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SUMMARY 

A relatively straightforward method for obtaining the local stability 

properties of multi-variable time-marching schemes for predicting compressible 

flows is developed. Applications of the method to several one-, two- and 

three-dimensional examples are presented. An extension of the techniques used 

in the stability analysis to the prediction of ill-conditioning of steady-state 

methods, in particular near sonic conditions, is also developed, and examples 

given which show how to overcome the ill-conditioning problems. 

*Replaces A.R.C.36 910, 



I- sTA8ILITY THEORY = 

The equations of motion of an unsteady, inviscid, compressible 

flow may always 

where t denotes 

and L denotes a 

r 

time, 1 denotes the vector of m (say) flow variables, 

(generally, non-linear) spatial differential operator. 

I In one-dimensional isentropic flow, for example, the flow equations 

be expressed in the form:- 

ai = ~(1) 

at 

(1) 

L are :- ae + 
at 

oe + $3 = 0 
3X aX 

au + uau + 22a = 0 
at -3X e ax 

where c2 = YRP. In the form (I), equations (2) become:- 

so that:- 

and 

(2) 

(3) 

(4) 

6) 

I 
Numerical schemes for solving the partial differential equations (1) 

generally involve (possibly, non-uniform) discretisation in time and 

space, and lead to a set of algebraic equations to be solved for each 

flow variable at each point in the (discretised) flow field. (Boundary 

conditions, of course, may be treated somewhat differently.) The set of 

algebraic equations, which we may regard as the basic equations defining 

a time-marchino method, will always be of the form:- 

(6) 

where t = t 
n’ x= ‘j.9 Y = ‘j’ ’ = ‘k’ 

and the matrices A9 f3, L etC may 
--- 

vary with position and time. 

I- Thus, if forward-time, upwind-space differencing is used for (2), 

L 



we have, if u>, Cl:- 

which may be rewritten:- 

where:- 

and 

Q = c WAX (Courant nulrt+E:i) ('I > 

M = u/c (Mach nclrrter) (72) 

““+I n 
-i 

= g li-1 

which is of the form (6). 

IV order to determine the complete djscrptised flow field at tine 

t ns, frorr the field at time tn, it js necessary to solve tht- Colrplete 

set of equations (6) at all points in the Glow field. The rAuest :or* clE 

importance here is:- will the numerical scheme be statle'? More prec.isely, 

will any error or disturbance in the flolu field (due to round-off error 

or actual physical disturbances) be unrealistically and disastrously 

amplified? To formalise this concept of stdhjlity, we use ideas 

developed by Douglas (IS61 ). 

Consider the one-variable linear differential equat.iort:- 

aw = Aw + b 
at 

(IL) 



whera A involves spatial derivatives, and may vary with time. Assume 

that:- &, 0) = we(r) at time t = 0 
(15) 

W(& 0 = wk, t> on the boundary 

of the region of interest. 

Replace the differential system (14)/(15) by the difference system:- 

w*O = w. 
(16) 

w*“+’ = c” w+” + qn 3 

where w* n is the discrete approximation to w at tine t n. Assume that 

(16) is consistent i.e. 

if wn+l = c” w” + qn + en 

then (l/At) en _I) o 

(17) 

(18) 

for sufficiently diffurnntiable solutions of (14) as ttte increments of 

the independent variables tend to zero. 

put:- 
n n 

w - w+ 
n 

z = (‘19) 

and let I be the vector of the variables z at all points in the region 

of interest. Then:- 

and 

n-t1 
h = c” I” + gn 

0 
z = il 1 (20) 

Thus the analysis of (16) is ra()Jaced by that of (20). The natural norm 

to use for (20) may vary from timn-step to timn-step, as the simplest 

choice may depend on (I”, which may depend on n since A may depend on t. 

We introduce the sequence of (vector) norms \\s I\,; n = 0, 1, 2, . . . . 

where each norm satisfies the usual norm axioms. 

