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SUMMARY 

A numerical method based on the A.M.O. Smith technique has been 

developed for the calculation of the two-dimensional potential flow about 

an aerofoil of arbitrary shape undergoing small amplitude simple harmonic 

motions. Problems considered include aerofoils oscillating in pitch, 

aerofoils oscillating in heave, aerofoils in harmonic travelling gusts and 

control surface oscillations. Comparison with analytic solutions, where 

available, is good. 

Significant differences between linear and non-linear theory are 

shown especially for the in-phase hinge moment coefficients. 

*Replaces ARC.37 204 
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Subscripts 

S steady state condition 

0 oscillatory condition 
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1. INTRODUCTION 

A.M.O. Smith and his co-workers (1 > have developed an 'exact' 

numerical method for the solution of the flow characteristics around 

a stationary body immersed in a uniform i nviscid incompressible stream. 

Originally the method was applied to calculate the flow about axi- 

symmetric bodies at zero incidence and plane flow about two dimensional 

non-lifting and lifting aerofoils. Later the method was extended to 

handle cross flows about axi-symmetric bodies (2) and subsequently to 

deal with three dimensional flows (3). 

For a steady two dimensional lifting aerofoil the basic concept 

is to replace the aerofoil surface by a number of straight line elements 

on which are placed uniform source and vorticity distributions; the 

uniform source strength on each element varies from element to element, 

but the strength of the uniform vorticity distribution over each element 

is the same for all elements. The strengths of the source distributions 

and vorticity distributions are determined from the boundary condition 

of tangential flow at the mid point of each element together with the 

Kutta condition of equal pressures at the mid points of the two elements 

either side of the trailing edge. 

Extensions of the A.M.O. Smith technique to two dimensional 

unsteady aerofoi; problems are described by Giesing (43) . For a completely 

general unsteady motion of a two dimensional aerofoil starting at time 

t = 0 Giesing (4) developed a numerical technique in which the flow 

characteristics are determined at successive time increments, the non- 

linear rolled up wake pattern then evolves naturally in the solution. 

For many practical problems, for example those associated with flutter 

and response to turbulence, interest is limited to an aerofoil 

oscillating at a small amplitude in simple harmonic motion; Giesingt5) 

developed a simplified numerical procedure for such oscillatory motions. 
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Analytical solutions for two dimensional osci 1 lating aerofoils 

have been developed by Kissner and Von Gorup (6) , Van de Vooren and 

Van de Velt7) and Hewson-Browne(8) - all based on transformation techniques. 

Although these solutions have a limited practical application because of 

their restriction to particular aerofoil geometries such solutions are 

valuable as standard results for comparison with results from more 

approximate numerical methods. The solution by Van de Vooren and 

Van de VelC7) is particularly useful because it gives detailed pressure 

distributions while the other two (6 98) give only the overall force and 

moment coefficients. 

In this paper a numerical technique is developed for a two 

dimensional aerofoil performing harmonic variations about an arbitrary 

mean incidence, but limited to small amplitudes of perturbation, The 

method is similar in principle to that of Giesing (5) but some modifications 

have been introduced. The main modification is the application of a 

different Kutta condition. 

In the present method incremental oscillatory source and vortex 

distributions are superimposed on the steady source and vortex distributions 

on elements distributed over the mean steady profile,and an oscillatory 

vortex distribution, representing the shed vorticity due to the rate of 

change of circulation, is placed on the mean streamline from the trailing 

edge. It is further assumed that the shed trailing vortex sheet is 

convected downstream with the free stream velocity. The unsteady boundary 

conditions are satisfied on the mean profile. It is anticipated that 

these approximations, which introduce considerable simplification to the 

numerical work, will be reasonable for small amplitudes of oscillation. 

The formulation of the trailing edge Kutta condition in two 

dimensional unsteady flow presents some difficulty. If a Kutta condition 

is stipulated as the condition that the flow separates from the trailing 
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edge, which is implied when the total tangential velocities in the 

downstream direction on the upper and lower surface at the trailing 

edge are finite, then it follows from the unsteady Bernoulli equation 

that in general there is a discontinuity in pressure at the trailing 

edge of the aerofoil. If on the other hand a Kutta condition is 

stipulated as the condition of zero loading at the trailing edge then 

it does not follow that the flow will necessarily separate at the trailing 

edge. Exactly what happens in physical reality is not yet clear but 

until further evidence is forthcoming it has been suggested (9) that in 

general two Kutta conditions are necessary to obtain results which 

represent the physical flow for unsteady aerofoil motions, namely that 

the flow must separate from the trailing edge and that the loading at 

the trailing edge must be zero. 

In the formulation of the unsteady theory which is linearised in 

the amplitude of perturbation, the velocity of convection of the shed 

vorticity needs to be assumed, in the present paper the velocity of 

convection is taken to be the free stream velocity. Thus to find a 

unique value of the aerofoil circulation, r, at any time t, one Kutta 

condition at the trailing edge is sufficient. Giesing(') applied the 

condition of flow separation at the trailing edge by equating the tangential 

velocities on the upper and lower surfaces close to the trailing edge in 

the downstream directions, without reference to the zero load condition. 

In this paper the velocity condition at the trailing edge is not used, 

instead the Kutta'condition is taken to be equality of the pressures on 

the upper and lower surface in the neighbourhood of the trailing edge. 

In the analytic solution of Van de Vooren and Van de Vel (7) the 

Kutta condition is a hybrid ‘one; the Kutta condition is stipulated in 

the transformed circle plane and the point on the circle corresponding 

to the trailing edge in the physical plane is made a stagnation point. 

This Kutta condition satisfies zero loading and smooth flow at the 
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trailing edge only when the trailing edge is a cusp. For a non-zero 

trailing edge angle this Kutta condition gives an infinite velocity 

associated with a weak singularity, together with a small finite loading 

at the trailing edge, 

The numerical method described in this paper has been applied to 

the particular symmetrical aerofoil studied by Van de Vooren and Van de 

Velc7) undergoing pitching oscillations. The numerical results for the 

in-phase and out-of-phase pressure distributions apree well with the 

analytic solution of Van de Vooren and Van de Val. 

