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SUMMARY 

The linear spatial stability of a mixing layer between two parallel 
streams is considered, and a comparison is made between the stability of flows 

with and without a stationary splitter plate separating them upstream. The 

assumed velocity profile satisfies the condition of no slip on the splitter 
plate, but in other respects the flow is treated as inviscid. 

Account is taken of the jet spreading downstream and expressions are 

obtained for the total amplification of an infinitesimal disturbance of a 
particular frequency as it travels downstream. 

The stability of a hot air jet is compared to that of a cold air jet with 

the same velocity profile. 

* Replaces RAE Technical Report 76008 - ARC 36747. 

** Cambridge University. Vacation student with Aerodynamics Department during 
summer 1974. 
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SYMBOLS 

(X,Y) 

V(Y) 

R 

r W 

uO 
dJ 

(u,v> 

P 

4 
a 

w 

i 

(X,Y> 

a 

St 

Cartesian coordinates, where x is taken to be in the flow direction 

the shear velocity profile at a given x 

typical jet width 

describes the spread of the jet 

typical jet velocity 

the perturbation stream function 

the perturbation velocity 

the perturbation pressure 

the Fourier transform of $ with respect to x and t 

the wave number of the disturbance 

the frequency of disturbance 

defined by + = oO exp 

= (x,y)/Rr (x>, non-dimensional Cartesian coordinates 

= c&r(x), non-dimensional wave number 

wr(x)R 
Strouhal number = ,, 

“0 

P (Y) density profile 
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1 INTRODUCTION 

The hydrodynamic stability is considered here of a mixing region between 

two parallel incompressible flows with different velocities. Crighton', amongst 

others, analyses spatially amplified disturbances in a jet with a simple mean 

velocity profile, and has obtained good agreement with the measurements made by 

Crow and Champagne2. The significance of two properties of real jets which have 

not been included in previous analyses are investigated here and their influence 

on the spatial stability of the flow is examined. 

The first effect considered occurs where fluid travels out of a moving 

nozzle. From the frame of reference of the nozzle, we have the mixing of two 

parallel flows of different velocities, with a splitter plate initially separat- 

ing the two. In order to investigate the effect of the wake of the splitter 

plate on the stability of the region two simple velocity profiles are chosen, 

one with and the other without a local minimum such as would represent the 

effect of this wake; the growth of spatial instabilities is then compared in the 

two cases. 

The second effect we include is that of a hot jet. By considering a simple 

form for the density variation, it is possible to determine its effect on the 

stability of the shear layer. 

The flow is treated as inviscid since in free boundary layers viscosity 

has only a damping influence (see Lin3). Moreover Betchov and Criminale4 show 

that, for an unstable mode, the viscous theory at high Reynolds number merges 

with the inviscid theory. 

The analysis is two-dimensional but can easily be extended to axisymmetric 

flows, when similar results would be expected. 

2 A COMPARISON OF THE FLOW WITH AND WITHOUT A SPLITTER PLATE 

2.1 The velocity profiles 

(a) On leaving the splitter plate 

Consider two parallel streams flowing in the x-direction, with velocities 

Uo(A+ 1) and UC(A - l), separated by a shear layer. Far downstream from the 

splitter plate the approximate shape of the velocity profile across the mixing 

region may be described by 

V = UC(A- tanhg 
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where R defines the local shear-layer thickness. 

The profile is sketched in Fig.la. 

This formula is a reasonably good approximation to a simple shear layer, 

with A = 1 corresponding to a jet flowing into still air. 

In order to get a simple profile that will represent the wake of a 

stationary splitter plate lying along y = constant, xc0 we choose 

- tanh & - sech 2 Y 
2R 

> 

where the constant A is chosen so that the minimum value of V is zero, and 

occurs on the splitter plate. 

Now 

v’= 2R - -!- sech2 & + i sech2 &- tanh 6 

so that V' = 0 corresponds to tanh & = i and V = 0 when V' = 0 gives 

A=la. This profile is sketched in Fig.lb. 

By taking the same value of A(= I{> in both profiles and investigating 

the stability we can determine what effect the local velocity minimum induced 

by the stationary splitter plate has on the stability of the mixing region 

between parallel flows with the same overall velocity ratio of 9. 

