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SUMMARY 

Brief consideration of current approaches to the prediction of unsteady 

wing loading in mixed subsonic and supersonic flow shows a wide variety of 

method and a clear need for economy in transonic aerodynamic calculations for 

flutter clearance in subsonic flight. In support of measurements of steady and 

oscillatory pressure distributions on a particular wing, an approximate 

theoretical treatment is devised in terms of non-linear steady surface pressures 

and linear oscillatcry loading. The steady data are taken either from transonic 

small-perturbation theory or from the static experiments. The resulting 

theoretical or semi-empirical calculations can take account of stream Mach 

number, mean incidence, mode of oscillation, frequency and amplitude. Like the 

dynamic experiments, the theoretical and semi-empirical results show large 

differences between oscillatory chordwise load distributions under subcritical 

and supercritical conditions, especially in the recompression region where the 

large and rapidly changing amplitude and phase of the measured loading are 

reproduced qualitatively in the calculations. The method should provide an 

economical indication of the importance of non-linear flutter aerodynamics in 

the lower transonic regime. 

* Replaces RAE Technical Report 74181 - ARC 36100 
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1 INTRODUCTION 

The achievement of satisfactory flutter characteristics in aircraft design 

depends mainly on aeroelastic calculation, sometimes supplemented by a limited 

amount of flutter testing in wind tunnels. The present inquiry into unsteady 

transonic flow has been prompted particularly by current interest in the 

'supercritical wing' - the type of wing designed to exploit mixed subsonic and 

supersonic flow over its upper surface. There is a special need to examine and 

eliminate, if necessary, any undesirable features in the flutter behaviour of a 

wing under these conditions. A combined theoretical and experimental study of 

oscillatory pressure distributions has therefore been undertaken for a wing 

design that would in practice operate with some degree of supercritical flow. 

A preliminary account of the investigation has appeared in Ref.1. The experi- 

mental results are being reported more fully by Lambourne and Welsh in Ref.2, 

which discusses the physical processes involved and their significance in rela- 

tion to flutter. In the present paper the theoretical content of Ref.1 is 

presented more directly with fewer approximations and is illustrated both with 

and without its empirical element. 

2 THEORETICAL BACKGROUND 

2.1 Linearized theories 

By 'linearized theory' or 'linear theory' in this Report we imply a method 

of calculation in which wing thickness is ignored and, moreover, the displace- 

ments of the wing from a streamwise plane and the perturbations of a uniform 

potential flow are considered only to first order. Such methods are to be 

distinguished from those which consider small perturbations of some known steady 

flow past a wing of finite thickness or displacement. 

At purely subsonic or supersonic speeds, satisfactory methods of represent- 

ing the unsteady aerodynamics in aeroelastic calculations have been developed 

with neglect of aetofoil thickness. The available methods are too numerous to 

mention, but on the subsonic side it is useful to distinguish between the kernel- 

function methods such as Ref.3 and the doublet-lattice methods such as Ref.4. 

While most subsonic methods are general in planform, frequency and Mach number, 

in supersonic flow it is often necessary to impose conditions on such parameters; 

however, the refined box-method of Allen and Sadler' has minimal restrictions of 

this kind. The intervening transonic speed range can be bridged with the aid 

of the sonic theories of Landahl 6 7 and Davies . Thus the present author and 
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Miss Lehrian8 have produced linearised theoretical data on the pitching deriva- 

tives of selective planforms over a range of frequency parameter as continuous 

curves against Mach number. While the supporting experimental evidence shows 

some qualitative resemblance, it has become clear that the purely theoretical 

transonic effects revealed in Ref.8 are of academic rather than practical 

interest. The use of linearised theory imposes such increasingly severe restric- 

tions on wing thickness, mean incidence and amplitude of oscillation as sonic 

Mach number is approached that practical applications tend to avoid the range 

between 0.8 and 1.2, say, where the real flutter derivatives have often been 

regarded as unpredictable. The only expedient is then to estimate the inter- 

mediate flutter characteristics from faired curves between the subsonic and 

supersonic regimes. In the absence of related experimental justification such 

a procedure may be no more realistic than linearized theory itself. 

In calculations of steady pressure distributions for the purpose of wing 

design it is imperative to incorporate the influence of aerofoil thickness and 

to make allowance for the boundary layer and wake. In most flutter calculations, 

however, these complications are either ignored or treated by means of empirical 

modifications to linearised theory, For example, the corrective matrix method 

of Ref.9 is sometimes used to adjust the results of linearized theory in accord 

with oscillatory experimental data for one single mode, with application to 

arbitrary modes throughout the flutter analysis. While this technique has 

succeeded in subcritical flow, it must become problematical under supercritical 

conditions. 

2.2 Non-linear theories 

Whereas the linearised aerodynamic problem can be defined in terms of 

planform, modes of oscillation, frequency and Mach number, there are other 

parameters to consider under conditions of mixed subsonic and supersonic flow. 

The oscillatory content of the resulting flow can no longer be regarded as 

independent of wing thickness, wing camber and mean incidence. While the most 

salient feature of the mean flow is the sonic line or the location of embedded 

shock waves, this is but one characteristic of the steady flow to be perturbed, 

which needs to be defined in terms of the distribution of surface pressure or 

local Mach number. Reynolds number and amplitude of oscillation are two further 

parameters that are likely to be important; both call for treatment semi- 

empirically or otherwise. 
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Various attacks on the problem of transonic unsteady aerodynamics are 

reported in the recent literature. In a brief review of current theoretical 

work sponsored by the NASA Langley Research Center, Bland 
10 considers several 

methods of analysis. Tijdeman and Zwaan 
11 

discuss the requirements of such 

methods in more detail. Broadly these methods fall into three categories 

(i> finite-difference methods, 

(ii) lifting-surface-element methods, 

(iii) more specialized methods. 

The finite-difference methods can be regarded as extensions of the treat- 

ment of two-dimensional steady transonic flow by Murman and Cole 12 , who use a 

relaxation technique based on central differences at subsonic points and upstream 

differences at supersonic points. The most promising of the developments in 
13 Ref.10 appears to be the finite-difference method of Ehlers , which is reported 

as having been used with some success for three-dimensional surfaces in steady 

flow; it is further stated in Ref.10 that the analysis for three-dimensional 

unsteady flow has been developed, but not yet programmed. At the Royal Aircraft 

Establishment on similar lines Albone, et al. 14 have developed a method for two- 

dimensional steady flow, which has recently been extended to wings of arbitrary 

planform 15 ; results from this latter method are used in some of the present 

calculations. It is difficult to assess the long-term prospect of realizing a 

general theoretical method for unsteady flow, but there is little doubt that the 

routine use of a finite-difference method would be very expensive. 

The lifting-surface-element methods provide solutions at lower cost. The 

general approach is to subdivide the upper and lower surfaces into regions 

associated with different stream Mach numbers derived from the mean flow. One 

method on these lines is presented and discussed with examples by Cunningham 16 . 

Although his method is not fully developed, it offers a significant improvement 

on linearized theory. The solutions are obtained with a constant supersonic 

stream Mach number ahead of the shock wave and a constant subsonic one behind it. 

Another method in this category is propounded in Ref.11 and applied successfully 

when the flow is just subcritical. There are, however, some basic differences 

between them. While Ref.16 uses the kernel-function method, Ref.11 uses the 

doublet-lattice method with a different stream Mach number for each panel: both 

methods use the prescribed stream Mach number in the local boundary condition 

but, while in Ref.16 it is also used to compute the neighbouring downwash field, 

in Ref.11 the downwash field of each panel corresponds to the average of its 
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local Mach number and the true stream Mach number. Either method provides 

numerical results in a time comparable with that of the appropriate linearized 

solution. 

