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Summary.—The object of the report is to establish a routine method for the calculation of aerodynamic loads on
wings of arbitrary shape. The method developed is based on potential theory and uses a general mathematical formula
for continuous loading on a wing which is equivalent to a double Fourier series with unknown coefficients. In order to
evaluate the unknown coefficients the continuous loading is split up into a regular pattern of horseshoe vortices, the
strengths of which are proportional to the unknown coefficients and to standard factors which are given in a table.
The total downwash at chosen pivetal points is obtained by swmming the downwashes due to the individual vortices,
a process which is simplified by the use of specially prepared tables of the properties of the horseshoe vortex. By equating
. the downwash to the slope of the wing at each pivotal point, simultaneous equations are obtained, the solution of which
defines the unknown coefficients.

The first layout involves a total of 76 vortices over the wing, and a second layout, involving a total of 84, is shown to
be of superior accuracy. The effect on the solution of the number of pivotal points is investigated and it is concluded that
by a suitable choice, it is unnecessary to use a large number. Results for a rectangular wing at 0°, and an elliptic
wing at 0° and 30° yaw are compared with those obtained by other workers and it appears that there may be errors
in published results in at least one of these cases. I[mmediate development includes the application to the calculation
of the characteristics of actual sweptback wings, including rotary derivatives, and future development includes also
applications in wind tunnel design and technique,

1. Recent design work on sweptback wings has drawn attention to the increasing need for a
development of the simpler theory of aerodynamic loading which has served well in the past
and will no doubt still be used for approximate calculations. Problems for which a more
comprehensive theory is necessary include, in addition to the properties of sweptback wings,
efficiency of wings, controls, wind tupnel interference, scale effect, design of wind tunnels, effect
of airscrews and so on. ’

The present work was undertaken in order to reduce to a standard and easily understood routine
the calculation of the loading distribution on a wing of arbitrary shape, initially to determine
the simpler properties such as Lift, induced drag, aerodynamic centre, effect of sweepback and
twist, and with the immediate development in view of the calculation of rotary derivatives.
Later developments will be directed towards the secondary characteristics such as effect of
stalling and changes due to scale effect. ’

The work is based wholly on potential theoryand, although the present work is confined to the
simpler applications of this theory, the writer has no doubt that the effects of viscosity, often of
considerable importance, can, for practical purposes, be represented by developments or
modifications of potential theory. The work falls into two distinct categories (a) the purely
mathematical problem of establishing solutions of known accuracy for certain assumed conditions,
(b) the problem in applied mathematics of using these solutions to predict the physical properties
of actual wings.

2. The present work is based on the theorem?® that any continuous irrotational motion of an
incompressible fluid, whether cyclic or not, can be represented by a distribution of vortices over
the boundaries. The work will, as far as calculations are concerned, be liniited for the present
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to thin wing theory, in which any aerofoil is represented by a vortex sheet located on the surface
which is the mean of the upper and lower surfaces. WJ e effect of thickness i arded as suitable
for treatment either by modifications of potential theory or by correction factors.

" The use of continuous loading in the <3pamw*i%b direction was developed by Prandtl, Betz,
Munk and others (1918-1919). Betz? in order to calculate the spanwise « tion of lift

of a recta,ngular Wing, uses the expression for the circulation (see Fig. 2),
am + am? + . . . ), and this was later expressed by Munk?® and Glauert® in
tional Fourier series, with which it is identical with the exception, perhaps, o
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Continuous loading in the chordwise direction was developed by Birnbaum?® in connection

2 ¢
with the two-dimensional properties of wing sections ; he used the form w7 = J T:r;@
@ugm This

+ V1 — £2 (A, + A + Aye? + .. .), where % is the vorticity loading per ]
forms the l?‘ounda;hon for the thin wing theory develope d by Munk? and Glauert®, who t
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The two systems were combined by Blenk’ to give a formula for the continuous
a rectangular wing of finite aspect ratio, which can be expressed either in ter f
above, or as a double Fourier series. This formula is quite general wmu
assumptions involved, and, after generalisation for shape of ng gives
formula of the present wgrk the variables being defined in Fig. 1 :—
7? (mt = (@ + bon + con? + don® nt )
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In the formula « is the angle of incidence from zero lift. If we use the theorem ‘ﬁ:qa,‘i the effects
of camber and twist are independent of incidence effects,® @ “é:h ollowing additional form (also

used by Blenk) represents conditions at zero Lift :—
ke e ) V -
= V1 wﬁ{w*@ 5 (@6’ + bo'n + ca'n? .. ) b sin 6 (@ +by'n -+ ept )
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The complete solution is the sum of the ““ loadings ”’ given by these two forms. Relation (1) is
used to calculate lift and moment derivatives and that part of the induced drag due to incidence,
while relation (2), which is used with the condition that C; = 0, is used for the calculation of
moment at zero lift, angle of incidence for zero lift, and induced dmg at zero lift.

Relations (1) and (2) may be written more concisely :—

=1
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3. In order to consider how far the results given by (1) and (2) may be applicable to actual
wings in a viscous fluid, the following list gives the assumptions which are involved in the use
of (1) and (2) :— : : :

a) The fluid is incompressible.