@I Variation with x 

The velocity profile changes downstream as the jet spreads out. In the 

case of the tanh-profile a suitable description of this spread is given by 

14 - tanh ' 
2r(x)R 

where r(x) is a slowly increasing function of x and r(0) = 1 . 

For example 

r(x) = 1++ X'O 

where E is small, is appropriate for slow linear growth of the shear layer. 

For a laminar shear layer, the thickness increases like & relative to some 

suitable origin, but since we are not concerned with instabilities in the 

neighbourhood of this origin it is reasonable to use the linear formula to 

represent the local behaviour. The linear growth is illustrated in Fig.2. 
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When the effect of the wake of a splitter plate is included, the earlier 

formula for the velocity profile becomes 

tanh 2 - s(x) sech2 2r(x)R 

where, as before, r(x) represents the spread of the jet and s(x) is a slowly 

decreasing function of x such that s(0) = 1, s(m) = 0 . 

Here the variation in s approximately represents the filling out of the 

wake by viscous diffusion and will depend on the Reynolds number. The develop- 

ment of this profile is sketched in Fig.3. 

Bouthier5 has applied a 'multiple scales' method to show that if V(X,Y> 

is a very slowly varying function of x , such that aV/ax = O(E) , where 

E<l then to a first approximation the flow may be treated as locally parallel 

in the investigation of the local stability properties; we adopt this procedure 

in the following section. 

2.2 The stability of a two-dimensional parallel shear flow 

Consider a two-dimensional parallel shear flow with a velocity profile 

V(Y) l We ignore viscous effects and take the flow to be incompressible. 

For a disturbance with velocity (u,v) there exists a stream function + , 

such that 

For an infinitesimal disturbance the linearised inviscid equations of 

motion give 

P [ 
a2dJ a2+ e--v- = 
axat 1 ap 

ax2 -ay 

where p is the pressure and p is the density,and the boundary conditions 

are 

+-to as lyl + O3 . 
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We know that an arbitrary JI can be expressed as an integral containing 

terms of the form 9 (r>e 
i(ax-wt) 

. As both the boundary conditions and the 

equations are linear, with coefficients independent of x and t , it is 

sufficient to consider one such Fourier component to obtain 

d$ . d$ . dV 
dy + Vlcl 5 - lc@ dy 1 . 

= - p1ct (1) 
P au@ + a2$V = 1 ap -ay* 

Then after eliminating p we obtain Rayleigh's equation 

where a prime denotes differentiation with respect to y . 

The boundary conditions are now 

++o as lyl + O5 . 

We can express these in a more convenient form by noting that for large lyl 

V is almost constant, so that $ satisfies 

0 I1 
-  a26 = 0 . 

This implies that as y + +a , $'+a$+O, and similarly as y + -= , 

4' - a$ -+ 0 . 

The constants a and w are in general complex, and may be written 

a = or + ia 
i 

w = w + io. 
r 1 

(2) 

where a 
r 

is the wave-number of the disturbance, -ai is the spatial growth- 

rate, w 
r 

is the frequency and w. 1 
the temporal growth rate. 

Here we investigate the spatial growth rate for wi = 0 . 

We can reduce the order of equation (2) if we introduce i(y) defined by 



so that 

and 

Then equation (2) becomes 

(3) 

which is a first-order, but non-linear, equation; see Betchov and Criminale4 

and Mickalke6. 

We can determine the boundary conditions by noting that 

as y + m , 4 -+ -a$ so that i + -CX and y + -0~ gives $' + a$ so that 

$+-a. 

2.3 Calculation of the eigenvalues 

Following Bouthier's procedure' we use equation (2) to determine the 

stability of the velocity profile V(X,Y) 9 where the slow variation of V with 

x is assumed not to influence the stability. 

The two profiles considered are 

and 
v = - tanh & - s(x) sech2 

We now non-dimensionalise lengths with respect to r(x)E and velocities with 
respect to uO so that time is non-dimensionalised with respect to r W~/Uo 
and define 
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Y = 
* Rr x) 

u=g 
0 

a = &r(x) 

St = r(x>a o - , the Strouhal number. 
uO 

The two non-dimensional velocity profiles are now 

and 

u = 14 - tanh Y/2 

u = 14 - tanh Y/2 - s(X) sech2 Y/2 

and equation (3) becomes 

da 
dY= a2 

For the above profiles this gives 

da 
dY= a2 - Q2 + 1 sech2 Y/2 tanh Y/2 + s[J sech4 Y/2 - sech2 Y/2 tanh2 Y/21 (4) 

la - tanh Y/2 - s sech' Y/2 - St/a 

where s = 0 for the tanh-profile, s = 1 for the profile at the splitter plate 

and 0~s~ 1 for the downstream profile when the effect of the splitter plate 
is included. 

