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SUMMARY 

The author's method to compute the steady low-speed inviscid flow past a 

wing in free air, is extended to take account of ground effect. The basic method 

represents the perturbation due to the wing by iteratively computed distributions 

of sources and doublets on the wing chordal surface; at each iteration the ground 

effect is represented by the images in the ground plane of these distributions, 

the strengths of which are calculated from the computed errors in the boundary 

conditions on upper and lower surfaces. For a given angle of incidence (and 

Mach number), several heights above the ground in succession can be treated, with 

some economy in computing time. 

Results are presented for a two-dimensional section (RAE 100) and for two 

variants of a wing of 'airbus' type. Comparisons with another method for the 

RAE 100 section suggest that the present method generally needs at least three 

iterations, and that for very accurate results at low ground heights further work 

on the program is needed. 
, 

* Replaces RAE Technical Report 76053 - ARC 36856. 
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1 INTRODUCTION 

In earlier work' we have shown how to compute the steady inviscid flow 

past a thick, cambered and twisted wing (neglecting dihedral) in free air, at 

low Mach number. The flow field is represented by suitable source and doublet 

(singularity) distributions in the wing chordal surface, the strengths of which 

are calculated iteratively by the second-order small-perturbation theory of 

Weber*. A computer subroutine, developed by Ledger3 and Sells4, is available 

to calculate the corresponding flow fields. 

In this approach to the problem of a wing in free air, the iterative 

calculation of the strengths of the singularity distributions is based at each 

step on finding the amount by which the velocity fields violate the wing 

boundary conditions of zero normal flow on upper and lower surfaces. For the 

problem of a wing near the ground, this idea can be extended very simply. The 

effect of a solid planar ground can be represented by image singularity distri- 

butions, and the corresponding interference velocity fields induced on the wing 

can also be calculated by the Ledger-Sells subroutine and added to the basic 

velocity fields. The necessary modifications are set out in section 2. The 

interference fields are expected to be small compared with the basic velocity 

fields, and the major consequence of this is that they should produce only small 

perturbations in the boundary-condition errors, which can easily be absorbed 

into the general error fields to be cancelled (approximately) at each iteration. 

Thus, no special modification is needed in the program to calculate the 

successive singularity strengths. 

Most of the computer time in this method is needed by the Ledger-Sells 

integration subroutine, and at first sight it might appear that the additional 

computation of the interference velocity fields on upper and lower wing surfaces 

would increase run times by a factor of about three. In fact the penalty is not 

as large as this, for two reasons. First, since the numerical variation in the 

interference-velocity integrands subsides rapidly with distance from the 

singularity plane, the integration (which is adaptive, i.e. compares results for 

successively larger numbers of function evaluations) takes less time than that 

for the basic velocity fields. Secondly, the differences between the inter- 

ference fields on upper and lower surfaces is also expected to be small compared 

with the basic fields, and indeed may be small compared with the interference 

fields themselves, so that in most circumstances it should suffice (and this 

has been assumed in writing the program) to calculate these interference fields 



on one surface only. For very accurate work this assumption may fail, as we 
shall see in section 4 (Results), and then it may be necessary to determine the 
separate upper- and lower-surface interference fields, perhaps using Taylor 
series as in Ref.1 (where it was shown how to tackle the similar problem for 
cambered wings). 

The method assumes the planar wake of linear theory, and is therefore 
less general than that of Maskew', who is able to distribute his singularities 
(vortex rings) over the wing camber surface and one of two possible wake models. 
However, the results reported by Maskew do suggest that the difference in 
results, due to different wake models, is often small compared with the 
difference due to ground effect itself, so we might argue that if we could deter- 
mine the wake shape as part of the solution, the results would be unlikely to 
differ much from those obtained with a simple wake model. More significant may 
be the fact that we can take the thickness interaction into account as well as 
those of camber, twist and incidence, and in the results section we show a 
case for which the extra lift generated by ground effect is due principally to 
changes in the lower-surface pressure distribution, for which the boundary 
layer is relatively thin, while the upper-surface pressure distribution and its 
associated thick boundary layer do not change much from their free-air disposi- 
tions. This would imply that for this case viscous effects are similar to those 
for the wing in free air; a result which would be unlikely to emerge from an 
application of Maskew's thin-wing method. This is an example of the general 
contention, which we now make, that the inclusion of thickness interactions 
might allow better prediction of viscous effects. 

