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SUMMARY

A numerical method based on the A.M.0. Smith technique has been
developed for the calculation of the two-dimensional potential flow about
an aerofoil of arbitrary shape undergoing small amplitude simple harmonic
motions. Problems considered include aerofoils oscillating in pitch,
aerofoils oscillating in heave, aerofoils in harmonic travelling gusts and
control surface oscillations. Comparison with analytic solutions, where

available, is good.

Significant differences between linear and non-linear theory are

shown especially for the in-phase hinge moment coefficients.

*Replaces ARC.37 204



NOTATION

Xy Z co-ordinates measured along and normal to the chord
line of the aerofoil.
a aerofoil incidence
$ control surface deflection
U, free stream velocity
o density
cp pressure coefficient
c chord length
G = S
toUZ c
Cy = ?‘gnlez*r"}
30U cC
CH - TingezMoment
soUic
r circulation
Y vorticity
U, W perturbation velocity components along x and z axis
o] body surface source strength
w frequency of oscillation
0 velocity potential

v(=wc/U_) frequency parameter

gs(x) steady aerofoil contour

Xy Z non-dimensional co-ordinate relative to the chord
A1 element length

6 angle of pitch

h ordinate of the heaving motion

A.., B.. influence coefficients

J1 J1

C., S. tabulated functions



Subscripts

S steady state condition
0 oscillatory condition
L wake

u upper surface

2 Tower surface

g gust
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1. INTRODUCTION

A.M.0. Smith and his co-workers(]) have developed an 'exact'
numerical method for the solution of the flow characteristics around
a stationary body immersed in a uniform inviscid incompressible stream,
Originally the method was applied to calculate the flow about axi-
symmetric bodies at zero incidence and plane flow about two dimensional
non-1ifting and 1ifting aerofoils. Later the method was extended to
handle cross f]owé about axi-symmetric bodies(z) and subsequently to
deal with three dimensional f]ows(3).

For a steady two dimensional 1ifting aerofoil the basic concept
is to replace the aerofoil surface by a number of straight Tine elements
on which are placed uniform source and vorticity distributions; the
uniform source strength on each element varies from element to element,
but the strength of the uniform vorticity distribution over each element
is the same for all elements. The strengths of the source distributions
and vorticity distributions are determined from the boundary condition
of tangential flow at the mid point of each element together with the
Kutta condition of equal pressures at the mid points of the two elements
either side of the trailing edge.

Extensions of the A.M.0. Smith technique to two dimensional
unsteady aerofoil probiems are described by Giesing(4’5). For a completely
general unsteady motion of a two dimensional aerofoil starting at time
t=0 Giesing(a) developed a numerical technique in which the flow
characteristics are determined at successive time increments, the non-
Tinear rolled up wake pattern theh evolves naturally in the solution.
For many practical problems, for example those associated with flutter
and response to turbulence, interest is limited to an aerofoil
oscillating at a small amplitude in simple harmonic motion; Giesing(5)

developed a simplified numerical procedure for such oscillatory motions.
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Analytical solutions for two dimensional oscillating aerofoils
have been developed by Kussner and Von Gorup(G), Van de Vooren and
Van de Ve1(7) and Hewson-Browne(8) - all based on transformation techniques.
Although these solutions have a limited practical application because of
their restriction to particular aerofoil geometries such solutions are
valuable as standard results for comparison with results from more
approximate numerical methods. The solution by Van de Vooren and
Van de Ve1(7) is particularly useful because it gives detailed pressure

distributions while the other two(6’8)

give only the overall force and
moment coefficients.

In this paper a numerical technique is developed for a two
dimensional aerofoil performing harmonic variations about an arbitrary
mean incidence, but limited to small amplitudes of perturbation. The
method is similar in principle to that of Giesing(S) but some modifications
have been introduced. The main modification is the application of a
different Kutta condition.

In the present method incremental oscillatory source and vortex
distributions are superimposed on the steady source and vortex distributions
on elements distributed over the mean steady profile, and an oscillatory
vortex distribution, representing the shed vorticity due to the rate of
change of circulation, is placed on the mean streamline from the trailing
edge. It is further assumed that the shed trailing vortex sheet is
convected downstream with the free stream velocity. The unsteady boundary
conditions are satisfied on the mean profile. It is anticipated that
these approximations, which introduce considerable simplification to the
numerical work, will be reasonable for small amplitudes of oscillation.

The formulation of the trailing edge Kutta condition in two
dimensional unsteady flow presents some difficulty. If a Kutta condition

is stipulated as the condition that the flow separates from the trailing
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edge, which is implied when the total tangential velocities in the
downstream direction on the upper and lower surface at the trailing
edge are finite, then it follows from the unsteady Bernoulli equation
that in general there is a discontinuity in pressure at the trailing
edge of the aerofoil. If on the other hand a Kutta condition is
stipulated as the condition of zero loading at the trailing edge then
it does not follow that the flow will necessarily separate at the trailing
edge. Exactly what happens in physical reality is not yet clear but
until further evidence is forthcoming it has been suggested(g) that in
general two Kutta conditions are necessary to obtain results which
represent the physical flow for unsteady aerofoil motions, namely that
the flow must separate from the trailing edge and that the loading at
the trailing edge must be zero.

In the formulation of the unsteady theory which is linearised in
the amplitude of perturbation, the velocity of convection of the shed
vorticity needs to be assumed, in the present paper the velocity of
convection is taken to be the free stream velocity. Thus to find a
unique value of the aerofoil circulation, I', at any time t, one Kutta
condition at the trailing edge is sufficient, Giesing(5) applied the
condition of flow separation at the trailing edge by equating the tangential
velocities on the upper and lower surfaces close to the trailing edge in
the downstream directions, without reference to the zero load condition.
In this paper the velocity condition at the trailing edge is not used,
instead the Kutta ‘condition is taken to be equality of the pressures on
the upper and lower surface in the neighbourhood of the trailing edge.