In order to determine the eigenvalues of this equation we follow the 
procedure used by Michalke6 and make the transformation 

so that equation (4) becomes 

da 2 (a2 - Q2> + 2 + sr1 - 3z21 
dz= 1 - z2 lb - St/a - 2 - s(l - z2) 

(5) 



with boundary conditions 

O(1) = -a and a(-1) = a , 

The problem has now been reduced to a first order boundary value problem, 
which can be solved numerically. 

However, the boundary conditions are not in a suitable form for computation, 

so we introduce =1 and =2 where 

and 

so that 

and 

7 = -I + h 

z2 = l-h 

Hz,) = @(-I) + hQ'(-l) + O(h2) 

Q (z,> = @(I) - h@'(l) + O(h2) . 

The advantage of transforming the equation to one of first order is that 
it simplifies the numerical determination of the derivatives on the boundary. 
These can easily be obtained from equation (5) by using de 1'Hopital's rule, 
giving 

@l(l) = -2a@'(l) + 
t 

'--S:ya 

or 

@‘(I) = 
1 - 2s 

(I 
4 - St/a)(l + 2a) 

and similarly 

I$)‘(-1) = -l - 2s (2 
a - St/a)(l + 2a) l 

Now for a fixed value of the Strouhal number St and a guessed value of a , 

equation (5) can be integrated numerically from 7 to 0 giving a value of 

Q at the origin, cPl(0) say, and also from z2 to 0 giving a second value 

Q2(0) at the origin. The eigenvalue a0 for this particular Strouhal number 

has 
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@* (0) = 02(0) , 

and this condition is achieved by iteration. 

We introduce F(a) , where F is defined by F(a) = O,(O) - 02(0) , and 

evaluate it for three different values of a . Then three improved values of a 

are calculated from the approximated zeros of F by linear interpolation on 

each pair of the previous values of a . This procedure is repeated until IFI 

is sufficiently small. The convergence is rapid and in general only three or 

four iterations have been required. 

It is useful to know the eigenvalue a for one particular Strouhal number, 

so giving a point from which to start the investigation, instead of searching 

for eigenvalues throughout the complex plane. Fortunately we can identify one 

eigenvalue immediately. 

Since for 

0 
St 

S = and - = It , a = 1 
a 

we see that @ = -z/2 is an eigenvector of equation (5) and it follows that 

St = 0.625 has an eigenvalue a = 0.5, which is, in fact, the well-known neutral 

solution. We now wish to determine a set of complex eigenvalues a in this 

neighbourhood, and those with a negative imaginary part will correspond with a 

disturbance that grows in the downstream direction. This is found to occur for 

St < 0.625 and so we restrict our attention to this range of Strouhal number. 

The procedure is to reduce St in small steps from 0.625 and at each stage a 

new complex eigenvalue is found by use of the preceding solution. The process 

is continued down to St = 0 . 

For s * 0 , we do not have the convenience of being able to identify 

a starting solution. However for disturbances of long wavelength we should not 

expect the small scale detail to make a significant difference. For low Strouhal 

number therefore, we search for eigenvalues near those for s=o. Once one 

eigenvalue for s * 0 has been obtained in this way we can find the complete 

range of unstable wavelengths and their corresponding growth rates by the 

procedure described above. 

This determines one eigenvalue for each Strouhal number. It does not 

exclude the possible existence of other eigenvalues lying elsewhere in the 

complex plane. For example, Crightonl was able to find another branch in the 
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same quadrant of the complex plane (branch 4 in his Fig.l0.4), but in the 
present calculations trial solutions that were started near this branch were 
found to converge on solutions in another quadrant. There does not seem to be 

any general method of determining whether all required branches have been 
found, nor of indicating where to look for new branches. 