Numerical results have been obtained for a symmetrical and an 

8.6% cambered Barman-Trefftz aerofoil pitching about the mid chord at 

mean angles of O" and 10' incidences. Comoarison of the present method 

Gth linearised theory shows some differences in pressure distributions, 

and in the lift and moment coefficients. Mean angle of incidence can 

affect the lift and moment coefficients. Camber has little effect on the 

lift and moment coefficients when the mean angle of incidence is O" but 

a more substantial effect when the mean angle of incidence is loo. 

An 8.4% thick symmetrical Von Mises aerofoil has been investigated 

for heaving oscillations at O" mean incidence. Comnarison with linearised 

theory shows that linearised theory overestimates somewhat the lift and 

moment coefficients, both in- and out-of-phase components, for all values 

of frequency parameter. 

The present method has also been applied to the case of an aerofoil 

proceeding through a sinusoidal vertical gust. The particular aerofoil 

is an 8.4% thick symmetrical Von Mises aerofoil. Conoarison with 

linearised theory shows that, for values of frequency Parameter up to about 

unity, the difference between the linearised solution and the solution of 

the present method is small. For freauency parameters greater than unity 
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the difference is still small for the out-of-phase components of the 

lift and moment coefficients, but the difference increases progressively 

with the frequency parameter for the in-phase components of these 

coefficients. 

The aerodynamic characteristics induced by a control surface 

oscillating about its hinge line have been calculated for a symmetrical 

and a cambered (8.6%) Karman-Trefftz aerofoil section with a control 

surface of 30% chord. The difference in the lift and moment coefficients, 

both in- and out-of-phase components, compared with results from linearised 

theory, can be significant but the difference in the in-phase component 

of the hinge moment coefficient is especially large. Aerofoil mean 

incidence does not seriously affect the lift and moment coefficients, 

both in- and out-of-phase components, or the out-of-phase component of 

the hinge moment coefficients although there is some difference on the 

in-phase hinge moment coefficients. Camber affects slightly the lift, 

moment and hinge moment coefficients, the effect is especially noticeable 

for the in-phase components of the hinge moments. There appears to be 

no effect of mean control surface angle. 

2. MATHEMATICAL FORMULATION FOR PITCHING OSCILLATION 

The problem is to determine the pressure distribution, total force 

and moment on an aerofoil oscillating in a steady incompressible inviscid 

flow as shown in Fig. 1. 

Cartesian co-ordinates (x,z) are taken with the origin coinciding 

with the point about which the aerofoil oscillates in simple harmonic 

motion. It is assumed that the axis of oscillation lies on the chord 

line. The free stream velocity Uoo is inclined at the angle of incidence 

of a to the Ox axis as shown in Fig. 1. 

The equation of the steady aerofoil profile relative to the 

axis system is denoted by 
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z = Ts 0) On upper surface 
U 

1 

= Ts lx) I On lower surface . 
R 

In the case of a symmetrical profile 

5, (xl = - 5p . 
U 

(2) 

The simple harmonic motion of the aerofoil to be superimposed on 

the steady profile, given by eqn. (l), is denoted by 

8=t30e'wt , (3) 

where w  is the frequency and no is the amplitude of oscillation. 

Since the flow exterior to the aerofoil and wake is irrotational 

the total perturbation velocity components u and w  are derived from a 

perturbation velocity potential 4 such that 

W A.9 
a2 l 

Substitution of eqn. (4) into the equation of continuity gives 

a+* = 0 
a? az2 g 

(4) 

(5) 

The equations of motion can be expressed in terms of the unsteady 

Bernoulli equation namely 

p + ~p[(u~coscX + u)' + (Ucosina + w)'] + &$ = constant , (6) 

The Laplace equation (5) and Bernoulli equation (6) are the basic 

equations governing the fluid motion and pressure respectively, 

The unsteady aerofoil motion will induce an oscillatory 

circulation around the aerofoil. In order to preserve the overall 

conservation of vorticity any change in circulation around the aerofoil 

must cause vorticity to be shed and convected into the wake, 
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2.1 BOUNDARY CONDITION 

If us and ws are the steady perturbation velocity components 

on the aerofoil surface the steady boundary condition of tangency of 

flow can be written 

(Umsincx + ws) = (Ucocos~ 4 u,)ci(x) on upper surface 
l.l 

= (Ucocos~ + us)<:(x) on lower surface I , 
n 
x 

where the dash denotes differentiation with respect to x. 

Normalising eqn. (7) with respect to U, then 

(sina + Ws) = (cosa + Us) ~5 (x) on upper surface 
U 

= (coso + is) 51 (x) on lower surface 
R i 

, 

(7) 

(8) 

where is and ws are the normalised perturbation velocity components. 

When the aerofoil oscillates in simple harmonic motion the 

point (X,Z) on the aerofoil at any instant t, defined in terms of fixed 

axes, may be defined as 

X = xs + cs (xs)eoeiwt on upper surface 
U 1 

= xs + s (xs)eoeiwt on lower surface 
R 

I (9) 
Z = ss (x,) - x,e,e 

iwt 
on upper surface 

U 

= <s (x,) - xSeoeiwt on lower surface J , 
R 

where B. is assumed to be small, and xs, cs refer to a point on the mean 

profile. 

The boundary condition for the oscillating aerofoil can be 

written as 

Uoosina t w  - Z/at az/ axs 

UmcOsa t u - axjat = ")tSonst = 3X/8x ' 
S 

where u and w  are the total perturbation velocities at the surface of 

(10) 

the aerofoil relative to still air, and aZ/at and aX/at are the surface 
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velocities in the z and x directions respectively. Thus at any 

point on the aerofoil surface the ratio of the total velocities in 

the z and x directions relative to the aerofoil surface is equal to 

the instantaneous slope at that point. 

