  + bj~ - -  l~0 , (k ---- 2, 3, 4) 
where 

b 4 : -- b~ and b a = 0. 

The equations of vertical motion, of rolling motion and of pitching motion are 

R~ + R 8 + R a =  (W/g)  H , 

- -  R=b 2 - -  Rab a - -  R~b 4 = ( W / g ) k , ~ #  , 

- -  + R3(13 - -   3h3) + R,(l  - -  e , h , ) =  (W/g)kfi. 
Following the same procedure as before we find the working equations 

B~2R ~ + BkaR a + B~4R 4 : - -  (Wig)  ( ~  + ~,t) 

(for k = 2,3,4) . 

Similar methods can obviously be applied to the banked landing of a tail-wheel aircraft with 
rigid wings with any number of main undercarriage legs. 

Perhaps we should add one word of caution viz. 

Bj, and B~j are, in general, different in value (unless of course k = j). 

21. Rock ing  of  a Nose -Whee l  A i rcra f t  (with rigid wings)  on its M a i n  Wheels  and Nose  W h e e l . -  
In the initial stages of a symmetrical, yawed or banked landing of a nose-wheel aircraft the same 
equations of motion are valid as developed in paragraphs 18, 19, 20 for a tail-wheel aircraft. 
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After the lapse of a certain time however the nose wheel will make contact with the ground and 
thereafter the aircraft will rock on all its tyres. In this section we shall construct the equations 
of motion allowing for both pitching and rolling. 

Each of the undercarriage legs, including the nose wheel, will furnish a different expression for 
the upward vertical acceleration ~ of the C.G.  of the aircraft. Reference to Fig. 3 and paragraph 
19~(d) shows that  these expressions are 

= - - + - Z 0, 

for j ----- 1,2,3 . . . . . .  

Hence the equations of vertical motion are 

R1 + R2 + . . . . .  (W/g) Ix3 '~ ~t,j- b3~ 2c ljO I • 
( J 

As before (see paragraph 12(e)) the rolling moments are - - R j b j ,  while the pitching moments 
are Rj l  i and -- #R~hj . Hence the equations of rolling and pitching motion are 

- -  R ~ b ~ -  R2b 2 - - . . . - - - _  ( W / g ) k  26, 

and 

R l ( l l -  ~hl )  + R2( l  2 - - p h i )  + . . . .  (W/g)ky20 .  

We substitute the values of 6 and 0 in the equation of vertical motion and thus obtain (by the 
same process as in paragraph 20) the working equations 

B~I.R1 + B ieR2  + . . . - -  ( W / g )  (2 i + ~,,j) , 

f o r ~ :  1,2, . . , 

the symbol B~k denoting the rotational banking factor 

b~b k l~(l~ - -  tthk) 

22. D e t e r m i n a t i o n  o f  the I n s t a n t  at  w h i c h  a W h e e l  m a k e s  Con tac t  w i t h  the G r o u n d . - - I n  carrying 
out the calculations for a landing in which the aircraft rolls over on one wheel or pitches forward 
on the main wheels until another wheel or wheels come into contact with the ground, it is necessary 
to determine the instant at which this contact occurs, as a new reaction comes into play at this 
instant and a new set of equations of motion must be used. 

The co-ordinates of the lowest point of the tyre on the j-th.  undercarriage unit (while it is still 
in the air) are 

x ---- l~ , y = b~ , z = h~ + rj 
where 

hj = h j , 0 -   o,j. 
Hence the vertical distance of this point below the C . G .  is 

Dj -~ z + y ¢  - -  xO 

= h~, o - -  xo.~ + rj + bj¢ - -  ljO. 

If the k-th. wheel is in contact with the ground, a similar calculation shows that  the heigh t of the 
C.G.  above the ground is 

H = hk, o - -  x~ - -  x~, k + r k - -  x~,~ + b~¢ - -  lkO . 

