
C.P. No. 1378 

. z PROCUREMENT EXECUTIVE, MINISTRY Of DEFENCE 

AERONAUTICAL RESEARCH COUNCIL 

CURRENT PAPERS 

The Application of the Hilbert Transform 

to System Response Analysis 

*  bY 

. &t-z!' “.I “ENVC. W. Skingle, K. H. Heron 

3 ._,~ . , .r A_ Ld ‘ 
and 

D. R. Gaukroger 

Aerodynamics Dept., R.A.E., Farnborough Hunts. 

LONDON: HER MAJESTY’S STATIONERY OFFICE 

1977 

f/-SO NET 



UDC 534.11 

"a? No.1378 
September 1974 

THE APPLICATION OF THE HILBERT TRANSFORM TO SYSTEM RESPONSE ANALYSIS 

bY 

C. W. Skingle 

K. H. Heron 
D. R. Gaukroger 

SUMMARY 

The application of the Hilbert transform to the analysis of the response 

of linear multi-degree-of-freedom systems to random forces is considered. The 

use of this transform in deriving modal properties of a system from the spectral 
density of the response of the system to a random input force which has a flat 
spectrum is demonstrated. It is also shown that the Fourier transform of the 
one-sided autocorrelogram of the response implicitly involves a Hilbert 
transform. 

The Hilbert transform can be realised, in practice, by simple manipula- 

tions of signals in the time domain, and by Fourier transform processes available 

in commercial Fourier analysers. 

* Replaces RAE Technical Report 74117 - ARC 35681. 



CONTENTS 

1 INTRODUCTION 

2 THEORY 
2.1 Hilbert transform 
2.2 Derivation of transfer function 
2.3 Evaluation of the Hilbert transform 
2.4 Fourier transform of the one-sided autocorrelogram 

3 EXAMPLE 
4 DISCUSSION 

5 CONCLUSIONS 
References 
Illustrations 

Page 

3 
4 
4 
5 
7 
8 
9 

11 

13 
14 

Figures 1-6 



3 

1 INTRODUCTION 

Several techniques arc available for finding the values of natural 
frequency and damping ratio of the modes of a system from the response of the 

system to external forces 1,2,3 . If the time-histories of the forces are unknown, 
the techniques utilise the spectral density of the system response. In order to 
apply these techniques, it is generally necessary to assume that the excitation 

spectrum is flat in the region of each resonance frequency 2,4 . When this assump- 
tion is satisfied, the spectral density of the response is prcportional to the 

square of the modulus of a transfer function of the system. 

Analysis techniques that attempt to recover the transfer function from the 
spectral density all have one drawback in common, namely that many transfer 
functions of a system can be associated with a given spectral density, and it is 

not generally possible to recover the particular transfer function with which the 
spectral density was originally associated. This is not a significant drawback 
if the modal data that are sought are restricted to the values of natural 
frequency and damping ratio, since these can be derived from any of the transfer 
functions associated with a given response spectral density. However, the 
accuracy with which these values can be found may vary with the type of analysis 
which is employed, and there is, therefore, some incentive to explore new methods 
of analysis to assess what advantages, if any, they may offer. One such explora- 
tion that has been made is the application of the Hilbert transform to system 

response analysis. 

Briefly, the Hilbert transform gives the imaginary part of a complex 
function when only the real part is known, and vice-versa. A necessary condition 
is that the function should be the Fourier transform of a causal function. This 
condition is satisfied if the complex function is a transfer function of a stable 
linear physically realisable system, since its inverse Fourier transform is the 
impulse response of the system, and is causal. If, therefore, the real part of 

a transfer function is known the Hilbert transform gives the imaginary part. 

In applying the Hilbert transform to analyse response spectral density, a 
slightly devious route must be followed. This is because the response spectral 
density contains the modulus (and not the real part) of the transfer function 
and, moreover, the modulus appears in a squared form. The problem is approached, 

following a method due to Bode', by using the logarithm of the spectral density, 
and applying to this a Hilbert transform to derive the phase characteristic of 

the transfer function. This treatment leads to a 'minimum-phase-shift' transfer 
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function, for which the inverse Fourier transforms of both the function and its 

logarithm are causa16. Thus, of the many transfer functions which can be 
associated with a given response spectral density, the process outlined above 
will give only the minimum-phase-shift function. 