A possible further advantage of the present method is that, whereas (for 
one configuration) a panel and matrix method might need up to four times the 
effort to calculate influence coefficients in the presence of ground effect, 
compared with the corresponding free-air problem, the present method needs rather 
less than three times the total effort. Vhen results are required for more than 
one ground height, the present method can carry over the stored basic velocity 
field from a previous iteration, thus saving one application of the Ledger-Sells 
subroutine; but a panel and matrix method can also save time by holding the sub- 
matrix of self-induced influence coefficients in store, and it is not easy to 
predict which method would gain on this point. 

The program is written in Fortran and, with arrays dimensioned for a 
12 x 15 collocation grid, requires about 57K words of core store (including 
about 13K words for a vortex lattice matrix). 



2 THE IMAGE SYSTEM IN GROUND EFFECT 

We consider a finite wing moving at incidence a and unit speed, parallel 

to an infinite plane representing the ground. (When the wing is relatively 

near the ground, departures from parallel motion must be small.) The flow is 

considered inviscid and irrotational, but may be slightly compressible, even at 

landing 'and take-off speeds. We superpose unit velocity on the system in the 

usual way, so that the wing is considered at rest in a moving airstream, and 

define Cartesian coordinates (f;,y,i) with origin TO at the wing root trailing- 

edge, with the G-axis downstream and parallel to the ground, the y-axis to star- 

board and the i-axis vertically upwards. 

In Ref.1 we considered a wing in free air, with no ground effect, and 

showed how to calculate the resulting flow field iteratively, following Weber2. 

The perturbation flow field due to the wing is represented by distributions of 

sources and doublets on the wing chordal surface. To start the iteration, the 

strengths of these singularities are estimated by linear theory; the resulting 

velocity fields are computed at certain collocation points on the upper and lower 

wing surfaces, the errors in the boundary conditions of zero normal flow are 

determined and combined into symmetrical and antisymmetrical parts, Rt, RR 

respectively, and perturbation singularity distributions are generated to cancel 

these errors approximately, again using linear theory. The cycle can be 

repeated as often as desired; in practice two or three iterations suffice for 

acceptable convergence. 

When the wing chordal surface is non-planar, we consider a plane parallel 

to the y-axis,containing the local chordline at the collocation wing section 

Y = constant and inclined to the onset flow and the x-axis at an angle 

a + a,(y) , where a,(y) is the local twist angle, and assume that a singularity 

distribution on this plane produces the same velocity field - to second-order 

accuracy - at this collocation section, as would the same singularity distribu- 

tion on the twisted chordal surface. Such an assumption has to be made here, 

since we intend to compute the perturbation velocity fields using the Ledger- 

Sells3'4 computer subroutine which applies only to singularity distributions 

in a plane. 

In extending the method, the effect of ground proximity can now be 

represented by planar image source and doublet singularities (of the same sign 

for sources, of opposite sign for doublets), and these can easily be incorporated 
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into the iterative scheme. As the Ledger-Sells subroutine can be used at any 

points off the plane containing the singularities, we can calculate the inter- 

ference velocity fields induced on the wing by the image singularities, as well 

as by the basic chordal-surface singularities, and take them into account when 

we compute the residual errors R t' RI1 
in the boundary conditions. We expect 

that on the wing surface the interference fields will be small compared with 

the basic velocity fields, so that the residual errors will not be grossly 

increased (i.e. by an order of magnitude or more) and we can again cancel them 

approximately by adding suitable perturbation singularities as before, with 

unimpaired convergence. Thus no special modification is needed, even to the 

first set of singularity distributions, estimated from linear theory. 

A further consequence of the comparative separation of the wing and its 

image is that the difference between the interference velocities on the upper 

and lower surfaces of a thin wing near a given point P on the wing chordal 

surface will be comparatively small, and so for moderate accuracy it will 

suffice to approximate to these on both surfaces by the values at one point 

only, say P , with a saving in computer time. The possible level of error due 

to this assumption is discussed, for a typical case, in section 4. 

TO compute the interference velocities, we need to know the coordinates of 

the points P relative to a local Cartesian coordinate system (x',y,z') with 

origin in the image singularity plane corresponding to the section y = constant . 