The 

[ 

q norm \\ x I\ of a uantity x describes its magnitude. Any 

definition of a norm will suffice provided it satisfies the so- 

called Vtorm axioms” (see Liusternik & Sobolev (1961)):- 

(i) 11 x II> 0 unless x E 0, when 11 x 11 = 0 i.e. the norm is 

non-negative; 

(ii> \\ x I] + IIyII>/ I\x + yI\ i.e. a triangular inequality; 

(iiij \/Xx I] = 1x1 11 x 11 for any scalar ‘x ; [A1 denotes 

magnitude of 3\ . 



We introduce also the inducerl (matrix operator) norms:- 

(21) 

Then (20) implies that:- 

by the triangular inequality. We need to be able to compare successivF! 

norms to be able to use the recursion relation (22). Assume that:- 

1 + a At l\Llln } n = 0, 1, 2, . . . (23) 

for all =* (We assume (23) holds because we need it for our proif, and 

because comman schemes obey it.) Then:- 

when ee , using (22), we obtain:- 

(25) 

where:- 
n-l 

J n 
‘= 

Note that the index n-k is a power, not a superscript. 

The scheme (16) is defined to be stable with respect trl the given 

sequence of norms if:- 

k = n, 1, 2, . . . (76) 

as n t + 0. Thus the numerical scheme (16) is stable if <he ncrn of 

the matrix operator &, which is the discrete analague ctf the differential 

operator A in (14), is, at evrry tine-e Jtep, less than one ~11~s some 

(problem-dependent) constani. multipliPc! by the magnitude of the time- 

step length At. If (26) holds, then (25) becomes:- 

lI~“IIn < K c”-’ l\=kl\ k 
k=O 

where:- 

K = c + dAt i- o< At71 hd 

How do we apply this definition of stability tc the numerical 

scheme (6)? First, we note that, instead of one unknown, w, we have m 



unknowns, 1, at each point irl t tIt1 (1isCrati~:Fr.d rk?lJi.clf\ Lf .irltt.I~ t . 

Secondly, the stability definition (26~) applies slobally (i.e. at <+.L.l 

points in tI:u discretised rP!lion slmultanuously); ensurinj ttlnt * rlc ncrm 

of the differential operator analegue satisfies an equivalent of (2~) 

globally generally involves an inordinztc nmollnt of uork, unless 

particularly simple equations and boundary conditions are involved. 

Finally, the stability definition (26) applies to linc>ar dif’Ft?rf~ntj,~J 

operators (recall that A in (14) is linear). 50 we wish:- 

(i) to generalise (26) to Q variables, ipstead of one; 

(ii) to obtain a local, rather than a global, stability critrricln; 

(iii) to generalise (26) to nun-linear differential operators. 

Suppose we expand V” 
-ijk 

from (6) in (spatial) Fourier series. We 

A assume x, by and Az arp all constClnt, though thi:; conditior can 

be relaxed. Then we have:- 

n 
Kjk = x ) ): Gqr oirp a, ejxqny ekIrLlz 

P 9 r 
where :- 

(2q) 

Put :- 

n 
%jk 

I pw 
So that-:- 

x2 = - 1 

n = 
Spw e 

iIpbx ,jIqAy ,kIrAz 

n 
‘ijk 

P q r 
$,, 

I Pqr 
Then (6) becomes:- 

(30) 

01) 

vn+l 
-ijk 

I 

n = 4 i!ijk 

I 

+ B V” 
= -iJk 

I 

e-IPnx + 

Pqr pqr n 

I 

prlr 
i L!ijk 

a+IPAx + . . . (37) 
pqr 

whenco:- 

n 
Fli jk 

I 

n+l 

pqr 
= qjk 

I Pqr 
( ?I’! ) 

where :- 

p = 9 + e -1pnx ; + e +Ip ox 
c f . . . . (34) 

