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SUMMARY. By means of the principles and assumptions used to calculate the profile drag of aerofoils a method
is developed for calculating the total and skin friction drags of bodies of revolution at zero incidence. The method is
applied to three bodies of different fineness ratio for three Reynolds numbers and three transition points. From the
results curves are drawn showing the variation of total drag for a range of fineness ratio (co to 3 : 1), Reynolds number
(108 to 10%) and transition point position (0 to 0-5/). Comparison with experimental results shows satisfactory

agreement.
Interesting deductions are :
form drag
(d) m =0-4 d/l, approx.

(h) Given the volume and transition point position the fineness ratio for which the drag is least is about 5: 1.
(¢) Given the frontal area and transition point position the fineness ratio for which the drag is least is about 3 : 1.

LIST OF SYMBOLS

distance along surface from stagnation point or distance along centre line of wake,
distance measured normal to surface or normal to centre line of wake,

radius of cross section of body,

distance measured parallel to axis of body from stagnation point,

angle between tangent to generator and axis of body,

length of body,

maximum diameter of body,

surface area of body,

Az,

velocity of undisturbed stream,

velocity at edge of boundary layer or wake,

velocity in boundary layer parallel to surface or in wake parallel to centre line,

boundary layer thickness or radius of cross section of wake,
B
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displacement area of boundary layer = 2z f (I —g) (r +y cos a) dy,
A b 0

displacement area of wake = 2 nf (1-— %’—)y.dy,

) 0
8* displacement thickness of boundary layer = A/2m7,
B

momentum area of boundary layer = 2nj% (1 -— %) (¥ +y cos a) dy,

4 ) ) 0
momentum area of wake = 2z f % (1 — %) y.4y,

0

* R.A.E. Report, April, 1939.
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LIST OF SYMBOLS—contd.

0 momentum thickness of boundary layer = x/2nr
H AJx,
P pressure in boundary layer or wake,
Ps pressure at outer edge of boundary layer or wake,
D drag of body,
Ca total drag coefficient = D/$oU A,
7, intensity of skin friction,
ct local skin friction coefficient = 27,/oU,?,
1
Cs skin friction drag coefficient = f (l?fcf.chdE,
)
v kinematic viscosity, (
b4 82/,
A Uz,
¢ (eUo?/7o)1 .
dashes denote differentiation with respect to x, suffix 1 denotes that quantities have their values at the tail.

1. Introduction.—By a modification of the method used to calculate the profile drag of
aerofoils' a method has been developed for calculating the drag of smooth bodies of revolution.
This method has been applied to three bodies at zero incidence, the calculations covering a wide
range of fineness ratio, Reynolds number and transition position. It is hoped that the results
of these calculations will be of particular value to those engaged in performance estimation and
in research relating to the cleanness efficiency of aeroplanes.

2. Preliminary discussion.—The flow in the boundary layer of a streamline body has the same
characteristics as the flow in the boundary layer of an aerofoil!. Consider a streamline body at
zero incidence as shown in Fig. 1. Starting from the stagnation point A there is a boundary
layer present over the surface of the body. The flow in the boundary layer is laminar for some
distance to T, say, then follows a transition region, after which the flow in the boundary layer
becomes fully turbulent. From the tail the boundary layer continues downstream as the wake.

C

c

Fic. 1

Consider the section of the wake CC sufficiently far downstream for the static pressure to be
equal to that of the free stream. Then from momentum considerations it is easy to see that the

drag of the body is given by

DzZﬂgJ%(UO—u)y.dy, e (1)

0
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where U, is the velocity of the free stream, # is the velocity in the wake parallel to the main
stream, o is the density of the air assumed incompressible and y is measured normal to the centre
line of the wake in the measurement plane. Since # is equal to U, outside the wake the integrand
vanishes there. The drag coefficient of the body is defined by

Ca = D/3eUyA, N )

where A is the surface area of the body. Tbe momentum area of the wake far downstream is
defined by

K u u
xnzznfm(l—,m)Jx.dy. e (3)
From (1) and (2) it follows that '

2, fu u 2 "
CA:A.anm(l—ﬁo)y.dyz—go. N

This relation shows that the drag coefficient of the body can be obtained if the momentum area
of the wake far downstream can be calculated.