Hence to determine the instant at which the j - th  wheel makes contact with the ground, it is 
sufficient to keep a tally of the values of H and of Dj and to note when D~ becomes equal to H. 
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P A R T  I I I  
Step-by-Step Methods of Integration 

23. Advantages and Disadvantages of Step-by-Step Methods.--In the following sections, paragraphs 
23-26, we give an account of a step-by-step method of calculating the undercarriage loads which 
are developed during various types of landing. The method explained here is a development of 
the original method given by E. Jones and F. C. R. Cook, (Ref. 1), as extended by D. D. Lindsay 
and R. G. Thorne (Refs. 3 and 4), and as simplified by S. A. Makovski (Ref. 5). The present 
development of these methods has been the outcome of a number of experiments with various 
step-by-step methods in which special attention has been paid to ease of operation by unskilled 
computers and to the determination of the accuracy of the results. 

Before speaking of the advantages of step-by-step methods in general it may be as well to meet 
one obvious criticism. This criticism is that  our knowledge of the basic data is far too uncertain 
to justify prolonged and laborious numerical calculations, and that  it would be preferable to 
employ some rapid and approximate method based on considerations of energy balance. 

In order to appreciate the force of this criticism we have made a number of attempts to use 
such rapid and approximate energ.y-methods, working on lines similar to those sketched by 
R. Hadekel (Ref. 2) ; but  our experience has been that  such methods, when applied, over a wide 
range of conditions, to shock absorber units, which are not necessarily of the optimum design 
and characteristics, are more laborious than step-by-step methods, and, are not only less accurate, 
but  do not provide any means of estimating the degree of accuracy. Moreover, we have found 
in practice step-by-step methods are by no means prolonged or laborious, having due regard to 
the fact that  they provide a complete picture of the time variation of all the geometrical and 
dynamical characteristics of the problem. 

Turning now to the advantages and disadvantages of step-by-step methods we may tabulate 
these as follows : - -  

(1) Step:by-step methods are simple in principle, since they are constructed from the 
standard equations of motion by replacing ordinary instantaneous time derivatives, 
such as dx(t)/dt, by average rates of increase, such as 

x(t + - x ( t -  
° 2T 

where z is the fundamental  time interval adopted in the investigation. 
(2) Step-by-step methods are also simple in practice, provided they are expressed as a 

straightforward routine of operations. The method explained below has been tested 
by a number of computers, none of whom had any specialised knowledge of under- 
carriage or shock-absorber problems, and it has been approved by them as simple and 
direct. 

(3) These methods are self checking, in the sense that  an arithmetical slip is noticed almost 
at once, if the results are kept plotted as a graph while the calculation proceeds. 

(4) The errors introduced by substituting average rates of increase for instantaneous 
derivatives are easily estimated, and they can be reduced to any initially prescribed 
value by choosing the fundamental time i n t e r v a l ,  to be sufficiently small. 

(5) The inevitable boredom induced by any computation occupying a whole day is con- 
siderably alleviated by the interest aroused when a running record of the results is 
kept as a graph or series of graphs. This has the effect of providing a very slow motion 
picture of the aircraft manoeuvre which is being studied. " 

Against these advantages we must offset what appears to be the one and only disadvantage 
of step-by-step methods. To determine the effect of varying any parameter, such as the vertical 
rate of descent of the aircraft, it is necessary to Inake a separate and complete computation for 
each value of the parameter which is to be considered. Fortunately the number of cases which 
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need be considered by the  designer is small so tha t  this d isadvantage does not  seriously affect 
step-by-step methods  applied to undercarriage problems. I t  is however a serious l imitat ion of 
these methods  when tbey  are applied to general theoretical  problems. 

24. Principle of the Method and Accuracy of  its Results . --This  section describes an ext remely  
simplified me thod  of step-by-step calculat ion--so simple, indeed, tha t  it may  excite the scorn of 
the professional computer  accustomed to work with elaborate difference tables and complex 
interpolat ion formulae. Nevertheless it is entirely adequate  for our present purposes in which 
5 per cent. accuracy is all tha t  is required. 