The boundary condition eqn. (10) should strictly be applied 

on the moving aerofoil surface (X,Z), however, for the present calculations, 

this boundary condition is applied on the stationary mean aerofoil surface, 

(x >* s' 5s 
It isxanticipated that the errors will be small for small 

amplitudes eo. 

It is now assumed that the response variables will be composed 

of an oscillatory solution superimposed on the basic steady solution. 

The effect of any higher harmonics is neglected because it is expected 

that the magnitude of these higher harmonics will be small. Thus 

U = us + uoeiWt , 

w  = ws t woei Wt , 

C$ = +s + $oeiwt . 

From eqns. (9), (10) and (11) the following relations are obtained 

for the upper surface 

sincl t W s = (cosa t is) 5; (X) , (12) 
U 

and 

w 
0 

- i. i; (X) = 

U 

- F+COS~ + Us) + (sina + KS) tl (3 

U 

+ iv(i + ts (X) tl (;))I , (13) 
U U 

where iis, ijs, ii o, Go are normalised perturbation velocities, k(= $) , 

csu(= cs /c) are non dimensional co-ordinates, and v is the non dimensional 

frequent; parameter (wc/U~). 

Similar relations can be written down for the lower surface. 
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Eqn. (12) is the steady boundary condition while eqn. (13) 

may be considered as the incremental unsteady boundary conditions 

relating i. and wo. It can be seen that the boundary condition for 

i. and wo,eqn. (15), involves the steady distributions iis and is. 

When the frequency of oscillation tends to zero the boundary 

condition eqn. (15) becomes 

w 
0 

-ii o tp = - eo~(cosa + is) + (sina + Ws) Fi (X)1 . 
U 

(14) 

Eqn. (16) may be regarded as the approximate boundary condition for 

the incremental problem of a steady aerofoil when the incidence is 

increased from as to (os + 8,). The exact steady state solution at 

4 
+ Bo) can be obtained by satisfying the exact boundary condition. 

A comparison of these two steady solutions has shown that the error in 

the approximate method, using eqn. (14), is of the order of 0.5% for a 

symmetrical aerofoil with B. up to 5'. It is, therefore, anticipated 

that the present numerical method is sufficiently accurate for amplitudes 

of oscillation of up to 5O. 

2.2 MAKE FLOW 

According to Kelvin's circulation theorem the total circulation 

around a circuit in irrotational flow must be zero. Thus any change in 

circulation around the aerofoil must show up as shed vorticity in the 

wake. When the aerofoil oscillates the unsteady component of the 

circulation around the aerofoil roe 
iwt 

changes with time. Hence an 

oscillating aerofoil must always shed vorticity in the wake. It is 

assumed that this shed vorticity is convected along the steady trailing 

streamline as shown in Fig. 2; this approximation is consistent with 

a theory which is linearised in amplitude of oscillation, 

In the present approach it is also assumed that the vortex sheet 

is convected with the flow at the free stream velocity. This assumption 

is expected to be reasonable for most of the wake with the possible 
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exception of a small region just aft of the trailing edge. It is 

anticipated however that this approximation, which simplifies the 

analysis considerably, will not have a major effect on the final 

result. 

The vorticity in the wake can be expressed in terms of the 

unsteady component of the aerofoil circulation; the analysis of which 

is presented for a symmetrical aerofoil oscillating about a mean 

incidence of O" (Fig.3). The wake vortex element shed from the trailing 

edge during any small time interval 6t has a circulation equal and 

opposite to the corresponding change of aerofoil circulation, therefore 

just aft of the trailing edge the strength of the shed vorticity, 

Yw(xT,t)6x = - s 6t. (15) 

Assuming that the shed vorticity is moving with mean velocity Uoo, 

then 

thus 

U,Y,(XT”t) = -  $ l (16) 

The vortex element at a general point x of the wake at time t was shed 

at an earlier time (t - x/Uco), assuming that the wake vorticity is 

convected at the uniform velocity UC,, thus 

[x-x,l 
Ywlx, t + U 1 = Yw(xT' t> . (17) 

00 

Since all variables are assumed proportional to elwt, eqn. (16) becomes 

umv, we 
iw(t+[x-xTl/uco) = - iwroeiWt , (18) 

0 

where 

y,(O) = y, (x)eiwt , 
0 
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so 

Y, 
iVro {-iv(X-XT)} 

(x> = - -y-- e . 
0 

(1% 

The extension of the above analysis to the case of an aerofoil 

oscillating about a mean incidence is straightforward where (x-xT) is 

interpreted as the distance of a general point from the trailing edge 

measured along the appropriate mean streamline from the trailing edge. 

Again it is assumed that the vorticity is convected with constant 

velocity equal to Uco. 

2.3 KUTTA CONDITION 

In order to find a unique value of the aerofoil circulation, 

I', a single Kutta condition at the trailing edge has to be applied. 

As discussed previously the Kutta condition for the present theory is 

taken to be equal pressure on the upper and lower surface at the trailing 

edge, that is the zero loading condition. It follows from the unsteady 

Bernoulli equation that 

{$[(cosa + i + ioe 
iwt 2 

S 
) + (sina + Ws + woe i&)2] 

+ 
iwmoeiWt 

"a' 

1 upper surface trailing edge 

=I[$ (coso + u 
S 

+ iioeiwt)2 + (sina + Ws + woe 
iut121 

iw+oe 
iwt. 

+ 

"m2 

) lower surface trailing edge o 
(20) 

Equating terms independent of time gives the steady state condition 

'(cosa + 's)'+ (sina + Ws)2'upper surface trailing edge 

= {(cosa + is)2 + (sincl + W,)'} 
lower surface trailing edge 

(21) 



- 12 - 

Equating terms in e 
iwt gives the fundamental boundary condition 

{(cosa + is)io + (sina + Ws)ijo + i~$o/Uool 
upper surface trailing edge 

= ‘(COS’ ’ ‘s)‘o + (sina + ‘s)‘o ’ iv~o’U~‘lower surface trailing edge 
. 

