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§1. Introduction and summeary.—The method 10 be deseribed here is aftributed o the Russian
investigator V. G. Galerkin, whase original papers are inaccessible Lo the present writer,  Tlis knowledye
of the method is derived fromi a description given in a paper by E. P. Grossman!  Grossman states |
thal the method was given by Galerkin in his treatise ** Rods and Plates " (Vestnik Ingencroff, 1913,
p. 897), and that applications to oscillution problems were first made by V. I, Lyskov, It is pointed
out by Grossiman that Galerkin's process in applications to mechanics leads to the same resuhs as
Lagrange’s principle of virtual work, but anploys a special co-ordinate system.

The mathod of Galerkin belongs to the same general class as those of Rayleigh and Ritz, for it secks
to obtain an approximate solution ¢f a differentiai equation with given boundary conditions by taking
a fanction which satisfies these conditions exactly, and proceeds to specialise the function in such a

manner as to secure approximate satisfaction of the differential equation. The selected function is

a linear combination of # independent functions, and the coctficients are derermined by a process of
intcgration.

The Galerkin process can be considered from twe points of view, (2) simply as a means {or the
approximate solution of diffecrential equations, and () as a method specially adapted, for tlic
treatment of problems concerning the statics and dynamies of elastic and other deformable bodies.
These two aspects are treated separately in Parts T and IT of the paper respectively, and will now
be briefly discussed.

(a) Let the result of substituting the given function, which satisfies the boundary conditions, in
the differential equation be =, Since the rc.s.llt should be zero, «1s the error in the differential equanon.
Then the Galerkin process consists in choosing the n coefficients in the fuuction in such a manner that

a distinct weighted means of the error, taken throughout a certain range of representation, shall all
be zcro. -

(5) In mechanical applications e can be interpreted as a generalised force, and the multipliers used
to weighl the errors are the virtual displacements corresponding to increments of each of the generalised
co-ordinates in turn.  Thus the vanishing of the weighted mean is here mterpreted as the vanishing
of the virtual work in the appropriate displacement.

The degree of accuracy attained can be increased indefinitely by increasing the number of inde-
pendent functions employed, but this entails a great increase of Jabour.  However, when the functions
are well chosen, an excellent approximation can be oblained Ly the use of a very small numnber, as is
sufliciently shown by the examples included in this paper. The result of the Galerkin process proper

- —
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is a set of » lincar equations®, possibly involving a characterisiic pumber, and the further treatment
of these may follow any of the estabdished methods.  For instance, il # were huge, it might be of
advantage Lo apply matrices,

The illustrative exwmples have all been deliberately chosen of a simple nature, and all have known
solntions, so that the accuracy of the approximations obtained car be tested.,  The examples in art 1
are both of one-paint boundary problemns, while the exawples of mechanizal applications given in
Part 11 are as follows ' —

(1) Flexural oscillation of a uniform cantilever. (See §10.)
(2) Torsional oscilliation of a uniform cantilever.  (Sec §11.)
(3) Torsional oscillation of a uniform cantilever carrying a flywheel.  (See §12))
@) Flexural oscillation of i untfonm cantilever carrying a massive particle.  (Sec §13.)
(5) Determination of the critical Ipads of struts.  (See §14.)
(6) Solution of {he St Venant torsion problem for certain boundaries,  (Sce §13.)
The last is an instance of an application {o a partial dificrential equation in two dimensions.

There is probably scarcelv a mechanical problem concerning elastic or other continuously deforni-
able bodies to which the Galerkin method cannot be applicd with success.  Here are a few obvious
applications which are not included in the list of examples :—

(1) Forced motions.

(2) Motions of budies subject to the action of damping forces, or acrodynamical Jorces, c.g., wings
or blades placed in an aivstream.

(3) Oscillations of diaphragms.

(4) Oscillations of rotating blades.

(5) Deflexions of struts with eccentric and lateral loads.

(6) The St. Venant flexure problem and others of the Dirichlet type.

Acknowledements —The writer is greatly indebted to Miss H. M. Lyon, M.A., who worked the
examples on flexural and torsional oscillations given in §§10 to 13.

* If the differential equation is non-linear, then thesc equations will also be non-linear.
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PART 1
The Gelevkin Mctlhod jor (he A pproximate Solistion of Lincayr Ordinary
Differcitlial Equations

§2. Statewent of the melhod.— Suppose that 1t iz desvred o find the solution of
the Jincar ordinary differential equation

’ (]"_')‘ . N dn—l‘y ; ] dy—l 5 A 4 N
Po (%) st Py (x) Ay Fooo P () da P(x)y +Q()=0
' (1)
for the range @ Z 2 Z b of the independent variable, given certain “ boundary
conditions ™ which render the solution unique*. A typical condition will Tse

dn‘), dn )‘y
A, o + A, p 4 4 Any - B =0 .. .. .. (2)
to be satisfied when x == x;, where Ay, . . . . Ay and B are given constants. et
Y bea function which satisfics the comnplete set of conditions, and let Y, Y,, .... Y,

be a seguence of lincarlyv independent {unctions which all satisfy t{he set of homao-
cq ; 5

gencous conditions obtained from (2) by replacing BB by zero.  Then clearly the

function

Teem

y =Y 4 Elc‘., Yy, .. . .- .- (3)
r

where the coefficients ¢ are independent of x, alsosatisfies all the boundary conditions.

In the important case where the boundary conditions arc of the homogeneous

type the function Y will be omitted. It remains to determine the coefficients so

that y shall be a good approximation to the exact solution of (1) for the prescribed

range of x.

The typical Galerkin process for the determination of the cocificients is as follows,
Substitute the expression (3) in the differential equation (1), multliply by Ys,
integrate the result from a to 4, and equate to zero. When s is made 1, 2, . . .o
in succession, m linear equations are obtained which determine the coefficients c.
[t 1s shown in Part 1T that in certain mechanical applications of the method it
may be preferable to employ a difierential coefficient of Ys in place of Y as
multiplier, and plainly the method can be extended by taking as multipliers any
convenient set of lincarly independent functions of x.  The discussion given in
the following section shows that any of these variants must yield a good approxi-
mation when s is sufficiently large.

* The “ boundary conditions ™ need not be restricted to conditions to be satisficd for the extreme
values a and b of x,
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§3. The wethod of least mean squaied  ervor~~$he justification of (he Galerkin
process will be approached by the consideration of an alternative method whose
correciness appears {o be self-evident.