If 74 is the skin friction at a point of the surface of the body and 7 the local radius of cross
section the skin friction drag coefficient of the body Ctis given by

2 ¢
Cr = AUZZnMZE S

where ¢ is measured parallel to the axis of the body from the nose and / is the length of the body.

The analysis proceeds on similar lines to that described in R. & M. 1838'. With a given
pressure distribution on a streamline body the development of the boundary layer is followed
from the forward stagnation point. The boundary layer is assumed to be laminar for a certain
distance. Transition is assumed to occur suddenly and the development of the fully turbulent
boundary layer is then followed to the tail; the distributions of the skin friction and of the
boundary layer momentum area over the surface of the body are thus obtained. The wake is
investigated on the assumption that its momentum area at the tail is equal to that of the boundary
layer there. The value of the wake momentum area far downstream is derived from the
momentum equation of the wake, the profile drag coefficient is then determined from equation (4).
The calculations thus give both the total and skin friction drags, the difference is presumably
the form drag.

3. Details of method—3.1. Lamanar layer—Tomotika’s method is used to determine the skin
friction and boundary layer thickness of the laminar layer. This method is an extension to
three dimensions of Pohlhausen’s method?. It requires the solution of the equation

dx=%< )f* +2U07g(h) .. .. (6

where z = 62/», 4 = U’z,

x is the distance measured along a generator of the surface from the stagnation point,

¢ is the boundary layer thickness,

U is the velocity at the edge of the boundary layer,

» is the kinematic viscosity of the fluid,

f(2), f*(4), and g(4) are functions which are tabulated in Reference 2, and dashes denote differ-
entiation with respect to «.

At the stagnation point x = 0, A = 4-716. Equation (6) was solved by a step-by-step method
up to the assumed transition points.
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As in two dimensions the skin friction at the surface is given by
w(d +12) U
- R
and the local skin friction coefficient is given by
2ty (A 412U
=02 T 3600

The momentum thickness of the boundary layer is defined by

)
6 — f% (1 —5) (1 +2 cos o) ay,
0

where # is the velocity in the layer parallel to the surface, y is measured normal to the surface,
and « is the angle between the tangent to the generator and the axis of the body. Millikan* has
shown that the term y/r. cos « may be neglected for the laminar layer, hence

u u
6 :.[U (1— 3 dy.

0

0 5328 — 481 — 522 0
5 — 45360 ° . . DY .: .

The momentum area of the boundary layer is defined by

6 is related to 6 by

%:2ﬂf%(l—%)(v+ycos<x)dy

0
= 2n7.0, .. .. .. .. .. 8)

Having obtained the distributions of z and therefore 6 by means of equation (6), the distributions
of 6 and » can be obtained by means of equations (7) and (8).

3.2 The transition point.—Strictly speaking the transition to turbulent flow in the boundary
layer takes place over a region. For experiments in very turbulent airstreams and at low
Reynolds numbers this region may be extensive, but the available evidence suggests that in
low-turbulence streams or at moderate and high Reynolds numbers the transition region is small
and may be represented by a point. Any discontinuity in the momentum area would require
the introduction of an impulse, it follows that the momentum area must be continuous at the

transition point.

3.3. The tm*b%lent layer —The momentum equation of the boundary layer is

— -«JZnQ + v cosa) udy + U —= on@ (» +vcosa) udy — ——f;b 2n(r 4y cosa) dy

5 _
—|—gbé$c(!2n(r+ycosoc)‘dy:TOZM, .. .. 9)

‘where p is the pressure in the boundary layer, and pg is the pressure at the outer edge of the

boundary layer. Assuming that p is constant across the boundary layer*, then it follows from
Bernouilli’s equation which holds outside the boundary layer that

5p oU
e = Ysx

* See Appendix I for discussion of effect of variation of p across the boundary Jayer.
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Equation (9) therefore becomes

)

;—onQ(?—FyCOSo()%(U f o(r +ycosa) (U—u)dy =z,.2nr,
X )
or
) oU
Y (0U%) + 5 (0UA) ==, . 2a7, .. . . .. . (10)
where A = 2nf(1 —— —) (v 4y cos o) dy
= 2nrd*, say.
Writing
*
% = % = H, equation (10) becomes
W_|_ (H—]—,‘Z) U2 2my. . . .. . . (11)

