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SUMMARY. By means of the principles and assumptions used to calculate the profile drag of aerofoils a method
is developed for calculating the total and skin friction drags of bodies of revolution at zero incidence. The method is
applied to three bodies of different fineness ratio for three Reynolds numbers and three transition points. From the
results curves are drawn showing the variation of total drag for a ra.nge of fineness ratio (00 to 3 : 1), Reynolds number
(106 to 108) and transition point position (0 to o· Sl). Comparison with experimental results sho,vs satisfactory
agreement.

Interesting deductions are:
form drag

(a) ttl d == O· 4 djl, approx.o a rag
(b) Given the volume and transition point position the fineness ratio for which the drag is least is about 5 : 1.
(c) Given the frontal area and transition point position the fineness ratio for which the drag is least is about 3 : 1.

LIST OF SYMBOLS
x
y
r
~

1
d
A
f(d/l)
Do
U
u
o

A

15*

distance along surface froll1 stagnation point or distance along centre line of wake,
distance measured normal to surface or normal to centre line of wake,
radius of cross section of body,
distance measured parallel to axis of body from stagnation point,
angle between tangent to generator and aXls of body,
length of body,
maximum diameter of body,
surface area of body,
Ajl2,
velocity of undisturbed stream,
velocity at edge of boundary layer or wake,
velocity in boundary layer parallel to surface or in wake parallel to centre line,
boundary layer thickness or radius of cross section of wake,

Idisplacement area of boundary layer = 2;71;J(1 - TI) (r + .y cos cx;) dy,

1displacement area of wake = 2 n;I(1 -- rr;YodY,
displacement thickness of boundary layer == A/2nr,

f 0

I JU UImomentum area of boundary layer = 2n U (1 -,- D) (r +Ycos cx;) dy,
. 0 0

J
u '1,(,

momentum area of wake == 2n D (1 - U)y·dy,

o

* R.A.E. Report, April, 1939.
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LIST OF SYMBOLS-contd.

mOluentum thickness of boundary layer == u/2nr

A/u)
pressure in boundary layer or wake,
pressure at outer edge of boundary layer or wake,
drag of body,
total drag coefficient == D/!eUo2A,
intensity of skin friction,
local skin friction coefficient == 2 'To/eUo2,

l

skin friction drag coefficient == J! cf.2nr.d;,
. ~

o
v kine11?-atic viscosity,
Z 02

/ V,

A U/Z,

C (eUo
2

/ r o)1'
dashes denote differentiation with respect to x, suffix 1 denotes that quantities have their values at the tail.

1. Introduction.-By a modification of the metl10d used to calculate the profile dTag of
8Jerofoils1 a lueth.od has been developed for calculating the drag of smooth bodies of revolution.
This method has been applied to three bodies at zero incidence, the calculations covering a wide
range of fineness ratio, Reynolds nUluber and transition position. It is hoped that the results
of these calculations will be of particular value to those engaged in performance estimation and
in research relating to the cleanness efficiency of aeroplanes.

2. Preliminary discussio1~.--rrhe flow in the boundary layer of a streamline body has the same
characteristics as t11e flow in the boundary layer of all aerofoil1 . Consider a streamline body at
zero incidence as shown in Fig. 1. Starting from the stagnation point A there is a boundary
layer present over the surface of the body. The flow 'in the boundary layer is laminar for some
distance to T, say, then follows a transition region, after which the flow in the boundary layer
becomes fully turbulent. From the tail the boundary layer continues downstream as the wake.

c

T

A

T

c
FIG. 1

Consider the section of the wake CC sufficiently far downstream for the static pressure to be
equal to that of the free stream. Then from momentum considerations it is easy to see that the
drag of the body is given by

00

D = 2ne f u (Do - u)y.dy,
o

(1)
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where Uo is the velocity of the free stream, u is the velocity in the wake parallel to the main
stream, e is the density of the air assumed incompressible and y is measured normal to the centre
line of the wake in the measurement plane. Since ~t is equal to Uo outside the wake the integrand
vanishes there. The drag coefficient of the body is definecl b·y

CA -D/!eUo2A, (2)

where A is the surface area of the body. The momentull1 area of the wake far downstreanl is
defined by

From (1) and (2) it follows that

(f)

J
~t U

Xo - 2n U (1 -u )y.dy. ..
o 0

o

2 JeD U ~t 2x.oCA =A·2n U(I- U )y·dY=A·
o 0

o

(3)

(4)

This relation shows that the drag coefficient of the body can be obtained if the ~11pmentunl area
of the wake. far downstream can be calculated.