Let the result of substituting the eXpression (3) for v on {he left-hand side of
(1) be e. Then £ is the crror in the differential equation corresponding to {he
approximation (3), which, it is to be remembered, satisfics the boundary conditions
exaclly.  Ience, if = were zero for all values of x within the vange a to b {he solution
would be exact, since it is by hypothesis nnique.  Iailing this, ihe criterion will
Le adopted that the approximation 1z best when the mean squared error in the
differential equation is a minimum®.  Thus the cocflicients ¢ are to be such that

L

J = | #%dx . .. .. . .. .. .- (4)
s a minimumf.  Hence

—\J 0 5 ' _
- = s == 1,2, ....m. .. . .. . .- S
fcq ( ) (5)
J is a quadratic function of the coellicients, so that the m cquations (5) are linear
and serve to determine the coefficients nniquely.  Now

b
aJ 8¢
E ZJ'E?cs .,
2 a"'Ys 'Y | dYs |
and —EZ—S e P ( ) (i . P ()r) :—l o G -+ Pn—l(x) ‘*dx = Pn(x) Ys
= Zs(x), say. .. .. .. .. .. ce e (6)
With this notation
:Z(x)-]‘Q(x)—l—S;cZ(ﬂ') . . e )

4

where Z(x) results from the substitution of Y for Ys 1n (6). }ence equation (5)
becomes

ers(x)dxz(), D (8)
ot »J:' e | Zel0) Zs(w) dx + | (2 Q(v) Zs(¥) dx = 0. . )

* This, of course, does not imply that the mean squared error in y is 2 minimum.
1 It is toa be understood that (1) is purely real.
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The Galerkin process leads to m equations typified Ly

V]
J‘est.t =0,

3

L b
or 'S e [2:Xeds + [12(9) + Q)] Yede = 0. .. .. (1)
r=1
Conscquently

L
Js(i‘,grYr)d,«f-—--—:O, . .oap

where the constan{s g are arbitrary. Now Zs can be expanded approximately as
a series 1 Y,, Y, cte., so that

Zs == Egsrxlr + s , .. . as (12)

where #s 15 the crror in the series.  Hence the equation (8) can be written

L

Je(zgs,Yr+a;s)=o, L (13)
and the Galerkin equations (11) only difler by the omission of the simall quantities
7. When e is Jarge, 5e will e small, and it is thercfore obvivus that the two
methods will then lead to almost identical results. A silar arguinent can be
applied when arbitrary nultipliers Wg(x) arc used in place of the multipliers Y
of the Galerkin process.

It may be remarked that the introduction of an additional function Y., in
the least mean squared error method must lead to an improved approximation in
the sense that the mean squared error will be reduced. Yor, when the coefficient
Cmsq 1S zero and the other coefficicnts are the same as before the value of J is
the same as Lefore.  But there wil in general be a set of values of ¢, . . . . cqy
which will give ] a miinimum value which is still smaller.

§4. Primary and secondary boundary condilions, and the choice of the fuictions ¥ .—
Consider the differential equation

iz —r =0,

and suppose that the boundary condition is y = 1 when x = 0. Then, in order

that the diffcrential equation shall be satisfied at x == 0 it 1s necessary that

g}é = 1 at this point. This, then, is the secondary boundary condition which is
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a consequence of the primary boundavy condition y = I and of the dificrential
cquation itself. 1In gencral, the sccondary houndary conditions will be defined
as those which are the consequence of the satisfaction of the differential cquation
and of the primary boundary conditions jointly.

Now il 15 only necessary thai the function (3) shail satisfy the primary boundary
conditions, but in general a much better approximation is sccured wift a given
numiber of disposable cocfiicients ¢ when the funclion also satisfies the sccondary
boundary conditions cxactly. Tlus amounts to a combination of the Galerkin
method with the method of collocation whicl is cliscussed in a companion paper?,

§5. Illustratvve examples —T he following examples are intended merely to illustrate
the method, and very simple cquations with known solitions have been selected.
Since most of the examples in Part 11 are two point boundary problems, those’
given here are both one point boundary problems for the sake of varicty.

Example 1 —Take the differential equation

Y =0

with the condition y = 1 when x = 0. Then the exact solution is €~

Let the range of representation be 0 o 1, and first take a function (3) which
satisfies the primary but not the secondary boundary condition. Such a function is

y: 1+01x"1‘02x2+63.\:3. . .. O . (14)
Then
e = (& — 1D+ (26— 6)5 + (Bog — c)a? — ¢,

and the Galerkin equations are

J:sxc'ixzj’exzdx.—_jexz‘dx = 0.
0 0 0

When cleared of fractions these become

10, + 25¢, + 33¢c, = 30,
5c, + 18, + 260, = 20, e . (15)

Il

and the corresponding expression for y 1s

116y = 116 4- 120x + 45¢® 4+ 352, .. .. .. (1)
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J{ the approvimation y = 1 4 ¢x had been employed, then the Galerkin equation
would have been the first of cquations (135) with the terms in ¢, and ¢; omittced,
while if y == 1 | ¢;x + ¢4 hiad been used, the two Galerkin equations would be
obtained from the first pair of equations (15) by omission of the terms in ¢;.  1n
this way the following carlier approximations are obtained :—

y = 1 4 3z, . .. . .. . (17)

and 11y = 11 -} 8¢ 4 10:%. .. .- - .. (18)

The {hree approximations are compared with the true solution 1n the following

Approximation. |I
VaJ:xe of —— | — == e i s
Linear i Quadratic. J Cubic. i
| |
. BRas anes — N
0 -0 | 1-0 1-0 ‘ 1-0
0-2 1-6 . 1-1818 1-2248 | 12204
0-4 2-2 ' 1-4364 | 1-4952 _| 1-49(8
0-6 2-8 1:7636 - | 1-8235 j 1-8221
0-8 , 3-4 2-1636 | 2-2303 i 22955
1-0 4-0 26364 | 2-7241 j 2-7183

|

The same problem will now be treated using a function which satisfies the primary
and secondary boundary conditions. Clearly such a function is
y =14 x4 cx* + ¢32° 4 ¢,x* . o .. (19)
Then

e = (2c, — Dz + (3¢ - ¢,)a% 4 (dey — ¢5)x® — cxt,

and the Galerkin equations are

1 1 1
jgxﬂdx :fexadx =J’5x~'dx —-0.

o ) 0 [}
These yield
12G¢, + 182¢, + 220c; = 105,
196¢, + 300c; + 375¢, = 168,
96¢c, + 153¢; + 196¢; = 84,

and the corresponding approximate solution is

1198y = 1198 + 1198x + 609x> + 168x° + 8dxt. .. (20)



401
Approximations of lower degree can be obtained at once in the same manner as
before.  They are

6y = 6 -|- G 4 312, .. .. .. (21}
and 76y = 76 -k 76x 4 33x* - 2)xF . .. .. (22)
The approximations arc compared with tlie truc solution in the following table :—
Approximation,
Value of . L o
" :
Quadratic. Cubic. Quartic.
0 1-0 1-0 1-0 [-0.
0-2 1-2333 1-2196 1-2216 1-2214
0-4 1-5333 [ 1-4872 1-4921 | 1-4918
0-6 1-9000 1-S160 1-8224 | 1-8221
0-8 2-3333 22194 2-2259 2-2255
]-0 2-8333 2-7105 27187 2-7183

. It will be scen that the approximation when a given number of coefficients ¢ is
employed is much better than before.