In the analytic solution of Van de Vooren and Van de Ve1(7) the
Kutta condition is a hybrid one; the Kutta condition is stipulated in
the transformed circle plane and the point on the circle corresponding
to the trailing edge in the physical plane is made a stagnation point.

This Kutta condition satisfies zero loading and smooth flow at the
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trailing edge only when the trailing edge is a cusp., For a non-zero
trailinag edge angle this Kutta condition gives an infinite velocity
associated with a weak singularity, together with a small finite loading
at the trailing edge.

The numerical method described in this paper has been applied to
the particular symmetrical aerofoil studied by Van de Vooren and Van de
Ve](7) undergoing pitching oscillations. The numerical results for the
in-phase and out-of-phase pressure distributions aaree well with the
analytic solution of Van de Vooren and Van de Val.

Nurmerical results have been obtained for a symmetrical and an
8.6% cambered Karman-Trefftz aerofoil pitching about the mid chord at
mean angles of 0° and 10° incidences. Comparison of the present method
with linearised theory shows sore differences in pressure distributions,
and in the 1ift and moment coefficients. Mean angle of incidence can
affect the 1ift and moment coefficients. Carmber has little effect on the
1ift and moment coefficients when the mean angle of incidence is 0° but
a more substantial effect when the mean angle of incidence is 10°.

An 8.4% thick symmetrical Von Mises aerofoil has been investigated
for heaving oscillations at 0° mean incidence. Comparison with linearised
theory shows that linearised theory overestimates somewhat the 1ift and
moment coefficients, both in- and out-of-phase components, for all values
of frequency parameter.

The present method has also been applied to the case of an aerofoil
proceeding through a sinusoidal vertical qust. The particular aerofoil
is an 8.4% thick symmetrical Von Mises aerofoil. Comparison with
linearised theory shows that, for values of frequency parameter up to about
unity, the difference between the linearised solution and the solution of

the present method is small. For freauency paranmeters greater than unity
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the difference is still small for the out-of-phase components of the
1ift and moment coefficients, but the difference increases progressively
with the frequency parameter for the in-phase components of these
coefficients.

The aerodynamic characteristics induced by a control surface
oscillating about its hinge 1line have been calculated for a symmetrical
and a cambered (8.6%) Karman-Trefftz aerofoil section with a control
surface of 30% chord. The difference in the 1ift and moment coefficients,
both in- and out-of-phase components, compared with results from linearised
theory, can be significant but the difference in the in-phase component
of the hinge moment coefficient is especially large. Aerofoil mean
incidence does not seriously affect the 1ift and moment coefficients,
both in- and out-of-phase components, or the out-of-phase component of
the hinge moment coefficients although there is some difference on the
in-phase hinge moment coefficients. Camber affects slightly the Tift,
moment and hinge moment coefficients, the effect is especially noticeable
for the in-phase components of the hinge moments. There appears to be

no effect of mean control surface angle.

2. MATHEMATICAL FORMULATION FOR PITCHING OSCILLATION

The problem is to determine the pressure distribution, total force
and moment on an aerofoil oscillating in a steady incompressible inviscid
flow as shown in Fig. 1.

Cartesian co~ordinates (x,z) are taken with the origin coinciding
with the point about which the aerofoil oscillates in simple harmonic
motion. It is assumed that the axis of oscillation lies on the chord
Tine. The free stream velocity U_ is inclined at the angle of incidence
of o to the Ox axis as shown in Fig. 1.

The equation of the steady aerofoil profile relative to the

axis system is denoted by
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z = ¢, (x) On upper surface ]
(1)

=z (x) On Tower surface J

g (X) =- g (x) (2)

The simple harmonic motion of the aerofoil to be superimposed on

the steady profile, given by egn. (1), is denoted by

_ iwt
6 =6 s (3)
where w is the frequency and 60 is the amplitude of oscillation.
Since the flow exterior to the aerofoil and wake is irrotational
the total perturbation velocity components u and w are derived from a

perturbation velocity potential ¢ such that

=
Y=3% >
L3 (4)
9z
Substitution of egn. (4) into the equation of continuity gives
2 2
99,3 _ g, (5)

ox?  3z?
The equations of motion can be expressed irn terms of the unsteady
Bernoulli equation namely

p + 3p[(U_cosa + u)2 + (U sina + w)?] + p%% = constant . (6)

The Laplace equation (5) and Bernoulli equation (6) are the basic
equations governing the fluid motion and pressure respectively.

The unsteady aerofoil motion will induce an oscillatory
circulation around the aerofoil. In order to preserve the overall
conservation of vorticity any change in circulation around the aerofoil

must cause vorticity to be shed and convected into the wake,



2.1 BOUNDARY CONDITION

If Ug and W, are the steady perturbation velocity components

on the aerofoil surface the steady boundary condition of tangency of

flow can be written

(U sina + Ws) (U_cosa + us);;(x) on upper surface
u .
(7

(U_cosa + US)C;(X) on lower surface | ,
2

where the dash dénotes differentiation with respect to x.

Normalising eqn. (7) with respect to U  then

(sino + Qs) (cosa + U_) t. (x) on upper surface
) u
- (8)
(cosa + u_) z! (x) on lower surface R
s/ °s,

where GS and Ws are the normalised perturbation velocity components.
When the aerofoil oscillates in simple harmonic motion the

point (X,Z) on the aerofoil at any instant t, defined in terms of fixed

axes, may be defined as

iwt

X =x + ;Su(xs)eoe on upper surface

t on lower surface

iw
X + Csz(xs)eoe

t

- _ iw
Z= - (Xs) X6, on upper surface

u
iwt

Le (xs) - x.0.e on Tower surface |

2
where eo is assumed to be small, and X s Cs refer to a point on the mean
profile.