It is argued in R. & M. 1838! that the relation between 7, U and 6 that holds for a flat plate
would hold with sufficient accuracy between the local values of these quantities on an aerofoil.
This is equivalent to neglecting the effect on this relation of the pressure gradients at the surface
of the aerofoil. Since the pressure gradients at the surface of bodies of revolution are small the
same relation between 7z, U and 6 may be again assumed here. This relation is

YA .. gy

2
where ¢ = <QU >
A

= 0-2454, and B = 0-3914.
From (12) it follows that

U—x:A.aner, .. . - . o (13)

v

U
therefore —U-é = B?[log? [A anv]

Hence (11) becomes

dr | U’ U
o+ (H + 2% = 20rB?/log? [A ' 2};1’1/]' .

As in two dimensions we assume H is constant over the body and equal to 1-4 (cf. Reference 5).

(14)

Given U and 7 as functions of x and the initial value of » at the transition point equation (14)
can be solved for » by a step-by-step process. The skin friction distribution over the body is
given directly by the term on the right hand side of equation (14).

3.4. The wake.—In the wake the value of H falls steadily from its value at the trailing edge to
the value unity far downstream. The skm friction term in the momentum equation of the wake
is zero, hence that equatlon is

a.erU(HJr.z)u:o,.. N &)

where x is now measured downstream from the tail along the axis of symmetry.
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It will be seen that this equation has the same form as equation (12) of R. & M. 1838, and can
therefore be solved in the same maunner. Thus rewriting it, we have

1 dx o d U
Y i (H +2) - (loge TTJ’ |
where Uy is the velocity of the stream at infinity. Integrating from the tail to infinity we obtain

. T " ,
U U dH

o] = = [+ 210, B o

[ g%w ( ) g Uo l g U0 dx ,

H, 4 2 H
or %y — (%l) exp Dloge Y, dH} ... {8

where the suffix 1 denotes quantities measured at the tail and suffix o0 denotes quantities measured

at infinity downstream. Since UO and H both decrease continuously from their values at the

trailing edge to the value unity at infinity, it follows that
H, '

O<flogeg dH < (H, — 1) log%‘;.

But in practice the ratio Uy U is, even for bodies of small fineness ratio, only slightly greater than
unity. For example, for the body of fineness ratio 3-25 : 1 considered later in this report (see Fig. 2)

U,
U

Putting H, — 1-4, it follows that for this body

= 1-205.

H,
0 < jlog%%zH < 0-075,

H,
or 1 < exp. [flog%"dﬂ} < 1-075,
1

The range of possible values of exp. \:Jlog Yo dH} is therefore small and hence a rough

approximation to its value is justified. It was assumed in R. & M. 18381 that for the flow in the
wake of an aerofoil the relation between log Uy/U and (H — 1) was a linear one, there being some
experimental evidence to support this assumption. In view of the above, it is qu1te safe to make
the same assumption for the flow in the wake of a streamline body, hence

ﬁgg T El%—l— 1oge%9
orexp{Jlog "dH:\ (U)N S € !

It follows from (16) that
H, + 5§
U,\ 2z~ '
”":”‘GTD R 4 )
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Putting H, = 1-4, we have

32

vy = %, (%3)_
3:2

2rg _ 21y U.l)
A b A U0 . . e
Thus, having determined the value of x at the tail C, can be calculated.

Hence, from (4)

Cs = (19)

4. Details of the calculations—4.1. Cases considered.—It was desired to apply the method to a
sufficient number of cases to enable interpolations to be made covering a wide range of fineness
ratio, Reynolds number and transition point position. The method was therefore applied to
three bodies at zero incidence of fineness ratio 9-70 : 1¢,5-9 : 17, and 325 : 18* for which measured
pressure distributions were available. The velocity distributions determined by Bernouilli’s
equation are shown with the three bodies in Fig. 2 (curves A, B and C). The calculations were
made for Reynolds numbers (Ugl/») of 108, 107, and 108 and for transition positions of about 0,
0-3!, and 0-6/ from the nose.-
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F1G. 2.—Velocity distributions for bodies of revolution of fineness
ratio9:7:1,5-9:1,and 3-25:1

It is shown in Appendix II that if the assumptions upon which this method is based remain
valid, the drag coefficient of a body of revolution of large fineness ratio tends to the frictional drag
coefficient of a flat plate at the same Reynolds number and with the same transition point position.
The validity of the assumptions is discussed and it is concluded that it is improbable that they
will lead to appreciable errors for the fineness ratios likely to be considered in practice. Since
the case of the flat plate has been worked out in detail an additional set of results corresponding
to the limiting case of infinite fineness ratio was immediately available.