Example 2—The difierential equation is

A2
ae =0,

and the boundary conditions y = 1, j—z = 0, when x = 0. It can be shown that

r(y)

y = 3\/3—— \/:‘E J_}@ \'/;f_3>-

It is obvious that the function

the solution 1s

x3
Yy=1-%

satisfies the primary and secondary boundary conditions, and it is further clear
that the series for y must proceed in powers of x2. Hence it will be advantagcous
to take the approximation

%3 . 0 :
y=1—§+%x +ocgx® . . - .. (23)

Let the range of representation be 0 to 4. Then the Galerkin equations are

b b
Iexsdx = J.sx9d:c =0,

()

4
where £ = — % -+ 30cgx? L (¢ 4 T2c9) 27 4 cgat0
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When simplified the cquations become

’%O >“1 b3<56

and

and it follows that

I PO ¥ 1
L+ 50
e = ,
- 34 L2
180 -- b + 20‘01»
and R s
- 3 4. 2900 s
12960% 2520% H 85 b
If 6 = 2 these formulac yicld
= 5-491774 x 10-8

"and cy = -— 6-60066 x 10° .

z (’1'; +39) + et (35 + Zz)o)

1
56

!
84’

The approximate and truc solutions avce compared in the {ollowing table :—

Valuc of .
Value of o L
X,
Approximate. True.

0 1-0 1-0
0-2 0-99867 0-99867
0-4 0-98936 0-98936
06 0-96426 0-96426
08 0-91610 0-91611
1-0 0-83376 0-838S1
1-2 072808 0-72819
1-4 038265 0-58294
1-6 0-40493 0-40540
1-8 0-20169 0-20230
2-0 —0-01566 —0-01498

It may be remarked that when b — 0 equations (24) and (23) yield

o 1
& 7 180"
— 1
a.rld cazmo.

These are the true values of the coefficients of #® and 29 in the infinite series for y.
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PARYT 11
Applications of Uie Gelerkin Mcthod to Mechanics

§6. Iniroduclory.—The writer’s interest in the Galerkin method chiefly concerns
its applications to mechaiical problems, and he believes the method to be of great
value ju the treatment of the statics and dynainics of elastic and other contimuouszly
deformable badics.  As already stated, the method may be regarded as an easy
way of deriving the Lagrangian dynamical equations with a special choice of the
generalised co-ordinates, but the specific problem requires examination in order
that the proper multipliers shall be used i the Galerkin process. (Sec, for
instance, §14.)

The coeflicients ebtained in the Galerkin equations are always definite inlcgrals.
In the illustrative examples which follow these integrals are all rcadily obtained
exactly, but in more complicated instances, or in cases where the mechanical
properties of the bodies concerned are specified by graphs or tables, approximate
micthods of integration, such as Simpson’s rule, must be used. IFor the sake of
case in integration it is advisable to cmploy rational integral functions i (3)
wherever possible.

Many of the examples arc problems concerning the determination of characteristic
numbers and the corresponding modes of displacement.  Now the Galerkin process
yiclds as many modes as there are independent functions employed, and the Jabour
involved rises with great rapidity as the number of these increases. Hence, if it
15 desired to investigate one of the higher modes, 1t will be most advantagceous to
employ a small number of functions which are known to resemble the required mnode.
Tt may be added that the choice of the functions 1s of great importance, and
provides opporfunity for the display of skill ; the choice should be guided by the
grealest possible knowledge of analogous problemys. The advantage of choosing
functions which satisfy the secondary boundary conditions (sec §4 and §14, Ex. 1)
shonld not be overlooked.

The following are somc brief miscellaneous nofes on tlhe mcthod :(—

(@) When an elastic body is subjcct to a concentrated load of any kind it may be
advantageous to employ onc discontinuous function. (Sce discussion in §§12
and 13.)

(b) If it is desired to obtain the value of a stress from the approxunate solution,
then an integral expression rather than a differential coefflicient should be used”
wherever possible. A consideration of the case of an oscillating cantilever will
make this clear.

(¢) In dealing with a problem in # dunensions it would thcorctically be necessary
ir general to use an #-ply infinite scl of functions in order to obtain convergence
to the cxact solution. (See, for example, the discussion of the torsion of prisms
m §13.)
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(d) 1 a linear combination of the functions in use happens to be an exact solution,
then the Galerkin method will yield that exact solution. (See, for exampie,
§14, Ix. 2)

§7. Ilexural wmolion of a cantilever beain—1he general discussion of the con-
ncction between Galerkin’s method and the dynamical equations of Lagrange will
be approached by a discussion of the flexural motion of a cantilever beam as the
argument is specially simple in this case.

The differential equation govermng the deflexion of a thin beam not subject
to end loud parallel to itsclf is

az (, azy
L ) —= 2
T El e w, .. e . (26)
where y = normal deflexion,
a4 = distance from the root,

EI = flexural rigidity,

and w = load per unit span.

In general ET will be a function of x, and @ will be a function of xand of the time/.

When the beam is in motion, @ must be taken lo include the reversed efiective
: . : . a: )

force (incrtia force) per unit span, given by — m (-d}; , where 1 is the mass

per unit span. Let w, be the incrtia load, and e, the resuliant external load,

both per unit span. Then (26) becomes

d*

AN
2 (F152) = w + w,. @

Now this equation simply expresses the equality of the elastic reaclion and applied
load. Let the clastic force per unit span be

_ a2 dy
w0, = — 5 (E152). L ()
Then equation (27) becomes simply

w, + v + w, = 0. .. .. .. .. (29)

The point to be emphasised is that (26) or (29) is an expression of the balance
of noymal forces per unit span.