The above process may be compared with that of using the Fourier transform 
of the one-sided autocorrelogram 4 to produce a vector plot from which the modal 
characteristics of the system may be obtained. An example is given in which both 
processes are applied to determine the modal characteristics of a three degree- 
of-freedom system from the spectral density of the system response. The values 
of frequency and damping ratio obtained are equal to the known values for the 
system. However, the transfer functions from the two processes are dissimilar in 

appearance when presented in Argand diagram, or vector plot, form. In general, 
one process cannot be preferred to the other where the aim is solely to extract 
natural frequencies and damping ratios. It is also shown that the imaginary part 
of the Fourier transform of the one-sided autocorrelogram can be expressed as a 

Hilbert transform of the spectral density - a result that provides a link between 
the two processes, and that does not seem to have been noted in the relevant 
literature. 

It is concluded that the application of the Hilbert transform in analysing 
response spectral density does not in general result in significant improvements 

over existing analysis techniques. There may, however, be circumstances in which 
it could be used to advantage, and it constitutes a useful tool in the workshop 
of dynamic analysis. 

The application of the Hilbert transform is only of practical value if the 
transform can be realised without a great deal of difficulty. Accordingly, a 
method has been devised that enables a Hilbert transform to be carried out using 
standard facilities available with a Fourier analyser. 

2 THEORY 

2.1 Hilbert transform 

Let z(t) be a function of time t , and let Z(w) be its Fourier 
transform:- 

00 

I 

. 
Z(w) - z(t)e -1ut dt (1) 
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Z(w) may be expressed in its real and imaginary parts as:- 

Z(u) = X(w) + iY(w) . 

Provided z(t) is a causal function (z(t) = 0 for t < 0) and is finite at 

t 0, = the Hilbert transform relationships between X(w) and Y(w) are:- 

m 

X(w) = + 
I 

Y(Q) 

(W -0) dS2 

-co 

(2) 

(3) 

(4) 

Equations (3) and (4) show that given the real (or imaginary) part of a function 

Z(w) , the imaginary (or real) part can be found. 

The aim of the following analysis is to use the Hilbert transform to 

derive a transfer function of a system from the spectral density of the response 

of the system to an exciting force having a flat spectrum. 

2.2 Derivation of transfer function 

It has been shown4 that the spectral density S(w) of the response at a 

point in the system is proportional to the square of the modulus of the transfer 

function H(w) between the points of excitation and response measurement 

provided the excitation has a flat spectrum. For convenience, the factor of 

proportionality is dropped, so that:- 

S(W) = IH( . (5) 

In order to apply the Hilbert transform, an equation analagous to equation (2) is 

required. Following Bode's5 treatment, H(w) may be expressed in modulus and 

phase form as:- 

(6) 

where 0(w) is the phase function. Taking logarithms of equation (6):- 



log H(o) = log IH( + ie(w) . 

Now 

log Sb) i= log IH( = 2 log II-%)/ 

and therefore:- 

log H(w) = 1 log S(w) + i0(w) . 

(7) 

(81 

(9) 

Equation (9) is analogous to equation (2), and given S(o) , (and hence 
1 log S(w)) the Hilbert transform will yield a phase function e(w) . However, 
although 0(w) is uniquely determined from 1 log S(w) , there is not a one-to- 
one relationship between H(w) and S(O) . For example, some other transfer 

function H'(w) given by:- 

H’ (~1 = H(w)ei+(w) (10) 

will also satisfy equation (5). The transfer function HH(w) that is obtained 
from S(w) and from 8(w) (which has been determined from 1 log S(o) by a 
Hilbert transform), i.e. 