Equation (33) shows how the (pqr)-th fourin], component of ttle m var~iahles 

V” 
-ijk is transformed locally into the (pqr)-th Fourier c~mporrent 



So, by analogy with (26), we may postulate that scheme (6) is locally 

stable if:- 

at all time-steps, as At + 0. A suitable norm for the (matrix) 

operator A* is the spectral radius (i.e. the magnitude of the largest 

eigenvalue):- 

Thus we postulate that the scheme (6) is locally stable if:- 

@&+, \< {I + bbt} (37) 

which is assured if the spectral radius of A + is not greater than ens, 

i.e. if:- (38) 

We can regard this stability analysis as a generalisation of the 

von Neumann analysis for one-variable equations (see, for example, 

Roache (1972)). Clearly, since (37) is a local, rather than a slobal, 

criterion, the stability analysis possesses neither the necessity ncr 

the sufficiency properties of a global analysis. Nevertheless, there is 

evidence (see again Roache (1972)) that the von Neumann method is 

dependable in practice, at least for one-variable problems. Its main 

drawback indeed arises not so much from whether it works or not, but 

from obtaining the spectraJ radius e(&*); for complex problems, a 

numerical, rather than an analytical, method may be necessary, as we 

shall see. 



II - APPLICATIONS 

l- Isentropic flow 

(i) one-dimensional flow:- consider the flow equations (Z), and suppose 

we use the forward-time, upwind-space differencinq scheme (9) to solve 

them. We put:- 

.z 
sn ,iIpDx ZE 
-P ): V” 

P I 
(39) 

P =P 

Then :- 
n 

4i-I 
= e-IpDx v” . 

P I -P 
(40) 

so that (9) becomes:- 

1 - MQ(1 - e -IPAX 
> (41) 

-9 (1 - e-Ip* ‘) 

We put Q= - pDx. Then, by hypothesis, the scheme (9) is stable if the 

spectral radius of A* satisfies (37), where &* is given by:- 

A* = 

i 

1- flQ(l - e 
IO 

> -3 (1 - e@> 

-C+ (1 - e*') 1 - iW(l - ere) > 
(42) 

The eigenvalues of &* are given by:- 

A= T - Q(M~l)(l - ere) (43) 

Now el* = case + I sine , whence:- 
\ 

(1 - Q(Wl)(l - COS~))~ + (4(M~l)sin0)2 (44) 

The extrema of 1x1 with respect to 8 occur when d ]xl/ de vanishes. Now:- 

d\>I = 1 
de 2 L 

- 2Q(Nkl )(I - Q(Nltl>> sine 
1 

(45) 

So diXl/ de vanishes non-trivially (i.e. excluding 0 5 0) when:- 

8 = nK ; n integer 

(a) if n is even, (44) gives:- 

IN 5 I 

(b) if n is o&l, (44) gives:- 

1x1 = \I - 20(W) 1 

(46) 

(47) 

(48) 

For stability, we require:- 

IA max 1 G I + bAt (49) 
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OI‘V to assure stability (insofar as a local criterion can assure stability), 

(51) 

(52) 

we require:- 

(50) 

Clearly, case (a) is always stable. Case (b) gives:- 

-1 g l- 2a(fl*1> < +1 

i.e. +1 > cm*1 > >/ 0 

The left-hand inequality in (51) gives:- 

$L&‘)-” 

i.e. 

(u +, c>nt/Ax \<I 

which is the Courant-Friedrichs-Lewy (C-F-L) criterion. The right-hand 

inequality in (51) gives, since Q >, O:- 

N&l>/ 0 

ob since N is assumed positive (to give upwind-differencing):- 

N>,l (53) 

Thus forward-time, upwind-space differencing is stable if the flow is 

supersonic (by (53)) and the C-F-L criterion (52) on the magnitude of 

the time-step length At is satisfied. 