4.2. Results of the calculations.—The numerical results are given in Table 1. Fig. 3, 4 and 5
show the total drag results plotted against fineness ratio, each figure corresponding to a definite
value of the Reynolds number. The results have been cross plotted for simplicity in use and are
given again in Fig. 6a-6f in which the drag coefficient is plotted against Reynolds number for
various fineness ratios, each figure corresponding to a given transition point position measured
parallel to the axis from the nose.

* The body considered in Reference 8 actually had a fineness ratio of 3 : 1 but its tail was blunt. By making the tail
pointed in agreement with the other bodies chosen the fineness ratio was increased to 3-2%: 1. It was assumed that this
modification would not affect the pressure distribution.

(87987—I) ¢
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TABLE 1
Dist ’ R =108 R =107 R = 108
Fineness 1§ ance (
e of T.P. | —
ratio from nose | [
i C, I Cs Ca Cs , Ca Cs
0 0 0-00461 0-00461 0-003005 0-003005 0-00214 0-00214
00 0-21 0-00411 0-00411 0-00259 0-00259 0-00179 0-00179
e's) 0-47 0-003515 0-00351° 0-00211° 0-002115 0-00142 0-00142
00 0-6/ 0-00286 0-00286 0-00160 0-00160 0-00103 0-00103
9-7:1 0-06/ 0-00480 0-004615 0-00313 0-00302 0-00218 0-00211
9:-7:1 0-261 0-00412 0-003955 0-00255 0-00246 0-001725 0-00167
9-7:1 0-56/ 0-00304 0-00289 0-00170 0-001635 0-001085 0-001035
5-9:1 0-046/ 0-00508° 0-00474 0-003345 0-00307 0-002345 0-00219
5:9:1 0-2571 0-00446 0-00423 0-00278> 0-00260 0-00189 0-00177°
5-9:1 0-534/ 0-003155 0-002995 0-00176 0-00165 0-001145 0-001055
3-25:1 0-044/ 0-00619 0-00527 0-00400 0-003445 0-00280 0-00243%
3-25:1 0-230/ 0-00551 0-00483 0-00348 0-00302 0-002375 0-002085
3-25:1 0-509/ 0-00371 0-003235 0-00197 0-001745 0-001235 0-00111

Table of calculated total and skin friction drag values.

An example of the type of skin friction distribution obtained is given in Fig. 7 which shows
the quantity ct. 277/l plotted against distance along the axis from the nose for the body of fineness
ratio 5-9: 1 at R = 108 and for three transition point positions. Fig. 8 shows the variation of
total drag coefficient C, and skin friction drag coefficient C¢ for this body at R = 10® with vari-
ation of transition point position. The difference between C, and Cs is presumably due to the
form drag which appears as the component of the normal pressures along the direction of flight.
The variation of the ratios skin friction drag/total drag and form drag/total drag plotted against
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F16. 8.—Variation of calculated total drag coefficient
(based on surface area) with fineness ratio and
position of transition point. R = 106.
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Fic. 4.—Variation of calculated total drag coefficient
(based on surface area) with fineness ratio and position
of transition point. R=107.
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Fi1c 5.—Variation of calculated total drag coefficient
(based on surface area) with fineness ratio and position
of tramsition point. R = 108

fineness ratio for various transition point positions is shown in Fig. 9 ; these ratios were found to
be independent of the Reynolds number to the order of accuracy of the calculations. It will

be seen that
form drag

total drag
where d = length of maximum diameter of body. The corresponding formula for aerofoils! is

= 0-4d/l, approximately

form drag

profile drag T/C, approximately.

»

It follows that the ratio form drag/total drag for a body of revolution is less than half that
for an aerofoil of the same thickness and-length.