The boundary condition for the oscillating aerofoil can be
written as
Usina +w - 3L/ 3t 57 ) BZ/BXS

&ﬁil=const ) aX/axS

, (10)

UwCOSa + u - 3xX/ot

where u and w are the total perturbation velocities at the surface of

the aerofoil relative to still air, and 9Z/3t and 5X/3t are the surface
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velocities in the z and x directions respectively. Thus at any
point on the aerofoil surface the ratio of the total velocities in
the z and x directions relative to the aerofoil surface is equal to
the instantaneous slope at that point.
The boundary condition eqn. (10) should strictly be applied
on the moving aerofoil surface (X,Z), however, for the present calculations,
this boundary condition is applied on the stationary mean aerofoil surface,
(xs, ;S). It is-anticipated that the errors will be small for small
amp1i tudes 60.
It is now assumed that the response variables will be composed
of an oscillatory solution superimposed on the basic steady solution.
The effect of any higher harmonics is neglected because it is expected

that the magnitude of these higher harmonics will be small, Thus

iwt
u=ug +ouge Wb
W= w4 woe1wt , (11)
_ it
¢ - ¢s + ¢oe A4

From egns. (9), (10) and (11) the following relations are obtained

for the upper surface

sina + Ws = (cosa + DS) ;Su(i) , (12)
and
W, - U E;U(R) = - g {(cosa + O ) + (sina + W) E;u(i)
+iv(x + Es (x) E; x) (13)
u u

- - - - . i s = _ X
where Ugs W U, W are normalised perturbation velocities, x(= E) s

Es (= g, /c) are non dimensional co-ordinates, and v is the non dimensional
u u
frequency parameter (wc/U_ ).

Similar relations can be written down for the Tower surface.
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Egn. (12) is the steady boundary condition while egn. (13)
may be considered as the incremental unsteady boundary conditions
relating Go and ﬁo. It can be seen that the boundary condition for
GO and Qo,eqn. (15), involves the steady distributions GS and Qs.

When the frequency of oscillation tends to zero the boundary

condition eqn. (15) becomes

Wy = Uy asu(i) = - 8 {(cosa + U) + (sina + ¥,) Eéu(i)} . (14)

Eqn. (16) may bé\regarded as the approximate boundary condition for

the incremental problem of a steady aerofoil when the incidence is
increased from a, to (as + eo). The exact steady state solution at

(as + 60) can be obtained by satisfying the exact boundary condition.

A comparison of these two steady solutions has shown that the error in
the approximate method, using eqn. (14), is of the order of 0.5% for a
symmetrical aerofoil with 60 up to 5°. It is, therefore, anticipated
that the present numerical method is sufficiently accurate for amplitudes

of oscillation of up to 5°.

2.2 WAKE FLOW

According to Kelvin's circulation theorem the total circulation
around a circuit in irrotational flow must be zero. Thus any change in
circulation around the aerofoil must show up as shed vorticity in the
wake. When the aerofoil oscillates the unsteady component of the
circulation around the aerofoil I‘oemt changes with time. Hence an
oscillating aerofoil must always shed vorticity in the wake. It is
assumed that this shed vorticity is convected along the steady trailing
streamline as shown in Fig. 2; this approximation is consistent with
a theory which is linearised in amplitude of oscillation.

In the present approach it is also assumed that the vortex sheet
is convected with the flow at the free stream velocity. This assumption

is expected to be reasonable for most of the wake with the possible
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exception of a small region just aft of the trailing edge. It is
anticipated however that this approximation, which simplifies the
analysis considerably, will not have a major effect on the final
result.

The vorticity in the wake can be expressed in terms of the
unsteady component of the aerofoil circulation; the analysis of which
is presented for a symmetrical aerofoil oscillating about a mean
incidence of 0° {Fig.3). The wake vortex element shed from the trailing
edge during any small time interval &t has a circulation equal and
opposite to the corresponding change of aerofoil circulation, therefore

just aft of the trailing edge the strength of the shed vorticity,
__ ol
Yy (Xpst)8x = - == 8t. (15)

Assuming that the shed vorticity is moving with mean velocity U,
then

§X = Uo° st
thus

Uy, (Xpst) = - -g-ll . (16)

The vortex element at a general point x of the wake at time t was shed
at an earlier time (t - x/Uw), assuming that the wake vorticity is

convected at the uniform velocity U_, thus

, [x-x;]
YyXs E =) = v, s 1), (a7)
Since all variables are assumed proportional to eiwt, eqn. (16) becomes
nywo(x)eiw(t+[x'xT]/Uw) - 1wPoeiwt , (18)
where
v, (6t) =y, (x)e'¥t
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SO

vl RN
1y 00 = - = e {mivixxp)), (19)

The extension of the above analysis to the case of an aerofoil
oscillating about a mean incidence is straightforward where (x—xT) is
interpreted as the distance of a general point from the trailing edge
measured along the appropriate mean streamline from the trailing edge.

Again it is assumed that the vorticity is convected with constant

velocity equal to U_.

2.3 KUTTA CONDITION

In order to find a unique value of the aerofoil circulation,
T', a single Kutta condition at the trailing edge has to be applied.
As discussed previously the Kutta condition for the present theory is
taken to be equal pressure on the upper and lower surface at the trailing
edge, that is the zero loading condition. It follows from the uns teady

Bernoulli equation that

{3[(cosa + u_ + Goei‘”t)2 + (sing + W, + Woeiwt)z]
iw¢oeiwt
* "—1;3'-"—} upper surface trailing edge
={[} (cosa + DS + aoeiwt)z + (sina + ws + woeiwt)z]
iw¢0e1mt‘
¥ y 2 Tower surface trailing edge (20)

Equating terms independent of time gives the steady state condition

- 2 . - \2
{(cosa + u )"+ (sina + W)™} ohap surface trailing edge

B - 2 . -~ 2
= {(cosa + u )" + (sino + w,) Hower surface trailing edge
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Equating terms in e“‘)t gives the fundamental boundary condition

{(cosa + U Yu_ + (sina + w. )w_+ ived /U }
( s) 0 (sina S) Y <bO/ ® upper surface trailing edge

= {{cosa + U_)u_ + (sina + W_)w_ + i U .
( S) 0 (sina S) 0 v¢0/ oo}]ower surface trailing edge .