Let  us suppose tha t  the velocity dx/dt of some moving part  of the mechanism under  examinat ion  
can be calculated for any  position x and at any t ime t. Let the  initial value of x at t ime t = 0 
be a 0. I t  is proposed to calculate x at intervals of t ime 3, i.e. at the instants  

t = ~ , 2 i ,  3 ~ , 4 3 ,  . . . . , n 3 , ( n +  1 ) 3 ,  . . . . 

up to the final ins tant  at the  end of the  period in which we are interested. (Usually 3 ----- 0.01 
or 0-005 second and the  period covers about  0.15 seconds). 

The calculation proceeds in three s tages - - the  start,  the run and the finish. 

The Start of the Calculation.--To start  the calculation we must  calculate the value of x, say 
x 1, when t----3. This is easily achieved if we can determine  the  value of the velocity dx/dt, 
say x0, and of the acceleration d2x/dt ~, say x0, at t : 0. For, approximately,  x I : x o + 32 o + 
½~2~0, the error being about  -~z30,~ where Xo is the value of d~x/dt 3 at t : 0, or say, "o f  order ~3,,. 

If, however, the  initial  velocity or acceleration is infinite or zero special ad hoc methods  mus t  
be employed.  An example is given in paragraph 25 below. 

The Run  of the Calculat ion.--When t---n3, let x --- x,, dx/dt : .~,,, d2x/dt ~ : ~ .  and dSx/dt 3 : "~. 
Then we start  with approximate  equations of the  form 

and 
1 2 ' "  3X.+ 1 = 3(X n + TX + ½ 32Xn), and z2~_ 1 = 3(2° --  3f,  + ~, x~). 

From this equat ion we can form a number  of other  relations which involve only the  positions 
and velocities, such as 

x.+x = x ._  x + 2~2. + t138"/t ,~ ~j . . . . . . . . . . . . .  (T) 
and 

x~+ 1 = x~ + ~ + ~ r  (~  --  2°_2) + ( ~ z  3~), • . . . . . . .  (M) 

neglecting in each case the terms wri t ten  in brackets  at the  end. 

Each of these equat ions seems at first sight to be quite satisfactory, but  practical experience 
shows tha t  equat ion (T), originally used by  Temple, possesses a k ind of intrinsic instabi l i ty 
which leads to a divergent  oscillation in the resulting calculations, while equat ion (M), devised 
by Makovski, is essentially stable and gives satisfactory smooth curves, and is therefore recom- 
mended  for the  calculation of the axle displacement  x. For  the  calculation of the total  t ravel  s 
we recommend the  equations, 

s ,+l=.s~+½3(%,,+s, ,+l)  and  s , + l - - s - = s - - s , _ l + ~ 2 " ~ ,  

as satisfactory and convenient.  

To use equat ion (M) we start  with the  values of x0, Xl, x0, xl and tilen use (M) to calculate 
x~. From this 22 is calculated, and then x 3 is obta ined by the use of (M). Hence step by step 
we can determine  x4, xs, ..., x,, x,+ 1, for as far as we please. 
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The Finish of the Calculation.--In many cases we have to cover only the period during which 
x is rising to a maximum, and we want to determine the maximum value of x, say A, and the 
instant t ---- T at which it is attained. A t  t = T, dx/dt = 0. Let d~x/dt ~ = - - F .  Then, near 
the instant t = T, 

x = A - -  0 

and dx/dt = F ( T  - -  t). 

Now let us suppose that u, is small and tha t ' the  maximum value of x is near t = m.  Then 

A -- a~ = ½ F ( T - -  m) 2 , 

u~ = F ( T  --  m )  , 

and, approximately 

F = L = - . 

From these equations we can calculate F, T and A. 

The Accuracy of the Calculation.--The error in the working equation recor0mended for x is 
about x s ~ ,  a. Now ~, is roughly equal to (x,,+a -- ~,)/r, so that  the error in x~+ a -- x,, is 
approximately ~ ~(x~+l -- x,). 