Three other contrasting methods are discussed in Ref.10. The local- 

linearization procedure of Stahara and Spreiter 17 is strictly for a sonic stream 

Mach number and is probably unsuitable for a typical supercritical flow when the 

stream Mach number is below 0.9 and the local Mach number may range at least 

from 0.7 to 1.3. The layered-medium analysis of Revel1 18 uses strata of 

different uniform supersonic Mach number within the region of two-dimensional 

supercritical flow; it is questionable whether such a method could be extended 

into three dimensions. Finally there is the modified sonic-box method of Ruo 

and Theisen 19 which, like Ref.17, is too restrictive in Mach number to cover 

supercritical flow as a whole. 

The increasing scale of current effort being devoted to the problem of 

unsteady supercritical flow is evidence, not only of concern among flutter 

specialists, but of confidence that rapid progress is round the corner. From 

the standpoint of intrinsic accuracy it may well be that the work of Ehlers 13 

shows the greatest promise. But, on account of the vast computing effort 

involved in relaxation solutions by finite differences, this approach would be 

a formidable routine when conditions are so non-linear that each mean steady 

flow would require its own set of oscillatory perturbations. The economic 

argument against the use of the finite-difference technique is elaborated by 

Cunningham 16 and strengthens his case for the lifting-surface-element method. 

There is wide scope here, and it may take years of theoretical and experimental 

effort to establish the best assumptions. However, the framework of doublet- 

lattice elements, each associated with the local stream conditions as proposed 

in Ref.11, has logical generality and simplicity to commend it. A satisfactory 

extension of this method of calculation to mixed subsonic and supersonic flow 

is an attractive goal. 

2.3 Practical approach 

The present approach to the problem is explained in section 3. In the 

first place the mean steady pressure distribution is taken from a suitable 

source. To the steady velocity potential there is added a small oscillatory 

component dependent on the gradient with respect to incidence of the local steady 

pressure and also on the linearized subsonic theoretical values under the appro- 

priate steady and oscillatory conditions. The unsteady velocity perturbation 
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is then related to the unsteady pressure through Bernoulli's equation in one 

dimension. Whereas in Ref.1 the steady pressures and their gradients are taken 

from an initial experiment, the present calculations use the theory of Ref.15 

and the newer static measurements of Ref.2 as alternative sources. The theoret- 

ical results provide a detailed illustration of the important influence of 

supercritical flow on the chordwise distribution of oscillatory pressures and 

give qualitative support to the dynamic measurements of Ref.2. In its semi- 

empirical form the method takes account of Reynolds number and admits the 

possibility to incorporate non-linear effects of the amplitude of oscillation 

through adjustment to the static gradients. Moreover, insofar as the oscill- 

atory input to the calculation is treated to first order, the method has possible 

application to non-harmonic time-dependent flows such as occur in problems of 

gust entry. 

3 APPROXIMATE THEORETICAL TREATMENT 

It is considered that the development of a realistic mathematical model of 

three-dimensional unsteady supercritical flow, coupled with an economical method 

of solution, may prove to be a slow process. In the meantime the transonic 

regime, with all its uncertainties, continues to present a flutter hazard that 

demands appraisal at the earliest opportunity. The present approach is directed 

primarily to wings in a high subsonic main stream with embedded supersonic flow, 

and it is supposed that the distribution of steady surface pressure is known over 

a range of incidence. Knowledge of steady and oscillatory load distributions 

from subsonic linearized theory is also assumed. The objective is to formulate 

a useful approximation to the oscillatory pressure distribution from this com- 

bined information, which should normally be available when flutter clearance is 

sought. 

The present application is to a wing of current design, the planform of 

which is shown in Fig.]; the measured static and dynamic pressures at the five 

stations (I to V) for oscillations about the swept axis x=x are described a 
in Ref.2. The model has camber and twist and a streamwise thickness-to-chord 

ratio of approximately 0.10. The incidence c( is defined as that of the crank 

station y = 0.319s , relative to which the root and tip incidences are +3.93 

and -0.57 degrees respectively. While our immediate purpose is to validate a 

method of calculation in the light of this particular experiment, the require- 

ment is for a method of general applicability to enable the aircraft industry to 

anticipate any danger of wing flutter in supercritical flow. This could well be 

dependent on the steady aeroelastic deformation. 
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3.1 Bernoulli's equation 

We first derive a one-dimensional relationship between oscillatory velocity 

and pressure coefficient in compressible flow. The adiabatic law 

P/PY = constant (1) 

and the equation for the bcal speed of sound 

a = (YP1P)l (2) 

are considered to apply in steady and unsteady flow alike. It follows at once 

from equation (2) for the main stream (denoted by the subscript m) that the 

local unsteady pressure may be expressed as 

P/P, = l+iyM2C 
"P ' 

where the stream Mach number M m = Um/aoo and the pressure coefficient 

C = 
P 

(P - PJ/(IP_$) ' 

In time-dependent flow Bernoulli's equation is 

where @ is the velocity potential. 

U(x,t> = u&4 

(3) 

(4) 

(5) 

where uO corresponds to the local mean flow, w is the circular frequency of 

oscillation, and second-order terms in the complex velocity potential 5 will 

be neglected. Thus, with the aid of equation (I), equation (5) becomes 

(7) 

whence by further use of equations (I) and (2) 



2 
= 

(Y - l)Mz 
(8) 

Elimination of p/p, from equations (3) and (8) gives 

When equation (9) is expanded to first order in the time-dependent quantities, 

the pressure coefficient is obtained as 

C = 
P 

Cpo + 62 ( Cpeiwt} , 

where 

c = 
PO 

-+ (Gy - 1) , 

Y"oO 

with 

G 1 (Y 

1 
2y-l 

uO 

7 co 
11 

= . 

It will now be assumed that equations (10) to (13) hold in three- 

dimensional flow. The velocity potential on the surface of the wing is 

written as 

{ 

iwt 
@(x,y,t> = @o(~,y) + 6% z(x,y>e i . 

(10) 

(11) 

(12) 

(13) 

(14) 

The total derivative in equation (12) is replaced by the partial derivative, 

so that the oscillatory component of the surface pressure is given by 
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This approximation ignores any influence of the lateral components of U. . 

3.2 Oscillatory pressure distribution 

We seek a plausible expression for 5 to use in equation (15). As 

Appendix B of Ref.1 shows, the present method was originally conceived as an 

extension of the approximate formulation for steady incompressible flow in 

Ref.20. However, the argument in Ref.1 can be interpreted more directly; 

moreover, the approximation preceding equation (B-18) of Appendix B can be 

regarded as optional. 

The oscillatory wing loading from subsonic linearized theory is written 

as the non-dimensional pressure difference 

AC = C -C 
P PR Pu 

where C = -c and 
Pu PJJJ 

(15) 

(16) 

N 

a = 8s 
-iwx/Ub3 

me c 
co9 (q - I)$ + cos 44 

sin @ (17) 

q=l 

may be calculated from a numerical solution by the method of Ref.3 for the 

required modes of oscillation. Here N denotes the number of chordwise terms 

in the solution, r 
q 

is a complex function of n = y/s proportional to the 

amplitude of oscillation, and I$ is related to the local chordwise position 

X’ 

5 

x-p 
= 

c(n) 
= fU -cos$> . (18) 

The linearized form of equation (15), with U. = Uoo , is 

a'lin iw@ 

ax+ 
lin 

ua, 
I 2 ~U,ii(x,rl> 9 (19) 



where the symbol + denotes positive for the upper surface and negative for the 

lower surface. This linear differential equation is readily solved to give 

X 
-iwx/U iwx'/U 

5 
co 

lin = +e 
i 

tUWX(x',n)e w dx' 

"L 

-&x/U m = +_ turn& , (20) 

where the geometric mean chord c is taken as reference length and 

X 
iwx'/U 

sib' ,rl)e O" dx' 

= g F, (n)($ + sin $) * 

[ 
2 i 

rq (v> 
sin(q- l)$+sinq$ 

q -1 
. 