(22)
Higher harmonics are neglected, as explained previously.
2.4 PRESSURE DISTRIBUTIONS, FORCES AND MOMENTS
The pressure relation in an incompressible time dependent
fluid motion is derived from the unsteady Bernoulli equation, egn. (6)
which gives
P- P, 2
Cp= 2 =]-S.2'-_2-2-%%’ (23)
where
Q2 _ - - Hqpt,2 . - = _iwt,2
2 (cosa + u. + u,e Y+ (sino + W W oe )y .
By definition
int iwt
c.=c¢c_ + e = + 6 e
D P Cpo s =0 F b s
hence, the unsteady pressure coefficient becomes
_ _ - _ 21v¢0
cpO == 2 uO(COSu + us) -2 wo(s1na + ws) - _TZ;E— . (24)

The force and moment coefficients are obtained by direct

integration of the pressure distribution given by eqn. (24).

3. TRANSLATIONAL OSCILLATION

The numerical method described for the pitching oscillation
problem can be adapted for the translational (heaving) oscillation

problem by modifying the surface boundary condition.
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The simple harmonic translational motion of the aerofoil to
be superimposed on the steady profile, given by eqn. (1), is denoted
by,

h=he't . (25)
The point (X,Z) on the aerofoil at any time % defined in terms of fixed

axes (Fig. 4), may be written as

N

X = Xs s on upper and lower surface,
L= L, * h e'®t on upper surface , § (26)
u
= CS + h ewt on lower surface .
g 0 )

From the eqns. (10) and (26), the boundary conditions for the translational

motion become,

sina + W, = (cosa + us)csu(x) (27)
and
Wo-uozl (x) =1 welo iv h (28)
0 0 Csu - U ¢ o °

Similar relations can be written down for the lower surface.
Eqn. (27) is the steady boundary condition while egn. (28) may
be considered as the incremental unsteady boundary condition relating

u_ and w_.
0 0

4, SINUSOIDAL GUST RESPONSE

The problem of an aerofoil passing through a sinusoidal vertical
gust can be treated by the present technique.
For a stationary wave of wavelength A Fig. 5(a), the vertical
gust velocity relative to aerofoil can be written as
2m

= in — \-U‘) 29
Wg wgo sin 3 (% Wt (29)
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or more conveniently this can be written

ey g ey
W =W e A e A
9 0
=w_ e VX glut (30)
9o
where 3
2mU
w = -
and [ (31)
_ e
\) - U )

For a travelling wave of velocity V as shown in Fig. 5(b), the
vertical gust velocity relative to the aerofoil can be written in a

similar manner

=
1l
=
M1
et
——
nNo
~13
x1
I
L)
<
+
-2
S
t
N

(32)

where \

and r (33)

Thus, a travelling gust may be thought of as a stationary gust having a
modified frequency parameter. In the present investigation only results

for the stationary gust have been derived.

The boundary condition in this case can be derived from eqn. (10)

as follows:-
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[Umsina +w ¥ woe“"t + Wg e"VXe‘wt
0 1
Tot Z (x) upper surface , (34)

+ +ue
[UWCOSa Ug + U, u

1

z! (x) lower surface .

>0

Using the normalised velocity components the following relations are
obtained for the upper surface
sina +w, = c; (%) (cosa + Ug), (35)

- = - =jux
W -uz (x)=-w_e ] (36)

0’s, 9,
Similar relations can be written for the lower surface. Again, eqn. (35)
is the steady state boundary condition and eqn. (36) may be considered as

the incremental unsteady boundary condition relating GO and WO.

5. CONTROL SURFACE OSCILLATION

When a control surface oscillates about its hinge (Fig. 6) the
unsteady boundary condition formulated in egn. (10) is applied on the part
of the surface defining the control surface. On the remaining stationary
surface ahead of the oscillating control surface the modified boundary
condition should then read,

Usina +w, + woei‘”t .

z_ (x) , on upper surface, (37)

U cose + U + u et TSy
[o'e] S 0

= g; (x) , on lower surface,
£
Using a normalised velocity the following relations are obtained for
the upper surface; on the stationary aerofoil ahead of the control surface

wo-u z' (x)=0, (38)

and on the oscillating control surface

- - -1 - - . -
Wy o ug ;Su(x) = - 60{(c05a +u) + (sina +w ) )

w

+ iv(is + ES (x)
u u

Similar relations can be written down for the lower surface.
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6. METHOD OF SOLUTION

The potential flow problem formulated above is solved by
superimposing the fields of a distribution of sources and vorticity
situated on the mean aerofoil surface in a uniform stream. The
strengths of the distributions are adjusted in such a way that the
resulting velocity field satisfies the prescribed boundary conditions
and the trailing edge Kutta condition. The numerical procedure is
similar to the one used in solving the steady prob]em(]o)o

The continuous steady (mean) aerofoil surface is approximated
by N straight elements as shown in Fig. (7). The numbering of the
elements starts at the trailing edge on the lower surface and proceeds
around the aerofoil surface in the clockwise sense.

A uniform source distribution of strength (Gs *+ 0, e1wt) is

1 i
placed on the ith element together with a uniform vorticity distribution

it
).

(ys + Yo The strengths g s Oy Vvary from element to element

but Ygs Yy @re taken to be the sa%e fo; all elements on the aerofoil
profile. It is to be noted that Uoi and Yo are complex with inphase
and out-of-phase components.,

Because the wake extends to infinity downstream the vorticity
in the wake cannot be represented by a finite number of elements. It
is assumed here that only the first chord length of the wake behind the
trailing edge need be represented by finite elements. The effect of
the remainder of the wake is calculated analytically by making the
assumption that only downwash is induced at the aerofoil by this far wake.
For one chord behind the aerofoil a number (M) of straight line elements
are taken similar to those on aerofoil profile and the uniform vortex

strength of each of these wake elements is taken to be the vorticity

strength at the centre of each element, as given by eqn. (19), thus
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iVl

0 exp{-iv(X, - %)} . (40)
. . - - _O’ - "'__’Y__ . .