This error is cumulative and the resultant error in x, -- x 0 is therefore approximately 

T 2  • • • , 

i.e., approximately ~ z ~ ( ~ +  1 -- Xo) • 

We usually have a rough idea of the values of ~ which are likely to be found and hence we 
can begin by choosing the fundamental i n t e rva l ,  to make the resultant error sufficiently small. 
Suppose for example that  we know that  ~ , , -  Xo never exceeds 3g. Then, with a fundamental 
interval of 0.01 second, the error in the calculated values of x will never exceed ~ × 0.0001 × 3 × 
32 × 12 in. = 0.05 in. Similarly, with a fundamental interval of 0.005 second, the error 
in x is less than 0.0125 in. 

25. Undercarriage Calculations.--In order to make the method of step-by-step calculation 
perfectly clear we shall now give a detMled example of an undercarriage calculation. The 
conditions are that  the load is fully airborne throughout, that the unit is free from friction, and 
that  due allowance is made for spinning-up the wheel. Under these conditions the calculations 
are directly applicable to the initial stages of yawed and banked landings. The numerical values 
adopted are 

Load W = 5,500 lb. 

Initial velocity downwards = 144 in./sec. 

Coefficient of friction for spinning-up calculations =/~ = 0.4. 

As a result of preliminary calculations, made as described in Part I, the coefficients Q and D 
in~the formula 

:~ = D ( R  --  Q)I/~ 

are known as functions of the vertical axle displacement x, so that  the vertical ground reaction 
R can be calculated in terms of x and ~. It  is convenient to plot Q and D against x as shown in 
Fig. 5. Furthermore we have a curve giving R plotted against the tyre closure x,.  

The fundamental  equation of motion is 

R = - - ( W / g )  
where 

s = x + x ~  . 

We now proceed to explain thd ~ start, run and finish of the undercarriage calculation. 
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The Start of  the Calcula t ion . - -The  shock absorber  does not  s tar t  to move  unt i l  R rises to the  
value Q. Dur ing  this init ial  period of t ime, say from t = - - t  o to t = 0, the  ty re  only is acting,  
and  the fundamen ta l  equat ions are 

x = O, R = - - (W/g)2t  , R = f(x~) , 

while at  t = --to, x, = 0 and  2, --- 144 ft./sec. (It is found to be ve ry  convenient  to take  the  
zero hour  from which t ime is reckoned as the ingtant  when the shock absorber  begins to function).  

Let  the init ial  slope of the  ty re  deflection curve, R = f(xt) , be r0, so tha t  approximate ly  
R = roX,, r o being 1,640 lb./in. Then  

2"t = - -  (rog/W)x = --  115.2x,.  

The initial  mot ion is therefore adequa te ly  represented by  the formulae 

{ 1 ) 
x , =  1 4 4 ( t + t 0 )  1 - -  6- × 115.2 × ( t + t 0 )  2 

and  
f / 

Xt = 144 / 1 - - 1  × 115"2 × (t+t o)~t 
The init ial  value of Q when x = 0 is 2,100 lb., and R reaches this value when x t = 1.28 in. 

Hence,  approximate ly  

t o = 0.0089 sec. 
Therefore,  when t = 0, 

2, = 143.34 in./sec. 

This is of course the value  of ~ when  t = 0. The higher powers of (t + to) omi t t ed  from the  
formulae for x~ and 2~ are negligibly small. 

We can now commence  the predic t ion of the shock absorber  loads, bu t  first we mus t  dispose of 
an init ial  difficulty, viz., t ha t  the initial  value of 2' is infinite, as appears  at once from the equat ion  

2 , - - d 2 - -  d D ( R  - -  Q)I/2 
dt dt 

= D ( R  _ Q ) 1 / 2 +  ½O 
(R- -Q)  1/2 

when we r emember  tha t  R = Q at t = 0. 

To c i rcumvent  this difficulty, which was al luded to above, we obtain  an approximate  
expression for 22 by  writ ing 

2 2 = D 2 ( R - - Q ) = D 2 ( r x , - - X ~ x  ) 

dQ ( ) x  = at - -  t~x, = D2rs - -  D2 kr + 

d Q )  at t =  0. Then,  where  t is small, an where  Z = D 2 r s  and  ~ = D  2 r +  dx- ' both  calculated 

approx imate  expression for x is 

2 Zl/~ t3/2 1 t2 x = - g  . , 

as m a y  be verified by  subst i tut ion,  neglecting higher powers of t. 