¢) The wing is represented by a thin plate, the medium plane between the upper and lower
surfaces.

(@) It is assumed that the wing tips are square or rounded off. Pointed tips would require

a modified formula with the V1 — 52 factor omitted.

(¢) The application of theory, following Blenk, Glauert and others, in which the downwash
Tatio wfv is equated to the local slope of the plate is equivalent to the assumption
that the load is vanishingly small at all points. This condition cannot, in fact, be
satisfied if camber and twist are present.

(/) The Kutta-Joukowski circulation giving the stagnation point at the trailing edge is
assumed, i

(g) Even if it is possible for the load generally to vanish everywhere at the same time, there
is still a singularity at the leading edge arising from the cot 8/2 term, which is not an
adequate representation of the flow in that it gives the forward stagnation point at
the leading edge. This singularity is discussed in Durand®, and leads to a paradox
regarding the resistance. The error is regarded as vanishing with the lift, and it is
not; known under what conditions it might be appreciable.

(
(6) The flow is wholly potential.
(

In spite of this formidable list it seems that much valuable work can be done with the bare
theory before modifications are considered. Some corrections, e.g., the effect of the boundary
layer on circulation and effects of partial stalling can, it is predicted, be treated quite easily
by modifications, wholly potential, to the formulae 1 and 2; these will be introduced at a later
stage of the work. Others can be effected by the use of simple factors obtained either theoretically
or experimentally.

4. The most frequently used method for computing aerodynamic loading on wings is that
which has reached its highest development in the Lotz® method, in which the loading represented
by (1) is reduced to the first term in 0, i.e., cot 6/2, the term which represents the vortex sheet
of a flat aercfoil in two-dimensional motion. The load is taken as concentrated at 0-95 chord,
and the 0-25 chord line is assumed to be straight. The downwash due to the trailing vortices
which spring from the 0-25 chord line can be readily calculated by Fourier analysis and, in effect,
the solution is obtained by equating the downwash to the slope of the plate at selected points on
the 0-25 chord line. This theory is notoriously inaccurate for small aspect ratios but it has not
hitherto been realised that it is sufficiently. inaccurate for conventional wings to make revision
necessary of the methods used for computing section coefficients from results with a finite aspect
ratio. This matter will be dealt with in §14. '

The error is more serious when problems of control or effect of sweepback are in question.
A modification of this method which consists in the calculation of downwash.on the three-quarter
chord line has been used by Weighardt® and Mutterperl!®.  The theory of thin aerofoils suggests
that this method should be of superior accuracy. It is shown in Vol. II of Durand, p- 49, that
if a thin aerofoil section is cambered parabolically or in the form of a circular arc, the effective
angle of attack is the slope at the three-quarter chord line. Hence, as effective camber is always
present in three-dimensional flow, the use of the single slope chordwise at 0-75 chord to define
the incidence is more accurate than the use of the slope at 0-25 chord. It is hoped that this
idea can be further developed at a later stage of the work when considering the most effective
means of simplifying the calculations.
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The effect of increasing the number of load lines in the chordwise direction while retaining
continuity in the spanwise direction has been calculated by Weighardt® for a rectangular wing
using 2 and 4 load lines.

Continuous loading in both chordwise and spanwise direction has been dealt with by Blenk?
for the rectangular plate, yawed and unyawed, and the arrow-shaped plate ; by Kinner'! for
circular plates using the method of acceleration potential; by Krienes!? for elliptic plates
yawed and unyawed using the method of acceleration potential ; and recently by W. P. Jones!3
as a side investigation in the calculation of derivatives for an oscillating wing. The position
as regards some of these mathematical solutions is unsatisfactory, as they are not usually, in
fact, complete mathematical solutions of the problem. Two examples are given :—Blenk gives
the integrals for his problem, but in the analysis has firstly to evaluate these integrals by approxi-
mate methods involving series, and secondly to find the values of certain coefficients by the use
of a limited number of pivotal points on the plate. The final solution is obtained only when
these two processes have converged simultaneously. For the yawed elliptic aerofoil, Krienes
gives no indication that his solution has reached convergence with respect to the number of
pivotal points and there are indications of considerable error in his results. .

Finally graphical methods of solving the continuous loading problems have been suggested
and demonstrated by Cohen4,

5. Having regard to the scope and object of the investigation, none of the work described in
the preceding paragraph is of a sufficiently comprehensive nature to use as the general basis
of the work. It is clear that it is difficult and specialised work to express in mathematical form
even the integral relative to the simpler shapes of unyawed wings. When the investigation is
extended to wings of arbitrary shape, yawed and with rotary motion, the mathematical expression
of the downwash integral is so difficult as to be a practical impossibility. The proper function of
the mathematician is to provide solutions of specified accuracy of some of the more simple
problems which can be used as standards for the testing of easier approximate methods which
offer a much wider field of utility by avoiding excessive mathematical rigidity.

At the other extreme, graphical methods of solution have nothing to recommend them, as they
fail to satisfy any of the essential conditions of a problem of this nature. Considering the possible
uses and application of the work, the following conditions, which apply to the method which will
be described below, are considered to be necessary :—

(a) The whole of the assumptions are contained in the original layout of the work. The
number and disposition of the vortices to be used and the number and position of
pivotal points are specified by the technical man on the basis of his previous experience.
The remainder of the work is purely routine calculation which is suitable for the
application of rigid checks for accuracy.