We take the x' -axis parallel to the image of the local section chordline, and the 

Z’ -axis normal to it and in the general upward direction. We denote the ground 

clearance height of the local section trailing-edge T by gT(y,u) , so that the 

distance between T and its image T' is 2gT . An expression for gT(y,u) 

is derived in the Appendix. The leading-edge image L' has the coordinates 

(x' = X,(Y), Y, z' = O), and so T' has coordinates (X,(Y) + C ( Y ) ,  Y ,  0) l 

If the point P (usually referred to as a Veber point' 3 has the local 

percentage-chord coordinate 5 , with 5 = 0 representing the leading-edge L , 

then the distance PT is (1 - EJc(y) . Referring to Fig.], we can now write 

down the coordinates of P as: 

CXL + c + 2g T sin c~* - (1 - S)c cos 2a*, y, 2gT cos ci* + (1 - 6)~ sin 2a*J 

where u* = cx + a,(y) . 
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The total interference velocity UC , due to sources and doublets, is 

computed as (u' v' 
G' G' w') in the (x',y,z') system, G 

and we need the components 

(u G'VG' G w ) in a local (x,y,z) system defined in the singularity plane containing 

the real local chordline, as in Ref.1. These are 

' cos 2a* - w' sin 2a-k 
UG = UG G 

VG = v; 

“G = UG 
’ sin 2a* + Wd COS 2a* - 

Since the interference velocity components do not change sign as we cross 

the wing chordal surface, the complete velocity field now has components (U,V,W) 

in the local (x,y,z> system, given on upper and lower surfaces (upper and lower 

signs respectively) by 

u = (9, + u,) f Q 1 

v = (Q, + v,) + Q 
3 

w = (Q,+w,)q 

where 
Qo-5 

are defined in equations (3-7) to (3-12) of Ref.1 for the wing out 

of ground effect. 

3 SUCCESSIVE CALCULATION FOR SEVERAL AIRCRAFT HEIGHTS 

It is convenient to be able to make calculations for several aircraft 

heights in one computer run. If the incidence and Mach number are held constant, 

the perturbation source and doublet distributions should not vary greatly as the 

height is varied, and so it should be practicable to use the distributions found 

iteratively for one height as a starting point for the next value of height. The 

corresponding velocity fields generated directly on the wing are still in store, 

and so the only preparatory work needed is the recalculation, at the new relative 

positions of wing and ground image, of the interference velocity field zG due 

to the total source and doublet distributions corresponding to the previous 

height, which must of course be stored. 
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In this way we can save the major part of one iteration. So, having 
chosen (as input data) a number Nf of iterations judged necessary to secure 
acceptable accuracy, it seems reasonable to reduce Nf by one after completing 
the calculations for the first value of height, and this is now done by the 
program. 

If the ratio of height above ground to semi-span is sufficiently large, 
the problem reduces to that of an isolated wing, and no calculations of U-G 
need be made. In the program, the value 100 of this ratio is judged 
sufficiently large. 

4 RESULTS 

4.1 RAE 100 section 

As a first check on the method, we compare lift coefficients in two- 
dimensional flow, calculated for the 10% thick RAE 100 section, with some 
results obtained5 by the panel method of Hess and Smith (AMOS>6. The section 

is given by7 

Zt -= 
C 

O.l48188~E(l - 5) 1 - ; 5 
( ) ' 5 < 0.75, 

zt -= 
C 

0.0855564(1 - 6) , 5 > 0.75. 

To obtain a nearly two-dimensional flow without rewriting the program, this 
section was embodied in a rectangular wing with aspect ratio 60. Twelve chord- 
wise collocation points were taken. For the two incidences c1 = +5' the 
section lift coefficient cL is plotted against the reciprocal of the ratio of 
the height above ground h Q (of the quarter chord point) to section chord c , 
in Fig.3. With this choice of abscissa we can include the results for the 
isolated wing, c/h =0, 

Q 
for which case the two methods agree well. For 

finite h 
Q ' 

differences appear; as hQ/c decreases, the difference in CL due 
to ground effect is at first overpredicted, then later underpredicted, by the 
present method relative to the AMOS method, the cross-over occurring at roughly 

hQ/c =0.4. 