Higher harmonics are neglected, as explained previously. 

2.4 PRESSURE DISTRIBUTIONS, FORCES AND MOMENTS 

The pressure relation in an incompressible time dependent 

fluid motion is derived from the unsteady Bernoulli equation, eqn. (6) 

which gives 

P - P, 
Cp = fpu2 

-l-~.L.?k 
- u2 u2 at ’ 

co Co 03 

where 

92 ( cosa + Ir, t ioeiwt)' +(sincL+Ws +woe 
iwt 2 

c 

) . 

By definition 

cp = cps + cpoe 

iwt 
, cp = as + $oeiwt , 

hence, the unsteady pressure coefficient becomes 

- 2 io(cos~ t Us) - 2 Go(sina + Ws) - 
2iveo 

cPo = ll,C* 

The force and moment coefficients are obtained by direct 

integration of the pressure distribution given by eqn. (24). 

(23) 

(24) 

3. TRANSLATIONAL OSCILLATION 

The numerical method described for the pitching oscillation 

problem can be adapted for the translational (heaving) oscillation 

problem by modifying the surface boundary condition. 
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The simple harmonic translational motion of the aerofoil to 

be superimposed on the steady profile, given by eqn. (l), is denoted 

by, 

h = hoeiWt . 

The point (X,Z) on the aerofoil at any time t defined in terms of fixed 

(25) 

axes (Fig. 4), may be written as 

x=xs , on upper and lower surface 9 

+ h 
1 

z=3s o 
,iwt on upper surface , 

: 

U 

= 
TS 

+ h eiwt on lower surface . 
R O I 

From the eqns. (10) and (26), the boundary conditions for the trans 

(26) 

lational 

motion become, 

sincl+GjS =: (cosa + 93; (x) 
U 

(27) 

and 
h 

w  
0 

- ii0 351 (X) = i -- = iv ii0 . 
U 

u", co 

Similar relations can be written down for the lower surface. 

(28) 

Eqn. (27) is the steady boundary condition while eqn. (28) may 

be considered as the incremental unsteady boundary condition relating 

; and w  
0 0’ 

4. SINUSOIDAL GUST RESPONSE 

The problem of an aerofoil passing through a sinusoidal vertical 

gust can be treated by the present technique. 

For a stationary wave of wavelength X Fig. 5(a), the vertical 

gust velocity relative to aerofoil can be written as 

=w ' if2 (x 
wg go s'n x 

- IQ) (29) 
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or more conveniently this can be written 

=w e 

-i ~ j; i ‘~“03 t 
ws 9, x e x 

=w e 

g0 

-ivX ,if.& 
, 

where 
2TlJco 

w=- 
x 

and 

For a travelling wave of velocity V as shown in Fig. 5(b), the 

vertical gust velocity relative to the aerofoil can be written in a 

similar manner 

- 
=w e 

wg 54, 

-l-X- 1 27r - 
x (“, + w 

I 

=w e 

90 

-ivj; eiwt 
, 

where 
21T(Uco + V) 

w= 
x 

and 

(30) 

(31) 

(32) 

(33) 

v-e J . 
Thus, a travelling gust may be thought of as a stationary gust having a 

modified frequency parameter. In the present investigation only results 

for the stationary gust have been derived. 

The boundary condition in this case can be derived from eqn. (10) 

as follows:- 
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i 

Ucosina + ws + woe 
iwt 

+w e 
-ivxeiwt 

go 

I 
Uoocos~~ + us t uoelwt 

1 

= r,' (x) upper surface , 
%I 

(34) 

J 
= 5' (x) lower surface . 

jR 

Using the normalised velocity components the following relations are 

obtained for the upper surface 

sina + Ws = i; ; (x)(cosa + Us), (35) 
U 

w 
0 

- ion," = -W e 
-ivX 

so l 

(36) 

U 

Similar relations can be written for the lower surface. Again, eqn. (35) 

is the steady state boundary condition and eqn. (36) may be considered as 

the incremental unsteady boundary condition relating i. and wo. 

5. CONTROL SURFACE OSCILLATION 

When a control surface oscillates about its hinge (Fig. 6) the 

unsteady boundary condition formulated in eqn. (10) is applied on the part 

of the surface defining the control surface. On the remaining stationary 

surface ahead of the oscillating control surface the modified boundary 

condition should then read, 

Uoosina t ws + woe 
iwt 

Ucocosa + us + uoe 
1wt 

= s; (xl , on upper surface, 
U 

= 5’ (x) , 

Sk 
on lower surface. 

Using a normalised velocity the following relations are obtained for 

(37) 

the upper surface; on the stationary aerofoil ahead of the control surface 

w 
0 

- lo $’ (X) = 0 , 

U 

and on the oscillating control surface 

w 
0 

- Go 5,' (i) = 
U 

- 60{(cosa + is) + (sina + Ws) 5,1 (;i) 
U 

t iv(X, + f, (i) 5,1 (X)1. 
U U 

(3% 

Similar relations can be written down for the lower surface. 
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6. METHOD OF SOLUTION 

The potential flow problem formulated above is solved by 

superimposing the fields of a distribution of sources and vorticity 

situated on the mean aerofoil surface in a uniform stream. The 

strengths of the distributions are adjusted in such a way that the 

resulting velocity field satisfies the prescribed boundary conditions 

and the trailing edge Kutta condition. The numerical procedure is 

similar to the one used in solving the steady problem (We 

The continuous steady (mean) aerofoil surface is approximated 

by N straight elements as shown in Fig. (7). The numbering of the 

elements starts at the trailing edge on the lower surface and proceeds 

around the aerofoil surface in the clockwise sense. 
. 

A uniform source distribution of strength (us + o. elwt) is 

placed on the ith 
i i 

element together with a uniform vorticity distribution 

hs + Y,e 

iwt 
> l The strengths os , o. vary from element to element 

i i 
but Y,a Yt, are taken to be the same for all elements on the aerofoil 

profile. It is to be noted that u. 
i 

and y, are complex with inphase 

and out-of-phase components. 