)I 

(21) 
TC q 

q-2 

Hence 

a; lin -ivx/C 
-= 

ax 2 tU 
[ 

'ji - i3ie co - 1 = t&Jii , co say , 

where 3 = WC/U m is the frequency parameter. 

For the purposes of the approximate treatment we simply assume that 

Since by equation (15) 

U2 
(aWw;,o = - g- (Cp);=o 9 

0 

(22) 

(23) 

(24) 

equation (23) becomes 
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Therefore by equations (15) and (25) the oscillatory chordwise pressure 

distribution on the upper or lower surface is given by 

(26) 

where G(S) is defined in equation (13) in terms of the mean local pressure 

coefficient Cpo(S) . 

The simpler result in equation (22) of Ref.1 can be derived from 

equation (26), if the correction factor multiplying k(S') in the integrand 

is replaced by its local value at E,' = 5 . Hence we obtain the approximation 

which by means of equations (20) and (22) becomes 

(27) 

(28) 

The relative merits of equations (26) and (28) will be discussed later. 

In the present application to a rigid wing at mean incidence o. we can 

identify (cp);,o with (Xp/acL)o and (a);,o with aR/aa which is calculated 

by means of linearised subsonic lifting-surface theory3 in the form of 

equation (17) without the exponential factor and with real coefficients T q 
in place of r 

9 * 
From equation (13) the velocity ratio 

(29) 
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is obtained as a function of C 
PO l 

Thus the evaluation of equation (26) or (28) 

at a spanwise station requires the knowledge of the chordwise distributions of 

C and aC /acl at the mean incidence a0 in addition to the theoretical 

qzantities !n equations (17), (21) and (22). In the present calculations 
cPO 

and the corresponding aCp/aa have been taken from steady transonic theory15 

and from static measurements of Ref.2. Whereas the all-theoretical calculations 

of oscillatory pressures are presented and discussed in section 4.2 without 

appeal to experiment, the practical justification of the semi-empirical results 

receives detailed consideration in section 5.2. 

In an application to flutter the interpretation of (?p/R)s,o needs to 

be considered. While it could be argued that this should vary according to the 

mode of oscillation, it might suffice to retain the ratio corresponding to a 

rate of change of incidence for all modes. Such an assumption would be in the 

spirit of Ref.9 and, although unproven for supercritical flow, it might be the 

only practicable scheme if experimental data were used. It would be feasible 

to examine the ratio for each individual mode on the basis of transonic 

theoretical calculations. There is, however, the possibility that (3 5=0 
may vanish locally, a difficulty that would not normally arise with at/act . 

4 USE OF TEWNSONIC SMALL-PERTIJRBATION THEORY 

Before we consider the transonic small-perturbation (TSP) theory of Ref.15 

in section 4.1, it is well to recall Fig.5 of Ref.1 where in effect equation (28) 

has been used in conjunction with the approximate steady-flow theory of Ref.20 

with linear corrections for compressibility. The oscillation about the swept 

axis x=x a of Fig.1 is expressed in terms of the instantaneous incidence 

a = a0 + 62 { a,eiwt } , (30) 

and the oscillatory chordwise loading is split into its real and imaginary parts 

so that 

Cpa ts) - CPU(C) = Acp(S) = AC'p + iACi . (31) 

Fig.5 of Ref.1 indicates that in subcritical flow the effect of wing thickness 

is not too important; the difference between the broken curves of AC;h 1 
reflects the influence of thickness in steady flow, while the chordwise distribu- 

tion of ACi/a]; shows much more dependence on frequency parameter than on 
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thickness. It has since been verified that the use of equation (26) in place of 

equation (28) would make little material change. It is reasonable, therefore, 

to rely on linearized theory, such as Ref.3, for flutter calculations at sub- 

critical Mach numbers provided that the lift is a linear function of incidence. 

Under transonic conditions, however, the quantity 

(32) 

can be expected to play a dominant r61e. Although counter arguments are made in 

section 5, there are the following advantages in determining the numerator from 

TSP theory rather than experiment. In the first place C is available at more 
P 

chordwise positions, which can be chosen to give adequate definition over the 

whole chord and to facilitate the integration in equation (26): secondly, the 

differentiation with respect to a is not blurred by experimental scatter. 

Moreover, the theoretical calculations of section 4.2 should provide a better 

yardstick than those from subsonic lifting-surface theory, whereby to assess the 

dynamic measurements of Ref.2. In the early design stage only the theory may be 

sufficiently complete to provide the necessary data. 

4.1 Steady flow 

The three-dimensional TSP method of Albone, Hall and Joyce, which is 

featured in a survey by Lock, is still undergoing refinement. The computer 

program is expensive to run but, once a solution at one incidence for a given 

Mach number has been obtained, it is relatively quick to increase c1 in small 

stages. 

A relaxation technique is used to solve the three-dimensional transonic 

small-disturbance equation for flow past a finite lifting wing. It is a 

development and extension of a technique presented by Murman and Cole 12 for 

two-dimensional problems and is similar to the method of Ballhaus and Bailey 21 . 

A second-order term in the perturbation potential, which represents a cross- 

coupling between derivatives in the wing plane, is included in the treatment. 

For simplicity the wing boundary conditions are satisfied on a plane. The 

numerical procedures are designed for the computation of fields with supersonic 

regions and shock waves embedded in a subsonic main stream, as well as flows with 

a sonic or supersonic stream containing embedded subsonic regions. The treatment 

of the wake takes account of the planar vortex sheet associated with a lifting 
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wing and extending an infinite distance downstream. For flexibility, and 

economy of grid points, the co-ordinate system is chosen to be approximately 

swept with the wing. A concentration of grid points near the leading edge is 

obtained by an analytic stretching of a single transformed co-ordinate. Similar 

stretchings are used to control the distribution of points in the other two 

directions, and to reduce the half-space y 2 0 to a finite computing region. 

Whatever the planform, the actual computation is performed on a uniform finite- 

difference grid. 

Calculations by the TSP method have been made by Albone for the wing of 

Fig.1 (see also section 3) at one Mach number Ma, = 0.84 and eleven incidences 
a ;;: -1.93(0.40)2.07 degrees. The grid points (60 x 24 x 40) included 35 chord- 

wise and 18 spanwise stations (y > 0) within the planform, but the present 

analysis is confined to the single spanwise station n = 0.750 . The pressure 

distributions on the upper and lower surfaces at c1 = -1.13, -0.33, 0.47 and 

1.27 degrees are shown on the upper diagrams of Figs.2 and 3. The gradients 

-aCpu/au and +aCpL/% (rad-1) h ave been calculated from quartic polynomial fits 

to the data points at incidences ao, a0 + 0.4 and a o t 0.8 degrees. The values 

are plotted in the lower diagrams of Figs.2 and 3 and are listed in Table 1 

together with the linear result iaalaa from Ref.3. The latter is calculated 

by means of interpolation between solutions for Mm = 0.60, 0.80 and 0.86 , 

each with four chordwise terms (N = 4), 23 spanwise terms and 95 spanwise 

integration stations between the wing tips. 