2.4 Results 

The eigenvalues obtained for the two velocity profiles corresponding to 
s = 0 and s = I are listed in Table 1 in the order in which they were found. 
The curve of growth-rate -ai against Strouhal number for these two profiles 

is plotted in Fig.4a, and that of wave-number a r against Strouhal number is 

shown in Fig.5. It seems reasonable to expect that the growth-rates and the 
wave-numbers for values of s between 0 and 1 will lie between the two curves. 

The effect of the wake of the splitter plate on the stability can now be 

assessed. Fig.4 shows that the peak growth-rates are more than doubled, and 
although non-linear effects will alter the total growth, it may be hoped that 
the linear theory will predict the most amplified disturbances without much 
error. On this basis the most unstable Strouhal numbers have changed from 
about 0.275 to about 0.34, and the most rapidly growing non-dimensional wave- 

numbers from 0.2 to 0.3. Also the flow becomes stable at a slightly lower 
Strouhal number. 

In particular, we want to investigate the amplification of a disturbance 

at a fixed frequency,i.e. a particular timewise Fourier component, as it travels 

down the mixing region. 

Following Crightonl we can write 

$(x) = f(x) 4 (x,Y> exp h/o(x')dx' - itit} 

I J 

where f is an amplitude function, a(x) is the eigenvalue for that w and 
is obtained by considering the flow as locally parallel, and $(x,y) is the 

corresponding eigenvector. 

Crighton argues that, if f and $ are slowly varying functions of x , 
their variation will have little effect on the growth-rate, which is dominated 
by the exponential term. 
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It was noted from Fig.4 that there is no growth for 

With 

then 

St > 0.625 . 

r(x) = I++ 

St = g 
0 ( ) l+r$, 

so that for w!2/U0 > 0.625 there is no growth at any x and the corresponding 

waves are everywhere damped. Moreover a disturbance whose frequency w satis- 

fies w < 0.625 Uo/!2 , so that it is initially amplified, will become damped 

after travelling a distance dc downstream. This distance will denend on how 

the shear layer thickens with x and provided this is known, the growth rate 

can be determined as a function of x up to the point x= 
dC 

where it 

vanishes. We illustrate the procedure for the simplest case where the shear 

layer thickness linearly with x , although for a laminar shear layer it would 

strictly be more logical to allow the thickness to increase like fi 
0 

, where 

X is some constant. With the linear assumption it follows that 
0 

dc = + 110.625 2 - ] . 

We can estimate the growth of disturbances by 

so that at a distance d downstream, the fractional increase in amplitude is 

given by 

Fractional increase = q(d) 
m 

= exp . 
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Set 

wR w = 7 I+&; 
0 ( ) 

then, in terms of the non-dimensional growth rate -ai the fractional increase 

becomes, 

In the case of the tanh-profile 

ai (W)d(ln W) 

is the area under the full-line curve C 1 in Fig.4b between the limits 

and 

Fig.4b is, in fact, Fig.4a redrawn to a logarithmic base. 

For the profile with the stationary plate present the situation is more 

complicated. For now c1 depends on x not only through the scaling factor 

r(x) but also through the function s(x) . This function s represents the 

effect of viscosity in smoothing out the velocity profile and hence depends on 

Reynolds number. However without making any assumptions about s(x) , we expect 

that the curves of growth-rate against frequency for any values of s , 

(0 < s < 1) , will lie between those of s = 0 and s = 1 . We therefore use 

these two curves to obtain bounds on the growth of disturbances of a particular 

frequency. At a distance d downstream, the bounds of the fractional increase 

in amplitude are 
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exp 

N wR 
T 

1 -- 
E 

J) Cd) < - < exp 
VJ (0) 

wR 
uo 

C J 
ai( In F 

2 wR 

where C 1 and C 2 are the bounding curves illustrated in Fig.4b. 

3 THE EFFECT OF DENSITY VARIATIONS 

1 -- 
E - 

Ti 

T 1 
As a further example, the jet fluid is allowed to have a higher temperature 

and therefore a lower density than the external fluid; the density ratio assumed 

here is 4. For simplicity, the analysis is confined to the (tanh) shear layer. 

Assuming that the density and velocity in the mixing region can both be 

described by a tanh-profile with the same length scale, we consider a profile 

with 

P = q$k+ 3 tan,(&)} 

where 5 is the density of the inner stream. 