Because the wake extends to infinity downstream the vorticity 

in the wake cannot be represented by a finite number of elements. It 

is assumed here that only the first chord length of the wake behind the 

trailing edge need be represented by finite elements. The effect of 

the remainder of the wake is calculated analytically by making the 

assumption that only downwash is induced at the aerofoil by this far wake. 

For one chord behind the aerofoil a number (M) of straight line elements 

are taken similar to those on aerofoil profile and the uniform vortex 

strength of each of these wake elements is taken to be the vorticity 

strength at the centre of each element, as given by eqn. (19), thus 
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id? 

I 1 

'VW ' = - --$ exp{-iv(ik - XT)) . (40) 
0 

k 

Defining as , 
i 

Go 
i 

(= A), and ;s, r,(= $-) normalised with respect 
a, 

to c and Uco, the normalised pirturbation velocities due to the distribution 

of sources and vorticity can be expressed in the form 

N N N N 
; = c A.. ;;m + 7. C B.. , ii 0 

i=l J’ Oj oi 
tyo c B.. 

i=l J' -s . 
J 

ii1 J’ Si ” 

N N N N 
w 

2 

= c B.. a, - ys c A.. , Go = c B.. z. - v. C A.. 
i=l J' i i=l J’ j i=l J’ i i=l J’ 

’ (41) 

, 

where is., u is Go are the perturbation velocities at the centre 
J Oj' j’ j 

point of the jth element induced by the distribution of unit sources and 

vorticity on the aerofoil and A.., B.. 
Jl Jl 

are the appropriate influence 

coefficients as derived in Appendix I. These coefficients A.., Bji 
J’ 

depend only on the co-ordinates of the 
.th .th 
1 and J elements. 

The contribution to the velocity components due to the first chord 

length of the wake behind the trailing edge can be expressed in the form 

ii 
Oj 

= ;B (y ) = 
M 

kEl jk '0 k 
- ivy0 (A/c) C B. 

kc, Jk 
e 

-iv('i, - xT) , 

(42) 
M 

w  =- 

Oj 
c A. (y ) = i"yo (A/c) ! A eeiv('k 

k=, Jk '0 k k=l jk 
- 'T) , 

N N 
where A is the total aerofoil perimeter ( = c (elemental lengths)) = Z,Ai) 

i=l 

and where the influence coefficients A.. and B.. are the same as those 

in eqns. (41). 

1J 1J 

The remainder of the wake aft of one chord behind the trailing 

edge is retained as a continuous distribution of vorticity and it is 

assumed to lie in the free stream direction; furthermore it is assumed 

that the velocity field due to this far wake is a downwash field only. 

This assumption is valid for a symmetrical aerofoil oscillating about 

zero degree incidence and it is believed that this assumption is 
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reasonable for a general aerofoil oscillating about a small mean angle 

of incidence. The downwash field due to this far wake is derived in 

Appendix II and is given as 

w  
-iv(xj-XT) 

Oj 
{'i ['(l - (‘j-XT) >I (43) 

-i(si[V(l - (nj-:,))I - ;,> ' 

where 

si(c) = - i”lj;” dX + $ , 

% 
are standard tabulated functions. 

The steady state solution for is, is, cps is obtained by satisfying 

the steady state boundary condition, eqn. (12), along with the Kutta 

condition, eqn. (21), as applied in the steady state. The procedure, 

which is standard, is outlined in more detail in reference 10. 

The unsteady problem is solved by satisfying the appropriate 

unsteady boundary condition, eqns. (13)(or (28) or (36) or (38),(39)), along 

with the Kutta condition, Eqn. (22). In setting up the Kutta condition the 

value of the difference in unsteady component of the perturbation velocity 

potential, $,, is required at the trailing edge. This difference is the 

circulation To around the aerofoil and the Kutta condition eqn. (22) can be 

written in terms of ro(=A yo) instead of $o. Thus (N+l) linear simultaneous 

equations can be set up using eqns. (131, (22), (41), (42) and (43). 

These simultaneous complex equations are solved for a 

successive orthogonalization technique. 
Oi 

and F. by a 

Once the source and vorticity strengths have been determined 

then the velocity distribution on the aerofoil surface is known from 
E 

eqns. (43). However for the calculation of the unsteady pressure 

coefficient, c po, the velocity potential $. is also required over the 

surface. 
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The velocity potential due to the source distribution is simple 

and straightforward and can be easily written down in terms of the 

source strengths. The perturbation potential at the mid point of the 

jth 
element due to the source distribution oo. can be written as 

J 

(b. = 
j 

!Ln[(Ai/2 - Xji)2 + zj;] 

+ 

(Ai/ + ‘ji) 

\ 
JQJ[(Ai/Z + Xji)2 + zjs] - Ai 

-1 
+ Zji [tan ( 

Ai/' - Xji 

'ji 
) + tan 

-1 '-i I2 + 'ji I 
( 

'ji 4 

. 
(44) 

The mathematical derivation is given in Appendix III, together with the 

notation. 

The perturbation potential due to the vorticity distribution 

'I presents some difficulty. An expression similar to that due to the 

source distribution given by eqn. (44) cannot easily be derived. The 

difficulty is associated with the cut necessary to ensure that $I is single 

valued. In this case the cut has to be taken to coincide with the 

aerofoil surface and the wake. A complete analysis of this procedure 

(5) is given by Giesing . The procedure is complicated and in the present 

method a simplified approach is adopted. 