Supercritical effects on the lower surface are apparent in the curve of 

aCpu/aa at co = -1.13 degrees, mainly close to the leading edge but also just 
2 

ahead of mid-chord. The next incidence u. = -0.33 degrees has relatively mild 

supercritical flow, as the minimum C 
PO 

= -0.584 corresponds to a local Mach 

number MO = 1.135 ; the distributions of 
-aCPulaa and +aCPg'aa 

are at their 

closest to each other, but are significantly different from the curve of the 

linearized quantity ia!L/aa added to Fig.2. At the higher incidences in Fig.3 

there are two marked peaks and troughs in 
-acPu/aO l 

While the leading-edge 

peak still dominates at u. = 0.47 degrees, the peak at mid-chord is the salient 

feature at co = 1.27 degrees. In both cases a large influence on the oscilla- 

tory pressures can be anticipated. Any difficulties associated with very large 

local values of acp/aa near a strong shock wave could be overcome on the basis 

of equation (48) derived in section 5.1 
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4.2 Oscillatory calculations 

To carry out the calculations at one streamwise section of the wing for a 

given subsonic stream Mach number M, , frequency parameter J and mode of 

oscillation, the following information is required: 

coefficients rq/o (q= 1 to N) for steady flow at uniform incidence, 

complex coefficients r 
9 (q 

= 1 to N) for the mode of oscillation, 

aspect ratio A = 29/c , local leading edge 3/c and chord c/c , 

set of values of < as determined by the grid of Ref.15, 

corresponding sets of C pu0' C PRO aCpu/ao and aCpR/ao for each 

mean flow condition. 

For simplicity, as in equation (30), the amplitude of oscillation is taken to be 

“1 * Then 

(a> 

(b) 

(cl 

Cd) 

(e) 

(f) 

the sequence of calculations for equation (26) is as follows: 

aR/aol from equations (17) and (18) (w = 0, I' 
q 

for Tq), 

ii/y from equations (17) and (18) (wx/UoD = 3x/,), 

K/a1 from equations (21) and (22), given alal , 

k (ac /ad, 
- 

aLlaa 
=j 

"1 
, say, see equations (26) and (32), 

integrand E = z(U,/UO)/G involving equations (13) and (29) 

with y = 1.4 , 

from equation (26) which becomes 

“1 
= j + i;cG 

C 
0 

(33) 

The integration is conveniently carried out by the method of overlapping para- 

bolas, in which each interval in 5' contributes the average of the two results 

when the end points with alternatively the next fore or aft point are used to 

define the parabola. 

When the simpler equation (28) is used instead of equation (26), steps (a), 

(b) and (c) lead to the final calculation in the form 
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(34) 

where Urn/U0 is given as a function of M, and C p0 in equation (29). After 

~p&)/al has been evaluated for each surface, the oscillatory chordwise loading 

of equation (31) is either evaluated as 

.s “1 = 

or in terms of its amplitude and phase 

and 

'A = tan 
-I (AC;/AC;) . 

(35) 

(36) 

The present illustrative calculations are for the model of Fig.1 in rigid 

oscillation about the given swept axis at a frequency of 120 Hz, which for 

Mccl = 0.84 corresponds to the frequency parameter J = 0.393 . The wing geometry 

gives A = 7.425 , and at n = 0.750 we have xb/' = 1.632 and c/i = 0.725 . 

The coefficients in the linearised chordwise loading are calculated by interpola- 

tion in n and MaJ between solutions for MoD = 0.60, 0.80 and 0.86 in steady 

flow or with the given frequency of 120 Hz; from the method of Ref.3 with 4 

chordwise terms, 23 spanwise terms and 95 spanwise integration stations between 

the wing tips, the following values are obtained at n = 0.750 . 

v=o I J = 0.393 q I rq/cL I rq/a l 
0.3588 0.2424 + i0.1291 

0.0179 0.0730 - iO.0909 

-0.0054 -0.0167 - iO.0113 

0.0000 -0.0011 + iO.0022 
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The 35 values of 5 are given in Table 1, together with aCpu/ao and 

aCpR/aa for four mean-flow conditions, while the corresponding distributions 

of c 
PUO and cpLo are plotted in Figs.2 and 3. 

The results in Tables 2a and 2b for selected values of 5 are given 

in terms of amplitude and phase, as defined in equations (36) and (37); they 

cover linearized theory, equation (26) for each of the mean incidences 

uo = -1.13(0.8)1.27 degrees and equation (28) for the most interesting of 

these cases u. = 1.27 degrees. From these tables in conjunction with Fig.4, 

IACpl/"] (rad-I) is seen to be markedly different from the linearized curve 

in the range 0.05 < 5 < 0.45 , whatever the value of u. ; while there is an 

effect of frequency parameter, the broad pattern of behaviour is consistent 

with that of (aCpR/ao - aCpu/ao), which has already been discussed in section 4.1 

with reference to Figs.2 and 3. According to linearized theory E* is almost 

linear in 5 ; relative to the wing motion the oscillatory loading shows a 

phase lag for 5 < 0.4 and a phase lead for F > 0.4 . As calculated from 

equation (26), the influence of transonic flow is to delay the change-over from 

phase lag to phase lead and to increase the phase lead downstream of about mid- 

chord. The curve of EA for u. = -0.33 degrees is omitted from Fig.4, as it 

is practically indistinguishable from that for ao = -1.13 degrees. At the 

higher mean incidences the region of greatest importance lies near the down- 

stream end of the embedded supersonic flow. As /acpl/al falls from its peak 

value in this region, EA increases rapidly to give a phase lead in excess of 

a quarter cycle: it should also be noted that the amplitude of oscillatory 

pressure fails to reach zero at the trailing edge. Both phenomena will be 

discussed later in relation to equation (28) and the experimental behaviour of 

EA ' 

It is instructive to consider the real and imaginary parts of the 

oscillatory surface pressure coefficients 

-c = -c’ - ic” 
Pu Pu Pu 

1 

, 

E C' 
p!l= pR 

+ ic" 
PR 

(38) 

both of which tend to 

(39) 
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from equation (17) in the special case of linearized theory. With appropriate 

weighting factors these may be regarded as elementary contributions to the 

in-phase and in-quadrature aerodynamic forces required in flutter calculations. 

In three dimensions to first order in frequency the in-quadrature component is 

proportional to $ , and it is useful to present graphs of -cp-+ +c' 
PJJ 

la,, 

-Ciu/al; and +C" ]a 3 in Figs.5 and 6. For CXC 
PR 1 

= -1.13 degrees there are two 

peaks in local supersonic Mach number on the lower surface; corresponding to 

-C 
PRO 

in Fig.2, the forward peak reaches MO = 1.3 and gives rise to 

c;da 1 = 40 and CiE/al; = -60 , while the other at 5 = 0.4 reaches 

MO = 1.15 and causes relatively small fluctuations of approximately +2 in the 

oscillatory components as plotted in Fig.5. At u. = -0.33 degrees, when the 

supercritical effects are small, the upper and lower surfaces make similar 

contributions to the oscillatory loading, which are seen in Fig.5 to differ 

appreciably from that based on linearized theory and equation (39). With 

reference to Figs.3 and 6 at the higher values of u. the interest lies in 

the upper surface. At ~1~ = 0.47 degrees the forward peak (MO = 1.325 at 

5 = 0.04) gives local peaks in -C;u/Ct ] and Ciu/al; of about 1.8 times the 

local value from linearized theory, while the recompression from MO = 1.20 to 

1.05 near 5 = 0.4 causes peak-to-peak changes of 21 and 17 in -C&h] and 

-Ciu/ul; respectively, which could be important. These effects are intensified 

at aO = 1.27 degrees; the forward peak (MO = 1.50 at F, = 0.04) gives local 

peaks in -Ciu/al and Ciu/a,; of about 2.5 times the local value from 

linearized theory, while the recompression from M 0 = 1.315 to 1.00 near 

5 = 0.5 causes peak-to-peak changes as high as 38 and 25 in -Ciu/ul and 

-CpX,; respectively. It would be surprising if changes of this magnitude did 

not involve major corrections to the generalized aerodynamic forces as predicted 

by linearized theory, and hence to significant changes in the flutter boundaries 

in the lower transonic speed range. 

