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SUMMARY
A relatively straightforward method for obtaining the local stability
properties of multi-variable time-marching schemes for predicting compressible
flows is developed. Applications of the method to several one-, two- and
three-dimensional examples are presented. An extension of the techniques used
in the stability analysis to the prediction of ill-conditioning of steady-state
methods, in particular near sonic conditions, is also developed, and examples

given which show how to overcome the ill-conditioning problems.

*Replaces A.R.C.36 910.



I - STABILITY THEDRY

The equations of motion of an unsteady, inviscid, compressible

flow may always be expressed in the formi-

?y = E(V) (1)

where t denotes time, V denotes the vector of m (say) flow variables,
and F denotes a (generally, non-linear) spatial differential operator,

In one-dimensional isentropic flow, for example, the flow equations

are:- %6 4+ u%%g + p2yu = O
ot D x ox
2 (2)
Qu + udy + coe = O
t 2% € dx
where c2 = yRT. In the form (1), equations (2) becomes~
2_(p) = =-[u g\ 2_(° (3)
ot X
2
-\u g u u
e
so that:-
v o= (e (&)
u
and £ = -]u P\ 2 (s)
2 ox
c u
e

Numerical schemes for salving the partial differential equations (1)
generally involve (possibly, non~uniform) discretisation in time and
space, and lead to a set of algebraic equations to be solved for each
flow variable at each point in the (discretised) flow field. (Boundary
conditions, of course, may be treated somewhat differently.) The set of
algebraic equations, which we may regard as the basic equations defining

a time~marching method, will always be of the form:=

+ n n n
Yk = Bl * BYigp * Bl + oo (O
Y =Yy 2= 2y and the matrices A, By C etc may

.],

where t = tn' X = Xi9

vary with position and time,

Thus, if foruard-time, upwind-space differencing is used for (2),



we have, if u>=03~

n+1 n n n 2 ,.n n _
(Ui ‘”1)" “i(' 11)*%(& Pi-1)' 0
A+l I3 n (3} n N _
(E’i —ei)+ Ui( Pn.—)* p; jLi-Ug )= 0
At Ax
which may be rewritteni-
n+1 n 0 0 n At 0 a
u; o= ouy o= uy cdb(ug-ugg ) =S cBpgi-piy )
1 i c Nx * Py Ax 1o
(8)
A+l n n N o n 0,0
1 = Py - WChE(pi-pioy ) - pIeAMui-uly)
1 B4 A i~Pi & A A
or -
n+1 n n
v 1-m -Gp/c\M 4 M3 Qefc) N,
-Qc/p 1 - MQ Gc/p Mg (9)
2} n )
where $= yi = Ej_ (10)
n
u,
i
Q = cAt/Ax (Courant nurber) (1)
and M = u/c (Mach nurter) (12)
ies€e
n+1 n
A = é v, o+ _E_g - (13)

which is of the form (6).
Ir order to determine the complete discretised flow field at tine

tn+1 fror the fleld at time tn’ it is pecessary to solve the cormplete

£

set of equatiors (6) at all points in the flow field. The guest:ior o

importance here iss— will the numerical scheme be statle? More precisely,

will any error or disturbance in the flow field (due to round-off error
or actual physical disturbances) be unrealistically and disastrously
amplified? To formalise this concept of stability, we use ideas

developed by Douglas (1961).

Consider the one-variable linear differential equationi-

Qw = Aw + b (1)
?t
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where A involves spatial derivatives, and may vary with time, Assume

that s~ w(x, 0)

]

wo(é) at time t = G
}(15)

w(x, t) = W(x, t) on the boundary

of the region of interest,

Replace the differential system (14)/(15) by the difference system:e

0
* =
v Yo } (16)
m*n+1 = o 4 qn

where w*n is the discrete approximation to w at time tn' Assume that
(16) is consistent i.e.

if L Y q' + e (17)
then (1/Dt) " ——> 0 (18)
for sufficiently differeniiable solutions of (14) as the increments of
the independent variaebles tend to zero.