Defining Osi’ Goi(_ U;E)’ and Yoo yo(- Uoo) normalised with respect

to c and U_, the normalised perturbation velocities due to the distribution

of sources and vorticity can be expressed in the form

i N o _  _ N i N _ N \
u = T A..o +vy. IB,.,,u = IDA.o +vy_ LB,
S IR IR AR T 15 EC LR I P I B
‘ r (41)
i N _ N i N~ _ N
W = ©B..o =-vy. A, ,w = IB.o -y XA,
Sjooq=1 91 Sp S 31T 05 4 3T 0 0 T

where isj, Goj, Wsj, on are the perturbation velocities at the centre
point of the jth element induced by the distribution of unit sources and

vorticity on the aerofoil and Aji’ B.. are the appropriate influence

Ji
coefficients as derived in Appendix I. These coefficients Aji’ Bji
depend only on the co-ordinates of the ith and jth elements.

The contribution to the velocity components due to the first chord
length of the wake behind the trailing edge can be expressed in the form

M M

U = £B.(y. ) =-ivw. (a/c) % B, LA G D
°j k=1 jk W,k 0 k=1 jk
(42)
woo=- g A, (y. ) =ivy. (a/c) g A e'iv(ik - %)
05 k=K Mgk O k=1 3 ’
N N
where A is the total aerofoil perimeter ( = £ (elemental lengths)) = I A.)

i=1 i=1 "
and where the influence coefficients Aij and Bij are the same as those
in egns. (41).

The remainder of the wake aft of one chord behind the trailing
edge is retained as a continuous distribution of vorticity and it is
assumed to Tie in the free stream direction; furthermore it is assumed
that the velocity field due to this far wake is a downwash field only.

This assumption is valid for a symmetrical aerofoil oscillating about

zero degree incidence and it is believed that this assumption is
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reasonable for a general aerofoil oscillating about a small mean angle
of incidence. The downwash field due to this far wake is derived in
Appendix II and is given as

Y -iv(X;=X1) )
i, = iva2fe I TTHC V(T - (Ximkp))] (43)

where
_ COSA

_ _ [®sinx m

are standard tabulated functions.

The steady state solution for DS, WS, Cps is obtained by satisfying
the steady state boundary condition, eqn. (12), along with the Kutta
condition, eqn. (21), as applied in the steady state. The procedure,
which is standard, is outlined in more detail in reference 10.

The unsteady problem is solved by satisfying the appropriate
unsteady boundary condition, eqns. (13)(or (28) or (36) or (38),(39)), along
with the Kutta condition, Egqn. (22). In setting up the Kutta condition the
value of the difference in unsteady component of the perturbation velocity
potential, ¢O, is required at the trailing edge. This difference is the
circulation Fo around the aerofoil and the Kutta condition eqn. (22) can be
written in terms of PO(=A yo) instead of 9ge Thus (N+1) Tlinear simultaneous
equations can be set up using eans. (13), (22), (41), (42) and (43).

These simultaneous complex equations are solved for 501 and ?0 by a
successive orthogonalization technique.

Once the source and vorticity strengths have been determined
then the velocity distribution on the aerofoil surface is known from
eqns. (43). However for the calculation of the unsteady pressure

coefficient, p, the velocity potential ¢, is also required over the

surface.



- 19 -

The velocity potential due to the source distribution is simple
and straightforward and can be easily written down in terms of the
source strengths. The perturbation potential at the mid point of the

jth element due to the source distribution Oy can be written as

2 2

J1 -
> zn[(Ai/Z X

<
1]

N 00. (A./Z"X..)
i { i
0. ,i -I 2”

(A1/2 + X..)

+ — J1 ln[(Ai/Z + X 2

2551 - 4

2
il ¥
A2 - . A2+ X
L 3%y 4 tan” (A_—d1 J‘)]}

Ji Ji

(44)

-+

zji[tan

(
The mathematical derivation is given in Appendix III, together with the
notation.

The perturbation potential due to the vorticity distribution
presents some difficulty. An expression similar to that due to the
source distribution given by eqn. (44) cannot easily be derived. The
difficulty is associated with the cut necessary to ensure that ¢ is single
valued. In this case the cut has to be taken to coincide with the
aerofoil surface and the wake. A complete analysis of this procedure
is given by Giesing(5). The procedure is complicated and in the present
method a simplified approach is adopted.

Since

dd = udx + wdz
and since the velocities (u,w) are already computed in terms of o, v
and influence coefficients, then ¢ can be calculated by integrating the
velocities around the surface from the nose of the aerofoil. Thus, the

h

perturbation potential at the jt mid point due to the circulatory flow

field is given by
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b, = j;] {fu' A, cose, +w ' A, sing.} +u' éi coso, + w ' éi sing.

J . g_+] 05 i o, i i 05 2 J 0 2 J

on the upper surface, and ()
d. = Néz {u' A, cose, +w ' A, sine.} + u' fi cosf, + w ' Aj sing

I jaje1 05 i Yo, M i 05 2 j oy e J

on the lower surface,where uo; and wo; are the velocity components due

to the vorticity distribution only. The perturbation velocity potential

of the entire flow field is the sum of egns. (44) and (45) plus a possible
arbitrary constant. This constant,which is only required for the pressures
but not for the evaluation of force and moment coefficients, is zero for a
symmetrical aerofoil oscillating about zero incidence. For aerofoils

with mean incidence and/or camber this constant can be evaluated by
integrating the upstream velocity field due to the circulatory flow along

a suitable line up to the leading edge, the constant is found to be very

small for all the aerofoils considered in this paper.

The overall force and moment coefficients are obtained by numerical

integration:
N .
- . Twt
C,=(z ¢ A, sing;)e s
X iz P, T !
;
N .
C,=(zI ¢ B, cosei)e1wt .
i=1 Po.
;
C, = ( g ¢ K[~ x.cos6, - z. sing,])e vt
M0 i=1 Po. | i i i i
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A programme has been developed in FORTRAN IV which solves the
sets of simultaneous real and complex equations directly by the
successive orthogonalization method. The programme in its present form
requires a core size of 87 K on the I.C.L. 1904 S, including system and
programme, for up to 180 elements on the aerofoil surface and 30 elements
on the wake. The computer time increases rapidly with the increase of
number of aerofoil elements. The determination of optimum number of
elements for a specified accuracy for oscillating aerofoil problems has
not been completely pursued. The number of elements chosen for the
numerical solutions presented in this paper is based on the experience
gained for steady aerofoil problems.