If, instead of uowind-space differencin2, tie use centred-space 

dif ferencing, with constant mesh size Ax, then (41) would become, in 

the same notation:- 

$+I 1 -u (.+I'- e-I') 

1 ?c@Q(e+le- e-Ie) 

2: 

) 

I P 

(54) 

whence :- 

J 
\ = 1 + Q2 sin20 (N&l )2 (55) 

Clearly, for real P and N, we have:- 

Q2 sin20 (N+l )2 > 0 

whence, from (55):- IXI >/ 1 

(56) 

(57) 

sa forward-time, centred-space differencing is unstable except in the 
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trivial case of zero Courant nutrber Q. 

dimensional flow:- the flow equations are:- 

32 + u ay + l/a? + la1 = 0 
at ax 2~ e ax 

Forward-time, upwind-space differencing of (58) gives, if u and v >,O:- 

Expansion in a (double) Fourier series gives:- 

1 - flQa - NRb -9ga 
C 

1 - NQa - 
-Fb 

NRb 0 

vv . 

P 
I J Pq 

(60) 

-f&b 0 1 - NQa - NRb 
I 

where:- a= 1 e I8 
-e Id ,b=l-e ,6=-p bx, d = - db, 

P = c At/Llx, R = cht/ay, M = u/c, and N = V/C. 

The eigenvalues of the matrix in (60) are giv n l - 

1 = 1 - PlQ(1 - eIe) - NR(l - era) 

+J!iJ 

- n ----o-M- - 

0 (61) 

Extrema of 1x1 with respect to 8 and @ occur when a\xl/de and a\xl/a $ 

both vanish; this occurs when:- 

8 = n,K 

ff = n2n n1’n2 
integers (62) 

(a) if n, and n2 are both even, (61) gives:- 

IA) = ? (63) 

is odd and n is even, (61) gives:- 



(6) if nl is even and n . 

1x1 = 1, - 2NR I2 ‘i :%d, 

(61) gives:- 
I 

I 

(d) if n, and n2 are both odd, (61) gives:- 

1x1 = I - 2MQ - 2NR 
I i 

+2&T 
- 2 - )( - 
0 

656) 

The stability condition (38), which assures that (37) holds, is clearly 

satisfied in case (a). In cases (b) and (c), the first two conditions 

in each just reproduce the one-dimensional results (52) and (53) i.e. 

(u f. c)nt/ax ,( I; (v f c)At/Qx 4 1 (67) 

fl>,l ; N,, 1 (68) 

while the third gives, assuming M and N both to be positive (which 

inplies):- upwind-differencing 

UWAX ,< 1 ; vat/LJx \( 1 (69) 

Conditions (67) correspond to the motion of pressure waves9 and 

conoitions (69) to the motion of vorticity waves. Case (d) gives:- 
. 

lJ&+v&&cat 
5 - ax II 

1 + 1 

nx2 ny2 
< ' (70) 

as the pressure wave condition (or9 generalising (52), the C-F-L 

condition) o 

M +ocN>,,j- 

where o- o(= Ad& 

and:- 

I- (71) 

(72) 

as the vorticity wave condition. 

Condition (71) may be rewritten in a more convenient form. If M+ 

denotes the actual Mach number, then:- 

rl = rl* cos g and N = IT* sing (73) 

where p is the flow angle relative to the x-axis. Thus (71 > becomes:- 

Iv cog3 + o< M* sin p > Jx--z 

Let:- sin 
‘d 

= IJ I-i-CA $-“\ and cos y = N/-,/T (74) 

Then:- M* cosj3 siny + IV+ sinp cosr >/ 1 
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or:- N* sin(j3 +r ) >, 1 (75) 

which gives a condition on the actual Mach number in terms of p defined 

by (73) and r defined by (74). 