Put:~ 2" = W - (19)
and let z be the vector of the variables z at all points in the region

of interest, Theni-

£P+1 = E? E? + EP (20)
and _z__D = _U_

Thus the analysis of (16) is replaced by that of (20). The natural norm
to use for (20) may vary from time-step to timrn-step, as the simplest
choice may depend on Q?, which may depend on n since AR may depend on t,.
We introduce the sequence of (vector) norms ‘\gh‘\n; N =0, 1y 29 eeey
where each norm satisfies the usual norm axioms.

The norm |\ x || of a quantity x describes its magnitude. Any

definition of a norm will sufflice provided it satisfies the so=-

called "norm axioms" (see Liusternik & Sobolev (1961)):-

(1) || x||>0 unless x = 0, when ||x}} = 0 i.e. the norm is

non~negative;
(i1) || x H + {lyll> }x + yl‘ i.e. a triangular inegualityj;
(iii)y Waxll = 1A lix]l for any scalar A ; |A] denotes the

magnitude of A .



We introduce also the induced (matrix operator) norms:-

Hell, = SZp E2lA | € 2lln (21)
Nzl

Then (20) implies that:-

TR TP TR R €8
by the triangular inequality. We need to be able to compare successive
norms to be able to use the recursion relation (22). Assume that:=

H_z_“th1 < {1 + aAt}n_z_Hn Nn=0,1, 2y eee (23)
for all z. (We assume (23) holds because we need it for our procf, and
because common schemes obey it.) Then:-

1 gy < L1 e 28K NS, + Nl e

whence, using (22), we obtain:-

|E ZM L1+ 2Bl M), HM el (25)

=k +1
n=1 j
I gy e

Note that the index n-k is a power, not a superscript.

wheres-

The scheme (16) is defined to be stable with respect to the given
sequence of norms ifie

\\t_:_k\lk < {1 + bAt} k=0, 1, 2y e (26)
as At —> 0., Thus the numerical scheme (16) is stoble if ihe ncrm of
the matrix eperator £, which is the discrete analogue of the differential
operator A in (14), ;;, at every time-step, less than one plus some
(problem-dependent) constani multipliec by the magnitude of the time-
step length Nt. If (26) holds, then {(25) becomes:-

aty|
12", €k (21)

where -

K = c + ddt + QOQ(AEY) (28)

How do we apply this definition of stability tc the numerical

scheme (6)? First, we note that, instead of one unknown, wy we bave m
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unknowns, V, at each point in the discretised region € intere t,
Secondly, the stability definition (26) applies globally (i.e. at all
points in the discretised region simultaneously); ensuring, that *he ncrm
of the differential operator analcque satisfies an equivalent of (2u)
globally generally invclves an inordinete amount of work, unless
particularly simple equations and boundary conditions are involved.
Finally, the stability definition (26) applies to linecar differential
operators (recall that A in (14) is linear), So we wishi~
(i) to gereralise (26) to g variables, irstead of one;
(ii) tec obtain a local, rather than a global, stability criteriong
(iii) to generalise (26) to non-linear differential operators,

Suppose we expand yf from (6) in (spatial) Fourier series, We

1 jk
assume Ax, Ay and Nz are all constant, thouch this conditior can

be relaxed, Then we havesi=

n _ E‘ E: n ilp Ax _jIqglAy kirAz .
Eijk - ZZ: qur © ® € (lq)
P qQ r
where ;=
12 = -1
Put:-
A (z0)
pgr
so thats:-
n
o= 2 : >0
-_i k i 31
J P aq r “Hkoar (1)
Then (6) becomes:-
U?f1 = A V?. + B V? -IDZBX
=1 jk r - =i jk r = =ik
Pq pg n pPg +Ip[§x
C v . eee (32)
- ~1ijk
- par
whence s
n n+1
Axy = 7
LA = V. (3%)
- J /pqr =1 jk pqr
where s
ﬂ* = A + B-IpAX E + e+IpAX _E_ + eese (34)