If TO is the skin friction at a point of the surface of the body and r the local radius of cross
section the skin friction drag coefficient of the body Cf is given by

1

Cf = iJ eJ
0

2 ·2nr.d~, (5)
()

where ~ is measured parallel to the axis of the body from the nose and I is the length of the body.

The analysis proceeds on similar lines to that described in R. & M. 18381. With a given
pressure distribution ona streamline body' th~ development of the boundary layer is followed
from the forward stagnation point. The boundary layer is assumed to be laminar for a certain
distance. Transition is assumed to occ1.;J.r suddenly and the development of the flIlly turbulent
boundary layer is then followed to the 'tail; the distributions of the skin friction and of the
boundary layer momentum area over the surface of the body are thus obtained. The wake is
investigated on the assumption that its momentum area at the tail is equal to that of the boundary
layer there. The value of the wake n10mentum area far downstream is derived from the
momentum equation of the wake, the profile drag coefficient is then determined from equation (4).
The calculations thus giv'eboth the total and skin friction drags, the difference is presumably
the form drag.

3. Details of method--3.1. Laminar layer.-Tomotika's method is used to determine tIle skin
friction and boundary layer thickness of the laminar layer. This method is an extension to
tllree dimensions of Pohlhausen's me~hod3. It requires the solution of the equation

z2U"g(A) (6)

where z === ~2/v, A === U/Z}
X is the distance measured along a generator of the surface fro111 the stag11ation point,
~ is the boundary layer thickness,
U is the velocity at the edge of the boundary layer,
v IS the kinematic viscosity of the fluid,
f(A), f*(A), and g(A) are functions vvhich are tabulated in Reference 2, and daslles denote differ­

entiation with respect to x.
At the stagnation point x === 0, A === '4,716. Equation (6) was solved by a step-by-step method

up to the assumed transition points.



54

As in two dimensions the skin friction at the surface is given b,y
p(A + 12) U

TO == 60 '

and tIle local skin friction coefficient is given by

21'0 (A + 12)vU
Cf == 1]2 -- 30U2eo·

1'I1e lllOlllentum thickness of the boundary layer is defined by
()

() = Jv (1 - U) (1 +~ cos iX) dy,
o

where u is the velocity in the layer parallel to the surface, y is measured normal to the surface,
and rx is the angle between the tangent to the generator and the axis of the body. l\1jllikan 4 has
shown that the term yjr.cos rx may be neglected for the laminar layer, hence

fJ is related to 0 by
() 5328 - 48A - 5A 2

o 45360
The momentum area of the boundary layer is defined by

(5

(7)

J
u u

u = 2n U (1 - U) (1' + y cos iX) dy
o

== 2nr.(). (8)

Having obtained the distributions of z and therefore 0 byT means of eqllation (6), the distributions
of () and u can be obtained by means of equations (7) and (8).

3.2 The transition point.-Strictly speaking th.e transition to turbulent flow in the boundary
layer takes place over a region. For experiments in very turbulent airstreams and at low
Reynolds numbers this region may be extensive, but the available evidence suggests that in
low-turbulence streams or at moderate and high Reynolds numbers the transition region is small
and may be represented by a point. Any discontinuity in the momentllm area would require
the introduction of an impulse, it follows that the momentum area must be continuous at the
transition point.

3.3. The tU1' bulent layer.-.The momentum equation of the boundary layer is
000

oJ ' 0 J . oJ- I5x 2ne(r + y cos iX) u 2dy +U bX 2ne(r +y cos iX) 1.t dy - bX P2n(r +y cos iX) dy
o 0

o

+P15 15~ J2n(r +y cos iX) dy = TO 2nr, (9)
o

where p is the pressure in the boundary layer, and Po is the pressure at the outer edge of the
boundary layer. Assuming that p is constant across the boundary layer*,\ then it follpws from
Bernouilli's equation which holds outside the boundary layer that

I5p = _ U15U .
ox ox

* Appendix I for discussion of effect of variation of p across the boundary layer.
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Equation (~) therefore. becomes
o 0

b f bU fbX 2ne(r +y cos a) 2{ (U - u)dy + l5x 2"te(r +y cos a) (U - u) dy = TO • 2nr,
o 0

or

Writing

, b bU
t5x (eU2x ) + t5x (eUA) = TO • 2nr,

where A = 2nf(1 - U) (r + y cos a) dy
o

- 2nro*, say.