The deflexion y must satisfy the following boundary conditions for the case of
a cantilever without tip load :—

At the root (x = 0) ‘y=%=o,.. .. - .. (30)
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and at the tipi(a,== /)

A__y;._ "(J[f” R 1)

The equations (31) express the conditions that the bending moment and shearing
force vanish at the tip.  Provided that IXI does not vanisli at the tip they are
cqmivalent to

('113 = -[?.1’3 = 0 . N .- . (02)
Suppose that Y,, Y,, Y, etc., arc a sequence of Jmearly independent functions
of x only which all satisfy (30) and (31). Then if

_’}\’:E(]r&lr, ‘o « . . . (33)

the quantities ¢ may be regarded as the Lagrangian dynamical co-ordinates of
the Leam, for, when they arc assigned, the deflexion at all points becomes definite.
Since the heam is an clastic body it would strictly be necessary (o cmploy an infinite
number of dynamical co-ordinates, but this docs not affecl the argument.

The Lagrangian (lyn.:xmic;-ll cquation corresponding to the co-ordinate g, is
" the expression of the fact that the tolal work done by all the forces applied to the
beam (including the inertia forces) in a virtual displacement corresponding to
the increment dg: of g (with all the other co-ordinates constant) is zero. Hence
the cquation is

(w, + w, 4 ) B_qur dx = 0,

or (w, + w, + w,) Yrdx = 0. .. .. .. (34)

T~ o'—— -

This is precisely the equation given by Galerkin’s method, and' it is therefore

equivalent to the employment of Lagrange’s equations with the special co-ordinate

svstem expressed by (33). The identity of (34) wilh ihe usual Lagrangian
equation

EV =

di (qur -y = O, .. .. .. (35)

0 aqr

follows from

!
1‘=§j <)dx S .. (38)
0
and \’:%IEIG})M. 74



It can be shown (hat

1
aV az /... d*y
T = j Yl‘ e (I‘,[ \) f[.\'-
aqr dx?® dx®
u -
by integration by parts and use of the boundary conditions (30) and (31).

It is evident that the results of applying Galerkin’s process would not agree
with Lagrange’s equations if the cquation (26) had been multiplied throughout
by an arbitrary factor, as might appear permissible.  1n fact it is always necessary
to know the plysical meaning of the differential equalion i order thal the proper
mudliplicrs may be exiployed. 11 the wrong multipliers are used a fair approximation
may still be obtained, but the process will not be equivalent to the employment of
Lagrange's equations.

§8. Illexural-lorsional motion of a blade or wing.—It is clear {hat a torsional
molion of a beaun or blade can 1 treated in the same general manner as the flexural
motion.  The fundamental equation of motion corresponding Lo (29) is

LA b4t =0, sy

where cach £ is a twisling moment per unit span, Let 0 be the angle of twist
at any point, and let ©,, @,, elc., be a scquence of linearly independent functions
of x which all satisly the samc boundaryv conditions as 0. Then if

b = Xgr 0Oy, .. .. .. . (39)

the quantities ¢r may be regarded as the dynamical co-ordinates. The Lagrangian
equation corresponding to gr is obviously
1
J(la—kt,—l—tc)O,dx:O, N 2 10)
0
which 1s also the Galerkin equation.

If thc motion is actually both flexural and torsional both sets of equations
(34) and (40) must be employed. The combined set can be solved by ordinary
methods. Tor instance, in the case of {frec motion it would ba assumed that each
dynamical co-ordinate was proportional to e, and this would lead to a deter-
minantal equation for i.

§9. Application of Gelerkin’s meihod to elastic bodies 1n gencral.—It 1s evident
that a procedure similar to that explained above can be applied to problems on
the dynamics or statics of an elastic body when the condition of support is zero
displacement on a certain surface, Here the three components, #, », w of the
displaccment would be written

w = Eq:Ue (%, 9, 2),
2q:Ve (2, ¥, 2), .. .. .. (41)
w = Zq:W: (x,y,2),

v

I
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ond the functions U, V, W would be chosea to satisfy the boundary conditions
for displacement.  The fundamental cquations of motion are, in the case of an
sotropic body,

i

A : i
(2 470 ix b Vi~ o T 4 oX =0, .. - .. (42)
3 2
together with two similar equations.  Now this equation expresses the balance of
the components of force in the direction OX, and may be writlen concisely

X, 4+ a4+, =0, .. .. .. (43)

where x, x;, and x, arc the components of clastic, iertia and external force
respectively, all per wmit volume. Hence the Tagrange or Galerkin equation
corresponding to (he co-ordinale g; 18

f U x() - X '_l_ )'.n + \,Y ’L: _I_ y _!— 'u

j”[ o (o A oE ) A V(g ”]dxdyd.zzo. R 2P
A4 Welz 4 2+ 2)

Surface tractions, if any, at points where the displacements are not zero must be

introduced through surface infegrals whose {orm is sufficiently obvious.

§10. Flexural oscillation of a uniform cartilever—The case of a uniform cantilever
will be consicdered since the object in view is to illustrate the meihod, and to test
the approximation ebtained by comparison with a known solution.  The oscillations
of a canlilever of variable section can be treated in exactly the same way.

The first step is to obtlain a convenient sct of functions satisfying the conditions :—

y = g-_i = 0 when * = 0,
dzy  dy _ B
and (-{i.—z—a—i;s—()whcnx—l.
Let ¢ = ’l—‘ (45)
Then one suilable function is
yr = 1l — cosraé + §{— 1)+ r2a2e2, . . (46)

where 7 is a positive integer. However, it is usually convenient to employ a
rational iniegral function if possible, and it will be found that the trinonnal

Y, = -é(r L2 (B Ll 4 e ér(r F e (@)
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satisfes all the conditions when 7 is positive*. It may be noted in passing that
these functions have the properties :— '

Yr = 1when ¢ =1. .. S (48)
1
[vras = 2 . (49
[ Yras = oy . . )
Cdty
'o[ i At = 8 (when 7 = 1) )
= — 20 (when 7 = 2) - . (50)
= 0 (when » > 2).
jY @-X‘dg—jy dd? R £

The Jast equation follows from the reciprocal theorem, since Y, and Ys arc possible
displacements of a uniform cantilever, and the corresponding loads per unit span
are proportional to the fourth differential coefficients of the displacements,

The gencral equation of motion is
=2 —]—m—%—} =0,

and if the beam is oscillating purely in one mode with frcquency p/2x, this
becomes

aly  mply 0.