There are three possible reasons for these discrepancies. The first is 
that the difference in CL due to ground effect may be relatively sensitive to 
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the level of accuracy with which the boundary conditions are satisfied. For the 

cases hQ/c = 0.75 and 0.25, both at 5' incidence, two sets of results are 

available, obtained using different first guesses while testing the program's 

option to deal with several heights consecutively. In the table below we show 

the numerically largest residual errors Rt, RR in the boundary conditions, and 

the corresponding values obtained for CL . (The results with the smaller 

residual errors are the ones shown in Fig.3.) The number of iterations for 

these runs was Nf=2. 

hQ'c 1 Rtmax j R'max 

0.75 -0.0009 0.0018 0.6122 
0.0000 0.0003 0.6155 

AMOS 0.6007 

r 

cL 

0.6537 
0.6793 
0.7058 

As Rt and R R decrease, at hQ/c = 0.75 , CL converges away from the 

AMOS value, but at hQ/c = 0.25 it converges towards the AMOS value. In this 

latter case, extrapolating roughly to R 
t 

= 0 gives CL = 0.7206 while extra- 

polating to RR = 0 gives CL = 0.7156 , so it is reasonable to assume that 

the final converged value lies somewhere in this range. In any event, the size 

of these differences for this level of accuracy in the boundary conditions, 

which would be quite reasonable for the wing out of ground effect, suggests that 

it may be worthwhile to ask for at least N f = 3 iterations in general. 

Another possible source of error is the approximation of equal interference 

velocities on upper and lower wing surfaces; to see by how much this approxima- 

tion might be in error, the author computed, from two-dimensional formulae, the 

interference velocity fields due to the basic source and doublet distributions: 

d=t 
qB = 2- cdx ' RB = kg-p- . 
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He found that for the smallest height ratio hg/c = 0.25 and 5' incidence, 

the difference in interference streamwash 
UG 

on the upper and lower surfaces 

was typically about 25% of the mean interference streamwash and about 2% of 

the total streamwash. Which of these two numbers is more relevant is difficult 

to say, but (looking again at the table and comparing with the value 0.5810 of 

Cl, for the section out of ground effect) we see that the error could be about 

10% of the difference due to interference, and about 1% of the total. So it 

may be that for very accurate work the labour-saving assumption of equal inter- 

ference velocities on upper and lower surfaces will have to be discarded, and 

the program revised accordingly. 

The third possible source of error is just the discretization error due 

to the finite number of collocation points in either solution. However, the 

good agreement shown in Fig.3 for the section out of ground effect suggests 

that this error may be comparatively small, though it is unwise to draw any 

definite conclusion thereon without comparing the actual pressure distributions. 

4.2 Finite wings 

To demonstrate the program's performance on a finite wing, we present some 

results for two variants of a wing of 'airbus' type, the planform of which is 

shown in Fig.4. To get some idea of what happens at a wing tip comparatively 

near the ground one variant (denoted Var.]) is so chosen that, at incidence 

-o.o5O, the trailing-edge is everywhere at constant height gT above the ground. 

When this constant height is about half the wing span (g,/s = l.O), there is 

little difference from the isolated wing condition. Figs.4 to 6 show what happens 

when gT/s is decreased to 0.25 and then to 0.10. In this range, at the root 

and in mid-semispan the section lift (Fig.4) is increasing and we observe from 

the chordwise plots (Figs.5a-c) that the increase is due mainly to a change in 

the lower surface pressure distribution, the upper surface distribution changing 

comparatively little, so that (for this case) viscous effects due to boundary 

layer changes are likely to be small. This could not easily be predicted by a 

method for a thin wing, which takes no account of the interaction of thickness 

and ground effect, such as Maskew's 8 *. Near the tip, however, the section lift 

starts to decrease somewhere between g,+ = 0.25 and 0.10; there is clearly 

a further three-dimensional effect outboard, and the detailed computer output 

shows that the induced incidence (due to interference) is decreasing in this 

* In the present method, even though the perturbation due to the ground is taken 
to be the same on both surfaces, the effect on Cp of compounding the 
velocity vectors is not the same, 



11 

region, as the ground clearance is reduced. The local spanwise centre of 

pressure plot (Fig.6) tells us also that the overall centre of pressure moves 

forward as the ground clearance decreases, which could imply an unfavourable 

nose-up pitching moment (for this hypothetical case). 