A b*
~ = 7i = H, equation (10) becomes

(10)

bu V' TO
~x + U (H + 2)x = pU2 · 2nr. · · (11)

It is argued in R. & M. 18381 that the relation between T0' U and () that holds for a flat plate
would hold with sufficient accuracy between the local values of these quantities on an aerofoil.
This is equivalent to neglecting the effect on this'relation of the pressure graq.ients at the surface
of the aerofoil. Since the pressure gradients at the surface of bodies of revolution are small the
same relation betweenio, U and () may be again assumed here. This relation is

UO _ A eB~< (12)
'}J

( U2)twhere C= e
To

'

A == 0·2454, and B == 0-3914.
From (12) it follows that

UU' r
-' == A . 2nreB~ ,

'V
(13)

therefore e~2 - B2jlog2e [A .~:rvl
Hence (11) becomes

~: +g' (H .+ 2)x = 2nrB2jlog2e [A ~d'nrvJ.. · (14)

As in two dimensions we assume H is constant o,ver the body and equal to 1· 4 (cf. Reference 5).

Given U and r as functions of x and the initial value of u at the transition point equation (14)
can be solved for u by a step-by-step process. The skin friction distribution over the body is
given directly by the term on the right hand side of equation (14).

3.4. The wake.-In the wake the value of H falls steadily from its \lalue at the trailing edge to
the value unity far downstream. The skin friction term in the momentum equation of the wake
is zero, hence that equation is

du V'
dx + U (H + 2)x = 0, ..

where x is now measured downstrean1 from the tail along the axis of symmetry.

(15)
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It will be seel1 that this equ.ation has the same form as equation (12) of R. & M. 18381, and can
therefore be solved in the same manner. Thus rewriting it, we l1ave

1 d% . d·. U
Z · dx c- --- (H + 2) dx (loge tJ),

where Uo is tIle velocity of the stream at infinity. Integrating from the tail to infinity we obtain

[log x j- ~-= ~ [(H 2) logo g~j .rIOge g~. ~~.' dx ,
W CI) CI)

U Hl + 2 [fHl U . ]
or X o = Xl (u:) exp 1 loge -d' dH ,.. (16)

where the suffix.1. denotes quantities Dleasured at the tail and suffix 0 denotes quantities measured

at infinity downstream. Since ~o and H both decrease continuously from their values at the

trailing edge to th.e value unity at infinity, it follows that
HI

o < floge ~o dH < (HI ~ 1) log g~ .
1

But in practice tIle ratio Uol U is, even for bodies of small fineness ratio, only slightly greater than
unity. For example, for the body of fineness ratio 3 ·25 : 1 considered later in this report (see Fig. 2)

U
-~ === 1· ?OSU ...... '-.

Putting H 1 :..-=: 1· 4, it follows tl1at for fhis body
. H

l

o < flog ~o dH < 0,075,
1

or 1 < expo [[~Og ~() dH ] < 1,075,

The range of possible values of expo [['lOg ~o dH ] is therefore small and hence a rough

approximation to ·its. value is justified. It was assumed in R. & M. 18381 that for the flow in th~

wake of an aerofoil the relation between log Uo/U and (H --- 1) was a linear one, there being some
experimental evidence to support this assumption. In view of the above, it is quite safe to make
the same assumption for the flow in the wake of a streamline body, hence

fBt U H - 1 U
log -IT ·dH = I 2 loge U0

1 1.

It follows from (16) that

[

HI ] HI - 1Uo Uo ~-

or expo flog U dH. = (u) · (17)

(18)
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Putting HI == 1- 4, we have

(19)

Hence, from (4)
3·2

C== 2"0 == 2u1 (U1)
A A AU···o .

Thus, having determined the value of u at the tail CA can be calculated.

4. Detail~ of the calculations-4.1. G~asesconsidered.-Itwas desired to apply the meth~d to a
sufficient number of cases to enable interpolations to be made covering a wide range of fineness
ratio, Reynolds number"and transition point position. The method was therefore applied to
three 'bodies at zero incidence of fineness ratio 9· 70 : 16,5.9 : 17, and 3· 25 : 18* for which measured
pressure distriqutions were available. The velocity distributions determined by Bernouilli's
equation are shown with the three bodies in Fig. 2 (curves A, B and C). The calculations were
rnade for Reynolds numbers (Vol/v) of 10 6, 107, and 108 and for transition positions of about 0,
0-31, and 0·6l from the nose.~

0·6H-tt---+--.---+----I-----+---+----+---+---.-----+--~+__--~

0,2
o 0'/" 0-, -e o·~ -e 0-4 -e o·s-e 0·(0 -e 0·70£ 0·5 -e 0,9< \,o(

~

FIG. 2.-Velocity distributions for bodies of revolution of fineness
ratio9'7: 1,5'9: 1, and3'25 : 1

It is shown in Appendix II that if the assumptions upon which this method is based remain
valid, the drag coefficient of a body of revolution of large fineness ratio tends to the frictional drag
coefficient of a flat plate at the same Reynolds number and'with the same transition point position.
The validity of the assumptions is discussed and it is concluded that it is improbable that they
will lead to appreciable errors for the fineness ratios likely to be considered in practice. Since
the 'case of the flat plate has been worked out in detail an additional set of results corresponding
to the limiting case of infinite fineness ratio was immediately available.