() The accuracy of a given result can be tested, frequently without undue labour, by revising
the layout to the next higher approximation.

(c) Certain effects, such as effects of sweepback, derivatives with respect to yaw, and so on,
can be calculated accurately with a comparatively simple layout, involving as they do
only differences.

(d) Because of the rigid specification, the work can be repeated at any time to find the effect
of modifications.

Graphical methods fail to satisfy the above conditions. For instance, it is not easy to specify
a rigid layout for graphical methods; the work, if carried out by computers, could not be checked
except by a complete recalculation, because of the difficulty of separating arithmetical errors
from errors of judgment ; the results could not be checked by proceeding to the next approxi-
mation ; the rigid framework essential for the accurate calculation of derivatives, and effects of
small variations, is lacking ; and, finally, matters involving judgment may sometimes waste
a considerable amount of time.
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6. The present work is based on an idea which has been used frequently in other fields of
research, that is, the replacement of a continuous loading by a patterned layout of isolated loads.
It will not be disputed that, if the method of layout is sound, and the spacing is reduced indefinitely,
the correct answer can be obtained. The important question is—can the layout be so arranged
that good accuracy is obtained with a wide spacing of the loads, thus reducing the work of cal-
culation, which involves the properties of the isolated loads, to a reasonable minimum ? The
present work aims to show and prove that this can be accomplished for the loading represented
by vortex sheets.

Consider the distribution of vorticity given by relation (1). It is required to split this into a
pattern of isolated vortices both chordwise and spanwise so that the coefficients a,, by, etc., can
be calculated for a specified wing. In the present work the chordwise loading is represented by
four loads placed at 0-125, 0-375, 0-625 and 0-875 chord. The procedure for defining these
loads is the same whatever the number of loads, and the choice of four was influenced by the
circumstance that, having regard to possible developments, fewer than four would hardly be
satisfactory and, in fact, may be inadequate for special problems. On the other hand, Prandt]!s
is satisfied that good accuracy for a flat wing can be obtained by the use of four load lines.

In the spanwise direction it was predicted that intervals of 0- 1 semi-span would be satisfactory
and later work has shown that these intervals, after slight modification by the addition of corrector
vortices at each tip, are satisfactory. The maximum number of loads which have so far been
used therefore total 84 for the complete wing.

7. The splitting up of the load in the chordwise direction is accomplished by the following
process applied in turn to each term of (1). The pivotal points at which downwash will be
equated to the slope of the plate are specified as the midpoints of the four chordwise loads,
ie, at the 0:25, 0-50 and 0-75 chord points. The fundamental condition which must be
satisfied at these pivotal points, is that the downwash due to the isolated loads, in two-dimensional
flow, shall be equal to that given by the continuous load. With the other coudition that the
sum of the isolated loads, which is in this case the circulation round the chord, is equal to the
integral of the continuous load, the relation between isolated and continuous loads is specified
exactly.

Consider the first chordwise term V cot 6/2. It can easily be shown that if & = V cot 8/2,
o/V = § at any point of the chord, and the integral of V cot 8/2 along the chord is inVe.
Hence if K, K,, K, and K, be the four isolated loads

K, + K, + K, + K, = aVe.

The downwash factor at 0-25 chord due to K, at 0-125 chord is f\; s Zi%/lc ; that due to K,
at 0-375 chord is — ?J%’; and summing the total downwash and equating to the correct

value, we obtain ]
8K, — 8K, — 2:-6K,; — 1-6K, = xVe.
similar relations for the 0-5 and 0-75 chord positions give
2-6K, + 8K, — 8K, — 2:6K, = 2V
and 1-6K, 4 2-6K, + 8K, — 8K, = ='Vc.
The solution of this set of simultaneous equations gives the result that for £ = V cot 0/2,

the four isolated wvortices are 0-2734Vem, 0-1172Ven, 0-0703Ver and 0-0391Ves, summing
to 0-5Ven, '

A similar routine applied to sin ¢ and sin 26 gives factors which are given in Table 2. The
downwashes and integrals of vorticity relating to two-dimensional flow are given in Table 1.
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If the plane in which the downwash is to be calculated is at a considerable dista
horseshoe vortices, the set of four can be reduced without appreciable error to o
of area. Table 2 gives this alternative representation—for instance, V cot /2 i
by 0-52Vc at (-25 chord, V sin 6 by 0-25x V¢ at 0-5 chord, and so on.

1ce irom the
1t the centre
represented

8. The splitting up of the loading in the spanwise direction is carried out by
method. Along each of the four lines of concentrated load at 0-125, §-37 625 and 0-875
chord it is assumed that the vorticity loading and so the circulation remains constant for a set
distance, then, after changing suddenly by the shedding of a trailing vortex, again remains
constant for a similar distance, and so on. If the wing is divided into intervals of 01 semispan,
this is equivalent to the use of the regular system of horseshoe vortices shown in Fig. 2 for layout 1.
It was predicted that intervals of 0- 1 would give good accuracy, and a side investigation suggested
that the correct magnitudes of the vortices are the magnitudes of the continuous load at the
points corresponding to the centres of the bound vortices, which define the location of the load.