Equation (33) shows hou the (pgr)=th Fourier component of the m variables

Vl’l

21 jk is transformed locally into the (pgr)-th Fourier component of y?f1_

1jk
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So, by analogy with (26), we may postulate that scheme (6) is locally
stable if i~
Jasll < {0+ bAt} (35)

at all time-steps, as [\t —> 0. A suitable norm for the (matrix)
operator A* is the spectral radius (i.e. the magnitude of the largest
eigenval;;):-

Nasl = e = |A
Thus we postulagg that the scheme (6) is locally stable if:-

p(a) < {1 + bAL} (37)

which is assured if the spectral radius of A* is not greater than one,

(a*) | (36)

max

ie€s ifi- pa) < 1 (38)

We can regard this stability analysis as a generalisation of the
von Neumann analysis for one-variable equations (see, for example,
Roache (1972)). Clearly, since (37) is a local, rather than a global,
criterion, the stability analysis possesses neither the necessity ncr
the sufficiency properties of a global analysis. Nevertheless, there is
evidence (see again Roache (1972)) that the von Neumann method is
dependable in practice, at least for one-variable problems. Its main
drawback indeed arises not so much from whether it works or not, but
from obtaining the specfra] radius Ea(ﬁf); for complex problems, a
numerical, rather than an analytical, method may be necessary, as we

shall see,.



II - APPLICATIONS

1 - Isentropic flow

(i) one~dimensional flow:= consider the flow equations (2), and suppose
we use the forward-time, upwind=-space differencing scheme (9) to solve

them, We puts=-

no_ n iIpOx n

Y
) -P
Then:= A - olpOx A (40)
=i=1 -
p

so that (9) becomes:=

n+ -IpQx -IpDxy \.n

o p= 1 =M1 - e P7% -83(1-9" )y_ip(m)

_ e--Ip[l X 1< Mt - e—Ipr)

~-Qc (1
e
We put B: - pr. Then, by hypothesis, the scheme (9) is stable if the
spectral radius of A* satisfies (37), where A* is given by:=
) ge (1 -6
c

(42)
) 1 -ma(1 - e'®)

1 -My(1 =e
A

- -gc (1 - el
e

i

B

The eigenvalues of A* are given by:-

A= 1 = am)(r - eIB)

(43)

2]
Now e’ ° = cos® + I sinB , whence:=-

N\

I = {(1 - QM) (1 - cos)? + (a(Me1)sind)?  (44)

The extrema of A\l with respect to ©® occur when dlM/ d® vanishes, Nows=

aixt = _1 [-— 2(M+1)(1 - a(m#1)) sine] (45)
de 2 I

So dIN / dB vanishes non—trivially (i.e. excluding Q = 0) when:=
© = nIT ; n integer (46)
(a) if n is even, (44) gives:-
Xl = 1 (47)
(b) if n is gdd, (44) gives:=
N = 11 = 20(ma) | (48)
For stability, we requires=-

| X pax 1€ 1+ bAL (49)
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or, to assure stability (insofar as a local criterion can assure stability),
we requires-
) < (50)
Clearly, case (a) is always stable. Case (b) gives:=
-1 L 1 =20(m1) < M
iees +1 > a(mr) > 0 (s1)
The left-hand inequality in (51) gives:=
YA 9.11)0
Ax c =
(u + c)Dt/Ax K1 (52)
which is the Courant-Friedrichs-Lewy (C~F-L) criterion, The right-hand
inequality in (51) gives, since Q> 0=
mM+12 0
or, since M is assumed positive (to give upuind-differencing):-
M= (53)
Thus forward=time, upwind=-space differencing is gtable if the flow is
supersonic (by (53)) and the C-F-L criterion (52) on the magnitude of

the time=step length At is satisfied,

If, instead of uypwind=-space differencing, we use gentred-space
differencing, with constant mesh size le, then (41) would become, in

the same notation:-

p 2c _ p
2¢
(54)
whence =
N
= \/1 + 07 sin’@ (me1)” (s5)
Clearly, for real Q and M, we havei=-
6% sin2® (M1)° 2 0 (56)
whence, from (55):- IXE > 1 (57)

so foruard-time, centred-space differencing is unstable except in the
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trivial cese of zero Courant nurber Q.