(iii) three-dimensional flow:- forward-time, upwind-space differencing 

of the three-dimensional flow equations gives a result similar to (8) 

and (59), assuming all velocities to be positive. Expansion in a (triple) 

Fourier series then gives a result similar to (41) and (60). The 

eigenvalues of the matrix involved are given by:- 

A = 1 - NQ(I - eIe) - NR(l - elld) - PS(1 - el’) s 
+Y 
- 3 (76) 

L 0 
where:- Q=- PAX, a = - qAy, $ = - r/Iz, g s cAt/nx, R = c At/A Y, 

S t cnt/&, M = u/c, N = v/c, P = w/c, and r \ 

3 = Jo2(q - e1e)2 + R2(1 - e1’)2 + S2(1 - e1')2 

Thus the principal stability conditions are, by (38):- 
I \ 

u& + vat + w& +, cAt 
E E E 

1+1 +A, 

hv’ hz2 

<I (77) 

which is the (C-F-L) conlition on pressure waves, 

U at + II& + w-b (1 

E LAY G 

(78) 

which is the condition on vorticity waves, and:- 

M + o<N + BP 3 1 + w2 I- p2 
(79) 

where ti= nx/ay and p= ax/ni! 

Just as in the two-dimensional case (which included one-dimensional 

stability conditions in each flow direction), the three-dimensional 

example here includes one-dimensional and two-dimensional stability 

conditions in each flow direction and pair of flow directions, 

respectively. They are easy to derive, and consequently not given here. 

2- Constant staqnation enthalpy flow 

Consider the ons-dimensional flow equations:- 

a1 + u a_p + p au = 0 
at aX ax 
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At steady-state (and it is the steady-state result we are usually 

interested in), the flow occurs at constant stagnation enthalpy ho. We 

assume, following Denton (1975) that there is the correct heat transfer 

at any instant of time to ensure that ho is constant. Then it is easy 

to show that, for a perfect gas flow:- 

P = p $ (ho - +u*) (81) 

where @ = (x- 1)/x , and x= Cp/Cv is the specific heat ratio, assumed 

constant. Thus:- 

am = ap pr (ho - +u*) - eB u au (82) 
bx ax aX 

If we use forward-time, upwind-space differencing for velocity and 

density derivatives, and centred-space differencing for pressure 

derivatives (again in the manner of Denton (19X)), we get, in ths 

usual notation:- 

un+l n 
i = u. - 

1 
l”lQ(u; -U;-\ ) - &$bo - &J*)(&-&, ) 

C2 

The usual Fourier series substitution gives:- 

where 

and 

= 
P 

w = h 

$ 

- +N* 

0 = + pnx 

-g$i - e-I’) 4 

l- flQ 
II 

p 
(I - e -10) _ #a+Ie- ,-I0 jJ 

2 
(84) 

} 

(85) 

The eigenualues of the matrix in (84) are given by:- 

‘x= 1 - NQ(1 - case + I sin@ (1 - $~fi)) ,+ - i fl*Q*fi* sin28 

i 
- Q*I sin@ =@(cose - 1 - I 

(86) 

Extrema of \Xl occur when d (XI/d0 vanishes. This occurs when 8 = n7C ; 

n integer. If n is even, then:- \I\ = + 1 (87) 
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which, by the stability condition (38), is always stable. If n is odd, 

thenr- IX\ = 1 1 - 2RQ \ (88) 
. 

and, for stability, (88) gives:- 

-1 < 1 - 2mLl < +1 

i.e. 0 < 2MO < +2 (89) 

If II is positive (as upwind-differencing implies), the left-hand 

inequality in (89) is automatic , and the right-hand inequality gives:- 

MP < 1 

i.e. u At/Ax <I (90) 

which is a vorticitv wave condition. 