In  the present  case 

and 

a = (0.592) e × 2,100 × 144 = (325) ~ in. ~/sec. 3, 

= 0 .35  × (2,100 + 3 0 0 )  = 840in. /see.  2. 
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Hence  the  ini t ial  values  of x are 

x z =  0 .216  --  0 .014  = 0 .202  in. a t  t = ~, 

and  x~ = 02611 --  0 .056  ---- 0 .555  in. a t  t = 2~, 

t he  f u n d a m e n t a l  i n t e r v a l ,  being 0.01 sec. 

The  ca lcula t ion  of s 1 is m u c h  simpler ,  since at  t ----- 0, 

s = 1.28,  ~ = 144 in./sec., 

and  ~ = - - g R / W  = - - 3 8 6 . 4  × 2,100/5,500---- - - 1 4 7 . 5  in./sec. ~ 

Therefore .s  1 ---- 1 .28 + 1 4 3 . 3 ×  0 .01 --  ½ × 1 4 7 . 5 ×  0 . 0 0 0 1 =  2 .706  in. We  can now calculate  
in succession 

xt. 1 = s 1 --  x 1 = 2" 504 in. 

R~ = 4,550 lb . ( f rom ty re  deflect ion curve),  

O .  = 2,150 l b . 1  

D: (from d a t a  curves),  
0. 592 . d  

ql ',:" 

xl ---- 29"2 in./sec. (from ~ ---- D ( R  --  Q) 1/2) , 

"sl - -  - 3 2 0  in./sec." (from - -gR /W) .  

The R u n  of  the Calculation.--We can now con t inue  wi th  the  run  of the  calcula t ion us ing  t he  
fol lowing scheme of opera t ion  : -  

Data ,  s,, x,, s,_~, x,,_l, ~ ,  x , - i  • 

Calculate 

xt,  . = S .  - -  x . ,  

e o  - -  f(x,,~), 
~. - -  D ( R .  - -  0.)1/2, 

and  t h e n  x,+ 1 . 

Also, f rom '~, = --  gR,,/W, 

• we ge t  ~, , 

and  s,+ 1 • 

This  gives all t he  di rect ions  for one comple te  s tep  f rom m to  (n + 1)~. The  numer ica l  inte-  
gra t ions  are all to  be carr ied ou t  b y  the  formulae  

x,,+l = x~ + ~ + ½ ~ ( ~  - ~_~) ,  

~ = ~ ~_~ + ½~(~.  + ~.-1), 

a n d  s . +  1 - -  s .  ~ s .  - -  s~_  1 2 c ~ .  . 

The  resul ts  of these  ca lcula t ions  are all s h o w n  in Table  I. 

The Fin ish  of  the Calculation.--Towards t h e  end  of the  calculat ion,  as ~ approaches  zero, t he  
m e t h o d  used  for the  run  of the  calcula t ion is liable to b reak  down due  to the  smal l  difference 
be tween  R and  Q. W h e n  this  occurs, t he  d a m p i n g  effect of the  oil is smal l  and  m a y  be neglected,  
a n d  R m a y  be t a ken  to be equal  to  0.  Since R and  Q are func t ions  of x, and  x respect ively,  
we can p lo t  R aga ins t  s( - - x  + x,), and  t h e n  we d e t e r m i n e  R,+ l d i rec t ly  f rom the  value of s,+i 
o b t a i n e d  b y  the  n o r m a l  m e t h o d .  
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To obtain  the final column for ~ = 0, we have  to destroy the vert ical  veloci ty  of 3 .20  in./sec. 
Wi th  the accelerat ion --987 ft./sec. ~, the t ime taken  is 3.20/987 ~ 0.00S sec., and  the  dis tance 
t ravel led is the mean  veloci ty  1.60 in./sec, t imes 0.00:3 sec. or about  0-005 in., which is ve ry  
small, and  the  calculation is rounded  off as shown. 