ax* I£1

It is convenient to change the independent variable to ¢ and the equation then
becomes

dy )
j;%—ayzo, B
214
where « =720 I )
Now substitute
y = Yy + §:.Y,, . s 3 (54)

* Analogous functions for other types of support are easily obtained.
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and foirm the Galerkin equations i—-

« v
1 )]
71\’ A\
4 J’Yl {‘iv_ :’.1! - '1Y}> dE + gs f Yl (ii}f - aYe) de = 0.,
, (dYY 4
qlf\( »—aY)d-—qj (H — uY,)dE = 0.
These yicld
g, (16 104 8 1304 _
g, \5 405 ) ( ~ 5670 ) =9 _ 5)
. 35
q,(8 1304 1304 __
and 7. G560 ) + (T — g7 «) = 0. |
The condition of compatibility of these equations is
104 16\ /1304 S0 1304 8\? '
w5« 5 e« —a20) - Gomo e —3) =0 - 9

and the roots of this quadratic are found to be 12-3625 and 515:86. The correct
~value for the lower root is the fourth power of the lowest root of

] 4+ coshmcosim = 0, .. .. . (57)

and is 12-3623, so that thic approximalion is excellent.  The correct value of the
scecond rool s very nearly (3x/2)% = 493-13. Thus, as would be expected, the
second root given by the quadratic (36) is considerably in error. When « has
been found, ¢, /g, can be obtained from (55) and the mode of displacement calculated
from (39).

Further calculations have been miade using the three functions Y,, Y, and Y,.
The results of all the calculations are summarised in the f{ollowing table :—

Fundamestal Flexural Uoda and Frequency Coef;’czcu!jo, a Unzforw Cm.e ilever

i Approximation,-
b e — - Correct
| 1st. ! 2nd. Result,
. i 3rd.
| @=2:=0 | (@=0 | '
4
~ 2 | 12-46 ‘ 12-3625 |[ 12-3624 12-3623*
£ =035 0-1055 | 0-0972 0-0973 0-0973
y 05 03542 ‘ 0-3397 0-3395 03395
prn 075 | 0-6650 |  0-6580 0-6577 06577,
1-0 i 1-0 ’ 1-0 1 1-0 1:0

* The last dlglt is doubt{ul,
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The mode is specified as the ratio of y (o v, the value of y at the tip. It will be
scen that both the second and third approximations give excellent approximations
to the mode as well as to the frequency.

§LI. Torsional oscillalion of a rmniform cantilever —The dfierential equation
governing the torsional motion of u cantileveris

2 /.20 220 ' .
'a C’a—:‘ = EF 5 . . N v (Db)
where 0 = angle of twist,
C = torsional stiffiness of unit length,
and J = moment of inertia of unit lenglh.

When C and J arc constant, and when the cantilever is oscillating in a single modc
with {frequency p/2a, this becomes

d20 S s
Cd;l+]p*0 = O.

Let I be the length of the cantilever, and define ¢ as in (45).  Then the last equation
can be writlen '

ae
d£2+k0 = 0, . (59)
where k= ‘T]él- A . S (60)
The boundary conditions are
8 = 0 when ¢ = 0,
ao _ -
and E=Owhen;-—1.
Clearly the function
0 = sin §(2» — 1) =&, .. o (61)

where 7 is a positive integer, satisfics the boundary conditions, and is in fact a
possible mode for a uniform cantilever. But it will be convenient to select
rational integral functions when C and J are variable, and the following binomial
satisfics the boundary conditions :—

O = (FH N E—rEt. . . (62)
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he torsion binemials have the properties -—-
Or === 1 when & = 1. . .. . (63)
1
T )
J r -l _
)
i 20mn |
= 0{r>1 J
l‘o,ddf’bz =jos d”’d* L (66)

The Gzievkin method will now be applied to the uniform cantilever, and the
approNiiiaon

0 = 4,0, 4+ 7.0, .. .. .. e (67)
witl be cZapred.  The Galerkin equations obtained from (89) are
- qd2e f o (0
¢y ', (UM (_;i‘t;lf] -+ k@l) dE —{—- Qs J’ O) '{—.],T_-'Zg -+ k(—)2> {if = ( ,
u - 4] o
and

({i" T/EO)(/‘ 2 PJ‘GZ((Z::')-’-Q—i-k@?)d‘: N
)

Theze r=2uce to

—/

e LASRE LR

2nd | 2 taoh) + (5 T3k =

The cordition of compatibility of these cquations yields a quadratic for & whose
roots are

(68)

I
o

\

i.e., 2-4A30 and 23-3625. The true values are n-4— 24674 and 91 = 22.207.

It will bz scen that the fundamental root is very closely correct.
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Trurther caleulations hiave been made using the functions 9, 0,, and O, The
resulls of all the calculations are given in the following table, which includes ;o
comparison of the truc and approximate modes.

Fundamental Torsional Mode and Frequency Coefficient for a Uniforin Cantilezcr
q 3 2/

Approximation.
S TR e TR — Correct
Lst. ! 2nd. l 3rd resalt,
| (@2=gs=0) |l (95 = 0)
v =" - R -— ! i i —_— I Sy T L
2z | | |
k= L’E 2 25 '. 2-46S0 , 2-4674 | 24674
: 'i |
s .
£ =025 0-4375 0-382] | 0-3327 ’ 0-3827
L 0-5 0-7500 0-7008 | 0-7071 | 0-707)
6 075 | 0-9375 | 0-9190 , 0-9236 0-9239
10 j 10
I

1-0 i 1-0 : 1-0

§12. Torsional oscillalion of a cantilever carrying a jflywheel.—The procedore
explained in the last two sections is adequate for the treatiment of the oscillations
of cantilevers of constant or variable section, but a new problem arises when the
beam carrics an isolated mass or masses. In this case the true solution will exhibit
a discontinuily at cach carried mass, and difierent functlional expressions for the
displacement wall hold for the several intervals between the masses. It is possible
to obtain a good approximation even here by the Galerkin process employing only
continuous functions, just as it is possible to approximate to a discontinuous
function by a Fourier series. But as a rule a much more accurate result will be
oblained by using one suitable discontinucus function together with a set of
continuous functions of the ordinary kind. It appears that the advantage obtained
in this way is greatest when there is a discontinuity in the first difierential coefficient
of the displacement (as in torsion), and that the advantage becomes less and less
as the order of the first discontinuous dilferential cocfficient increases.  For fiexural
oscillations the earlicst differential coefficient to exhibit discontinuity at a carried
mass 15 the third, and herve the advantage gained from the use of a discontinuous
{function is very slight.  (See §13.)