= S(o) s(n) dfi 
- Q2) 

(11) 

will be that for which the inverse Fourier transform of log H.Jp> is causal:- 

M 
& lim 

I 
log HH(o)eiwtdw = 0 for t < 0 . 

M-W 
-M 

(12) 

The inverse Fourier transform of a transfer function is, of course, also causal, 
and hence:- 
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00 
1 

z i s(w)eiwt dw = 0 for t < 0 . 
-to 

Functions which satisfy equations (12) and (13) are termed 'minimum-phase-shift', 

and their properties are dealt with in text-books, such as Ref.6. One example of 
a 'minimum-phase-shift' function is the transfer function between coincident 
excitation and response-measurement points. 

2.3 Evaluation of the Hilbert transform 

It will be shown in this section that the Hilbert transform can be 
evaluated by manipulation of functions in the time domain and by Fourier 
transforms. 

Let 

z(t) = z,(t) + z,(t) (14) 

where z,(t) is the even, and z,(t) the odd part of z(t) l If z(t) is 
causal:- 

z,(t) = z,(t) sgn (t> 

z,(t) = z,(t) sgn (t) . 

(15) 

(16) 

Let the Fourier transforms of z,(t) and z,(t) be Z,(w) and Zo(w) 
respectively. Z,(w) is wholly real, and Zo(w) wholly imaginary. Hence, taking 
the Fourier transform of equation (14) and comparing it with equation (2);- 

ze (a> = X(w) (17) 

z. CJJ) = iY(w) . (18) 

It can be seen from the above that given, say, X(w) an inverse Fourier 
transform yields z,(t) (from equation (17)). Multiplication of z,(t) by 
sgn (t) gives z,(t) (f rom equation (16)) and a Fourier transform of z,(t) 
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gives iY(w) (from equation (18)). In a similar manner, given Y(w) , X(W) 

can be found. 

These sequences of operations are effectively those of obtaining the 

Hilbert transforms. This will be proved by showing that the Fourier transforms 
of equations (15) and (16) give equations (3) and (4). Noting that the Fourier 
transforms of sgn (t) is 2/iw , the Convolution Theorem may be used to express 
the Fourier transforms of equations (15) and (16) as:- 

X(w) = & ( iY(w) @ & 
> 

where @ denotes convolution, i.e. 

co 

a(u) @ b(o) = 
i 

a(n)b(w - s2)dQ 
-CO 

Hence, from equations (19), (20) and (21):- 

03 m 

X(w) = & iY(.Q) 2 
i(w _ n) dQ = + (;(y)n, dR 

and 

co 

Y(w) = & x(n) 
2 

i(w _ n) dQ = - + j' (w"(f)n) dS2 

(19) 

(20) 

(21) 

(22) 

(23) 
-CO -CO 

which are the Hilbert transform relationships of equations (3) and (4). 

2.4 Fourier transform of the one-sided autocorrelogram 

The autocorrelogram A(T) of z(t) is the inverse Fourier transform of 
the spectral density S(0) :- 
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A(T) = & 
. 

S(w)elwT dw . (24) 

The one-sided autocorrelogram A'(r) (such that A'(T) = 0 for T < 0 ) is 

given by 

A'(r) = 

since A(r) is an even function 

denoted by x'(w) , is therefore 

&CT) + ~&CT) sgn -C (25) 

of r . The Fourier transform of A'(r) , 

given by:- 

X’(w) = is(w) + 1 1 &S(w) CD& J (26) 

(27) 

Equation (27) shows that the real part of A'(w) is half the spectral density 

(and therefore positive), whilst the imaginary part is half the Hilbert transform 

of the spectral density. 

The one-sided autocorrelogram procedure4 can be seen therefore to have 

generated no 'new' information from that contained in the original response 

spectral density since the real part is directly related to the spectral density 
by a simple factor and the imaginary part is merely a weighted average of the 
spectral density over the whole frequency range. It has been shown4 however that 
the resulting 'plot' closely resembles the vector response plot of a transfer 
function and may be analysed by standard procedures. 