. 
Since 

d@ = udx + wdz 

and since the velocities (u,w) are already computed in terms of o, y 

and influence coefficients,then @ can be calculated by integrating the 

velocities around the surface from the nose of the aerofoil. Thus, the 

.th 
perturbation potential at the J mid point due to the circulatory flow 

field is given by 
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Ai COSei + Wo’ Ai Sif16i} + Uo’ $- 
A. 

cosej -I- w  ’ J sine 
i j 

Oj 2 j 

on the upper surface, and 
(45) 

N/2 
$J~ = C (Uo’ hi COSei t Wo’ Ai Sinei} t Uo’ 2 COSej t Wo’ 2 sine. 

i=j-1 i i j j 
J 

on the lower surface,where u ' and w  ' 
Oi 

o are the velocity components due 
i 

to the vorticity distribution only. The perturbation velocity potential 

arbitrary constant. This 

but not for the evaluation 

symmetrical aerofoil oscil 

with mean incidence and/or 

of the entire flow field is the sum of eqns. (44) and (45) plus a possible 

constant,which is only required for the pressures 

for a 

ils 

of force and moment coefficients,is zero 

lating about zero incidence. For aerofo 

camber this constant can be evaluated by 

irculatory flow 

is found to be 

integrating the upstream velocity field due to the c 

a suitable line up to the leading edge, the constant 

along 

very 

small for all the aerofoils considered in this paper . 

The overall force and moment coefficients are obtained by numerical 

integration: 

cx = 6, cp 
Oi 

hi sinei)elot S 

N 
Cz=(C c 

i=l poi 
7ii cOsei )elwt , 

N 
C,=(C c 

0 i=l po 
ai [- Xi COSei - zi sineil)e 

iwt 
. 

i 
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A programme has been developed in FORTRAN IV which solves the 

sets of simultaneous real and complex equations directly by the 

successive orthogonalization method. The programme in its present form 

requires a core size of 87 K on the I.C.L. 1904 S, including system and 

programme,for up to 180 elements on the aerofoil surface and 30 elements 

on the wake. The computer time increases rapidly with the increase of 

number of aerofoil elements. The determination of optimum number of 

elements for a specified accuracy for oscillating aerofoil problems has 

not been completely pursued. The number of elements chosen for the 

numerical solutions presented in this paper is based on the experience 

gained for steady aerofoil problems. 

For a clean steady aerofoil (without deflected control surfaces) 

it has been found that a relatively small number of elements (about 50) 

gives adequate accuracy. However, for an aerofoil fitted with a control 

surface it is found that a large number of elements is needed particularly 

on the control surface. It has been observed that increased accuracy 

beyond a certain number of elements is not very significant. For example, 

it has been found that for an aerofoil with 30% control surface chord 130 

elements (50 on the aerofoil + 80 on control surface) give steady hinge 

moment coefficients within 3% of results obtained using 250 elements 

(120 + 130). Similar trends have been observed for limited numerical 

studies of the oscillating aerofoil problems. 

In the presented results a small number of elements (usually 

about 50) have been used for aerofoils without any control surfaces 

(Figs. 11 - 21), and 132 elements have been used for oscillating control 

surfaces (Figs. 21 - 24). 
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7. RESULTS AND DISCUSSIONS 

To check its accuracy the present method has been applied to 

the aerofoil shape studied by Van de Vooren and Van de Vel (7). The 

aerofoil shape, given in reference 7, is repeated here for convenience, 

i0 ( . 1.9 
X -C+iz= ae -a) . a 

2 
( ae 

18 
- = ; (.+q"*g. 

- 0.05a)"*0g ' ' 

The aerofoil is symmetrical with a trailing edge angle 18O. The 

maximum thickness of this profile is about 14.4% and lies at a distance 

of 30.8% of the chord behind the leading edge. The unsteady pressure 

distribution has been evaluated for the aerofoil oscillating in simple 

harmonic motion about the mid chord position. The frequency parameter 

of the oscillation is 0.8 and the mean angle of incidence is zero. 

A comparison of the numerical results derived by the present 

method with the analytic solution is shown in Fig. 10. The comparison 

shows clearly that the unsteady pressure distribution both in-phase and 

out-of-phase agree well with the analytic solution. There appears to 

be a small difference in the pressure coefficient between the present 

method and the analytic solution for a few points near the leading edge. 

This difference may be due to the inaccurate plotting of the analytic 

solution which has been reproduced by reading off the points from Fig. 2 

of reference 7. It is also possible that the number of elements 

considered near the leading edge of the aerofoil is not sufficient for 

the desired accuracy. 

Linearised theory result has been plotted in Fig. 10 to show 

the difference between linearised and non-linear theory. It can be seen 

that linearised theory underestimates the pressure in certain regions and 

overestimates in other regions. 

Figs. 11, 12(a) and 12(b) give the oscillating pressure 

distributions as calculated by the present numerical method for frequency 

a 
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parameters of 0, 0.5, and 1.0, for the de Vooren and de Vel aerofoil 

at two mean incidences. Fig. 11 gives the pressure distribution for 

a mean angle of incidence of O". Figs. 12(a) and 12(b) give the 

pressure distribution when mean angle of incidence is loo; in Fig. 12(b) 

the scale of cp has been reduced to show the behaviour of the pressure 

near the peak suction. These graphs indicate that the pressure 

distribution for different frequency parameters is similar in nature. 

They also show that the in-phase pressure distribution has a converging 

tendency with increasing frequency parameter, this tendency is confirmed 

later when overall lift and moment coefficients are shown. 

The present method has been applied to two Karman-Trefftz aerofoil 

sections, one symmetric, the other cambered with 8.6% camber, 

oscillating about the mid chord position at the mean angles of incidence 

of O" and loo. Both of these aerofoils have the same trailing edge angle 

of loo and thickness/chord ratio approximately 13%. The lift and 

moment coefficients of these aerofoils at the mean angles of incidence of 

O" and loo are plotted in Figs. 13 and 14. The moment coefficient C,,,, 

is taken about the axis of rotation which is situated at the half chord 

position. The effect of mean angle of incidence on lift and moment 

coefficients is seen to be significant for the cambered aerofoil. 

Linearised theory results are also plotted in the same diagrams to 

illustrate the non-linear effects; there are differences especially 

in the in-phase components of both CL and C,,,, at lower frequency parameters. 