In order to derive the Galerkin equations correctly it is always best to imagine
the added mass to be distributed over a short distance, and then suppose this
distance to tend to zero. When this is not done lerms are apt to be omitted from
the equations.
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The choice of (he discontinuous funclion must be considered. Now it is clear
that this function must remain suitable even when the deusity of the cantilever
1self tends to zero.  Clearly, therefore, the most suitable function is {he modal
function for a massless bDeamn carrying an isolated mass.  In the case of torsion,
for wstance, the function will be obviously

9035(025217-)» } (69)

when the added mass lics at the distance /i {rom the root.

\Vhen there ave several carried masses the advantage obtained from the use of
issonlinuous functions is reducced (at any rate so far as the fundamental mode
is concerned), since the individual discontinuities at the masses will be less
important. _

‘The following problem will now be discussed :—I'ind the fundamental frequency
and mode for the torsional motion of a uniform cantilever carrying a flywhecl
whose moment of incrtia is twice that of the cantilever itself at a distance of one
third of the span from the root. . This will be treated by the Galerkin metliod
cmploying one discontinuous and one continuous function. Accordingly

N P ()

where O, is as defined by (69) with 2 = §, and 0, is given by (62). The -
differential equation governing the motion is

Consider the equation which results when this is multiplied by ©: and integrated

over the span. Take first the contribution of the term C 3-;02 which 1s the sum of
: ECH . . a0,
the continuous part Cg e and the discontinuous part Cg, L The first

of these only calls for the comment that the range of integration must be split into
two parts if the multiplier O is discontinuous. On the other hand 420,/dx?
vanishes except at the discontinuity, and it is casy to sec that the value of

[ Or Cq, %S?O dx taken over the discontinuity is

C4,0:(3) {(‘%)%“ _ (‘%’)&_s} = Gnorli),
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_ : a0, -
since = >;Jz+‘ 2= (),
a0, 1
and — ) =7

Next take the econtribution of hic termy Jp20 Lo the integral.  The pavt of this
due to {he beam itself requires no comment, but there is ohuom]y the additionad
term Ip*0(4) 0.(}) duc to the flywheel of moment of inertia I == 2] in the present
example.

It follows from the foregoing that the Galerkin equation corresponding (o 0, is

+ Jp2 [ 04 (900 + 0:0)) dx + 1p* [ 0 (9505 + 9,0,) d

] Sl

+ 21p%0,(11{g,00(2) + 9.0,(3)} = 0, .. .. . (71)

and the cqualion corresponding to 0, is
!

az0 C
Co | 0 G5t ax — SBp)
L]

!

1

+ Jp? jollQOOO'F91 dx + Jp* IO, Op T ¢,0,) dx
!
- 0.

+ 2]9%0,(30{9:00(3) + ¢:0:(} = (72)

Change the variable from x to §, mulliply by //C, and reduce. Tle equations
become

363

and 40(*§+972k>+‘1*(‘§': 105 )ZO'

These yicld a quadratic for £ whose lower root is 1:0337. Now it can be shown
that the exact value of & ts 22, wliere 4 is a root of

w

(73)

ul

cos,l=(%I>Zsinlz).cos(l—lz)),.' . .. . o (74)
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Here 7 is the distance from the root {o the flywheel as a fraction of {be overbang.
In the present instance the equation becones

. 2 27
cos 2 == 27 sin 3 cos 5

and it is found that the smallest root is 1-016446S radians. Hence
ke == 2% = 1-033164, and it will be seen that the approximation obtained by the
use of one discontinuous and one continuous function is excellent.  The following
table gives a comparison of the true and approximate modes, and also shows
the results of some calculations in which only continuous functions were used.
It is evident that it would be necessary to employ a large number of such functions
In order to obtain a good approximation.

Fundamnental Torsional Mode and Frequency Coefficient for « Uniform Cantilever
carrying a I'lywheel '
Flywheel siluated al one third of the overhang froi the yoot

Moment of inerlin of the flywheel lwice that of lhe cantilever

Tunclons used in Approxiniations®.
- Correct
’ result.
6] & Go \ Ol' Ot. L{ @3 | eo & Ol

o= chi 1-1019 I 1-0933 ‘ 1-0337 1-0332

T = |
& =025 0-56¢ : 0-5754 ; 0-3982 5 G-5892
0 05 0-8672 0-8568 0-8785 ! 0-8736
N 0-75 0-9814 | £-0015 0-9696 0-9679

3 1-0 1-0 j 1-0 1-0 1-0
_| ' ' _

* @, 1s discontinuous.
6;, ©,,and O, are continuous,

§13. Flexural oscillation of a uniform cantilever carvying an isolaled mass.—The
most convenient discontinuous {unction for use here is the modal function appro-
priate to the oscillation of a massless cantilever carrying a massive particle. This
is obviously ideuntical with the static deflexion function for an isolated load. Hence
the discontinuous function will be taken as

Y, =32 — 82 (0 £2h),
. e - (75)
=3¢ — 1 (hz ¢21).

As071)—1 R



Thie differential equation is {sce §10)

dy _mpy

dx? 1€l '

and the only point requiring special attention in forming the Galerkin equations

) . . P ‘ dty .

is the influence of the discontimuity in Y, on the value of | Yy P dx. 1t is
t

0
casy to sec that the confribuiion of the discontinuily at £ = 7 to tins integral is

Wt (55, (=N

dz? dx®

The following specific problem has been treated by the Galerkin micthod, employing
the discontinuous function Y, in conjunction with the continuous functions Y,
and using the continuous functions only :(—

Find the fundamenial mode and frequency for a uniform cantilever carrying a
particle of mass cqual to 1-5 times the mass of the cantilever at a distance of
one third of the overhang from the root.