3 EXAMPLE 

In the following example, a three degree-of-freedom system has been used. 

The modal frequency and damping ratios were:- 

Mode Frequency (Hz) Damping ratio 

1 100 0.050 
2 140 0.036 
3 170 0.029 



10 

The system is excited by a time-varying force having a flat spectrum; the 

force is applied at one point in the system, and the response is measured at 

another point. The transfer function between the points is obtained by dividing 

the Fourier transform of the response by that of the excitation. The resulting 

vector plot is shown in Fig.la, and the choice of points is such that Fig.la is 

the vector plot of a non-minimum-phase-shift transfer function. The spectral 

density of the response can also be obtained and this is shown in Fig.2. 

In the many practical situations where the time-history of the exciting 

force is unknown, the characteristics of the system have to be obtained from the 

time-history of the response alone, making the assumption that the spectrum of 

the exciting force is flat. Thus, in practice, the transfer function of Fig.la 

is not known and the analysis is based on the spectral density of the response 

(Fig.2). 

The method of section 2.2 has accordingly been used to find a phase function 

by a Hilbert transform of the logarithm of the spectral density of Fig.2. 

Following equation (II), a transfer function has been derived, and this is shown 

as a vector plot in Fig.lb. Comparison of the vector plots of Figs.la and lb 

shows that they differ markedly both in modal amplitude ratios (the ratios of the 

'circle' diameters) and in pattern (the relative positions of the 'circles'). 

The reason for this is that the derived plot (Fig.lb) is that of a minimum-phase- 

shift function whereas the original plot (Fig.la) is not. (Computer analyses7 of 

both plots naturally give the same values of modal frequencies and dampingratios, 

which agree with the values given in the above table.) At first glance, it seems 

unlikely that both plots are associated with the same spectral density - 

particularly in view of the small modal component of mode 2 in Fig.lb - but this 

is indeed so. 

In order to compare the analysis technique using the Hilbert transform with 

the technique using the Fourier transform of the one-sided autocorrelogram, the 

latter function was also computed from the response spectral density of Fig.2. 

The autocorrelogram was first obtained as an inverse Fourier transform of the 

response spectral density, and a Fourier transform of the one-sided auto- 

correlogram was then derived. The vector plot of this function is shown in Fig.3. 

Again, computer analysis of Fig.3 gave values of modal frequency and damping ratio 

that agreed with the above tabulated values. 

Comparison of Figs.lb and 3 shows that the vector plot from the one-sided 

autocorrelogram (Fig.3) has an even smaller component of mode 2 than that from 



the Hilbert transform process (Fig.lb). The size of this component in Fig.3 
reflects the relative amplitudes of the peaks in Fig.2. However, there can in 
general be no certainty that the Hilbert transform process will yield modal 
amplitudes that are more nearly equal than the one-sided autocorrelogram process. 

In the example given here, the minimum-phase-shift vector plot of Fig.lb is 

slightly preferable to Fig.3 for the extraction of modal frequencies and damping 

ratios, but there is not a great deal to choose between them in this respect. 
Certainly Fig.la - the 'original' vector plot - is preferable to either of the 

others , particularly if hand-analysis of the plots has to be undertaken. 

In order to demonstrate that the Hilbert transform analysis process will 

yield the 'original' transfer function provided the latter is a minimum-phase- 

shift function, the same system was again used but the minimum-phase-shift 
transfer function of Fig.4a was generated, by letting the excitation and 
response-measurement points coincide. The response spectral density correspond- 

ing to Fig.4a is shown in Fig.5, and from this starting point using the method 

of section 2.2, the minimum-phase-shift transfer function of Fig.4b was derived. 

This is obviously the same function as Fig.4a. The Fourier transform of the one- 

sided autocorrelogram, which was computed from the response spectral density of 
Fig.5, is shown in Fig.6 and may be compared with Figs.4a and 4b. Obviously, 
the component of the mode at 140 Hz in Fig.6 has been decreased in magnitude 
relative to the other two modes as a result of the squaring process inherent in 

computing the spectral density. 