4.2. Results of the calculqtions.-The numerical results are given in Table 1. Fig. 3, 4 and 5
show the total drag results plotted against fineness ratio, each figure corresponding to a definite
value of the Reynolds number. The results have been cross plotted for sin1plicity in use and are
given again in Fig. 6a-6f in which the drag coefficient is plotted against Reynolds number for
various fineness ratios, each figure corresponding to a given transition point position measured
parallel to the axis from the nose. ,-

* The body considered in Reference 8 actually had a fineness ratio of 3 : 1 but its tail was blunt. By making the tail
pointed in agreement with the other bodies chosen the finenessratio>wasincreased to 3.2 5 : 1. It was assumed that this
modification would not affect the pressure distribution.

(87987-1) C
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TABLE 1

Distance R == 106 R == 107 R === 108

]~ineness ofT_P_ --
ratio from nose I

I
CA

I
Cf CA Cf CA Cf

00 0 0-00461 0-00461 0-00300 5 0-00300 5 0-00214 O'OO~14

00 0·2l 0-0041] 0-00411 0-00259 0-00259 0-00179 0-00179
00 0-4l 0-00351 5 0-00351 5 0-00211 5 0-00211 5 0-00142 0-00142
00 0-61 0-00286 0-00286 0·00160 0-00160 0-00103 0-00103

9'7: 1 0-06l 0-00480 0-00461 5 0-00313 0-00302 0-00218 0-00211
9·7: 1 0·261 0-00412 0'003,95 5 0·00255 0-00246 0-00172 5 0-00167
9·7 : 1 0-561 0-00304 0·00289 0-00170 0-00163{; 0-00108 5 0-00103 5

5-9: 1 o-046l 0-005085 0-00474 0-00334 5 0-00307 0.00234 5 0-00219
5·9: 1 0·2571 0-00446 0·00423 0-00278 5 0-00260 0-00189 0-00177 5

5·9: 1 0-5341 0-00315 5 0-00299 5 0·00176 0-00165 0-00114 5 0-00105 5

3·2.5 : 1 0-0441 0·00619 0-00527 0-00400 0-00344 5 0·00280 0.00243 5

3-25: 1 0-2301 0-00551 0-00483 0-00348 0-00302 0-00237 5 0-00206 5

3·25: 1 0-5091 0:00371 0-00323 5 0-00197 0-00174 5 0-00123 5 0·00111 .

Table of calculated total and skin friction drag values_

An exalnple of the type of skin friction distribution obtained is given. in Fig. 7 which shows
the quantity! Cf. 2nr/l plotted again.st distance along the axis from tb.e nose for the body of fineness
ratio 5· 9 : 1 at R == 108 and for three transitio11 point positions. Fig. 8 shows the variation of
total dr2.~ coefficient CA and skin friction drag coefficient Cf for this body at R == 108 with vari­
ation of transition point position. 'The difference between CA and Cf is presumably due to the
form drag which appears as the component of the normal pressures along the direction of flight.
The variation of the ratios skin friction drag/total drag' and formdragjtotal drag plotted against

Di5TANC;'-~
TRA-N5ITION

POINT BEHIND

NOSE::

0<3.£
0-005

0-0041---_--r-

C
A 1------.+----+---,

Q-Sf.

I
o-E,(

o·ooz
G

R :. 10

0.001 f------f------f--.

'----,-..L---~~_~-_~.---.--L----J

" ().o a/.t 0- 0 0<50

F'IG. 3_-Variation of calculated total drag coefficient
(based on surface area) with fineness ratio and

position of transition point. R = 106•
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o·oosr----.,----,------r----r------

OISTAr-CE: OF'"'

'T~A.N5"T'ION

POINT BE:HINO

Nose::
0·004....---+----+-----1-----1-.---..........,,--

0-002 I=====+=====:h:====:t=====+:====t==~~
0-61.