The chordwise distributions of AC'p'/~l; for u. = 1.27 degrees in Fig.7 

illustrate crucial differences between calculations by the various theoretical 

methods. The inadequacy of linearized theory, especially near the leading edge 

and both during and after the recompression, is not in doubt. But it is well to 

question the relative status of equations (26) and (28). Both methods of 

calculation involve the two basic assumptions of equations (15) and (23). It 

may be wondered how well equation (15) holds near the trailing edge in view of 

the cross flow and whether it is impaired by viscous effects; moreover, difficulty 

might be anticipated in matching the velocity potentials from the upper and lower 

surfaces, as the mean flows from points immediately above and below the dividing 

streamline near the leading edge would have diverged laterally at the trailing 
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edge. Perhaps az/ax should be replaced by the derivative of 5 in the local 

flow direction. The consequences of any deficiencies in the treatment of 

Bernoulli's equation are not easily determined, but the failure of equation (26) 

to give zero oscillatory loading at the trailing edge is tentatively attributed 

to this approximation. It may also be wondered whether equation (23) dete- 

riorates with increase in frequency parameter, but only rigorous numerical solu- 

tions of the equations of unsteady transonic flow are likely to settle the 

theoretical question. The further assumption in replacing equation (26) by 

equation (27) would not be expected to have much influence on the results near 

the leading edge, but elsewhere its only merits are the relative simplicity of 

the result in equation (28) and the re-establishment of the condition of zero 

oscillatory loading at the trailing edge. It will be seen in sections 5.2 and 6 

that these possible advantages are offset by less favourable comparisons with 

experiment. 

5 SEMI-EMPIRICAL METHOD 

The preliminary investigation of Ref.1 has already shown the feasibility 

of a semi-empirical approach to the urgent problem of oscillatory aerodynamic 

loading in mixed subsonic and supersonic flow. The approximate theory of 

section 3, even in the integral form of equation (26) or (33), remains simple 

enough to lend itself to semi-empirical treatment. 

Although the calculations depend on the chordwise distributions of both 

C 
PO 

and (aCplan)O , they are more sensitive to the latter. From theoretical 

considerations (aCp/acl)o becomes increasingly non-linear as the supercritical 

flow develops with increasing Mm , or with increasing a0 as shown in Fig.3. 

Meanwhile experimental evidence points to increasingly large viscous losses 

under supercritical conditions, so that the dependence of (acp/ado on 

Reynolds number becomes of major importance. Thus we should not expect good 

quantitative agreement between the calculations of section 4.2 and the dynamic 

measurements of Ref.2. If, however, both C 
PO 

and (Xp/ao)O are deduced 

from the corresponding static measurements, equation (26) becomes semi-empirical 

in the sense in which the simpler and more approximate equation (28) was treated 

in Ref.1. Moreover, as explained in section 5.1, there is also the possibility 

to allow for the effect of amplitude 7 - The calculations of section 5.2 

therefore stand a greater chance of predicting the dynamic measurements at the 

particular Reynolds number. 
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With practical application in mind, it is worth noting that detailed static 

experimental data over a range of incidence will normally be available at the 

stage of aircraft design when the problem of flutter clearance has to be faced. 

5.1 Use of static experimental data 

In the dynamic experiments of Ref.2 the half-model has fairly low flexibil- 

ity, so that in the present calculations it may be assumed to oscillate rigidly 

about the swept axis x=x a as defined in Fig.]. Since 

X,/C = 0.709 + (~/S>lnl tan 25' 9 (40) 

the mode of oscillation corresponds to an upward vertical displacement 

z/c = (a - clo> (xa - x)/c 

= co.709 + 1.7311n[ - ( X / C ) ]  ~{aleiwt} l 

Under quasi-steady conditions the oscillatory lift coefficient is simply 

C = cp(u) with ci = 
P aO and J, = wt 

When Cp(o) is non-linear, we write 

R 

C = c + 
P PO c 

Ar cos r$ 

r=l 

which for fixed values of aO 
and 

7 is a polynomial in 

a = cto+cY1 COSJ, . 

The usual Fourier analysis gives 

2lT 
Ar = .i 

-lT i 
Cp(a) cos r$d$ . 

0 

With neglect of higher harmonics r 2 2 , equations (10) and (43) become 

consistent if 

(Cp>- 
v=o 

= A1 = + Cp(a) cos $d$ . 

0 

(41) 

(43) 

(44) 

(45) 

(46) 
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Equation (32) is then re-written as 

where 

2r 

wp/w, = $- 
1 i 

CpW cos W+ 

0 

(47) 

(48) 

is a function of both a0 and 
al 

with the limiting value (Xp/aa)O as a1 

tends to zero. Equation (48) is clearly applicable whether Cp(a) is obtained 

from a theoretical or an experimental source. 

The experimental determination of (acp/ ad 1 is crucial to the semi- 

empirical method and may require data at closer intervals in a than usual. 

When Ref.1 was issued the coverage in a was unusually sparse, and there was 

no practical alternative to taking (acp/wo as the linear slope between two 

values of a , one of which was outside the range of oscillation. However, 

Ref.2 includes more recent static data for a = 1.57(0.16)2.57 degrees, which 

make it possible to examine the dependence of equation (48) on a0 and u1 * 

The behaviour of Cp(a) at positions close to a shock wave is difficult to 

define on the basis of a few experimental points. The intermediate variation is 

not necessarily well represented by a polynomial through all the data points. 

The desirability of a discontinuous representation is arguable, but in any case 

this would require a closer spacing in both a and 5 to achieve adequate 

definition in the present application. A crude, but relatively safe, procedure 

would be to use segmented lines between consecutive data points. The preferred 

treatment is to apply the principle of least squares to obtain the best sinu- 

soidal fit to C 
P 

regarded as a function of $ , for which purpose it is 

important to have experimental data at a=a 4a 0 1 ; this procedure is equiva- 

lent to fitting a linear function Cp(a) to the data in the range [a - a01 G al. 

For five equally spaced values of a 

(acp/W, = j-& 
[ 

-2C (a 
1 P 0 

-a,)-C (a p 0 - ia,) 

+ C (a + ia,) + 2C (a + aI) 
P 0 PO 1 . (49) 
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Similarly with seven data points 

(acp/aa)] = -2 28~1~ 

It has been verified in practice that equation (50) gives results reasonably 

close to those obtained with segmented lines and with the best cubic fit to 

Numerical results with the aid of equations (49) and (50) are illustrated 

in Tables 3 and 4. For a0 = 2.07 degrees and CI, = 0.3 degrees = 0.0058 radians, 

the values of -C pu0' 
-C 

PRO' -(aCpu/aa), and +(aCpL/aa)l for the section 

n = 0.535 at stream Mach numbers from 0.80 to 0.86 are listed in Table 3. For 

n = 0.766 and M, = 0.84 in Table 4, the corresponding quantities are shown for 

three values of ~1~ and the influence of o, on the gradients is examined. 

Apart from the negative values of (acpR/ w : at 5 = 0.612 , which are not 

regarded as spurious experimental data, the rates of change of pressure on each 

surface from transonic small perturbation theory at ~1~ = 1.27 degrees in 

Table 1 and from experiment at c%~ = 2.24 degrees in Table 4 show a strong 

qualitative resemblance. The smaller experimental peak values reflect the 

influence of the boundary layers, and perhaps also the smoothing process 

implicit in the use of least squares in equation (49). But, as in section 6, 

such quantitative comparisons are better made at given mean lift. The data in 

Tables 3 and 4 are thought to embody the essence of non-linearity in the real 

flow. 