For example, consicer the v/1 — %2 term in (1). The appropriate strengths of the horseshoe

vortices to represent this term are 1-0 on the median line or 5 = 0, V1 — (0
n=0-1, 0-9798 at 0-2 and so on. Similarly the » V1 — 4% term is represe; by 0 on the
median hne, 4-0-0995 at = 4-0-1 and so on. All of these quantities vani 9 =1, and
the last vortex for this layout, termed layout 1, is at 4 = 0-9. The factors for terms up to

71 4/1 — 42 are given in Table 2.

ather different

Tite

Subsequent investigation showed that this method of representation was quite sound as long
as the function representing the continuous load could be expressed over the interval concerned
as a power series of the second degree. The form of the functions, for all of which the load at the
tip vanishes as v/1 — 5%, shows that error will appear first at the tip. Integrations of one or
two simple limiting cases, and comparison with a simple known solution, to be described below,
suggested that the tip error could be corrected by the addition of an extra term near each tip
for n = -+ 0-9625, representing a vortex of width } of the remaining vortices. These are termed
corrector vortices and their strength is defined in exactly the same way as the other vortices.
When used they convert the layout 1 shown in Fig. 2 with its 76-point loading, to the layout 2
with 84-point loading. The extra work involved in the use of layout 2 is small, and it is thought
that the accuracy is at least equal to that which would be obtained from the next approximation
with one half the interval in the spanwise direction. No work has yet been done on this higher
approximation, which is held in reserve for future use.

The two layouts have a subsidiary distinction depending upon whether or not the reduction
to 1-point loading in the chordwise direction is used. A description is'given in Table 2.

9. A demonstration is now given of the exact relation between Table 2 and the relation (1),
Suppose that the analysis is limited to a symmetrical wing at 0° yaw, which means that coefficients
of odd powers of 5 are all zero, and that three terms chordwise and two terms spanwise are
retained.

Then

ke SRS 7 X ) o -
8V tans — V17 %w*ffz (@0 4 €qn®) + sin 0 (a; + cy?) + sin 20 (a, + y)ﬁ TN

For n = 0, the factor v'1 — 52 is 1-0, while 72 v 1 — 22 = 0, and hence, using the factors for
cot 6/2,sin 0, and sin 20, the relative strength of the vortex at % = 0, 0-125 chord is 0-2734a, +-
0-0488a, + 0-0732a,; at n =0, 0-375 chord is 0-11724, + 0-0762a, + 0-0381a,, and so on.
Similarly for v = (-1, the strength of the vortex at 4 = 0-1, 0-125 chord is

0-2734 X 0-9950a, + 0-0488 x 099504, + 0-0732 x 0-9950a,
+ 0-2734 x 0-0099¢, + 0-0488 x 0-009S¢; + 0-0732 x 0-0099¢,
and so on.
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All of the vortices are defined explicitly in terms of the unknown coefficients in (5), and the same

applies however many coefficients occur in (5). The position and magnitude of the vortices being
known, the downwash at any point can be calculated using the usual formula.

10. The work can be reduced to a minimum by tabulating the properties of the horseshoe
vortex. This can be done simply because we are concerned only with downwashes on lines at
regular distances, in terms of the vortex width, from the centre line of the vortex. The formulae
are derived simply and are given in Glauert’s book® By the use of these formulae, downwash
factors have been computed and printed on the National machine under the supervision of
Dr. L. J. Comrie of Scientific Computing Service, Ltd. to five places of decimals, with first and
second differences. The tables are computed for regular intervals of y*, where y* = y/y, (see
Fig. 3), with x* = x/y, as the variable. The tables give the value of a factor F, corresponding
to x* positive, and a complementary factor F’, corresponding to x* negative, such that the

downwash ratio /V is equal to F X P where K is the strength of the vortex. These tables
S dnVyy

are not reproduced here but it is hoped that it will be possible later to circulate them after
complete subtabulation. The writer has subtabulated to give correct answers to three places of
decimals by the use of the first difference only, the use of second and higher differences not
being recommended for inexperienced computers,

11. The solution of any problem involves the calculation of the downwash at a certain number
of pivotal points by summing the effect due to each individual vortex. The bare minimum
number of points is equal to the number of unknowns in the relation (1). No final decision has
yet been made as to the necessary number of points to give a specified accuracy. Evidence
which will be given as each case is considered suggests that for a symmetrical wing without
sweepback six points on the halfwing, those marked 1 to 6 in Fig. 2, are sufficient. By symmetry
this is equivalent to the use of 12 points for the wing. For sweptback symmetrical wings it is
probably necessary to use nine coefficients and nine points, those marked I to 9 in Fig. 2.

The calculated values of »/V are equated to the slope of the plate, in- this case tan'«, at the
ot concerned, and the solution of the simultaneous equations gives the values of the coefficients

T i

in relation (1).