(ii) two-dimensional flows=- the flow equations ares=-
2

2u + udy + vou + g 2f = O

2t 3 x Jy P ox

By + udy + vy + 2R = O (58)
ot Dx Dy ? oy

2% + uDR + VDR +p2u + pov = O

ot D% oy X y

Forwardetime, upwind=-space differencing of (58) gives, if u and v > O:=

ug‘;-" = u?.j - MQ(U%‘U?A)’ ) - NR(U%"U;_'\J‘q) - Qég,(eg)'-EﬁU )
n+1 _.n - NSy o N oD - n "
vlj = Vij MQ(U].J 61_1) ) NR(UIJ U}J—]) %C_(E]J - &3_1) (59)

n+1

Eij = E:J - NQ(?&B—P;_'\:)) - NR(Ei‘j—E{j;\) - %i(ufi‘j'u{iﬁ))
- B2(uy- Ui)

Expansion in a (double) Fourier series gives:i=

_\_/_1'.‘}1 = 1 = MQa ~ NRb -gea -Ngb v (60)
Pq N < Ylpq
-Gca 1= Mga = NRD O
e
-Ncb 0 1 - M3a - NRb
e
wheret- a=1-eIe,b=1-eI¢, B=-PAX’ﬂ=-qAY,

Q=clAt/Ax, R =cAt/Ay, W =u/c, and N = v/c,

The eigenvalues of the matrix in (60) are given byz=

N\
+ [0 = 72 R2(1 - &17)2

7\ = 1 = M1 = eIe) - NR(1 - elﬁ) - "

0 (61)
Extrema of |\ with respect te B and @ occur when OWW/20 and dWN/3 ¢
both vanishj this occurs whent=

9 = n, 7T
1 .
n, integers (62)

Mo 0y

g = n,JT
(a) if n, and n_ are both even, (61) givest-

1 2
IN] = 1 (63)

(b) if n, is odd and n, is even, (61) gives:=

\x\=\1-2ma { -
0

(64)
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(c) if n, is even and n_ is odd, (61) gives:=

! 2 4R
N = \1 - 2NR { - 2R ) (65)
0

(d) if n, and n, are both odd, (61) gives:-

+ 2&2 + R?
{-2 — (66)
0

N

1 = 2MQ - 2NR

i

The stability condition (38), which assures that (37) holds, is clearly

satisfied in case (a)s In cases (b) and (c), the first two conditions

in each just reproduce the one-dimensional results (52) and (53) i.e.
(utc)Dt/Dx €13 (v £c)At/Ax &1 (67)

m o> 1 N> (68)

while the third gives, assuming M and N both to be positive (which
upwind-differencing implies):=

uldt/Ax <1 : vt/ Dx £ 1 (69)
Conditions (67) correspond to the motion of pressure waves, and

congitions (69) to the motion of vorticity waves, Case (d) gives:=

Ut + vt 2 At |1+ 1 <1 (70)
Ax AX \/sz Ayz

as the pressure wave cendition (or, generalising (52), the CeF=L

condition),
Mo+ N J1 + of
(71)
where - < = Ax/ Ny
ands- ult + v D L (72)

Ax Dy
as the vorticity wave condition.
Condition (71) may be rewritten in a more convenient form, If M#
denotes the actual Mach number, thense
M = M cosB and N = Me sinP (73)

where B is the flow angle relative to the xeaxis, Thus (71) becomes:=-

M cosB  + o Me sinP >Wf1 + of
Letim siny = 1/+J1 +of  and cosy = /|1 + o2 (74)

Then:= "* cosB siny + M* sinBcosy > 1
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or:- me sin(B +y ) > 1 (75)
which gives a condition on the actual Mach number in terms oij defined

by (73) and y defined by (74).