Now elimination of p from the linearised equations of motion (1) gives 

with boundary conditions Q-t0 a8 lyl +-, After making the same substitu- 

tions as before, and using non-dimensional co-ordinates, we have 

d0 cI 2 (a2 - 02) 
dz l- z2 + 14 - zz- St/a - + 2(lt ! ii t2St/a) 1 

where the last term on the right-hand side represents the effect of the density 

variation, 
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The boundary conditions are 

@(-1) = a and O(1) = -a . 

The eigenvalues for this equation were found for different values of the Strouhal 

number in exactly the same way as those for equation (5). The results are listed 

in Table 2, and sketched in Figs.6 and 7 where they are compared with those for 

the same velocity profile but with no density variation. 

We see that the most unstable Strouhal number has been decreased from 

0.275 to 0.2 by the effect of the density variation, but there is very little 

change in the wave-number corresponding to this most amplified disturbance. 

Although the maximum growth-rate has been increased by the density stratification, 

the density change has a stabilizing effect at the higher Strouhal numbers by 

reducing the critical value at which the flow first becomes stable. 

Again assuming a linear spread of the shear layer, an initially growing 

disturbance becomes damped after travelling a distance dc downstream where 

dc = $0.553 l] 

for a density ratio of 4 compared with 

dc = +625$- 'I 

for a density ratio of I, and with the same velocity ratio of 9 in each case. 

4 CONCLUSIONS 

The spatial growth-rates and associated properties of unstable disturbances 

to a shear flow have been compared for two velocity profiles by a method based on 

the work of Michalke 
6 

and Crightonl. The profiles chosen were the familiar 

tanh-profile and another incorporating a local velocity minimum typical of a 

profile just downstream of a splitter plate. The maximum growth rates for the 

latter were found to be more than twice those of the tanh-profile for the same 

conditions at infinity and the same width of shear flow. The effect of a hot 

jet was also considered and this was found to give a slight increase in the 

growth rate. 
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There are several limitations in applying this method. One is that when 

Rayleigh's equation is solved numerically one cannot be sure of finding all the 

eigenvalues. Another point is that regions of exponential growth arise so that 

in practice the non-linear effects soon become important. Previous studies7 

have suggested that vortices develop downstream of the splitter plate. However 

if the effect of the non-linear terms is not strongly frequency-dependent this 

analysis should give an estimate of the most amplified frequency. The initial 

rate of production, and hence the spacing, of the vortices in the situations 

studied, can then be inferred. 
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Table 1 

TABLE OF RESULTS 

For the velocity U = 14 - tanh Y/2 , corresponding to s = 0 

Strouhal number Non-dimensional 
wave-number 

St a r 

0.625 0.5 
0.6 0.484 
0.55 0.443 
0.5 0.415 
0.45 0.376 
0.4 0.335 
0.35 0.299 
0.3 0.244 
0.25 0.194 
0.2 0.145 
0.15 0.098 
0.1 0.059 
0.05 0.027 

7 

Non-dimensional 
growth rate 

-a. 1 

0 
0.008 
0.021 
0.036 
0.051 
0.067 
0.076 
0.082 
0.083 
0.077 
0.062 
0.042 
0.022 

For a profile U = li - tanh Y/2 - sech& Y/2 , corresponding to s = 1 

0.0725 
0.1 
0.15 
0.2 
0.25 
0.3 
0.35 
0.4 
0.45 
0.5 
0.55 

a r 

0.017 
0.036 
0.072 
0.119 
0.173 
0.247 
0.344 
0.443 
0.515 
0.594 
0.646 

-a. 1 

0.04 
0.062 
0.098 
0.135 
0.171 
0.210 
0.218 
0.181 
0.147 
0.087 
0.029 
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Table 2 

EIGENVALUES FOR THE tanh-VELOCITY PROFILE 
WITH A DENSITY VARIATION OF 4 

Strouhal number Non-dimensional 
wave-number 

Non-dimensional 
growth-rate 

0.5 0.516 0.028 

0.45 0.476 0.046 

0.4 0.431 0.063 

0.35 0.384 0.079 

0.3 0.332 0.092 

0.25 0.277 0.101 

0.2 0.215 0.103 

0.15 0.152 0.094 

0.1 0.073 0.088 
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a The velocity profile neglecting the effect of the splitter plate 

b The velocity profile including the effect of the splitter plate 

Fig.larb The velocity profiles at the trailing edge of the plate 
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