0-001 t----+----t----+-----+--~------4

o 0·'0 all. o·eo 0-30

FIG. 4.-Variation of calculated total drag coefficient
(based on surface area) with fineness ratio and position

of transition point. R=107•

0·004 --- -.--,------r-

DIStANCE: Of'"

TI02ANS1TtON

~IN'T BE:~!ND

NOSE::
0.003 t-----~+----+----t----I----..,----~

O·4t

Q·5.e

FIG 5.-Variation of calculated total drag coefficient
(based on surface area) with fineness ratio and position

of transition point. R == 108•

fineness ratio for various transition point positions is shown in Fig. 9; these ratios were found to
be independent of the Reynolds number to the order of accuracy of the calculations. It will
be seen that

form drag .
t t ld = O'4dll, approxllnately
a a rag

where d == le11gth of rnaximum diameter of body. The corresponding formula for aerofoils1 is

form drag, ·
- :til d = r Ie, approxllnately.pro e rag

It follows that the ratio form drag/total drag fo~ a body of revolution is less than half that
for an aerofoil of the same thickness and" length.

87987-1) C2



Til!ANSITION AT NOSE:..

0-D04

0,00·3

0 0002'-- ...J-- ...J-.. -.L- -..I

BE:HINQ NOSe:.

0'005

CA

a·OO4~-----:l~~~~~..3oor_-~_+__---___l__---__t

O,OOZI--- -f- -+- -+- ~1III'd

0-001 ...J-__"--__~

6 7---

LOG R.

FIG. 6a and 6b.-Variation of calculated
drag coefficient, 'witbReynolds .number
and fineness ratio. Transition at (a) Nose,

(b) 0 ·Il behind nose.

60

0-006

o.Q05

o·Qoe 1-------+------4-----,.----t--~~__...::_~

0-005

T~ANS\TION A\' 0<3..l· BE:HIND NOSE:.

0·004

o-aoe

0-001

'0 L -J- --L -.l __

6 7 8
LOG R.

FIG. Be and 6d.-Variationof calculated
drag coefficient Wit~l Reynolds numb~r

and fineness ratio., Trans~tion at (c) 0·21
l'ehind nose, (d) n·3t behind nose.
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-t--­
I

TRAN51TIO.N AT 0 0 4~

B~H1NO NOSE:

0-004

0-004

0-003

-rRANS''''ON AT 0-5.e
BE:"HlNO NOSE:.

0 .. 001f------t-------1--"'---:-----~.i_-----..----____t

o Io-----_d-.. ....I\.- .-k.-~----~

6 7 8
Loc'R.

FIG. 6e and 6f.-Variation of calculated drag coefficient with Reynolds
number and fineness, ratio. Transition at (e) O·4l .behindnose, (I) O·5l

behind nose~
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o·oo5r------,-----r-----,-----,r-------.

O·004r------t---t+---+---~+---~i-----I

0·002r-t---+---t---+---i-+--~~----1

o· OOt ~--..;.._+---r---t---r--+-----!f--~---i

'·0<

FIG. 7.-Skin friction distribution on streamline body
of fineness ratio 5· 9 : I for R == lOs.

A-Laminar flow.
B-Turbulent flow. Transition point at ~ == 0·046l.

C-Turbulent flow. Transition point at ~ = 0·258l.

D-Turbulent flow. Transition point at ~ = 0·534l.

0-003 r------r..----r----~---.--------..----

o·coa

OOOIr-------L.----L----'----L-------.J-----I--~~

c~= TQi'A\- ~~c. COE:F"rIClf;:'NT DJ ~f Uo
2

A

C
s

: 5K,," f"I>'C"ON 0,",,,,,,,, I1F~~_~_0~_A._c:J._~__-+-____t

o 0·' o· .e 0-5.(.

Distance of transition behind the nose.
FIG. 8.~\,Tariationof total and skin-friction drag with
position of transition for streamline body of fineness ­

ratio 5·9: 1. R == 108..
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o· 2 r----+------+----t-----------1--------------+----~----lo·a

S~11\l f='"RICTlOI\I ORAG

TOTA~ a~A~

o 0·10~.e O,Zo O'3~o
.FIG. 9.-Variation of form drag and skin friction

drag with fineness ratio

A-Transition at nose
B-Transition at 0·21
C-Transition at 0·41
D-Transition at 0·61.

4.3. Accuracy o..f the calculations.-The remarks made in R. & M. 18~81 as to the accuracy of ~I
the method used to calculate the profile drag of aerofoils apply with little modification here.
These, briefly, are as follows.