(iii) three-dimensional flows- forward-time, upwind-space differencing

of the three-dimensional flow equations gives a result similar to (8)

and (59), assuming all velocities to be positive. Expansion in a (triple)
Fourier series then gives a result similar to (41) and (60). The

eigenvalues of the matrix involved are given by:-

IB)

3
NR(1 - em) - PS(1 - eIJd) :r X (76)

0
- qly, ¥ = -z, @ = cAt/Ax, R = cAt/Dy,
Mm=u/c, N=v/c, P=u/c, and
3 = \[02(1 - ™) 4 R2(1 - o2 4 521 - oT¥)2

Thus the principal stability conditions are, by (38):=

N = 1-M(1 -e

wheret= B =- pAx, #

S

1
0
>
or
~
>
o

N\

uDt + v Dt o+ wDt o+ cAt 1 o+ 1 w1 Q1 (7)
b A Az -\}[)xz A NP

which is the (C=F-L) conlition on pressure waves,

uldt + vBt + wht 1 (78)
AL Ay Nz

which is the condition on vorticity waves, andi=-
N+«N+BP>J1+«><2+BZ

where ot = Ax/Ny and B= Ax/ D z

\

(79)

Just as in the two-dimensional case (which included one-dimensional
stability conditions in each flow direction), the three-dimensional
example here includes one-dimensional and two=dimensional stability
conditions in each flow direction and pair of flow directions,

respectively., They are easy to derive, and consequently not given here,

2 - Constant stagnation enthalpy flow

Consider the one~dimensional flow equationsé=-

Su + uly + 122 = O

2t dx P ox (80)
98 + udk + p2u =g

2t DX D X
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At steady=state (and it is the steady=-state result we are usually
interested in), the flow occurs at constant stagnation enthalpy ho. e
assume, following Denton (1975) that there is the correct heat transfer
at any instant of time to ensure that ho is constant, Then it is easy
to show that, for a perfect gas flow:-

p = p#(h -+ (81)
where @ = (3’- 1)/X s and K': Cp/CV is the specific heat ratio, assumed
constant, Thusie

°p = 284 (h - 4’) - pAudy (82)
D% DX D x

If we use forward=time, upwind=-space differencing for velocity and
density derivatives, and centred-space differencing for pressure
derivatives (again in the manner of Denton (1975)), we get, in the

usual notationge

o+
G = W - m(g iy ) - ety - B (ph-el)
2p 2
[
+ E%Q(U§*1“Ja-1 ) (83)
n+1

By - Mp3-Pi-1) - e} -viag)

i

The usual Fourier series substitution givesi=

[Tl B I OIS -ge(1 - e~ 18) I
C
P
RIS CING L) - [(1 - o1y et 1)
2p 2
(84)
where X = hg = %Mz
2 (85)
and B = +plx

The eigenvalues of the matrix in (84) are given by:= 2
A=1-M3(1 - cosP + I sin® (1 - 3¢)) + |- Z\; quzﬁz sin28 /
- QZI sin® of@(cos®@ - 1 - I sing)
(86)

Extrema of |Xoccur when d|Xl/d® vanishes, This occurs when B = nTT;

n integer. If n is even, then:- Xl = +1 (87)



which, by the stability condition (38), is always stable, If n is odd,

thens- Xt =] 1-2mg | (88)
and, for stability, (88) gives:- .