4 DISCUSSION 

It has been shown, in section 2, that a minimum-phase-shift transfer 

function of a system can be derived from the spectral density of the response by 

applying a Hilbert transform. In the example of section 3 the process is applied 

to determine the values of modal frequency and damping ratio of a system, and is 
compared with what may be termed the 'one-sided autocorrelogram' process applied 

to the same system. It is of interest to consider in what circumstances one 

process would be preferable to the other. 

In the 'Hilbert transform' process of section 2.2 the modulus of the 

derived transfer function is the square root of the spectral density. In the 

one-sided autocorrelogram process the modulus is approximately proportional to 
the spectral density. It is likely, therefore, that where the spectral density 

has some relatively small modal 'peaks', the transfer function derived from the 
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Hilbert transform process will have a better modal balance than that from the 

one-sided autocorrelogram. This will certainly be significant if the vector 

plot of the transfer function has to be analysed by hand. 

Another point to be considered is that in general, the transfer functions 

derived from both processes may differ markedly from the actual transfer 

function between the excitation and response points. It is thus possible for 

the benefits of an apparently well-chosen response point to be lost in the 

processing. This is well-illustrated in the example of section 3 where the 

transfer function of Fig.la is that of a well-chosen point, in that the modal 

’ circles ’ are of similar size, and the whole plot can be readily analysed to 

give values of natural frequency and damping ratio. In Fig.lb, however, although 

the vector moduli are the same as in Fig. la, the modal circles are quite 

different in size, and the second mode would be difficult to analyse accurately 

by hand. The same criticism can be made of Fig.3, but at least the circle size 

can be anticipated from a study of the response spectral density. In general, 

whichever process is used, it is desirable that the modal peaks of the response 

spectral density are of broadly equal amplitude. 

It may be noted that whereas the Hilbert transform process leading to 

equation (11) will always give a transfer function having the response spectral 

density from which it is derived, the one-sided autocorrelogram process of 

equation (27) will not do so. (In the examples of section 3 the spectral 

densities associated with Figs.3 and 6 are not the spectral densities of Figs.2 

and 5 respectively.) It follows that the one-sided autocorrelogram process can 

never lead to the transfer function from which the original response spectral 

density was obtained. On the other hand, the Hilbert transform process can do 

so, provided the original response spectral density was obtained from a minimum- 

phase-shift transfer function as was shown in Figs.4a and 4b. Unfortunately, it 

is not easy to identify a minimum-phase-shift transfer function unless a 

mathematical test can be applied to an analytical expression of the function. As 

has already been stated (section 2.2) it can be shown that if the excitation and 

response-measurement points of a system are coincident, the transfer function 

between excitation and response will be a minimum-phase-shift function. If the 

excitation and response points are progressively separated, there will be some 

separation at which the transfer function will become a non-minimum-phase-shift 

function. Physically, the changeover will be associated with the nodal line 

positions of the modes of the system, but there appears to be no certain way of 
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deciding from the vector plot of the transfer function whether the function will 
have minimum-phase-shift characteristics. In the restricted case, therefore, 
where the excitation and response points are coincident, the Hilbert transform 
process will derive the original transfer function associated with the spectral 

density. This may be advantageous in some applications. 

5 CONCLUSIONS 

It has been shown how the Hilbert transform can be applied in the analysis 
of the response of linear multi-degree-of-freedom systems to excitation forces 
having flat spectra. The application enables a transfer function of the system 

to be obtained from the spectral density of the response. The derived transfer 
function will be a minimum-phase-shift function and may be used to determine the 
modal frequencies and damping ratios of the system by conventional methods. 

A comparison of the above process with that of obtaining a transfer 
function from the one-sided autocorrelogram has shown that in general one process 
cannot be preferred to the other where the aim is solely to extract natural 

frequencies and damping ratios. There may be particular applications where the 

process employing the Hilbert transform has some comparative advantages. 

The Hilbert transform can be realised in practice by using facilities 
available on commercial Fourier analysers. 
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