87987—1I)
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F1G. 6a and 6b.—Variation of calculated
drag coefficient with Reynolds number
and fineness ratio. Transition at (a) Nose,
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F1G. 6¢ and 64.—Variation of calculated

drag coefficient with Reynolds number

and fineness ratio. Transition at (c) 02/
tehind nose, (d) 0-3/ behind nose.
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Fi1c. 6¢ and 6f.—Variation of calculated drag coefficient with Reynolds

number and fineness ratio. Transition at (¢) 0-4/ behind nose, (f) 0-5!
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F1c. 7.—Skin friction distribution on streamline body
of fineness ratio 5-9:1 for R = 108.

A—Taminar flow.

B—Turbulent flow. Transition point at & = 0-046.
C—Turbulent flow. Transition point at &= 0-258..
D—Turbulent flow. Transition point at & = 0-534/.
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Distance of transition behind the nose.

F1c. 8.—Variation of total and skin friction drag with
position of transition for streamline body of fineness
ratio 5:9:1. R =108
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Fic. 9.—Variation of form drag and skin friction
drag with fineness ratio

4.3. Accuracy of the calculations.—The remarks made in R. & M. 18§8! as to the accuracy of
the method used to calculate the profile drag of aerofoils apply with little modification here.

These, briefly, are as follows.

The arithmetical errors involved in the step-by-step integrations are probably less than 1 per
cent. The investigation of the laminar layer by Tomotika’s method will be quite accurate for
the purpose of these calculations. The assumption of sudden transition to turbulence will
introduce errors which will be small if the transition region is short ; it is estimated that a transition
region extending over 0-05/ may introduce an error of, at the most, about 3 per cent. The error
due to neglecting the effect of the pressure gradient on the relation between U, 6 and v, is
probably negligible since the pressure gradients on bodies of revolution are generally small.
The effect of variations in H from the value assumed near the tail is also negligible.

It is assumed that the transverse pressure gradients across the boundary layer and wake may
be neglected although they are appreciable in the region of the tail. This point is discussed in
detail in Appendix I where it is concluded that the effect of the transverse pressure gradient near
the tail is small and its neglect is therefore justified.

It is to be noted that for bodies of revolution of the same fineness ratio small changes in shape
may produce appreciable changes in surface area and therefore in drag. It was necessary to
check that the drag coefficient C, is nevertheless reasonably independent of change in shape.
The drag of the body C’ of fineness ratio 3-25: 1, shown dotted in Fig. 2 was calculated for
R = 107 and for the transition point at § = 0-26/; it was assumed that its velocity distribution
was the same as that of the body C of the same fineness ratio. It was found that the drag of C’
was about 5 per cent higher than that of C but its drag coefficient was about 2 per cent low.
Had it been possible to allow for the change in velocity distribution with change of shape it is
expected that the difference in the drag coefficients would have been even less, since the blunter
body would probably have had a slightly higher average velocity over its surface. It can be
concluded that small variations in shape have little effect on the drag expressed as a coefficient
based on the surface area of the body.

It is to be noted that thé method will cease to apply if the boundary layer separates from the
body. It follows that the method cannot be used to predict the profile drag of a body for which
the boundary layer separates appreciably ahead of the tail. It is known that such separation
takes place on bodies of very small fineness ratio, but it is not known how large the fineness ratio
must be for separation not to occur. Ower and Hutton®, however, have found no sign of separation
on a body of fineness ratio 3 : 1. Since the smallest fineness ratio considered in these calculations
is 3-25 : 1, it is reasonable to suppose that the calculations are quite valid.

4.4. Comparison with experiment.—In Table 2 the results of various wind tunnel experiments
are compared with the corresponding calculated values. For the results quoted from Miss Lyon’s
report® the transition points were determined from the measured skin friction distributions and
the velocity distributions across the boundary layer. In all other cases quoted the transition

o
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points were fixed by wires or strings. It is interesting to note that the agreement between theory
and experiment for Model A % was not quite so good as the agreement for Model B. This is probably
due to the fact that the transition region was longer in the case of Model A and the transition point
was therefore more difficult to define. The close agreement between theory and experiment for
the body of fineness ratio 3 : 1! confirms that boundary layer separation did not occur for this body.