To see the effects of camber more clearly the lift and moment coefficients 

of these two aerofoils at the same mean angle of incidence are plotted 

in Figs. 15(a) and 15(b). Again it can be seen from these graphs that 

the combination of mean incidence and camber can lead to a significant 

difference in the in-phase components of CL and CH. 
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The results of the 8.4% thick symmetrical Von Mises aerofoil 

performing a simple harmonic heaving oscillation at O" incidence are 

plotted in Figs. 16 and 17. Fig. 16 gives the pressure distribution 

at different frequency parameters and Fig. 17 gives the overall lift 

and moment coefficients along with the linearised theory results. 

The thickness effect is usually small for small values of frequency 

parameter but for large values of frequency parameter the thickness 

effect changes the values of lift and moment coefficients by about 5 - 10%. 

The results of the 8.4% thick syrrunetrical Von Mises aerofoil 

passing through a sinusoidal (vertical) gust are plotted in Figs. 18 and 

19. Fig. 18 shows the pressure difference at various frequency parameters. 

Fig. 19 shows the overall lift and moment coefficients along with the 

linearised theory results. It is seen that for smaller values of frequency 

p,arameter (up to about v = 1) the difference between the linearised solution 

and the solution of the present method is small, however beyond the value 

of v = 1 the difference is still small for the out-of-phase components of 

the lift and moment coefficients, but the difference seems to increase 

progressively with v for the in-phase component of these coefficients. 

The difference in the in-phase component of the lift is about 20% when 

v = 2. The percentage,difference in the pitching moment about the quarter 

chord point is perhaps not a fair comparison because the linearised pitching 

moment is zero for all values of v. A better comparison would be to 

consider the shift of the centre of pressure. According to linearised 

theory the lift always acts at the quarter chord point while the present 

theory shows a forward shift of the in phase aerodynamic centre with the 

frequency parameter. The shift is of the order of 8% of the chord for 

the range of frequency parameter considered. 

x 
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The present technique has been applied to the case of an 

oscillating control surface on a symmetrical and a cambered (8.6%) 

Karman-Trefftz aerofoil. The control surface chord is taken to be 

30% of the aerofoil chord. The results have been plotted in Figs. 20, 

21, 22 and 23. Fig. 20 gives the pressure distribution at various 

frequency parameters. Fig. 21(a) shows the overall lift and moment 

(about the quarter chord) coefficients while Fig. 21(b) shows the hinge 

moment coefficients for a symmetrical Karman-Trefftz aerofoil, it is 

seen that the in phase hinge moment is significantly affected by 

thickness as indicated by the difference with linearised theory. 

Figs. 22(a) and 22(b) give the similar results for the cambered aerofoil. 

Fig. 23 gives the results for symmetrical Karman-Trefftz aerofoil at 

mean angle of incidence of O" when the control surface oscillates about 

a,mean control surface angle of 5O. 

Mean aerofoil incidence has a little effect for both symmetrical 

and cambered aerofoils. It is noticed that camber has some effect on 

the overall lift, pitching moment and hinge moment coefficients for both 

in- and out-of-phase components; this effect is especially large 

(about 18%) for the in-phase component of the hinge moment coefficient. 

Mean control surface angle does not introduce any measurable changes. 

As deduced from the comparison of linearised and non-linear theory 

thickness effect on the overall lift due to control surface oscillation 

is small for a symmetrical aerofoil but more noticeable for a cambered 

aerofoil. Thickness effect on the moment coefficients for both 

symmetrical and cambered aerofoils are significant. 

The thickness effect on the out-of-phase components of the hinge 

moment coefficient is small for both symmetrical and cambered aerofoils, 

but thickness effects are especially large for the in-phase component of 
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the hinge moments; the in-phase component of C,, is approximately 

80% of the linearised value for symetrical aerofoil and 67% of 

the linearised value for the cambered aerofoil. 

8, CONCLUDING REMARKS 

(a) A method has been developed for the calculation of the pressure 

distribution on an oscillating aerofoil in incompressible flow 

conditions by the extension of the A.M.O. Smith technique. 

Singularity distributions are placed on the steady mean aerofoil 

profile; the oscillatory boundary conditions are satisfied on 

this mean profile. 

(b) It is argued that the appropriate Kutta condition in the present 

aDproach is the condition of zero loading at the trailing edge. 

(c) Satisfactory agreement has been obtained between the present 

numerical approach and an analytic solution for a pitching 

aerofoil (see Fig. 11). 

(d) For a pitching aerofoil there is noticeable difference in the 

pressure distribution between the present method and linearised 

theory (see Fig. 11). Although linearised theory gives the 

correct trends for CL and CM for an aerofoil in oscillatory 

conditions the linearised values of CL and CM can be in error 

by the order of 10% (see Figs. 14, 18, 20). 

(e) The combined effects of mean angle of incidence and the camber 

of a pitching aerofoil can affect CL and CM (see Fig. 16). 

(f) Similar trends occur for a heaving aerofoil and aerofoil passing 

through a sinusoidal gust. 

(g) For an oscillating control surface the most significant result 

is that the in-phase component of the hinge moment coefficient 

is considerably less than the values predicted by linearised 

theory (Figs. 22, 23). 
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A.1 

APPENDIX I 

The Influence Coefficients 

A source distribution between 2 -Lx< a 
T (as shown in Fig. 8(a)) 

with normalised strength o/unit length is considered. 

The velocity components &i and 6 at the point (x, z) due to 

the small element of 

- - - ; 
Gu(x,z) = z 

;r SW(X,Z) = 2;; 

On integration 

source distribution on 65 are 

[&;.l, ;2]f5i 1 

(A.1 > 

(A-3) 

= & tan-'[" tsE~2] - tan-'[' i '/'] = &(g,i,&). 

In equation (A.3) 

- : < tan -1, < IT .-2 

this condition gives the correct velocity distribution, i.e. antisfletric 
w and symmetric ;, about the 'i axis. 