5.2 Comparisons with dynamic measurements 

The experimental counterpart to the present theoretical investigation is 

reported in Ref.2. Most of the dynamic measurements on the half-wing model of 

Fig.1 in harmonic oscillation about the swept axis have been made for the mean 

incidence ~1~ = 2.07 degrees and at the frequency of 120 Hz used throughout the 

theoretical calculations. There are, however, a few measurements for 

"0 
= -1.28 degrees, when supercritical flow occurs first on the lower surface. 

The unsteady pressures have been recorded from individual transducers at 50 

positions on the planform at the five streamwise sections indicated in Fig.], 

of which we shall be concerned with the outer three. The experimental range 
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of Mach number 0.60 <MM, G 0.86 is fully covered in the calculations. As 

described in the preliminary presentation of Ref.1, the measurements have 

revealed some dramatic changes in the distribution of oscillatory surface 

pressure as the transonic flow develops. 

Equations (31) and (33) are used to calculate the oscillatory wing loading 

by the procedure described in the paragraph of section 4.2 containing the latter 

equation. In contrast to the purely theoretical calculations of section 4.2, 

however, the static data are now taken from experiment in accord with section 5.1 

The semi-empirical calculations are confined to the three sections ?-j = 0.535, 

0.766 and 0.882 , because these show the largest response to supercritical flow 

and are free from any peculiarities associated with the trailing-edge crank and 

the reflection plane at the tunnel wall. The section n = 0.535 is considered 

systematically over the whole range of Mach number. The combination n = 0.766 

and Moo = 0.84 is selected in order to study the influence of mean incidence 

and amplitude of oscillation. The results are presented together with experi- 

mental values in Tables 5 to 7 and in Figs.8 to 17, usually as the real and 

imaginary parts or the amplitude and phase angle of the wing loading AC in 
P 

equations (35) to (37), but in one instance as the real and imaginary parts of 

E on the individual surfaces. 
P 

Table 5 shows listings of the semi-empirical and measured values of 

amplitude lbCpl/y and phase 
cA at the three sections for Mm = 0.86 . 

Similar characteristics are found at each section. Both calculation and 

experiment indicate peaks in amplitude near the leading edge and also in the 

region 0.3 G 5 G 0.5 ; they give a consistent phase lag of about 30 degrees 

near the leading edge changing to large phase leads somewhere in the region 

0.60 < 5 < 0.85 . In finer detail the discrepancies between the semi-empirical 

and measured amplitudes do not show such a consistent pattern; the magnitudes 

of the second peaks in MP1 /"I appear to be overestimated at T-I = 0.535 , 

underestimated at r) = 0.766 and in good agreement at n = 0.882 . While the 

changes in the sign of 
EA 

are satisfactorily predicted near mid-chord in each 

case, the measured phase lags just forward of this and phase leads when 5 ao.7 

are underestimated by the semi-empirical method. 

Static data from Table 3 for n = 0.535 are used in obtaining the semi- 

empirical results for supercritical flow in Table 6. Here the oscillatory wing 

loading near the leading edge is in good agreement with the measurements at each 

of the four Mach numbers. Moreover, the peak amplitude and its rearward movement 
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with increasing Mach number are well predicted. Likewise the change in sign of 

EA is correctly predicted to move rearwards as M, increases. The tendency 

to underestimate the phase lag just forward 

than in Table 5, while the underestimate of 

5 20.7 . 

The real and imaginary parts of Ac 
P 

four supercritical Mach numbers in Table 7. 

of the change-over is more pronounced 

the phase lead is less marked when 

for n = 0.766 are presented for 

The rearward movements in the peak 

value of AC'p/al and the zero value of ACi/a,; with increasing M, now 

become the main features of both calculation and experiment; the increment of 

0.06 from Mco = 0.80 to 0.86 produces shifts of roughly 0.3 chord. However, 

while the measurements indicate that the strength of the in-phase peak in Aci/a, 

is maintained up to Moo = 0.86 , the calculations at this highest Mach number 

fail to reproduce this characteristic. Moreover, although the in-quadrature peak 

in -AC;/+ is reasonably well predicted at Mco = 0.80 , the calculations at 

higher M, become progressively less successful as the location of the peak 

moves rearward. Yet, judged against the performance of linear theory, the semi- 

empirical method will be seen to have achieved a good deal. 

The first of the graphical presentations, Fig.8, shows the serious 

inadequacy of linear theory when Mm = 0.84 . Its main purpose is to illustrate 

at n = 0.535 the significant improvement in the present calculations through 

the use of more detailed static experimental data, denoted by Ref.2, in place 

of the limited information available when Ref.1 was written. Fig.8 also demon- 

strates the quite small effect on ACi/al in changing from the old formula in 

equation (28), as used in Ref.1, to the preferred equation (26). The merit of 

the latter equation is illustrated in Fig.9 by the predicted distributions of 

AC'p/al; over the rear half of the chord. Equation (26) provides values greater 

than those from linear theory in place of the much smaller values from 

equation (28). Although the predictions in this region remain typically below 

the experimental results, the improvement is worth the small cost in computa- 

tional effort. The next example in Fig.10 shows the real and imaginary parts 

of the distributions of oscillatory pressure coefficient c 
P 

on the upper and 

lower surfaces of the wing at I-I = 0.766 when Mm = 0.82 . The relatively 

small departure from linear theory featured in the measured lower-surface 

pressures is reproduced by the semi-empirical method; however, the peculiar 

abnormality near 5 = 0.6 already noted in the static data of Table 4 at 

Mm = 0.84 is also present at this lower Mach number in the local behaviour 
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of C' 
PR 

and C" 
PR 

from dynamic measurement and calculation alike. The semi- 

empirical in-phase and in-quadrature components on the upper surface both 

indicate an encouraging measure of success. 

Figs.11 and 12 compare the linear theoretical results from n = 0.766 and 

Mu3 = 0.84 with the experimental and semi-empirical ones at two different mean 

incidences. The lower incidence a0 = -1.28 degrees is a case of small negative 

lift when the supercritical flow is primarily on the lower surface. The rates 

of change Xp/aa are deduced from steady measurements at -1.28 and 

-0.28 degrees, so that the semi-empirical curves in Fig.11 may suffer through 

lack of closely spaced static data. The real part of A? 
P 

is reasonably 

well predicted, but the imaginary part is underestimated where 5 2 0.4 . The 

other case in Fig.12 is one of the most striking examples from the oscillations 

about "0 
= 2.07 degrees. The semi-empirical method is again fairly successful 

as regards ACi/a, : the calculated chordwise behaviour of AC'p/al~ is too 

gentle, but the two peaks and the trough are correctly positioned. The extra 

quasi-steady curve of 

AC;/al = (acpL/wl - (acpuiwl (51) 

represents the special case of zero frequency common to experiment and the semi- 

empirical method. Regarding the latter now as a theoretical means of correcting 

the measured static data for frequency parameter, we see that the effect is 

significant. The shape of the quasi-steady curve in Fig.12 is mirrored by both 

the semi-empirical method and the experiments, but again the peak in the 

experimental curve is much greater. 

A further illustration of the calculated frequency effect is included for 

n = 0.535 and M = 0.82 in Fig.13. co However, the main purpose of Figs.13 and 

14 is to demonstrate the influence of Mach number on the oscillatory components 

of wing loading. By and large the discrepancies in AC'p/a, between experiment 

and semi-empirical calculation do not appear to increase to a great extent as 

M co grows from 0.60 to 0.84. The general tendency in Fig.13 is for the peak 

in-phase component to reach its maximum soon after the flow becomes super- 

critical; thereafter the peak becomes lower but of wider base. Negative values 

over the rear part are measured at M, = 0.80 but are not predicted at this 

section until M = 0.84 . a, The semi-empirical method still fails to provide 

the large increase in phase lag corresponding to the large negative experimental 

values of AC;/a,; in the supercritical region. Although the calculations again 
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show the correct trends away from linear theory in Fig.14, the displacements 

could be doubled with good effect throughout the range of Mach number, but with- 

out apparent theoretical justification. All the preceding comments apply to 

the additional results for n = 0.535 at M co = 0.86 in Fig.15, which also 

includes a case of good agreement between both components of the measured and 

semi-empirical oscillatory loading for n = 0.882 at the same Mach number. 