One important theorem, suggested originally by Dr. H. O. Hartley, assistant to Dr. Comrie,
has been demonstrated by trial solutions. When wusing the bare minimum of pivotal points,
they must agree in number in the two directions with the coefficients retained in the relation (1).
For instance, if the coefficients ay, ¢,, 4, ¢, a4, ¢, are retained, three in the chordwise and two in
the spanwise direction, the points 1, 2, 3 and 4, 5, 6 can be used. The points -1, 3, 4, 6, 7, 9
would probably give a false result unless used with ay, ¢q, ¢4, @y, ¢4, ¢;. It has not been considered
advisable to place any pivotal point nearer the tip than 0-8 of the semispan.

12. The actual method of layout of the work with suitable checks for accuracy will vary
depending on the machines and computing staff available. That devised by the writer at the
- o b Q100 o o e 1 = i ° .
laboratory differs from that used by Drs. Comrie and Hartley. As it may not be possible to
show the complete layout for a wing, a demonstration is given of a simple problem, that is, the
calculation by the present method of the loading on an elliptic wing with ratio of major to minor
axis of 5 1o 1, using the same assumptions as in the Glauert-Lotz method, i.e., load concentrated
at 0-25 chord, the locus of which is a straight line. This case, for which the true analytical
. D
do. 1 +=/10
ue of the present method and the effect of the corrector vortices.

solution i

4-781 forms a valuable test case

given by the simple expression

£ mecpccite Fhe o
ior assessing the v

In Table 3 the dat
coefficients of odd
cients of sin 0, sin ¢

conforms to the original layout 1, excluding the corrector vortices. The
powers of  vanish through symmetry ; by the assumed conditions the coeffi-
- are all zero and we retain four coefficients a,, ¢y, ¢, and g,  The values

. from Table 2 are set out and denoted by A;, A,, A, and A,. The
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four chosen pivotal points on the chord line are at 0-1, 0-4, 0-6 and 0-8 of the semispan. From
the tables, the factors appropriate to the positions of each vortex with respect to each pivotal
point are set down under the preceding values and denoted by By, B,, By and B,. For this simple
case, in which x* = 0, the factor simplifies to the expression FET T =1 The sum of

the A coefficients is denoted by ZA, and the B coefficients by ZB.

The sum of the products B,A,, B;A,, B,A, and B,A, for point 1, and similar products for points
2, 3 and 4 are computed and tabulated. The check for accuracy is that the sum should equal
L ZA X IB, an error in the last figure being allowed on account of cumulative errors arising
from the limited number of figures in the individual totals. For this case, including only the cot
8/2 term concentrated at the centre of area, relation (1) becbmes

r e | 1
SV fan e V1= 42 7% c® + egn® -+ Gon GE ‘

Now
® i 7

[
T ——

4, ZBA, + ¢, BA, + ¢,ZBA, + 2,ZBA,

The element of lift is

8soV2tan o v/1 — 42 % (ag + cgn® + e + gn %)

#]

Alternatively, the element of lift is

w ]
2mteVic gta,n o — sk
Equating these )
ay | VI —n? 4 202BA; |+ b, - V1 — 9?4+ 202BA, é% coe== L.

For the 5/1 ellipse, ¢fs = 0-4v'T — %2, hence
ao [ 1+ 2EBA] + by [n? 4+ 2EBA, | + ¢o [#% + 25BA,| + dy [#® + 2EBA, | =0-1.
The resulting equations for the four points = 0-1, 0-4, 0-6 and 0-8 are given in the table.

The solution gives (see Appendix T) jil% = 4-7486, the exact solution being 4-781. A repetition

of the solution with six pivotal points 5 = 0-1, 0-3, 0-4, 0-6, 0-7, 0-8 gave 4:740, and a
repetition using the corrector vortices at y = +0-9625, and using the four points » = 0-1, 0-4,

0-6 and 0-8 gave fi,i’ = 4-778. This result is taken by the writer as evidence that (1) no

appreciable error is involved in the use of only four pivotal points (2) the addition of the corrector
vortices is an effective means of obtaining a higher approximation.

13. The layout for a wing using distributed load does not differ in principle from that shown
above. The factors A, to A, would be the same ; an extra table derived from the plan of the wing
and giving the relative positions of each vortex is necessary so that values of #* and y* applicable
to any pivotal point can be computed and tabulated. The factors are then read from the tables
and set down under the A coefficients, and when the full 4-point loading chordwise is adopted
there will be four corresponding factors at each position along the span. The downwashes are
computed in terms of sums of products and the coefficients a,, etc., and are equated directly to the

slope of the aerofoil at the point concerned. The solution of the simultaneous equations gives
the values of the coefficients,
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The solution of the properties at C, = 0 is obtained by the use of relation (2), the equations
being derived in precisely the same way as when finding dC,/da. The unknowu a, is eliminated
by using the condition for no lift (see Appendix I)i.e., 18a," 4 8a;" + 4cy + 2¢," + 2¢y’ + ¢, = 0,
and in place of this the unknown «, the angle of incidence for no lift, is introduced. The
downwash at any pivotal point is equated to «, plus the slope of the plate at that point. From
this solution «, and C,, are derived.