In view of the detailed dizcussion of the corresponding torsional problem given
in the preceding section it will not be necessary to discuss further the treatment
by the Galerkin method, but a {few words must be said about the orthodox solution
of the problem. I{ can be shown that the frequency parameter « defined by
equation (53) is given by

a¥y‘, e .. .. (77)
where z is a root of the equation
M
1 4+ coshpcosp = <’3;;}.7) uF (u, A . .. .. (78)

Iere M is the mass of the carried particle, and

F(u, hy = cosh phsin ph — cos ui sinh uh
-+ cos p (I — &) sinh (1 — A) — cosh (1 — 1) sin p{1 — %)
+ cosh gl sin g cosh p(1 — ) — cos ph sinh u cos u(1 — ) . (79)

Exact formulae for the displacements of the two segments of the beam can also
be obtained, but these will not be quoted.
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The results obtamed by the various methods are compared in the following
fable. It will be seen (hat the advantage gained by the vse of a discontinuous
function is here negligible, and the reason for this has been given al the beginning
of §12. '

Fundamenlal Flexuyal Mode and Irequency Coefficient for a Uniforin Cantiléver
carryting a Massive Particle
Particle situaled af one third of ihe overliang from the root
Mass of particle 1-35 limes mass of canlilever

y Functions used in Approximations®,
e Coren
| i | [ resull.
Y, l Y, &Y, Y, &Y, ] YLY. & \",,-I Y, &Y, :
1 I i
sl _ N - I v | e | -
o« =gy I 10-3346 7] JO-5316 | 10-5345 | 10-3328 | 10-5340 | 10-528%4
| ! | |
—— .- L R RSN RS S Sy o
l £ =025 0-1055 | 0-1056 © 0-1051, = 0-1038 | 0-1062 = 0-1059
y : 05 i 0:3512 0-35i3 | 0-3335 0-3335 | 0-3554 0-3534
¥ 0-75 [ 0-6680 0-6581 0-667- 0-6869 | 0-6637 0-6665
1 1-0 1 1-0

I 1-0 R C1-0 | 1-0 |
|

* Y, is discontinuous,
Y., Ya Y, are continnous,

§14. Dctermination of the crilical loads of strits—Consider a straight strut of .
length /, pin-jointed at the ends, and subject to an axial compressive load P. - Then
the dificrential equation governing the deflections of the strut is

o7 B —
BISS 4Py =0, .. .. .. .. . (0

and, if the origin is at midspan, the primary boundary conditions are y = 0 when
%= -} /2. On account of (80) there is the secondary boundary condition
EX gf-j = 0 wlen x = 4 //2, and, provided that I does not vanish at the ends,
this buplies that

%= 0 when x = :]—_é

Now suppose that

yo=S¢y;: .. .. . . 81)

“s971—1 ’ R2
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where the functions y, satisfy at least thic primary boundary conditions, and regard
the quantities gy as dynamical co-ordinates. In order to obtain the Lagrangia
equations ol equilibrium it il first be necessary to obtain an expression fot #,
the shortening of the distance between the ends of the strut duc to the lateral
bowing. T.et ds be an element of arc of the bowed centre line. Then

o (Y= -1

simce ?g is very small. Hence clearly
o
1 ay\*
°w = Q_JA'(ZZA_C dx, . v P .. P (82)
-1 :
. : +
o 1 2 fay\®
and a—q—r-—iJ’!% ﬁ) dx
~z
4+ =
= J’ dyy 4y 4
, dx dx
"3
i et
dyr d%yr
v %] - R
“z T3
— 4%y
~z

Therefore the work done by P in a virtual displacement corresponding to the
increment 8¢y is
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Alzo the elastic potential energy is

*a
1 - 724\ 2
V-.Q.IIEI(/T, dy |
1
*+z
aV -1 A%y dy,
< == ]_‘,I . e A
and agr jl dxt di ax
i AY .
Now s dg: = vartual work of P. Hence
r
+§'— —l-:;
Ty Ay Bye o 5 (Y ;
| ,D Sy 4 jly i =0, (83

This is precisely the Galerkin equation obtained from the differéntial equation
(80) by use of the multiplier @y /dx*. The reason why the multiplier is this and
not mcrely y, is that (80) expresses a balance of moments, not of normal ferces,
and the proper multiplier must therefore be a rate of rolation.

Applications will now be made to two concrete examples.

Exaniple 1.—Unijormn pin-gornled strii —The first step is the choice of a suitable
set of functions. In the present case, or in any other in which the strut is symme-
trical about its mid-point, only even functions of x should be employed, since
interest is confined to the fundamental mode of deflexion. The set

24\
=03 -1

satis{y the primary, but not the secondary, boundary conditions, while the set

. o 20
Yr = (4r 2 1) — (v + I)(Zr—l,—l)(:[) +r@ -1 (85)

satizf{v Loth the pomary and secondary conditions.  The problem will be worked
with both sets of functions, as this will make apparent the advantage of adopting
functions zatisfying both the primary and secondary boundary conditions.
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First wse the functions v, and y,. The corresponding multipliers we 8/ an
1925214, so that the Galerkin cquations are

N

S%J (LI(]\I i-l’ﬁ)d'”"f' f(l‘ d)’ |~P'>(Zx = (

ax?

and ]c’z;‘hj 2 (EI ’:h‘ - 155) dx - Ig“’“[ (E 1% 4y )dr — 0.

-3 —_—

5}

These become, when mwdtiplied by 10538/165E1,
gy (320 — 33p5) - g, (840 - 428) = 0, }

(86)
and gy (840 — 423) 4 g, (3024 - 60p) = 0,

P12 .
where p = YT - N N B (87)

The eliminant of the cquations (86) is

g*> — 1804 -+ 1680 = 0, .. .. . (88)
of which the roots are 9-8751 and 170-125. Now the true fundamental valuc of
B 1s =* = 9-8696, so that the approximation is fair,

The problem has also been worked out using the functions Y, and Y,, but it
will not be necessary {o cnler into details. The final quadratic for g is

1382 — 1332f 4 11,880 = 0, (8

of which the roots are 9-86961 and 92-3919.  The first of these is an extremely
close approximation to =2 and the second is not far from 8z* = 88:826*. The
results of all the calculations are given in the following table.

Crzlzml Logd Cocfficien lfO) a Uniform Pin -Joinied Strut

Correct resuit.

e |

= b 9:869G61 | a® = 9-869604
= S6 [ a® = 9-869G(

9-8751 |, 9-SS#H

Y ¥e i'\l)qu prlmary bounchsy condition only.
Y, Y, satisfy both ptiman and secondary boundary conditions.