We note that dIXl/dQ also vanishes at some other values of 6 which 

cannot be obtained explicitly; instead, a numerical method must be used 

to find either the extrema of IX\ or to solve the equation d\‘X\/d8 = 0, 

using local values of the parameters M etc. Whatever the values of 9 are, 

we can easily see from (86) that the result obtained will not be the C-F-L 

condition (52), which suggests that the stability analysis presented by 

Oenton (1976), in which he obtains the C-F-L condition for his scheme, 

may be incorrect. 
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III - EXTENSION TO ILL-CONDITIONING THEORY -,-,---,,=i-- 

The equations of motion of a steady-state inviscid compressible flow 

may always be expressed in the form:- 

F(V) = 2 a- (91) 

by analoyy with equation (1). Suitable spatial discretisation of the flow 

field leads to a set of algebraic equations of the form:- 

(92) 
in some sense equivalent to (91), by analogy with (6), which, by expansion 

in spatial Fourier series may be written:- 

A* v. _ -xik I 
= P (93) 

w 
by analogy with (33). 

Solution of the system (91) for 11 will involve (local) inversion of the 

matrix &* in (93). The question of importance is:- under what conditions 

will it be difficult - or impossible - to perform this matrix inversion? 

Clearly, if &* is sinpular (i.e. dat A* z 0), inversion is impossible. 

More generally, if we define the condition number q by:- 

q =,l~a~~min~- 
(94) 

where 1 max and hmin denote the maximum and minimum eigenvalues of A* 

in magnitude, then if q>> 1, we say that 4" is ill-conditioned. Clearly, 

ifAmin 2 0, det &* vanishes, and q+m. So infinite condition number 

implies singularity of the matrix. If q>> 1, then inversion of &* will 
- 

be difficult, so we can get an idea of the ease of solution of the 

discrete analogue (92) of the equations (91) by examining q at all points 

in the (discretiscd) flow field. We consider some illustrative isentropic 

one-dimensional flow examples. 

Suppose, first, that upwind-spatial differencing is used (as in 

(9) with no time dependence). Then the usual Fourier series substitution 

gives:- 
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-IQ 
M(l-e ) g1 - 9) 

c(1 - e 
-18 

) Fl(l - a-) > I 
%i 

= !T! (95) 

v 
P 

where 8 = p Ox, fl = u/c, and I 2 
= -1. The eigenvalues of the matrix 

in (95) are given byr- 

3 = (1 - e”le)(rl * 1) (96) 

so that the condition number is given by:- 

9 = 
I WI (97) 

assuming M 3 0 (as upwind-differoncing implies). When Fl + 1, 

9B1, so that the scheme (95) becomes ill-conditioned near sonic 

conditions. 

Suppose now that 

is used, so that (95) 

i 
#I( e+*@-= e-I’) 
c b 

+I@- .-Ii3 

F 
1 

centred-space, and not upwind-space, differencing 

becomes:- 

s-(e+I’- e-IQ) 

2c +10- e-Ie si 
I 

= (98) 
Mb 1 

P 
P 

Then, as before, we have z- 

q =\;:;I (99) 

so that scheme (98) becomes ill-conditioned at sonic conditions also. 

If unwind-space differencing is used for velocity and density 

derivatives, and centred-space differencing for pressure derivatives, 

we get:- 

M(1 - e 
-18) 

de 
+1e- .‘I0 

1 
2e 

The eigenvalues of the 

7~ = m(i - e-Ie) 

and the matrix becomes singular if:- 

(100) 

(101) 

det &* = 112(1 - ea1e)2 - *(I - eml’)(e+Ie- e”Ie) z 0 (102) 

so that equation (100) becomes singular only for certain Fourier 
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components at M = f 1 (specifically, those components with @ a 2nK; 

n integer) and ill-conditioned near M = 4 1 again only for certain 

Fourier components. 

We see, therefore, that by the use of different spatial differsncing 

schemes for the coupling derivatives (i.e. the velocity derivatives in 

the continuity equation, and the pressure derivatives in the momentum 

equations) from the other derivatives (i.e. the density derivatives in 

the continuity equation, and the velocity derivatives in the momentum 

equations) we can eliminate the problem of ill-conditioninq. Thus, by a 

quite simple technique, we can overcome at least one problem associated 

with solving the steady-state flow equations. 
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