TABLE 2
Position c
Reference ) of T.P. Ca "
Numbers Remarks R afl behind measured calculated
106 nose
5 Model A (no screen) 2-04 0-200 0-607 0-00220 0-00236
5 Model A (no screen) 3-06 0-200 0-525 0-00220 0-00244
5 Model A (screen) 2-09 0-200 0-221 0-00435 0-00409
5 Model A (screen) 3-135 0-200 0-17% 0-00415 0-00388
5 Model B (no screen) 2-075 0-200 0-33% 0-00364 0-00361
5 Model B (no screen) 3-11 0-200 0-285] 0-00359 0-00351
5 Model B (screen) 2-05 0-200 0-157 0-00440 0-00437
5 Model B (screen) 3-07 0-200 0-107 0-00421 0-00414
10 Model #~Q-12 0-840 0-202 0-10/ 0-0053 0-0053
10 N.P.L. short model .. 1-173 0150 0-10! - 0-0045 0-0047
7 . 1/40th model of ““Akron 11-61 0-170 0-065! 0-00285 0-0030
11 Test done in water 1-26 0-182 0 0-0050 0-0050
9 and 12 Body a 1-58 0-184 0 0-0045 0-0048
9 and 12 Body B 3-16 0-333 0 0-0050 0-0052
9 and 12 Body & .. 1-58 0-333 0 0-0060 0-0062
9 and 12 Body b .. .. 3-16 0-333 0-04 0-0052 0-0051

Comparison of various measured and calculated drag values.

5. Some applications.—Problems which occasionally arise in practice and to which these
calculations can be applied are :(—

(a) Given the volume and forward speed what is the fineness ratio of a streamline body for
which its drag will be least.

(b) Given the frontal area and forward speed what is the fineness ratio of a streamline body
for which its drag will be least.

Consider a representative family of streamline shapes derived from a standard shape such that
the radius of a cross section of a member of the family bears a fixed ratio to the radius of the
corresponding cross section of the standard shape. If V is the volume and A the surface area of
any member of the family, then it is easy to see that

Y=k, . L@
and ‘%:f(?), @

where [ is the length and 4 the maximum diameter of the body, K is a constant and f (d/]) is a
function of the fineness ratio d/l. Both K and f (d/!) will depend on the standard shape from which
the family is derived. Suppose the standard shape is that of the R.101. Then K = 0-465, the
function f (d/l) is shown in Fig. 10. As might be expected f (d/l) is very nearly a linear function
of d/l. From equation (2)

D=C,.10U,2A

=CA.%QU02.Z2f<§). L@
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F16. 10.—Variation of surface area/length?
with fineness ratio for family of streamline
bodies formed from R.101 shape.

(a) Consider members of the family of different length and fineness ratio but of equal volume.
It follows from equation (20) that
d®l = const. .. (23)
Suppose J,, and d, are the length and maximum diameter of the standard R 101 shape then

<l/10)=[<%>/(?)] 3 o
and R/R0=[<%)/<?)]2/3, .

where R = I—Ji’g, and Ry, = Udo .

If D, is the drag of the standard shape, then from (22)

DD = £* (lo> f<d>/ f(d 28

where C, is the drag coefficient of the standard shape. -

Consider the case where the transition point is at the nose for each body and suppose R, = 107
Then, by means of equations (24), (25) and (26) and Fig. 6a and 10 we obtain Table 3. From the
first and last columns it will be seen that the drag is least for a body of fineness ratio about 5 : 1.
The results are shown again in Fig. 11 where D/D is plotted against d/l. If other values of R,
and other transition positions are assumed the same result is found, namely, that the optimum
fineness ratio is about 5: 1. It must be noted, however, that the drag is fairly insensitive to
quite appreciable variations of the fineness ratio from that value.

v

TABLE 3
afl | A =fan | A ] R Ca | D/D,
0-05 0-114 2-360 2-360 x 107 0-00271 1-202
010 0-229 1-491 1-491 x 107 0-00301 1-072
0-15 0-342 1-138 1-138 X 107 0-00329 1-014
0-182 0-413 1-000 1-000 X 107 0-00347 1-000
0-20 0-456 0-940 0-940 X 107 0-00356 1-000
0-25 0-570 0-810 0-810 X 107 0-00386 1-008
0-30 0-692 0-716 0-716 X 107 0-00422 1-047