For a clean steady aerofoil (without deflected control surfaces)
it has been found that a relatively small number of elements (about 50)
gives adequate accuracy. However, for an aerofoil fitted with a control
surface it is found that a large number of elements is needed particularly
on the control surface. It has been observed that increased accuracy
beyond a certain number of elements is not very significant. For example,
it has been found that for an aerofoil with 30% control surface chord 130
elements (50 on the aerofoil + 80 on control surface) give steady hinge
moment coefficients within 3% of results obtained using 250 elements
(120 + 130). Similar trends have been observed for limited numerical
studies of the oscillating aerofoil problems.

In the presented results a small number of elements (usually
about 50) have been used for aerofoils without any control surfaces
(Figs. 11 - 21), and 132 elements have been used for oscillating control

surfaces (Figs. 21 - 24).
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7. RESULTS AND DISCUSSIONS

To check its accuracy the present method has been applied to
the aerofoil shape studied by Van de Vooren and Van de Ve1(7). The
aerofoil shape, given in reference 7, is repeated here for convenience,
(ae1e _ a)1.9
(ae16 - 0.05a)

(o4 .
- =+ 1iz =
X=3

T 27 ) -

The aerofoil is symmetrical with a trailing edge angle 18°. The
maximum thickness 6f this profile is about 14.4% and lies at a distance
of 30.8% of the chord behind the leading edge. The unsteady pressure
distribution has been evaluated for the aerofoil oscillating in simple
harmonic motion about the mid chord position. The frequency parameter
of the oscillation is 0.8 and the mean angle of incidence is zero.

A comparison of the numerical results derived by the present
meéthod with the analytic solution is shown in Fig. 10.  The comparison
shows clearly that the unsteady pressure distribution both in-phase and
out-of-phase agree well with the analytic solution. There appears to
be a small difference in the pressure coefficient between the present
method and the analytic solution for a few points near the leading edge.
This difference may be due to the inaccurate plotting of the analytic
solution which has been reproduced by reading off the points from Fig. 2
of reference 7. It is also possible that the number of elements
considered near the leading edge of the aerofoil is not sufficient for
the desired accuracy.

Linearised theory result has been plotted in Fig. 10 to show
the difference between linearised and non-linear theory. It can be seen
that linearised theory underestimates the pressure in certain regions and
overestimates in other regions.

Figs. 11, 12(a) and 12(b) give the oscillating pressure

distributions as calculated by the present numerical method for frequency
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parameters of 0, 0.5, and 1.0, for the de Vooren and de Vel aerofoil
at two mean incidences. Fig. 11 gives the pressure distribution for
a mean angle of incidence of 0°., Figs. 12(a) and 12(b) give the
pressure distribution when mean angle of incidence is 10°; in Fig. 12(b)
the scale of ¢ has been reduced to show the behaviour of the pressure
near the peak suction. These graphs indicate that the pressure
distribution for different frequency parameters is similar in nature.
They also show that the in-phase pressure distribution has a converging
tendency with increasing frequency parameter, this tendency is confirmed
later when overall 1ift and moment coefficients are shown.

The present method has been applied to two Karman-Trefftz aerofoil
sections, one symmetric, the other cambered with 8.6% camber,
oscillating about the mid chord position at the mean angles of incidence
of 0° and 10°. Both of these aerofoils have the same trailing edge angle
of 10° and thickness/chord ratio approximately 13%. The 1ift and
moment coefficients of these aerofoils at the mean angles of incidence of
0° and 10° are plotted in Figs. 13 and 14. The moment coefficient CM
js taken about the axis of rotation which is situated at the half chord
position. The effect of mean angle of incidence on Tift and moment
coefficients is seen to be significant for the cambered aerofoil.
Linearised theory results are also plotted in the same diagrams to
iTlustrate the non-linear effects; there are differences especially
in the in-phase components of both CL and CM at lower frequency parameters.
To see the effects of camber more clearly the 1ift and moment coefficients
of these two aerofoils at the same mean angle of incidence are plotted
in Figs. 15(a) and 15(b). Again it can be seen from these graphs that
the combination of mean incidence and camber can lead to a significant

difference in the in-phase components of CL and CM.



- 24 -

The results of the 8.4% thick symmetrical Von Mises aerofoil
performing a simple harmonic heaving oscillation at 0° incidence are
plotted in Figs. 16 and 17. Fig. 16 gives the pressure distribution
at different frequency parameters and Fig. 17 gives the overall 1ift
and moment coefficients along with the linearised theory results.
The thickness effect is usually small for small values of frequency
parameter but for large values of frequency parameter the thickness
effect changes the values of 1ift and moment coefficients by about 5 - 10%.
The results of the 8.4% thick symmetrical Von Mises aerofoil
passing through a sinusoidal (vertical) gust are plotted in Figs. 18 and
19. Fig. 18 shows the pressure difference at various frequency parameters.
Fig. 19 shows the overall Tift and moment coefficients along with the
linearised theory results. It is seen that for smaller values of frequency
parameter (up to about v = 1) the difference between the linearised solution
and the solution of the present method is small, however beyond the value
of v = 1 the difference is still small for the out-of-phase components of
the 1ift and moment coefficients, but the difference seems to increase
progressively with v for the in-phase component of these coefficients.
The difference in the in-phase component of the 1ift is about 20% when
v = 2. The percentage difference in the pitching moment about the quarter
chord point is perhaps not a fair comparison because the Tlinearised pitching
moment is zero for all values of v. A better comparison would be to
consider the shift of the centre of pressure. According to linearised
theory the 1ift always acts at the quarter chord point while the present
theory shows a forward shift of the in phase aerodynamic centre with the
frequency parameter. The shift is of the order of 8% of the chord for

the range of frequency parameter considered.
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The present technique has been applied to the case of an
oscillating control surface on a symmetrical and a cambered (8.6%)
Karman-Trefftz aerofoil. The control surface chord is taken to be
30% of the aerofoil chord. The results have been plotted in Figs. 20,
21, 22 and 23. Fig. 20 gives the pressure distribution at various
frequency parameters. Fig. 21(a) shows the overall 1ift and moment
(about the quarter chord) coefficients while Fig. 21(b) shows the hinge
moment coefficients for a symmetrical Karman-Trefftz aerofoil, it is
seen that the in phase hinge moment is significantly affected by
thickness as indicated by the difference with linearised theory.