The arithmetical errors involved in the step-by-step integrations are probably less than 1 per
cent. The investigation of the laminar layer by Tomotika's met110d will be quite accurate for
the purpose of these calclliations. The assumption of sudden transition to turbulence will
introduce errors which will be small if the transition region is short; it is estimated that a transition
region extending over 0 ·OSl may introduce an error of, at the most, about 3 per cent. The error
due to neglecting the effect of the pressure gradient on the relation between U, () and i O is
probably negligible since the pressure gradients on bodies of revolution are generally small.
The effect of variations in H from the value assumed near the tail is also negligible.

It is assumed that the transverse pressure gradients across the boundary layer and wake may
be neglected although they are appreciable in the region of the tail. This point is discussed in
detail in Appendix I where it is concluded that the effect of the transverse pressure gradient near
the tail is small and its -neglect is therefore justified.

It is to be noted that for bodies of revolution of the· sanle fineness ratio small changes in shape
may produce appreciable changes in surface area and therefore in drag. It was necessary to
check that the drag coefficient CA is n¢vertheless reasonably independent of change in shape.
The drag of the body C' of fineness ratio 3 0 25 : 1, shown dotted in Fig. 2 was calculated for
R == 107 and for the transition point at ~ === O· 26l; it was assumed that its velocity distribution
was ,the same as that of the body C of the same fineness ratio. It was found that the drag of C'
was about 5 per cent higher than that of C but its drag coefficient was about 2 per cent low.
Had it been possible to allow for the change in velocity distribution with change of shape it is
expected that the difference in the drag coefficients would have been e\len less, since the blunter
body would probably have had a slightly higher average velocity over its surface. It can be
concluded that small variations in shape have little effect on the drag expressed as a coefficient
based on the surface area of the body.

It is to be noted that the n1ethod will cease to apply if the boundary layer separates from the
body. It follqws that the method cannot be used to predict the profile drag of a body for which
the boundary layer separates appreciably ahead of the tail. It is known that such separation
takes place on bodies of very small fineness ratio, but it is not known how large the firleness ratio
must be for separation not to occur. Ower and Hutton9, however, have found no sign of separation
on a body of fineness ratio 3 : 1. Since the smallest fineness ratio considered in these calculations
is 3· 25 : 1, it is reasonable to suppose that the calcll1ations are q.uite valid.

4.4. Comparison with experiment.-Ill Table 2 the r:esults of various Willd tU11nel ~xperiments

are compared with the corresponding calculated values. For the results quoted from Miss Lyon's
report 5 the transition points were deterlnined from the measured skin friction distributions and
the velocity distributions across the boundary layere In all other cases quoted the transition
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points were fixed by wires or strings. It is interesting to note that the agreement between theory
and experiment for Model A 5 was not quite so good as the agreement for Model B. This is probably
due to the fact that the transition region was longer in the case of Model A and the transition point
was therefore more difficult to define. The close agreement between theory and experiment for
the body of fineness ratio 3 : 11 confirms that boundary layer separation did not occur for this body.

TABLE 2

Reference
Numbers Remarks R

106

dll

Position
ofT.P.
behind

nose

CA
measured

CA
calculated

5 Model A (no screen) · . 2·04 0·200 0·60l 0·00220 0·00236
5 Model A (no screen) · . 3·06 0·200 0·52 5l 0·00220 0·00244
5 Model A (screen) · . 2·09 0·200 O·22l 0·00435 0·00409
5 Model A (screen)' · . 3.13 5 0·200 O·17 5l 0·00415 0·00388
5 Model B (no screen) · . 2.07 5 0~200 0·33 5l 0·00364 0·00361
5 Model B (no screen) · . 3·11 0·200 0·28 5l 0·00359 0·00351
5 Model B (screen) · . 2·05 0·200 0·15l 0·00440 0·00437
5 Model B (screen) · . 3·07 0·200 0·10l 0·00421 0·00414

10 Model n-Q-12 · . 0·840 0~'202 O·lOl 0·0053 0·0053
10 N.P.L. short model · . 1·173 0·150 O·lOl 0·0045 0·0047
7 ] /40th model of H Akron" 11·61 0·170 o·06Sl 0.0028 5 0·0030

11 Test done in water · . 1·26 0·182 0 0·0050 0·0050
9 and 12 Body a .. · . 1·58 0·184 0 0·0045 0·0048
9 and 12 BodyB .. · . 3·16 0·333 0 0·0050 0·0052
9 and 12 Body b · . 1·58 0·333 0 0·0060 0·0062
9 and 12 Body b .. · . 3·16 0·333 0·04 0·0052 0·0051

Comparison of various measured and calculated drag values.

5. Some applications.-Problems which occasionally arise in practice and to which these
calculations can be applied are :~

(a) Given the \7olume and forward speed what is the fineness ratio of a streamline body for
which its drag will be least.