A.2 

As x+O,i++Othen 

while for i -f 0, f -f - 0 

u(O,-0) + 0 

w(O,-0) - f  -  5 l 

(A-4) 

Since elements are at different orientation the problem is 

transformed to a fixed axis system (ii,?) as shown in Fig. 8(b); the 

origin of the (?,z) system is taken at the wing leading edge. 

For the source distribution along a particular aerofoil element 

the normalised velocity components u(x,z) and i(f,f) axes, 

i(i,f) = a{F(x,?,a)cose - G(x,;,a)sine> 

w('i,z) = &F(x,;,a)sine + G(x,;,a)coseI , 
i 

(A.5) 

where 

x = (jj - Xo)cose + (f - Zo)sin9 

w-3 
f=- (ji- jio)sin8 + (2 - lo)cosf3 . 

The influence of element i on the mid point of element j as 

shown in Fig. 8(c) is therefore written in the form 

ii 
ji 

= (Fjicosei - Gji sinei} ai 

= A.. oi 
J’ 

for i +j , 

w 
ji 

= {Fji sinei + Gji COSeiI oi 

= Bji oi for i + j ; 

where 

F 
ji = F("ji,'ji,ii), Gji = G("ji,;ji,"i), 

(A-7) 

(A. 8) 

v-w 
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and where 

i 
ji = ~f(~~j,l+Bjl - [~i+,+Rjl)COSei + ([Zj+jtfjl - [fi+,tfil)sin~i 1 

'I 
; 

ji = of-([jij+l+Xj 1 - [Xi+~tXil)sinB~ + ([~j*ltzjl - [zi+~+~il)cosei’ 
I 

pi = f(Yi i+l-~i)2 + (Si+,-ti)2}t 

(A.10) 

2 4 z -2 
‘OS0i = 

it1 i 
Sinei = 

i+l i 
, . 

ai pi 

In the limiting case 

iiii = {- -'q}+ = Aii ii , 

(A.71) 

Wii = = Bi i ai . 

For a normalised vortex distribution y on an element as shown in 

Fig. 9 the velocity components 6 and & at point (x,2) due to circulation 

around 6i 

(A.12) 

It is seen that equations (A.12) for ; and w  due to 7 are the 

same as & and - S'l due to ii in equations (A.l). Thus without further ado 

the velocities induced by the elements of vorticity may be written 

(A.13) 

; = 
ji - AjiY , 
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APPENDIX II 

The Downwash Field due to the Semi-infinite Wake 

The part of the wake beyond one chord length from the trailing 

edge of the aerofoil is assumed to be in a plane parallel to the free 

stream direction. The downwash field along the chord line due to this 

far wake is assumed to be the same as that due to a wake in the chordal 

plane extending from (l+zT) to 00. 

The downwash at any point x on the chordline due to this wake 

is given by 

NOW 

i(Z,t) = io(i)eiut and yw(x,t) = Tw (ji)elot . 
0 

Therefore, 

1 
VW (i)dt 

- - 
w,00 = z 

0 

t - r ;  l 

Using eqn. (19), 

O” 
W,(X) = - 2 e 

N ii. 
-iv(x-jiT) yo( c $) 

I 

e 
-iX 

- dX ~ 
i=l 

A 

V[l-(ji-xT) 1 

(A.14) 

(A.15) 

(A. 16) 

Thus 

N 
Go(k) = $+ v,( C ii )e 

i=l 
iv(x-x,h(,. [I+-i,)]g 

1 
- i{Si[l-(X-XT)]v-;]l (A.17) 

s 

l 
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APPENDIX III 

The Perturbation Potential due to the Unsteady Flow Field 

The perturbation potential of the unsteady flow field is that 

due to the source and vortex distribution. 

The potential due to a source distribution with normalised 

strength z/unit length along x-axis (Fig. 8(a)) between the limit 

n ;i 
-2 

<Xc is 
2 

I 

z/2 
; 
T !?,n((x - ';)' + z21 dt . 

-n/2 

(A.19) 

If a is constant the potential becomes 

j- IQ.!+-3 Rn((i/z - X)’ + s2} +@!LL$G)gn{(~/2 + j;)’ + t2} - z 
Tr 

WV z 

+;(tan 
-1 L/2 -,j; k--y--) + tan -1 a/2 + x +7--m 0 

.th 
* 

The potential at the mid point of the J element due to the 

source on the i th element, using the notation of eqns. (A.lO), is 

Oi (Ei/Z-iji ) 

I 

(Zi/Z+Xji) 

T--2 
Rn (ni/2-xji)2+f..2} + 7 

Jl 
Rn (Ei/2+Xji)2+~ee2} 

J’ 

- pi + zji{tan 
-1 (~i/Z - X.i) + tan-l tii12 + ‘ji 1) 

(A.21) 

5.. ; 3 

. 

Jl ji 

.th 
The total potential at the J mid point due to the entire source 

distribution is therefore 

$0 
= 2 [$ (ni/2. gn((ai/2 - Xji) + Z ji 

2) 

j i=l 

(ni/Z + Xji ) 
+ .- Rn{(Zj/Z t Xjj)2 t 2j.f) - ni 

t Zji (tan 
-1 ~i/2 - X.. 

( 
-1 ai/ t ;(.. 

;.. 
J')+tan ( z J’)Il . 

31 ji 

t 

(A.22) 
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The perturbation potential due to the vorticity distribution 

X Z 

9, = I uo'dx + 
I 

w; dz 

0 0 

(A.23) 

where u o' and wd are the perturbation potential velocity components 

due to the circulatory flow only. 

.th 
Thus the potential at the J mid point due to the circulatory 

flow field: 

on upper surface 

j-l 
I 2 

-. 
a0 = sine 

j 

c NO 
. 

i 2 
J+l ' 

ii CO$ei + Wo’ ii sinei)+ U. 
i j 

-+- cosej + Wo' 9 

j 
j ; 

(A.24) 

on lower surface 

N/2 ii. ii. 
$. = c (‘Jo 

j 

' ii COSei + Wo' ii sinei) + Uo' i$ cosej + wo' + sinej l 

i=j-J i i j j 
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