Figs. 22(a) and 22(b) give the similar results for the cambered aerofoil.
Fig. 23 gives the results for symmetrical Karman-Trefftz aerofoil at
mean angle of incidence of 0° when the control surface oscillates about
a.mean control surface angle of 5°.

Mean aerofoil incidence has a little effect for both symmetrical
and cambered aerofoils. It is noticed that camber has some effect on
the overall 1ift, pitching moment and hinge moment coefficients for both
in- and out-of-phase components; this effect is especially large
(about 18%) for the in-phase component of the hinge moment coefficient.
Mean control surface angle does not introduce any measurable changes.

As deduced from the comparison of linearised and non-linear theory
thickness effect on the overall Tift due to control surface oscillation
js small for a symmetrical aerofoil but more noticeable for a cambered
aerofoil. Thickness effect on the moment coefficients for both
symmetrical and cambered aerofoils are significant.

The thickness effect on the out-of-phase components of the hinge
moment coefficient is small for both symmetrical and cambered aerofoils,

but thickness effects are especially large for the in-phase component of
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H is approximately

80% of the Tinearised value for symmetrical aerofoil and 67% of

the Tinearised value for the cambered aerofoil.

(a)

(f)

(9)

CONCLUDING REMARKS

A method has been developed for the calculation of the pressure
distribution on an oscillating aerofoil in incompressible flow
conditions by the extension of the A.M.0. Smith technique.
Singularity distributions are placed on the steady mean aerofoil
profile; the oscillatory boundary conditions are satisfied on
this mean profile.

It is argued that the appropriate Kutta condition in the present
aoproach is the condition of zero loading at the trailing edge.
Satisfactory agreement has been obtained between the present
numerical approach and an analytic solution for a pitching
aerofoil (see Fig. 11).

For a pitching aerofoil there is noticeable difference in the
pressure distribution between the present method and linearised
theory (see Fig. 11). Although linearised theory gives the
correct trends for CL and CM for an aerofoil in oscillatory
conditions the linearised values of CL and CM can be in error
by the order of 10% (see Figs. 14, 18, 20).

The combined effects of mean angle of incidence and the camber
of a pitching aerofoil can affect CL and CM (see Fig. 16).
Similar trends occur for a heaving aerofoil and aerofoil passing
through a sinusoidal gqust.

For an oscillating control surface the most significant result
is that the in-phase component of the hinge moment coefficient
is considerably less than the values predicted by linearised

theory (Figs. 22, 23).



- 27 -

REFERENCES

1.

10.

Hess, J.L. and Smith, A.M.0,

Hess, J.L.

Hess, J.L.

Giesing, J.P.

Giesing, J.P.

Kussner, H.G. and Gorup, G.V.

Van de Vooren, A.I. and

Van de Vel, H.

Hewson-Brown, R.C.

Basu, B.C. and Hancock, G.Jd.

Hancock, G. J. and
Padfield, G.

Calculation of Potential Flow about
Arbitrary Bodies.
Progress in Aeronautical Sciences, Vol. 8.

Calculation of Potential Flow about

Bodies of Revolution having Axes Perpendicular
to the Free Stream Direction.

D.A.C. Report No. 29812, 1960.

Calculation of Potential Flow about Arbitrary
Three Dimensional Lifting Bodies.
Douglas A/C Report, No. MDC J5679-01, 1972.

Non-linear Two Dimensional Potential Flow
with Lift,

Journal of Aircraft Vol. 5, No. 2,
March-April 1968.

Two Dimensional Potential Flow Theory for
Multiple Bodies in Small Amplitude Motion.
D.A.C. Report No. 67028, 1968.

Instationare linearisierte Theorie der
Flugelprofile endlicher Dicke in Inkompressibles
Stromung Mitt. des Max. Planch -

Instituts fur Stromung - strorschung U. der
Aerodynamischen Versrichsenstalt, Nr 26,
Gottingen, 1960.

Unsteady Profile Theory in Incompressible
Flow.

Archiwurn Mechaniki Strosowanej 3,

Vol. 16, 1964,

The Oscillation of a Thick Aerofoil in an
Incompressible Flow.

Mechanics and Applied Mathematics,

Vol. XVI, Feb. 1963.

The Unsteady Motion of a Two Dimensional Aerofoil
in Incompressible Inviscid Flow.
OMC -~ EP 1018, 1976.

Numerical Solution for Two-Dimensional
Aerofoil in Incompressible Flow.
QMC - EP 1003, 1972.



A1

APPENDIX I

The Influence Coefficients

A source distribution between - %-< X < % (as shown in Fig. 8(a))
with normalised strength o/unit length is considered.
The velocity components &u and &w at the point (x, z) due to

the small element of source distribution on 6% are

i) = O X B lsE
B2 42
o N (A.1)
- & 5 .
SW(X,z) = v ) . = 8&
On integration _
VA
Wxz) =S x- & | g
U (eB)? ¢ 22
-1/2
‘ ) (A.2)
- o on (x+A/2)% + 22 = SF(X.Z.3
I (x-3/2)% + 22 ( )
A2
- - - _ O Z -
") =7 Lz\/z (x-E)? + z® &
(A.3)

In equation (A.3)

T -1 T
-?-(tan eS?

this condition gives the correct velocity distribution, i.e. antisymmetric

w and symmetric u, about the X axis.
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As x ~ 0, z > + 0 then
u(0,+0) -~ 0
w(0,+0) ->% s

while for x = 0, z > - 0 k (A.4)
u(0,-0) ~ 0

W(0,-0) » - 5

J

Since elements are at different orientation the problem is
transformed to a fixed axis system (X,Z) as shown in Fig. 8(b); the
origin of the (X,Z) system is taken at the wing leading edge.