14. Rectangular Wing, Aspect Ratio 8 to 1.—The results of various calculations of the centre
of pressure and lift derivative for steady motion are given in Table 4. The first point to be
noted is the close agreement between the straight solution and the least squares solution computed
for layout 1. This provides effective eviderice that there is very little, if any, error involved in
limiting the number of pivotal points to six. Another important point is the difference between
the layouts 1 and 2, i.e., without and with the corrector vortices. The effect of the corrector
vortices is to increase dC,/dx by only about 2-49,, and this is the order of correction which has
been found in all cases which have been tried. It seems justifiable to assume that the answer

given by layout 2 must be very nearly correct. The figure 7; = 4-296 is in close agree-

ment with that obtained by W. P. Jones, i.e., 4-303, by a different method.

The wvalues accepted as correct by the writer are %% =4-30, C.P. at 0-239 chord. The

acceptance of these values involves a modification in the formulae for converting results for
A = 6 to infinite aspect ratio. The new ratio of lift slopes will be 2z/4-30 instead of 2z /4-53
and there is an additional correction of -+0-011 on the 'centre of pressure. The new value
modifies the computed section values of dC./de by about 5%,

In converting from A = 6 to A = w, it is always assumed that the values of C,, and a4 are
unchanged. In Table 5 are given the corrections which should be applied to the N.A.C.A.
series for various positions of maximum camber. The values for A = 6 have been computed
by the method described in this paper using six pivotal points. The values corresponding to
A = oo were computed by the thin wing theory described in Glauert, using the same three points
of coincidence in the chordwise direction at 0-25, 0-5 and 0-75 chord. For the particular type
of camber of the N.A.C A. series, this may be too few to give the absolute values, and the differences
only, which are corrections, are given. The corrections apply to a camber of 29, and are pro-
portional to the camber.

15, Elliptic wing, major axis/minor axis = 5 to 1.—The results of calculations on a wing of
this plan form at 0° and 30° yaw in steady motion are given in Table 6. For 0° yaw, the aspect
ratio is 20/x or 6-37, the Glauert value of dC,/d« is 4-78, and the C.P. at 0-288 of the median
chord. For 30° yaw, at which angle the span is reduced in the ratio 0-872 to 1, the aspect ratio
is 4-84, the Glavert value of dC,/d« is approximately 4-45 and the C.P. is approximately at
0-288 of the median chord.

Values obtained by Krienes using the acceleration potential method are 4-55 and 0-283 at
0° vaw, and 3-26 for dC./doc at 30° yaw. An unofficial examination of Krienes work is in hand
by Dr. Hartley. THe complete results are not yet available, but it seems that there is very
little error if any in the result for 0° yaw.

The straight solution for 0° yaw was computed for layout 1, which gives - Jlﬂ = 4-49. This
&

would agree with Krienes' result if increased by 1-3%, : it will be seen from the results at 30°
yaw that the addition of corrector vortices increases dC,/dx by 1-39, hence it is deduced that
the present method, using layout 2, would give complete agreement with Krienes result for
0° vaw,
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Three solutions have been computed by Scientific Computing Service Ltd. for
first two demonstrate that there is no appreciable error in limiting the number of pivotal points
to 12 over the wing, and the third shows that the corrector vortices increase 4C,/da by 1-39%,.
Hence, unless there is some hidden flaw in the present method, it seems that the wvalue of
dC,/da for the wing at 30° yaw cannot differ appreciably from 3-81.. Any further discussion on
Krienes’ results is held over until the receipt of a report from Dr. Hartley.

30° yvaw. The

£
1

16. Work is proceeding on calculations for sweptback wings, and, as far as be seen, good
agreement with wind tunnel tests will be obtained. These results will be gis n a later paper,
as the matter cannot be treated effectively until examination has been made of the present
inadequate knowledge of section coefficients.

&

17. The immediate programme of work includes :—
(@) Revision of section coefficient calculations as described in §14.

(b) Calculation of lift, moment and induced drag for various shapes of sweptback wings
using the bare theory.

(c) Modification to include effects due to loss of circulation and incipient stalling

(@) Establishment of the proper routine for predicting actual wing properties from (b) and {(¢).

Work scheduled for the near future includes

(¢) Calculation of rotary derivatives.

(/) Effect of flaps. .
(g) Effect of airscrews. "

(h) Effect of fins.

() Effect of body.

(7) Effect of controls.

The work under (¢) and () will involve the computation of further tables relating to the horseshoe
vortex. This can be carried out most effectively by Scientific Computing Service, Ltd. who have
also expressed their willingness to undertake the subtabulation of the original tables so that
interpolation will require only the use of first differences.

The writer wishes to express his indebtedness to Drs. Comrie and Hartley for helpful advice
given during discussion of the work, and to state that the success of the investigation is in no small
part due to having been able to hand over the more difficult computation problems to Scientific
Computing Service Ltd. For the problems in asymmetry, the work involves, in the words of
Dr. Comrie ““ that pitfall for the inexperienced, a large number of simultaneous equations which
~ are not always well-conditioned . If it is possible to hand over further work in the same way,
the progress of the whole investigation—which may also be used in connection with wind tunnel
interference and wind tunnel design—will be expedited.