-1 £ 1 -2m #
iee, 0 < 2m £ (89)

If M is positive (as upwind-differencing implies), the left-hand

inequality in (89) is automatic, and the right=hancd inequality gives:—

ma <1
i.e, u At/bx <1 (90)
which is a vorticity wave condition,
We note that dI\/dQ also vanishes at some other values of © which
cannot be obtained explicitly; instead, a numerical method must be used
to find either the extrema of I\lor to solve the equation d{X\/df = 0,
using local values of the parameters M etc, Whatever the values of 8 are,
we can easily see from (86) that the result obtained will not be the C~F-L
concition (52), which suggests that the stability analysis presented by
Denton (1976), in which he obtains the C-F=-L condition for his scheme,

may be incorrect,
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III = EXTENSION TO ILL-~CONDITIONING THEORY

The equations of motion of a steady=-state inviscid compressible flow
may always be expressed in the formie
W) = o (91)
by analogy with equation (1), Suitable spatial discretisation of the flow
field leads to a set of algebraic equations of the formi-—
Ali * Bhqm * &

in some sense equivalent to (91), by analogy with (6), which, by expansion

Liygge *oeee = 8 (92)

in spatial Fourier series may be writteni-

2 Lk . g (93)

by analogy with (33).

Solution of the system (91) for V will involve (local) inversion of the
matrix A* in (93). The question of importance ist=~ under what conditions
will it-ge difficult ~ or impossible = to perform this matrix inversion?

Clearly, if A* is singular (i.e, det A* = 0), inversion is impossible,

More generally, if we define the condition number q by:-

s/
:\min

where )\max and j\min denote the maximém and minimum eigenvalues of A%

q = (94)

in magnitude, then if q>>1, we say that A* is ill-conditioned. Clearly,

if X nin = U» det A® vanishes, and g->e0. So infinite condition number

implies singularity of the matrix. If gq>> 1, then inversion of A* will
be difficult, so we can get an idea of the ease of solution of the
discrete analogue (92) of the equations (91) by examining q at all points

in the (discretised) flow field, We consider some illustrative isentropic

one=-dimensional flow examples,

Suppose, first, that upwind-spatial differencing is used (as in
(9) with no time dependence)., Then the usual Fourier series substitution

givest=
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M1 - e B(1 ~ e

-10 Yy = 2 (95)

Cc
-19, M1 - e

c(1 -e p
€ 2
wvhere © = pQAx, M = u/c, and I = =1, The eigenvalues of the matrix

in (95) are given by:-

10
A= (- )M ) (96)
so that the condition number is given byt=
q = il | (97)
m - 1

assuming M > O (as upwind-differencing implies). When M = 1,
q>>1, so that the scheme (95) becomes ill-conditioned near sonic

conditionse

Suppose now that centred-space, and not upwind=-space, differencing
is used, so that (95) becomes:-
im(e'*‘lg. a—IQ) __E_(9+19— e-IG)

2c v, = 0 (98)
_C_(9+Ig" E—IB) ‘}N(e‘”e— B—Ie) —l) p
Zg

Then, as basfore, we havei-

(99)

q=N+1
mo- 1

so that scheme (98) becomes ill-conditioned at sonic conditions also.

If upwindespace differencing is used for velocity and density

derivatives, and centred-space differencing for pressure derivatives,

we geti-
n(1 - o~19) e(1 - o~19)
c v, (100)
9-(84-19_ E-Ig) m(1 - B-Ig) -1 p
2p
The eigenvalues of the matrix in (100) are given by:=
\
A= n1 - 9-19) i-\j%(1 - e-IB)(e+Ie- e-IB) (101)
and the matrix becomes singular ifs~
det A* = M2(1 - e 12)2 | 31 - O (etTP_ 718y g (102)

so that equation (100) becomes singular only for certain Fourier
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components at M = + 1 (specifically, those components with O = 2nr;
n integer) and ill~conditioned near M = + 1 again only for certain

Fourier components,

We see, therefore, that by the use of different spatial differencing
schemes for the coupling derivatives (i.,e. the velocity derivatives in
the continuity equation, and the pressure derivatives in the momentum
equations) from the other derivatives (i.e. the density derivatives in
the continuity equation, and the velocity derivatives in the momentum
equations) we can eliminate the problem of ill-conditioning. Thus, by a
quite simple technique, we can overcome at least one problem associated

with solving the steady-state flow equations.
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