For the source distribution along a particular aerofoil element

the normalised velocity components u(X,Z) and w(X.Z) axes,

u(X,Z) = o{F(x,z,A)cos6 - G(x,z,A)sing}
. o o (A.5)
w(XsZ) = o{F(x,z,A)sin6 + G(x,z,A)c0s6} ,
where
x = (X - Xo)cose + (Z - Zo)sine
(A.6)
z=-(X- Xo)s1ne + (Z - Zo)cose .
The influence of element i on the mid point of element j as
shown in Fig. 8(c) is therefore written in the form
uji = {Fjicosei - Gji s1nei} oF
(A.7)
= A5 o forifj,
5 = {Fji s1nei + Gji cosei} 05
(A.8)
= Bji o; for i £3,
where

L)
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and where
RN PUPF SR s 519 .
Xs; = E{({Xj+1+xj] [Xi+]+Xj])cosei + ([Zj+1+2j] [Zi+]+71])s1nei}
e P - . T - ) - = 1 _ 15 -
255 = 51 ([Xj+1+Xj] [X; #X;1)sine, + ([Zj+1+zj] [Z; ,1+Z;1)cos6.)
- (Y. <% )2 5 .5 y213
Bi = W76 + (727
X 1= Xs Z: 1-1.
cos6. = i+] %9 , sine. = i+l &5
! A ! A
i i
In the limiting case
_ sinei - _
Ui = { '"2"—}01' = Ais o5
cos 6,
= 1. = B,. o
i { 2 }01' ii 9
For a normalised vortex distribution v on an element as shown i
Fig. 9 the velocity components su and &w at point (x,z) due to circulat
around &&
6i = L z 8 \
o [o'«z)z + ] |
- by X-E -
ow = - - $¢
Flros® .

J

It is seen that equations (A.12) for u and w due to y are the
same as Sw and - Su due to o in equations (A.1).

the velocities induced by the elements of vorticity may be written

uj'i

W..
J1

3\

> (A.10)

(A.11)

n

ion

(A.12)

Thus without further ado

(A.13)
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APPENDIX II

The Downwash Field due to the Semi-infinite Wake

The part of the wake beyond one chord length from the trailing
edge of the aerofoil is assumed to be in a plane parallel to the free
stream direction, The downwash field along the chord Tine due to this
far wake is assumed to be the same as that due to a wake in the chordal
plane extending from (1+§T) to o,

The downwash at any point X on the chordline due to this wake

is given by
. 7 [ v, (Est)dE
W(X,t) - '2'1? —_— . (A.]4)
- £ =X
+Xg
Now
W(x,t) = (e’ and T (%,t) = 7 (R)e'Wt
0
Therefore,
, Ty, (B)dE
= =y _ 1 0
wo(x) = 5= =3 . (A.15)
1+§T
Using eqn. (19),
: = = N A [ -
= =y _ _dv _-iv(x=Xq) i e~
wo(x) =-5-e T Yo(iil = ) ) dx | (A.16)
V1= (x=x)]

. N .
W (K) = 227, : B )e VT LC 11 (ReRp) v - 148, D= (k) o= T3 (A7)
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_ . * cosA
C; (&) = A
€
_ [ sim
m.m AMV - .V/I - Qvf +
£

are the standard functions,
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APPENDIX ITI

The Perturbation Potential due to the Unsteady Flow Field

The perturbation potential of the unsteady flow field is that
due to the source and vortex distribution.
The potential due to a source distribution with normalised

strength o/unit length along x-axis (Fig. 8(a)) between the limit

- %-< X < % is

A2
(X - B)% + 22} dE . (A.19)

-1/2

If o is constant the potential becomes

o ({82 - X) gniiiyz - %) + 32} +BL2E X g0 (Rr2 4 R)2 + 32} - &
2n 2 7z

(A.20)
ssgtan” (A2 X) 4 tan™ (AEE Xy
The potential at the mid point of the jth element due to the
source on the 1th element, using the notation of egns. (A.10), is
0. [(A;/2-%s5) (As /24X ;)
1 1 J1  Jo_T V2,3 2 1 J1 ~ oaT V2.3 2
v en (A;/2 in) +Zji b+ ————— 1 (A1/2+xji) +Zji }
_ _ _ _ (A.21)
- 1 (As/2 = Xss) 1 (8572 + X;.)
- A+ zji{tan [ - U4 tan™! 31
%5 ‘31
The total potential at the jth mid point due to the entire source
distribution is therefore
0. (A./2 - X::)
1 1 J1 A -y > 2
o, = 'Q [ - an{(8;/2 = x53) + Z4%)
ji=l
(8572 + %)
J1 n Y 2 .5 21_ %
+ 7 an{(8;/2 + in) * 243 } A4 (A.22)
_ 2 As/2 - x.. 1 As/2 + X,
+ 25, {tan LA LR S PG LIS

Z\_]1 ZJ'I
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The perturbation potential due to the vorticity distribution

X z
¢y = I Us dx + f Wy dz (AR.23)
0 0

where uo' and w& are the perturbation potential velocity components

due to the circulatory flow only.

Thus the potential at the jth

mid point due to the circulatory
flow field:
on upper surface

J-1

= s "= . N v A s .
dg . ﬁ (u0. Ay cosB, +w A s1nei)+ Uy 21 cosej U s1nej ;
J 1=§+1 ! ! J J
(A.24)
on lower surface
N/2 1 = - . 1 5\] i EJ .
9. = z (u0 Ai oSO, + W, A s1nei) U cosej W smej .

R E R i j j
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