The Accuracy of the Calculation.--The acceleration ~ rises from zero to about  1,000 in./sec. ~. 

Hence  the formula  of paragraph  24 shows tha t  the error in s will not  exceed 
-~ ~ × (0.01) ~ × 1 , 0 0 0 -  f~ in. 

Similarly the values of 2 listed in the table indicate  a m a x i m u m  acceleration ~ of 1,200 in./sec, z 
after the  init ial  period of 0.01 sec. to which we gave especial t rea tment .  Hence  the error in 
x will not  exceed ½ × (0.01) ~ × 1,200 ---- 0 .04 in. 

These results are ex t remely  sat isfactory and  show tha t  a t ime in terva l  of 0.01 sec. is qui te  
small  enough for our purposes. 

26. The Choice of a Fundamental Interval.--The f u n d a m e n t a l  in terval  , mus t  be chosen 
before commencing  the calculations,  so as to be small  enough to ensure sufficient accuracy  in 
the results and so as to be large enough to make  the n u m b e r  of steps in the calculat ion not  too 
numerous.  The two criteria for the choice o f ,  are 

(1) t ha t  z mus t  be small  enough to ensure tha t  the functions Q and D are reasonably 
constant  in each interval ,  and 

(2) t h a t ,  is small  enough to yield a reasonably small value for the  es t imated  error 

- 

in each variable x. 

T A B L E  1 

Specimen Undercarriage Calculation 

umTs) 
~ L I P P I N G  r ~ 

-'00~ 0 'Or "0£ '~5 .OL~ -05 -05 .Of= .07 "0~ .09 .10 -~% .I?. .t3 -I~, -19 .l& o17 -~7~ 

$ O I' ~6 Z.706 ~'IO0 5.445 (~.7Z'~ 7'935 7.935 9.063 tO. lOS t~.C}SG II'91~ 11 &75 13.3¢! 13.9~0 14"3~ 4.~57 [S*035 15"Z~5 IZ.~�Z 15.30 

~. 0 .~OZ 0.655 1.039 1.704 Z.545 Z.~4! 3-337 4.1~t ~.'9£I ~-]14- B 419 7-034 7.575 ~.045 ,-419 8.f~&7 6.514 B'B9 S.59 

x¢ 0 |" 28 i~.50~, ~.545 ~.40(= 5.OZ." S'398 5"%~(~ S.7Z6 5.954 6.%~S (~" 19~ 6 Z56 6-~07 5"~3~ &.~37 &'~B G.~(~6 &,401 f=.41 &.4[ 

0 £t00 4550 0900 9oeo ~050¢ It40o ~¢00 I£Z50 ~?.900 i~BSO 13500 13(=50 ~3500 13550 I555C 13550 IS900 ~4(}00 ~050 I~.C150 

Q aloo ~150 £Z50 g450 ~ ~000 3900 4300 ~,BOO 5500 (~400 735° B30C 9500 I0900 ;gSO0 I~d, O0 I~000 14050 |~,050 

R-G~ 0 ~400 ¢&50 6550 78oc B400 "~50C) 7950 ~I00 7550 7i00 (0"500 5500 W3~C ~95C ISSO SO0 -- 

.59~ -59~ "&IS "7£ -~ .9&5 .540 '557 .8*75 -592 .57 ~,~ ,7B4 o7&5! .77 "775 "775 -- 

~c C) ~9"~ 4K.O 55"5 ~.~ 55"7 7&'7 7&'5 7B'S 79.1 73"4 &S 5 S8"t 50,5 4t'~ 30,5 17 

5 t47.5 3~0 -455 -&3~-7%0, -8OO -50O -5&l -~O& -93~ -945 -�GO -970 -074 -974 -074 -97& -954 -957 -957 

~44 [43"~4 145o00 13~'97 I51.38 II£4.55 {%~-~,4 II&'84 ~0B.54 99.7G ~0.4E~ 5I.OS 71 51 , (~I.S& 5Z-14 4Z.40 ~Z,(~& ZZ.9[ 13-05 3.zO o 