To demonstrate the ability of the program to handle wings in which the 

trailing-edge ground clearance is not constant along the span, we consider 

another variant (denoted Var.2) of this wing in which the ground clearance ratio 

(at c1 = -0.05') varies linearly from 0.10 at the root to 0.05 at the tip. In 

Figs.7 and 8 the spanwise lift distribution and centre of pressure locus are 

shown for Var.2, and also for Var.1 with gT/s = 0.10 and with %/s = 0.05 , 

as before. As one might expect, the results for Var.2 agree with the results 

for Var.1 at gT/s = 0.10 inboard, and with the other set outboard. Incident- 

ally, the trend towards loss of lift with decreasing ground clearance has spread 

inboard to the root, as we expect to happen in due course from two-dimensional 

studies (Kiichemann'). 

No quantitative conclusions are drawn from these results, for two reasons. 

Firstly, the problem is somewhat academic; secondly, the differences shown might 

be comparable with the computational errors discussed earlier with the results 

for the two-dimensional section, though if these errors are assumed to be similar 

for all runs, which in this case all started from the same initial conditions, 

the qualitative comparisons above are still likely to be sensible. 

5 CONCLUSION 

The method of chordal-surface singularities for calculating flow past an 

isolated wing, proposed by Weber' and implemented by Sells', has been extended 

to cover the case of a wing in ground effect. 

By taking advantage of the comparatively small size of the interference 

velocity fields, we have avoided extensive changes to the basic program; more- 

over, computing times are not greatly increased, though results for a two- 

dimensional section suggest that the pressure distribution and section lift may 

be more sensitive to the residual errors in the wing boundary conditions than 

in the isolated-wing problem, so that at least one more iteration may be 

advisable. Since the basic program requires at least two iterations, this 

implies that for the same accuracy the new program ought to be run for at least 

three. 
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The inclusion of the effect of wing thickness, as well as those of camber, 
twist and incidence, on the surface pressure distributions, by allowing a 
better prediction of boundary-layer effects, may serve to fill a gap in current 
numerical technique for this problem. As an example of this hypothesis, we show 
results for a case in which we can deduce that viscous effects are probably 
similar to those for the wing in free air. 
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Appendix 

THE LOCAL TRAILING-EDGE GROUND CLEARANCE 

In order to compute the interference velocities induced on the wing by 
the image singularities, we need some information about the ground clearance. 

Since the wing trailing-edge is frequently made up of straight line segments, 
and is generally nearer than the leading-edge to the ground, it seems reasonable 

to work with trailing-edge ordinates. 

We input, as part of the flow field data, the height (ground clearance) 

hT of the section trailing-edge To at the root y = 0 . As part of the data 

specifying the wing geometry we input the spanwise variation iT (Y) of the 
height of the local trailing-edge T in the 

Y 
above the root trailing-edge To 

reference configuration of zero incidence, cl=0 ; see Fig.2, in which T has 
Y 

been projected onto the root plane y = 0 , which is the plane of the paper. 

Knowing the local leading-edge ordinate xL(y> and chord c(y) , we can write 

down the horizontal separation xt(y) of To and Ty in the reference 
configuration: 

f;T(Y) = XL(Y) + c(y) - XL(O) - c(0) . 

We also have the angle 0 between T T 
OY 

and the x-axis, defined by 

tan 0 = i,/x, . 

At incidence c1 , the line T T 
OY 

rotates to TOT where T is the new projec- 
tion of the local trailing-edge on y = 0 . Then the total ground clearance 

E+(Y,cd of the local trailing-edge is the algebraic sum of the root ground 
clearance and the vertical separation between TO and T : 

gT(Yd = hT + (ki + it! sin (0 - o) 

= hT + i,(y) cos c1 - G,(y) sin a . 
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SYMBOLS 

C(Y) 

cL 

CLL (Y) 

gT(Y.4 

UG’ VG’ WC 

$9 v& w; 

u, v, w 
x3 Y, = 
X’ , Y, 2’ 
A 
x, Ys 2 

XL(Y) 

=t 

chord 

two-dimensional section lift coefficient 

local section lift coefficient 

height above ground of trailing-edge of wing section in 
Y = constant at incidence c( 
height above ground of wing-root trailing-edge 

height above ground of quarter-chord point 

number of iterations 

residual errors in symmetrical and antisymmetrical wing boundary 
conditions 
interference velocity (induced on wing by ground image 
singularities) 
components of % in (x,y,z)-axes 

components of UG in (x',y,z')-axes 

total-velocity components 
axes in plane of wing chordline 
axes in plane of image chordline 
free-stream axes, centred on wing-root trailing-edge 
leading-edge ordinate 

wing thickness 

a angle of incidence 

"T(Y) local twist angle 

a* a+a T 
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