(b) Given the frontal area and forward speed what is the fineness ratio of a streamline qody
for which its drag will be least.

Consider a representative family of streamline shapes deriveq from a standard shape such that
the radius of across sectia!l of a member of the family bears a fixed rati() to the radius of the
corresponding cross section of the standard shape. If V is the volume and A the surface area of
any member of the family, then it is easy to see that

~ = K (1Y, (20)

and t= 1(1), (21)

where 1 is the length and d the maximum diameter of the body, K is a constant and f (dll) is a
functiQnof the fineness ratio d/l. BothK and! (dll) will depend on the standard shape from which
the family is derived. Suppose the standard shape is that of theR.IOI. 1'hen K - 0·465, the
function f (dll) is shown in Fig. 10. As might be expected f (dll) is very nearly a linear function
of d/l. From equation (2)

D - CA • t eUo2A

= CA • i eUo2 .l21(1). (22)
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FIG. 10.-Variation of surface area/length2

with tineness ratio for family of streamline
bodies formed from R.t01 shape.

(a) Consider'members of the family of different length and fineness ratio but of equal volume. _
It follows from equation (20) that

d2 1 == const. (23)
Suppose lo, and do are the length and maximum diameter of the standard R.I0l shape, then

(Z/lo) = [(7:)/(1)J/3, (24)

and R/Ro = [(7o)/(f)J2/3, (25)
o

U 1 -U l
where R == ~, and Ro == ~.

'V 'V

If Do is the drag of the standard shape, then from (22)

CA (1)2 (d)l/ (do)DjDo = C r / 1 1fT ' (26)
Ao 0 0

where CAO is the drag coefficient of the standard shape.

Consider the case where the transition point is at the nose for each body alld suppose Ro == 107•

Then, by means of equations (24), (25) and (26) and Fig. 6a and 10 we obtain Table 3. From the
first and last columns it will be seen that the drag is least for a body of fineness ratio about 5 : 1.
The results are shown again in Fig. 11 where DIDo is plotted against dll. If other values of Ro
and other transition positions are assumed the same result is found, namely, tllat the optimum
fineness ratio is about 5 : 1. It must be noted, however, that the drag is fairly insensitive to
quite appreciable variations of the fineness ratio from that value.

TABLE 3
diE A/l2 = f(d/l) I R

0·05 0·114 2·360 2·360 x 107 0·00271 1·202
0·10 0·229 1·491 1·491 x 107 0·00301 1·072
0·15 0·342 1·138 1·138 x 107 0·00329 1·014
0·182 0·413 1·000 1-000 X 107 0·00347 1·000
0·20 0·456 0·940 0·940 x 107 0·00356 1·000
0·25 0·570 0-810 0-810 x 107 0·00386 1-008
0·30 0·692 0·716 0·716 x 107

I
0·00422 1-047

Variation of drag of bodies of revolution of equal volume with fineness ratio. Transition at the nose.

(87987-1) c*
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(b) Consider members of the family of different fineness ratio but h.aving the same frontal area,
i.e. all have the same maximum diameter d. If follows that

lilo = R/Ro = (?/1). (27)
o

Assuming as above Ro .' 107 and the transition point is at the nose in every case, then' from
equations (26) and (27) and Fig. 6a and 10 we obtain Table 4. The results are also shown in
Fig. 12. It will be seen that minimum drag is obtained for a body of fineness ratio about 3: I.
The same result is found if other values of Ro and other trallsition positions are assumed.

TABLE 4

dll Ajl2 == f(d)jl lito I R DIDo

0·05 0·114 3·64 3·64 x 107 0·00255 2·688
0·10 0·229 1-82 1·82 x 107 0·00291 1·544
0·15 0·342 1·214 1·214 X 107 0·00326 1·145
0·182 0·413 1·000 1'·00 X 107 0·00347 1·000
0·20 0·456 0·910 0·910 X 107 0·00356 0·942
0-25. 0·570 0·728 0·728 x 107 0·00394 0·833
0·30 0-692 0·607 0·607 x 107 0',00436 0·775

*0·35 0·820 0·520 0·520 x 107 0·00495 0·766

* Obtained by extrapolation.

Variation of drag of bodies of revolution of equal frontal area with fineness ratio. Transition at the nose.
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FIG. II.-Variation of drag of bodies of revolution of
equal volume with fineness ratio. Transition at the nose.
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APPENDIX I

6. Effect of transverse preSS1tftre gradients across the boundary layer and wake.

Equation (9) may be written
o 0

~ ·f . ~ f- ~x 2:rce(r + y cos a) u2dy + U ~x. 2:rce(r + y cos a) u dy
o 0

o ~

- (j~x f (P - pa) 2:rc (r +y cos a) dy· - t f2:rc(r +y cos a) dy = Yo' 2:rcr:
o 0

But ~f; = - eUU'.