The writer also wishes to express his thanks to Professor W. G. Bickley for helpful advice
given during a discussion of the problem. ‘

Acknowledgments are due to Miss G. Bollom, who assisted the writer in some of the work of
computation.
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APPENDIX 1
Calculation of Lift Coefficient

The analysis is limited to three terms in the chordwise direction and five in the spanwise
direction. ? f I be the total circulation around any chord ¢,

r(‘/Z

L= g kdx.
o ) AMC/
herefore, from (1)
r b 9 x
ST = F,| cotmsd = 4 EFJ sindd— - F J sin 2 6 d—
8V tana — “o) Ot g d o TN P
But
% %
== %c0s 0, and d (\Tc) = ~% sin 6 46
{
Hence
y 1 0 ] 7%
= — L | cot sinbdd = 5-
s ¢4 . 2 2

| sin#d—~ = —and| sin20d .= 0.



Therefore

F e A N T 5 o o g ; |
SV tan o V1 — g2 LZ (@g+nbg -+ n2co-+n3dy4-nley) + e (a,+nby+ ey HuPdy -+ tey) } ’

The element of lift on a chord is ¢ VI'dy or total lift is $g oVIdy. Hence

J
Cp = '_;,: , — 2s [
Evaluating the integrals

16s%7 tan of = @, n o,
C = “O AN % (g + dm) + g (heo -+ $60) + 1 {heo + Beq) ]
- 1 s272 tan o [, 7
Co= o S [ 160, + 8a, + Aoy + 20, + 2, + ¢ |
dcC,, 1 sea2 o , -1
e =4 S EE@@@ + 8ay + dcg 4+ 20, + 2y + o |

These, formulae are independent of the wing shape.

APPENDIX II :
Calculation of Centre of Pressure and no Lifi Momeni Coefficient for Rectanguiar Wing at 0° Yaw
(Symmetrical Loading)
T

The moment of a strip about the line 6 = 9

aM i 0 . .. 1 . %
Vg = toVeay Jyl [Fﬁ cot 5 4 Fysin @ 4 F,sin2 0 %COS 6d >

is given by :—

S dCnm
e LR A
ACm 82T, [ '
.,,id,;.&:ﬁ. e ———7874 E%WJ_‘_I EU dz] + %]@I J(W{ Fz dwj}g
2 2 1
%C&rg _ 1% S Emaﬂ + 4cq + Zeq + 8a, + 2, + 05 |-

The centre of pressure in terms of the chord ¢ forward of the midpoint of the chord is given by
ACw/dC, or

1 18ay + 4cy -+ 2ey + 8ay + 2c, + €5

4 " 16a, + 8ay + 4dcy + 2¢; + 2, + ¢

1 s%2

=16 § bﬁa; + 4y’ + 2¢0 + 8ay + 20 + @?}

or eliminating «, from the condition that C, = 0

Similarly,
ﬁjmg

C —:-E—wsﬁﬂz—gs—&zf—l-ga’~~Zc’+20’wa,’+e'jb
mgy 16 S L 1 2 1 2 1 2
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APPENDIX 111

Calculation of Centre of Pressure for Elliptic Wing at 0° Yaw

The moment of a strip about the line § == % is given by
M : b E o . . | X
s ] 4 . K 1 -, 2.0 icos A
85V fan o L oVeay J_; n}fﬂ cot 5 + F,sin 6 + F,sin 2 |eos ba-

Substituting ¢ = ¢, V1 — #? and evaluating the integral,

5M S 7
BV fana 1 oVe, VI —n? E%n Fo+ &n Ezgdy °

Therefore, for the complete wing

aM r _ L T ——
T 4 s2pV2cym %_%JAFO V1 —n2dy + %ﬁm_l:&{‘“" V1 —ntdy ]
9 "
= 105 ns?gVicq E7Gd0 + 14¢y + B¢y + 35a, + Tcy + 3621

-

Also dLjde where L is the lift is given by

aL 1 7o .
y ] o V2s?n? %%aﬂ +4- 8a, -+ 4cg + 2oy - 2y + ej .

166@*57@% + 14cy + 66y + 35a, + o, + 3ey E

1057 | 16a, + 8a, 1+ 4e, + 2c, + 264 + ¢,

forward of the major axis, where ¢, is the minor axis.

TABLE 1
Table of Downwashes due to Continuous Chordwise Load, Two-Dimensional Flow.

T# ¢ be the chord, and x length in the chordwise direction with the origin at the midpoint of ¢ :—

% " w ) J'*H/‘z " 0 i .
— =cot —, = = %, cot - dx = nc
9 %

V v Jepy y

k . o . helz v .