This favourable result has already been discussed in relation to Table 5. 

The final sets of curves by means of the semi-empirical method in Figs.16 

and 17 demonstrate the calculated effects of changes in mean incidence and 

amplitude of oscillation in accord with the measured static data of Table 4. 

Both o. and ul have important influences on IAcpl/a, , but these appear 

to be local in character. While the local dependence of AC on c1l can be 
P 

highly non-linear, the semi-empirical curves for ol = 0.003 and 0.009 radians 

in Fig.17 are only about as different from each other as from the dynamic 

measurements when Y = 0.006 radians. Neither o. nor a, seems to have 

much effect on phase angle, but cA is always liable to be sensitive when 

lA~pl~y is small. It stands to reason that the measurements themselves are 

likely to be non-linear in amplitude. 

In general, we may conclude that the present comparisons are significantly 

better than those in Ref.], on account of the removal of the approximation 

leading to equation (27) and through the careful analysis of more detailed 

static experimental data in section 5.1. The theoretical investigation has 

added confidence to the interpretation of the experimental results in Ref.2. 

6 DISCUSSION 

The method of calculation formulated in section 3 and applied in 

sections 4 and 5 is of considerable generality. It is at present limited to 

subsonic flow in the undisturbed stream and to wings in isolation, but the same 

principles could be applied to a supersonic stream or, for example, to a T-tail. 

The following table summarizes how the various parameters enter into the 

calculation, and we shall consider in turn the practical significance of each 

of them. 
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Parameter 
Non-linear Linear 

static theoretical 
data data 

Planform Yes Yes 
Mach number Yes Yes 
Frequency parameter No Yes 
Mode of oscillation No Yes 
Aerofoil section Yes No 
Camber and twist Yes No 
Mean incidence Yes No 
Oscillatory amplitude Yes No 
Reynolds number If available No 

Planform and Mach number are basic to all aspects of the problem. The 

present investigation is confined to a single planform of practical interest for 

civil aircraft. There is need to examine a variety of shapes, and especially 

any cases where there is reason to probe the hazard of transonic flutter. The 

present results have shown how dramatically the oscillatory chordwise loadings 

can be expected to vary with small changes of Mach number in the supercritical 

range, and the message is amply reinforced by the experimental evidence. What 

is not yet appreciated is the extent to which the large chordwise fluctuations 

are neutralized in the generalized forces that influence the flutter character- 

istics. Another aspect that calls for investigation is that the dependence on 

Mach number may be subject to the philosophy of design. We contrast the tran- 

sonic behaviour of a wing designed for supersonic operation with that in the 

high subsonic flight envelope of a wing specifically designed to cruise with 

supercritical surface flow. In either case it is uncertain how relevant the 

present results may prove to be, but it is easy to envisage dynamic problems of 

greater severity. 

Frequency parameter and mode of oscillation may well influence the surface 

flow in respects beyond the scope of the present treatment. Although the 

frequency effect, represented by the difference between the quasi-steady and 

semi-empirical curves of ACi/cxl in Figs.12 and 13, gives some reassurance, 

the tendency to underestimate the magnitude of ACi/a,; during and after 

recompression on the suction surface suggests that the method may be capable 

of improvement by appealing to the non-linear differential equation of unsteady 

transonic flow. Nevertheless, the present formulation is quite general in 

frequency and, as this only occurs in the linear part of the analysis, the method 
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can be regarded as applicable to the boundary condition of equation (41) with 

arbitrary time dependence and mode of oscillation. When the mode is changed it 

is debatable whether to adopt the simplification in equation (32), as discussed 

at the end of section 3.2. In particular, this question of an explicit link 

between the static data and the mode of oscillation will become crucial when 

the application to an oscillating control surface is considered, for this 

development is a matter of urgency. 

The remaining geometrical parameters only feature in the procurement of 

the necessary steady pressure distributions. Aerofoil section, camber and 

twist are principal elements in wing design and influence the nature of the 

transonic flow to be perturbed, 15 whether the source is theoretical or 
n 

experimentalL. The same considerations apply to mean incidence, but the varia- 

tion of this parameter has been studied in Figs.4 to 6 and is found to be almost 

as important as that of free-stream Mach number. The powerful effects as regards 

chordwise pressure distribution make one wonder whether in a flutter calculation 

it is necessary to consider aeroelastic camber changes in addition to deforma- 

tions in bending and torsion. It is explained in section 5.1 and illustrated in 

Fig.17 how the amplitude of oscillation can be taken into account. The essential 

aerodynamics can be distorted in the semi-empirical method by handling the static 

data at too widely or too closely spaced angles of attack. From the same view- 

point there are dangers in attempting to draw conclusions from transonic experi- 

ments in which the amplitude of oscillation is not varied, for flutter could be 

a non-linear phenomenon. Still, the effect of increasing amplitude seems to be 

to smooth out the sharp peaks to some extent. If these sharp peaks lead to worse 

flutter characteristics under supercritical conditions, there is an inference 

that increased amplitude might be favourable. It would then be sufficient to 

accept an adequate margin of safety for small-amplitude oscillations. 

Reynolds number must account for much of the difference between calculations 

by the semi-empirical and theoretical methods. Some idea of the importance of 

this parameter can perhaps be gleaned from their separate comparisons with 

experiment. It is well-known in two dimensions that the inviscid transonic 

small-perturbation theory can give half as much lift again as high-speed wind 

tunnel tests on an aerofoil, so important do the boundary layers become at 

supercritical Mach numbers. When the TSP calculations at n = 0.750 including 

Figs.2 and 3 and the measured steady pressures at n = 0.766 are integrated to 

give local lift, the following coefficients are obtained for Mm = 0.84 . 



30 

c1 (degrees) -1.28 -1.13 -0.33 0.47 1.27 2.07 

cLL (TSP) 0.06 0.20 0.34 0.49 0.64 

CLL (Exp) -0.05 0.36 

The main deficiency in measured lift arises from the loss in rear loading, 

presumably due to viscous effects, and leads to an alarming correction factor 

0.56 to reconcile the theoretical and experimental values at cx = 2.07 degrees; 

to put these into perspective, linear theory gives CLL = 0.50 midway between 

them. In Fig.18 the theoretical distributions of mean static pressure have been 

interpolated in "0 to correspond to the experimental mean lift coefficient 

cLLo = 0.36 ; the TSP calculations of oscillatory loading for this mean condi- 

tion are then shown together with the same experimental distributions of 

lACpl/a, and ~~ as those used in Fig.17. While it is not surprising that 

in Fig.17 the semi-empirical method fares so much better in relation to the 

dynamic measurements, in Fig.18 the excessive theoretical amplitude of 

oscillatory loading forward of 5 = 0.3 is a strong indication of the important 

part that Reynolds number can play. Nevertheless, the TSP and wind-tunnel data 

would be expected to err in opposite directions from the desired true prediction 

for full-scale Reynolds number. In looking towards future clarification, there 

is little doubt that allowance for boundary layers in the TSP calculations will 

be of great importance. Perhaps the crucial issue is whether this can improve 

the accuracy of representation of both the strength and the location of the 

shock wave system. 