Hence

Writing

o

(j~ [eU2x - f (P - Pa) 2:rc (r + y cos a) dy] + U' (eUA) = "0' 2:rcr.
o

o
- _ _ f· (P - Po )2n(r + y cos ex) dy
~ - ~ U 2 ' ••

o e_ A
and H ==-"

X

(28)

(29)

(30)

Equation (28) becomes
~u U~ -.. _ TO
~x + U (H + 2) u = eU22~r. (31)

Comparing this equation with equation (11) it will be seen that the two equations are identical
except for the substitution of x for ~ and H for H/. It follows that the process described in this
report for determining the drag will be quite accurate if these substitutions are.made. It will be
seen from (29) that the neglect of the transverse pressure gradients in the region where they are
appreciable is equivalent to ignoring the fact th~t the momentum area in these regions splits up
into akinetic component and a pressure component. However, the transverse pressure gradients
are only appreciable in the region of the tail, say from P to Q (Fig. 1). It remains to determine
how far this splitting up of the momentum area in that region can affect the final value of the
momentum area far downstream.

Let the suffix (calc.) denote quantities calculated on the assumption that the transverse pressure
gradients are \negligibIe*, and let a bar denote quantities calculated when allowance is made for
those pressure' gradients. Then

~p (calc.) == Up.

From Ponwards these quantities can only differ in so far as they are affected by differences between
Lo (calc.) and To and between H (calc.) and H. But the total effect of the skin friction in the region
of the t~il is small (cf. equation (14)), hence a small change in the skin friction there can have only
a negligible effect. In addition the effect of changing the .value of H in the region of the tail to
the values that might be expected in practice has already been tested and found to be negligible.
It follows that the difference between ~ (calc.) and u far downstream cannot be important, and
Ihetice the effect of the transverse pressure gradients in the region of the tail on the resulting drag
coefficient maybe ignored.

* It must be noted that", (calc.) is not the same as the" of equation (29) which is only the kinetic component of the
tnQlTIentum area. Hence, if the solution of the wake momentum equation is used to determine the profile drag of a
'body from measurements made in a plane near its tail, the measured values of u and Hmust be used.

(87987-1) C*2
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APPENDIX II

(33)

(32)

7. Drag coefficient of body of largeflhenessratib.

For finite l as lili -700, r, r', U' and V" all tend to zero. Suppose'dissmall'but fii1ite'i,such,
that r', V' and V" are negligible, then the momentum equation of the boundary, layer becomes

du 7: 0 , 2
dx = eDo2· 1Ef.

By the definition 0'£ () (equation (8).) this may be writterl

dO 'to 1
dx == eUo2 == f2"

Since A == 0, the velocity distribution in the laminar layer2 is given by

U ,. Y y3, y4
D = 2d - 2~3 + ~4'

o
Hence o

e = Jij(t- ~)(1 + 2~)dy
o

For the laminar layer

= 0-117'1~ +0 -0794 ~2 • (34)

therefore, from (32) and (34)

0-1l7~ Q' + 0-1588 2~ ~t= 2v
d bUo'

which integrated gives
b 2 " . , b 3 4 x 1

0-117;; d 2 + 0-106 d3= Rd d- (35)

The· method used' in the··(;'alculations described in this report for"determining ,the skin friction
and nlomentum thickness distributions in the laminar layer assumes old is negligible compared
with 1. Assuming for the moment this is always true, then the second term on the left ha.nd
'side of equation (35). is negligible compared wit~ the first and therefore

0-117'1 ~2 = 4xl
R'

or

,and from (34)
Jlx0==5".83 '-

/ R'
(36)

(37)

(38)DoB = 0_2454e 0·3914 .~.
'V

At the transitionpoint .. O is. continuous. For the turbulent layer in addition to .(32) we have the
::relation
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}i~rom (19) we have

(38a)

(37a)

(32a)

8 = O'684J~

At, the transition point 0 is continuolls. For that turbulent layer

UolJ = O.2454eo.3914~,
'V

For the.laminar layer

C
A

= 2X1 + 2X1 .
A 2nr.l-

_ 201-'Te ,. (39)

Now consider the case of the flat plate. Parallel to equations (32), (37), (38) and (39) above we
have (see References 1 and 13)

and finally the frictional drag coefficient of the plate is given by

Cf- 2°1
f- t · (39a)
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