Y = s 8, v =T cos 9, J sin 0 dx = }mc

Y 7 ly

k ) w el
- = gin #f, — = — % cos no, J sin #8 dx = 0

Y v ' e
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TABLE 4

Calculations on Rectangular Wing, Aspect Ratio 6, 0° Yaw —Cenive of Pressure and Lifi Derivative

Operator Method Description Coefficients ACyfde | C.P,
Blenk Blenk 6 pivotal points on half | 4 | +-0-0668 | ¢, | -+0-0295 | 4-196 | 0-240
wing at 0-067, 0-5 and | 4, | —0:0015 | ¢, | —0-0205
0-833 chord for n = 0-25 | a, | +0-0001 | ¢, | —0-0037
and 0-75.
Falkner Falkner Layout 1A. Two places of | 4, .| +0:0670 | ¢, | +-0-0303 | 4-182 | 0-236
decimals used in factors: | a4, | —0:0012 | ¢, | —0-0268
6 pivotal points on half | a, | 40-0008 | ¢, | —0-0030
wing at 0-25, 0-5 and
0-75 chord for v = 0-2
and 0-8.
Scientific Computing | Falkner Layout 1. Four places of | 4, | -+0:0670 | ¢, | 00322 | 4-195 | 0-237
Service Ltd. | decimals used in factors: | @, | —0-0015 | ¢; | —0-0277
6 pivotal points on half | a, | +0-0001 | ¢, | —0-0051
wing at 0-25, 0-5 and
0-75 chord for = (-2
and 0-8.
Scientific Computing | Falkner Layout 1. Four places of | ¢, | +0-0668 | ¢, | +-0-0314 | 4-198 | ¢-230
Service Ltd. decimals used in factors: | &, | —0-0014 | ¢, | —0-0247
12 pivotal points on-half | 4, | +0-0004 | ¢, | —0-0085
wing at 0-25, 0-5 and
0-75 chord for = 0,
0-2, 6-5 and 0-8. Least |
squares solution.
Falkner Falkner Layout 2A. Three placesof | g, | +0-0677 | ¢, | +0-0347 | 4-296 | 0-239
decimals used in factors: | @, | —0-0009 | ¢, | ~0-0267 '
6 pivotal points on half | g, | —0-0002 | ¢, | —0-0050
wing at 0-25, 0-5 and
0-75 chord for = 0:2
and 0-8.
W. P. Jones W. P. Jones | C.P.on all sections assumed 4-303 | 0-250
to be at 0-250 chord.
Glauert Fourier  series.’ Single 4-53 | 0-250
straight vortex filament,

TABLE 5

Calculated Corrections on Cing and oo to be Applied to Cambered Rectangular Wings of the
N.A.C.A. Series when Converting from Aspect Ratio 6 to w .
The corrections are proportional to the camber.

Camber, Position of Correction on Correction on
per cent, max. camber Cino oo : degrees

2 0-2 chord —0-0011 +0-01

2 0-3 chord —0-0015 —0-01

2 0-4 chord —0-0020 —0-01

2 0-5 chord —0-0027 +0-04

2 0-6 chord —0-0033 +0-08

2 0-7 chord —0-0026 +0-06
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TABLE 6
Calculations on Elliptic Wing, Major/Minor Axis 5 fo 1

Aspect aCy,

Yaw . Operator Method Description Cocflicients - C.P.
ratio do
0° | 6-37 | Glauert . Single vortex filament : 4-78 | 0-288
0° | 6-37 | Scientific Com- | Falkner | Layout 1. Four | g, | +0-0739 | ¢, | +0-0016 | 4-49 | 0-280
puting Service places of decimals | ¢, | —0-0034 | ¢; | —0-0093
Ltd. used in factors: 6 | a, 0 ¢y | —0-0016

pivotal points on
half wing at 0-25,
0-5and 0-75 chord
for 4 = 0-2 and

6-8.
0° | 6-37 | Krienes . Acceleration potential 4-55 | 0-283
30° | 4-84 | Glauert .. Single vortex filament 4-45
30° | 4-84 | Krienes .. Acceleration potential 3:26
30° | 4-84 | Scientific Com- | Falkner | Layout 1. Four | a4 | +0-0791 | ¢, | +0-0150 | 3-76
puting Service places of decimals | 4, | —0-0008 | ¢, | —0-0285
Lid. usedin factors 1 12 | a, | +06-0018 | ¢, | —0-0159

pivotal points on | b, | —0-0076 | 4, | —0-0202
wing at 0-25,0-5, | &, | —0-0031 | 4, | 4+0-0258
0-75 chord .for | b, | —0-0028 | d, | -+0-0184
p = -+ 0-2 and

+ 0-8.
30° | 4-84 | Scientific Com- | Falkner | Layout 1.  Four | a, | +0-0787 | ¢y | +0-0143 | 376
puting. Service places of decimals | 2, | —0:0001 | ¢, | —0-0278
Ltd. ‘ used in factors : 21 | a, | +0-0018 | ¢, | —0:0150
pivotal points on | &, | —0-0049 | 4, | —0-0241
wing at 0-25, 0-5 | &, | —0-0067 | d; | +0-0312
and 0-75 chord for | b, | —0-0059 | 4, | +0-0230

n = 0, + 02
-+ 0-5and 4 0-8.
Least squares so-
Iution.

30° | 4-84 | Scientific Com- | Falkner | Layout 2. Four | ¢, | +0-0793 | ¢, | +0-0164 | 3-81

puting Service places of decimals | @, | —0-0008 | ¢, | —0-0269
Lid. used in factors : 12 | a, | -+0-0013 | ¢, | —0-0613
pivotal points on | b, | —0-0073 | d, | —0-0204

o wing at 0-25, 0-5 1 &, | —0-0035 | 4; | +0-0254

and 0-75 chord for | b, | —0-0027 | d, | +0-0191

n = - 0-2 and
'J: O“g
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