Variation of drag of bodies of revolution of equal volume with fineness ratio. Transition at the nose.
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(6) Consider members of the family of different fineness ratio but having the same frontal area,
i.e. all have the same maximum diameter 4. If follows that

z/zozR/Ro—_—(‘%/‘;). L@

Assuming as above R, = 107 and the transition point is at the nose in every case, then from
equations (26) and (27) and Fig. 6a and 10 we obtain Table 4. The results are also shown in
Fig. 12. It will be seen that minimum drag is obtained for a body of fineness ratio about 3: 1.
The same result is found if other values of R, and other transition positions are assumed.

TABLE 4
' .

ajft Afl2 = f(d)i il R Cy . D/D,
0-05 0-114 . 3-64 3-64 x 107 0-00255 2-688
0-10 0-229 1-82 1-82 x 107 0-00291 1-544
0-15 0-342 1-214 1-214 x 107 0-00326 1-145
0-182 0-413 1-000 1-00 x 107 0-00347 . 1-000
0-20 0-456 0-910 0-910 x 107 0-00356 0-942
0-25 0-570 0-728 0-728 x 107 0-00394 0-833
0-30 0-692 0-607 0-607 x 107 0-00436 0-775"
*0-35 0-820 0-520 0-520 x 107 0-00495 0-766

* Obtained by extrapolation.
Variation of drag of bodies of revolution of equal frontal area with fineness ratio. Transition at the nose.
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F16. 11.—Variation of drag of bodies of revolution of
equal volume with fineness ratio. Transition at the nose.
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F16. 12.  Variation of drag of bodies of revolution of equal
frontal area with fineness ratio. Transition at the nose:
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APPENDIX I
6. Effect of transverse pressure gradients across the boundary layer and wake.
Equation (9) may be written
6 3 6 )
— g;cfzﬂe(f’ + v cos ) u2dy -+ Uaong(r + ycosa) u dy
0 0

)

8 .
) ) ‘ ; )
— &!(P"PS)ZW (r + v cos a) dy ——g—;if%(y + y cos o) dy = y, . 2mr-

0

é
‘But 6%: — oUU".
Hence \ ’
%[QU%— J(p-—ps)Zn(r—}—yCOSoc)dy]—l—U’(gUA)zro.an. @
Writing g _ 8
7—n— [P 20 Eycosa)dy o)
A’ v
andﬁzgc-?. (30)
Equation (28) becomes
' o U = _ T
5;—{6+ﬁ(H—|—2)x=9—6-22m'. N 1)

Comparing this equation with equation (11) it will be seen that the two equations are identical
except for the substitution of % for » and H for H. It follows that the process described in this
report for determining the drag will be quite accurate if these substitutions are made. It will be
seen from (29) that the neglect of the transverse pressure gradients in the region where they are
appreciable is equivalent to ignoring the fact that the momentum area in these regions splits up
into a kinetic component and a pressure component. However, the transverse pressure gradients
are only appreciable in the region of the tail, say from P to Q (Fig. 1). It remains to determine
how far this splitting up of the momentum area in that region can affect the final value of the
momentum area far downstream.

Let the suffix (calc.) denote quantities calculated on the assumption that the transverse pressure
gradients are negligible*, and let a bar denote quantities calculated when allowance is made for

those pressure\r gradients. Then

xp (calc.) = %p.

From P onwards these quantities can only differ in so far as they are affected by differences between
7, (calc.) and 7, and between H (calc.) and H. But the total effect of the skin friction in the region
of the tail is small (cf. equation (14)), hence a small change in the skin friction there can have only
a negligible effect. In addition the effect of changing the value of H in the region of the tail to
" the values that might be expected in practice has already been tested and found to be negligible.
It follows that the difference between » (calc.) and % far downstream cannot be important, and
hence the effect of the transverse pressure gradients in the region of the tail on the resulting drag
coefficient may be ignored.