I l   ,oo oo5   51 7oi 
"I:~S. ~ -.03ZI-.O4SJ-.O&3 I-.074[ -.OP~ -,C~SS -.OOl -,0~4 -.DS5 - 090 --097 -'097 -'077 -.097]-.09~-.0DS -.099 

+ 0 ~,~,4 G~5 0 S & 79£ 7(54 E~O0 7~5 705 (=15 544 ~&7 37z~ ~49, I " ° |  I I I '  I" I "  ~l I" I '  ~ L ' -  I" t i" I" I" I"  I I 

N.B.--Tn column for t ---- "04, the superscribed figures represent values obtained using Q and D 
curves which apply after slipping ceases. The vMue of ~.so obtMned is used in determining 
x at t = • 06 and the effect of the discontinuity at t = • 05 is thus avoided. 
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N O T A T I O N  

= " a i r "  d isplacement  area 
= o~ + W / U  = effective angle of incidence (Part  I I  pa ragraph  12) 
= " o i l "  displacement  area 
= stiffness coefficient 
= orifice area in compression 
= orifice area  in recoil 
= effective angle of incidence just  before touch  down 
= angle be tween plane .of wheel and direct ion of mot ion 
= ro ta t ional  factor  for banked  landing 
----- spanwise dis tance of j - th .  wheel  f rom C.G. 
= pressure drop th rough  orifice for uni t  xs 
= orifice coefficients in compression and  recoil 

= veloci ty  ratios of shock absorber for vertical,  horizontal  and  inclined 
reactions at  axle 

= chord length  
= angle o5 incl inat ion of resul tant  react ion R to vert ical  
= orifice funct ion for shock absorber  
----- drag force at  contact  area dur ing braking  (P~rt II) 
= net  ae rodynamic  drag 
= ty re  closure . 
= energy absorpt ion in idealised landing 
= energy absorpt ion in drop test  
= horizontal  force on wheel  axle 
----- friction force in shock absorber  un i t  
= angle of roll 
= accelerat ion due to grav i ty  ( =  386 in./sec. ~) 
= height  of C.G. above ground 
= vert ical  dis tance from C.G. of aircraft  to axle of j - th .  wheel  in its 

fully ex tended  position 
= m o m e n t  of iner t ia  of tyre  wheel  assembly about  centra l  lille of axle 
----- mechanica l  advantages  of shock absorber  uni t  for vert ical  horizontal  

and  inclined react ions at axle 
----- radii  of gyra t ion  of aircraft  about  forward,  t ransverse and vert ical  

axes 
= lift 
= horizontal  dis tance from C.G. of aircraft  to axle of j- th.  wheel in its 

fully ex tended  position 
= orifice coefficients in compressed position 
= to ta l  rolling m o m e n t  
= coefficient of friction 
= n u m b e r  of main  undercar r iage  leg~ 
= 1 .3  = " quasi-adiabat ic  index " 
= piston th rus t  
= air pressure 
= oil pressure 
= init ial  air pressure in shock absorber  
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angle of yaw 
air pressure function for shock absorber 
vertical ground reaction on wheel 
tyre radius 
vertical and horizontal reactions on axle 
air density 
total travel of shock absorber unit = x + x 
specific weight of oil 
time for vertical acceleration of C.G. to reach maximum 
time interval 
fundamental time interval 
angle of pitch 
forward speed of aircraft 
velocity components of point in rotating system of axes 
air volume in shock absorber (Part I) 
vertical rate of descent of aircraft (Part II) 
initial air volume in shock absorber 
oil speed through orifice 
all up weight 
weight of wheel and tyre 
angular speeds of rotation about forward, transverse and vertical 

axes 
principal moments of inertia about forward, transverse and vertical 

axes 
vertical axle displacement 
shock absorber travel 
tyre deflection 
rotational factor for yawed landing 
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Fig. 1. Typical Shock Absorber Linkage in an Articulated Unit. 
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p= p'AI . p(At.A) 

= (P "  P) AI+pA 

Fig. 2. Typical Shock Absorber Design. 
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