*The root 4a? is absent since this cmrupunds toa dlbpiaamcnt which is not symmetrical about
the mid-point.
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Example 2.--Pin-jointed lapeied strui—The strut considered has a fiexural

vigidity given by
" B a\?
),1-:-7.‘57——3(-2--)}, o0y

where 13 is the maximum value of E1, occurring ot the end v = 0, aud Zis the length.
It ean casily be verified that the difierential cquation

Dli-s() vy =0, . L L@

dx?

hias the exact sojution
O R REIC) B

>
6B )

with P = o

“Since the strut is nnt symmetrical about its mid-point, the functions must not
be restricted {o the syminetrical type. The conditions (primary and secondary)

to be satisfied are :— .
v
Y=g = 0

when ¥ = 0 and when x = L. The following functions are suitable :—

n= (-2 +G) e
v=tr9(G) (i) e . o

where in (93) 7 is not to be less than 1.
The functions v, and y, will be used in the present case, and the Galerkin cequations
become when reduced

g (2064 — 34y) 4+ ¢, (852 — 17y) = 0, (ée)
and gy (832 — 17y) + ¢, (2136 — 16y) = O,
where y = 7—}?—2 P .- . .. .. .. (97)

so that the exact (fundamental) valuc of y is 60 by equation (93).
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The climinant of equations (96) is
17 92 — 5112 » -1 245,520 = 0,

of which the voots arc 60 (cxact) and 240-705. The substitution of y = 60 in
the first of cquations (96) yiclds

24g, — 168¢, = 0,

or 9o = 791 .

Put g = 1. Then the mode of deflexion is given by

ye et = 7(D) =00 +3(3)

which agrees with (82). This result exemplifies the fact that if auy linear con-
bination of the functions einployed happens to be an exact solution of the differential
.equation, then the Galerkin method will produce that exact solution.

It only remains to add thal the approximation to y obtained by the use of y,
only is 2064/34 == 60-706 (sce the coefficient of g, in the first of equations (96)).

§15. Applicalions lo the Si. Venant torsion problein.—The St. Venant problem of
the torsion of a solid cylinder or prism can be reduced to the following form?® :(—
Find a function ¥ of x and y which vanishies on the boundary of the section of
the cylinder and satisfies '

VRE L2 =0 .. .. .. ... (8

everywhere within the section. Then the components of shearing stress are given
by '

Xz = u°vT éi )
oy
(99)
V, = —p1 ook
S A
where t = twist (rad_ianls) per unit length,
and ¢ = modulus of rigidity of the isotroptc matenal.

Also the torsional stifiness of unit length is

'C:%ng@.”:,_,_uw
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In the present discussion attention will be confined to cylinders or prisims whose
cross-sections possess an axis of symmetry OX*. The boundary will thercfore
be specified by
y o= L1, . .. . .. .. {10])

where £ 15 a known function of x. It is clear that the functions
Tr — t?r . ‘),2r

all vanish on the boundary, and it might be supposed that Z¢rTr would be
capable of representing the solution of the problem. But on inspection it will be
found that this is the difference of a function of x only and of a function of y only,
and manifestly this is too restricted in form to represent the true solution in all
cases.  Again (82 — ¥%) (& -+ kyx -+ kox® -1 . ) is insufficiently general since it is
parabolic in y. The conclusion is that the general expression for the torsion stress
function 1s

YW= S — y¥) (R + A A kuex® L)L oL (102)

1he question now arises as to the proper multiplicrs to be used in the Galerkin
process. This can be answered by reference to the well known membrane analogue
of the torsion problem. In that analogue the equation (98) cxpresses a balance
of forces normal to the membrane, while the deflexion is proportional to ¥. Hence
the cquations of virtual work are obtained by multiplication by 6, and integration
over the section.

Lxample 1.—Llliplic cylinder.—Herc

2_b2 2 2

t_az(a x?) .
Assume Vo= Rk (& — ¥

kU 242 2.2 2,2
_a—,_,(a — b ay?)
2k, , R

Then e=v2‘i’—{—2=—?(a--{—b~)+2.
This vanishes if k @t
*1s vanishes 1 0 = P

and the exact solution is accordingly

a‘Zb?. — b‘lx'z — a‘ZyZ
¥ o= P LR

* The method can easily be extended to cylinders with unsymmetrical sections.
(397 1)—T - ) R1
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Example 2-—Cylinder whose seclion 1s a citbic oval (symuicirical acrofoil).—No
“clussical 7’ solution has beext found in {his case, but the problem has been treated
in detail by the thickness-paramcter method?®s,

The cross-section of the cylinder is here specified by

> of o o2, A
i pamn} 0 ¢t — Zx- T ‘C—

(103)

where ¢ 1s the chord and ¢ 1s the thickness parameter.  The problem will be worked
using first the approximaltion

Vo= Ly (12— yY), - .. .. . . (104)
and {hen with

Y o= kg (12— %) -+ k(12— 7). .. .. . (105)
Let {he vesult of substituting the approximation to ¥ in (98) be . Then the

Galerkin equation corresponding to (104) is

H P— ) dedy = 0,

where in the present mstance ¢ 15 a function of x only. Accordingly the last
equation hecomes

4 : 3 PR
'3' '(( 3¢ (i}, = 0 N
which can be reduced to
13 (1 — ky — 2k0%) 4 153ky9° = 0.

13

Hence ko = 13 _1_ 110‘3 y

and the corresponding expression for the torsional stiffness yielded by (100) is

) . 236 pcio? 13 .
C = “343 (i'é"-;- 110'2)' - - .- .. (106)

The thickness parameter method gives the following approximation which 1is
correct up fo the 9th power of 0 :—

uc“03 . 379
C= 200 (1~ + 0t — 5 o). . (107)

Equation (106) agrecs wath this as far as the fifth power of 0.
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\When the expression (105) is used the Galerkin equations are
and ”“(- ¥ dxdy = 0,
( . x 3%7
h) N, 4 ha)2 4 02(4 — 62V - 902 — el
where o = 2 — (ky + k) {2 + 02(4 66>}T 2%y 02 (6 — dx + 75 ).
The Galerkin equations reduce to

Eo (13 + 110%) -+ e (3 -+ 30%) = 13,

and ke (255 4- 1530%) + kye (119 + S102) = 255 .

- 17 - 1802

Hence fo = 17 5200 1 270
102

&nd Ckl e D

17 + 5202 + 2701

The approximate stress function is therefore

e ... (108).

256 puct03 (2

221 - 48902
C = 3165 21 T )

7607 = 33057 (109)
A comparison of the results given by (106), (109) and (107) for the case where
f = 1/5 1s given below where the quantity tabulated 1s the multiplier
of 256uc*63/3465 :—

Error.
Galerkin (1 function) . 0-967262 —0- 000382
Galerkin (2 functions) . 0-967652 -+0- 000008

Thickness parameter .. . 0-967644 —

(43071)—1 R4
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