* Tt must be noted that x (calc.) is not the same as the » of equation (29) which is only the kinetic component of the
momentum area. Hence, if the solution of the wake momentum equation is used to determine the profile drag of a

body from measurements made in a plane near its tail, the measured values of % and H must be used.
(87987-1) : : cr2
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APPENDIX II

7. Drag coefficient of body of large fiheness ratio.

For finite / as §/d — o, 7, 7/, U’ and U” all tend to zero. Suppose 4 is small but finite such
that 7', U" and U" are negligible, then the momentum equation of the boundary layer becomes

ar Ty
djc U 3 2 7.
By the definition of 6 (equation (8)) this may be written
| | a9 1, 1
i~ Uz~ g . . . .. .. (32)
Since 4 = O, the velocity distribution in the laminar layer2 is given by
oY oY, '
Uo 2 —]— . e . . (33)
Hence
y
6 —fU(l ) (42 )dy
— 017 4 0-07942% . . L (34

o a

roz,u<%g>y=o=2‘u%9 s

For the laminar vlayer’ |

therefore, from (32) and (34)

5 57 6, 2
0'117’5 "I‘ 0'15882a6 -—B'ITO,
which integrated gives
0- 117s “ 1o 10620 _ A%l (35)
B=Rad .. .. .. .. ..

The method used in the- calculations described in this report for determining the skin friction
and momentum thickness distributions in the laminar layer assumes é/d is negligible compared
with 1. Assuming for the moment this is always true, then the second term on the left hand
side of equation (35) is negligible compared with the first and therefore

4x1
1175 82 — M
0-1172 6 R
or
Ix ' T
0 = .. .. .. ..
583 B | (36)
and from (34)
‘ 5 =10-1176
~ o634 [ o
_0684\/1{’ .. .. .. TR (37)

-At the transition point 6 is continuous. For the turbulent layer in addition to (32) we have the
relation o _
. , U

:”——02454”9“@ N £



From (19) we have

21 2y
CA—A+2m’.l
0
:\271, L 3

Now consider the case of the flat plate. Parallel to equations (32), (37), (38) and (39) above we
have (see References 1 and 13)
ae oz, 1

dx U —2 . . . . .o (32&)
For the laminar layer '
6 —0- 684\/lx ... (37
At the transition point 6 is continuous. For that turbulent layer
U _ 0-2454¢" %18, . .. .. .. .. (38a)
1} .
and finally the frictional drag coefficient of the plate is given by
2
C=21. (39)

Hence, if the assumptlon that ¢/a is negligible compared with 1 is valid, the momentum thickness
on abody of revolution of large fineness ratio satisfies the same equations and boundary conditions
as the momentum thickness on a flat plate. If in the two cases the Reynolds number and tran-
sition point position are the same, the momentum thickness at corresponding points must be the
same. Therefore, from equatlons (39) and (89a) the drag coefficient of the body is the same as
the frictional drag coefficient of the flat plate.

However, it is apparent from (35) that for large enough valuesof //d and x/d and small enough
values of R d/d will cease to be negligible compared with 1. Assuming that the expression for
the ve10c1ty distribution given in (33) holds as d — 0, it can be easily seen from (34) and (35)
that ultimately

6 o (d) -0,

1.3
and 0 « (c_l) — 0,

and hence, if the boundary layer is laminar for a finite extent,
C, — .

It follows that as the fineness ratio tends to infinity the drag coefficient will begin to rise from
the flat plate value at some stage depending on R and the extent of the laminar layer. It was
necessary, therefore, to investigate whether at the Reynolds numbers considered in this report
this will occur for fineness ratios of practical importance. Using the relations (34) and (35) the
drag coefficients of bodies of fineness ratio 100 : 1 and 500 : 1 have been calculated for R = 106
with the transition points at x = 0-6/. For the body of fineness ratio 100 : 1 it was found that
at the transition point 6/d = 0-388, nevertheless, the difference between the resulting value of C,
and the corresponding frictional drag coefficient of the flat plate was inappreciable. For the
body of fineness ratio 500 : 1 the difference was only about 49, although é/d = 1-377 at the
transition point. There is no available proof that the empirical relation for the turbulent layer
given in (388) will continue to hold for very large fineness ratios, but it is believed unlikely that
this relation will be in serious error for moderate fineness ratios. It follows that the results
and diagrams given in this report will te quite valid for all fineness ratios likely to be considered
in practice, although, strictly speaking, they will cease to apply for very large fineness ratios.
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