The other salient feature of Fig.18 is the poor showing of &A from 

equation (28), which reinforces the evidence in Fig.9 to justify the use of 

equation (26) iu the present investigation. However, as discussed towards the 

end of section 4.2, there is the disadvantage that, unlike equation (28), 

equation (26) can give a non-zero oscillatory load at the trailing edge. This 

effect appears to be fairly small in Fig.18, but is more conspicuous in the 

behaviour of the in-quadrature component AC" 
P 

; the numerical implications may 

grow in importance with increasing frequency parameter. While it seems reason- 

able to treat the matter as a local defect by fairing lAcpl from its value at, 

say, 5 = 0.80 to zero at 5 = 1 , such an expedient would have to be reviewed 

in the light of further experience. 
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The pursuit of other theoretical methods should be encouraged, notably on 

the lines of Refs.11 to 16 which have been reviewed briefly in section 2.2. 

The primary need is for a fuller appreciation of the physics of unsteady viscous 

transonic flow through Ref.2 and its successors. Is it too much to hope that 

such insight could lead to a re-modelling of equations (15) and (23), the 

corner-stones of the present study? 

7 CONCLUSIONS 

(1) Through combined theoretical and experimental study a two-pronged attack 

on the prediction of oscillatory wing loading has been launched. The present 

formulation in equation (26) invites the substitution of steady aerodynamic 

pressures and their gradients either from non-linear theory or from experiment, 

with particular application to mixed subsonic and supersonic flows. 

(2) In either case the method can be applied to any planform and takes account 

of aerofoil section, camber and twist, mean incidence, subsonic stream Mach 

number, frequency parameter, mode and amplitude of oscillation. The semi- 

empirical version admits Reynolds number as an important additional parameter. 

Until viscous effects are incorporated in the transonic small-perturbation theory, 

they are likely to be exaggerated on the basis of wind-tunnel data obtained at 

Reynolds numbers well below full scale. 

(3) Either version reproduces qualitatively the marked characteristics of 

unsteady supercritical flow found in the experiments on a particular wing. The 

semi-empirical method allows successfully for the quantitative effect of 

frequency on the in-phase wing loading, but it tends to underestimate the large 

chordwise variations in the component in quadrature with the wing oscillation. 

(4) There is an obvious need for continuing work on the oscillatory transonic 

problem through alternative theoretical approaches and more detailed experimental 

studies. It is desirable to extend the present theoretical treatment to 

oscillating control surfaces. A further combined study for an advanced super- 

critical wing design would be of special interest. 

(5) It remains to establish the significance of the present investigation in 

the context of flutter prediction and, in particular, the extent to which the 

large chordwise variations are neutralized in the integration process leading to 

the generalized forces involved in flutter calculations. It is recommended that 

studies along these lines, to compare the predictions of linear and non-linear 

transonic aerodynamics, should be undertaken in close collaboration with the 

aircraft industry. 
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Table 1 

RATES OF CHANGE OF PRESSURE PER RADIAN INCIDENCE FROM LINEAR THEORY3 

AND FROM TSP THEORY I5 FOR VARIOUS INCIDENCES (Mm = 0.84, rl = 0.750) 

Values of -acpulaa for a0 = Values of +acpe/aa for a0 = 

5 
I a2 

2-K. 
-1.13O -0.33O 0.47O 1.27O -1 c 13O -0.33O 0.47O 1.27’ 

0.0037 39.53 6.05 5.68 5.30 4.30 9.67 19.68 16.06 11.51 
0.0109 23.05 9.27 8.56 6.97 5.59 32.86 26.71 20.48 14.25 
0.0188 17.48 12.64 11.73 20.43 7.06 57.21 27.24 20.60 14.52 
0.0283 14.18 14.75 18.08 25.54 18.61 50.71 23.41 18.40 13.55 
0.0404 11.78 14.15 18.49 20.00 29.02 29.61 17.81 15.38 11.88 
0.0569 9.83 11.86 13.95 17.61 24.37 14.81 13.65 12.40 9.96 
0.0796 8.21 9.72 11.43 13.23 15.22 11.76 10.83 10.09 8.28 
0.1086 6.90 8.60 10.00 10.55 9.55 10.93 9.09 8.58 7.14 
0.1421 5.90 8.14 9.38 9.91 7.30 9.52 7.92 7.55 6.36 
0.1771 5.16 7.75 9.42 10.49 6.77 8.36 7.ot, 6.82 5.81 
0.2121 4.60 7.30 9.38 11.69 6.92 7.67 6.58 6.36 5.46 
0.2464 4.15 6.89 8.88 13.18 7.29 7.32 6.54 6.24 5.33 
0.2799 3.79 6.51 8.10 14.98 7.76 7.27 6.67 6.28 5.31 
0.3125 3.49 6.17 7.06 17.06 8.31 7.48 6.68 6.40 5.33 
0.3444 3.23 5.77 5.94 19.07 8.93 8.05 6.82 6.54 5.49 
0.3758 2.99 5.36 5.08 20.50 9.72 9.06 7.13 6.51 5.43 
0.4068 2.79 4.95 4.80 20.46 11.41 9.84 7.04 6.15 4.97 
0.4375 2.60 4.49 4.84 15.84 17.48 8.69 6.05 5.15 4.41 
0.4680 2.43 3.99 4.61 3.04 32.79 4.57 4.03 4.07 3.78 
0.4984 2.27 3.56 3.97 -7.93 44.54 1.83 2.62 3.31 3.17 
0.5288 2.11 3.26 3.21 -7.68 16.32 I.76 2.26 2.75 2.68 
0.5591 1.97 2.86 2.60 -3.68 -8.99 1.60 1.95 2.38 2.35 
0.5894 1.83 2.43 1.92 -1.55 -5.15 1.44 1.73 2.09 2.09 
0.6198 1.70 2.08 1.52 -0.65 -3.35 1.27 1.50 1.84 1.84 
0.6502 1.58 1.72 1.34 -0.40 -2.17 1.10 1.30 1.59 1.62 
0.6807 1.46 1.38 1.04 -0.22 -1.42 0.96 1.13 1.39 1.43 
0.7112 1.34 1.13 0.85 -0.13 -1 .oo 0.83 0.98 I .22 1.26 
0.7420 1.23 0.95 0.71 -0.10 -0.75 0.72 0.85 1.06 1.10 
0.7729 1.11 0.77 0.57 -0.10 -0.59 0.61 0.73 0.93 0.97 
0.8042 1.00 0.60 0.44 -0.12 -0.50 0.52 0.65 0.82 0.86 
0.8359 0.88 0.46 0.33 -0.14 -0.43 0.45 0.57 0.72 0.77 
0.8683 0.76 0.35 0.24 -0.17 -0.40 0.38 0.48 0.63 0.69 
0.9016 0.64 0.22 0.13 -0.21 -0.39 0.30 0.40 0.54 0.59 
0.9360 0.49 0.10 0.03 -0.26 -0.40 0.23 0.31 0.45 0.51 
0.9721 0.31 -0.07 -0.13 -0.35 -0.45 0.12 0.18 0.34 0.41 
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Table 2 

THEORETICAL AMPLITUDE AND PHASE OF OSCILLATORY LOADING 
AT VARIOUS INCIDENCES (M, = 0.84, r~ = 0.750) 

Equation (26) with static data from TSP theory 1 Eqn. (28) 

5 
Linear 
theory 

(a) Amplitude [Ac I/a, (x-ad-l) 

0.0109 
0.0283 
0.0569 
0.1086 
0.1771 
0.2464 
0.3125 
0.3758 
0.4375 
0.4680 
0.4984 
0.5288 
0.5591 
0.5894 
0.6198 
0.6807 
0.7420 
0.8042 
0.8683 
0.9360 

37.12 
22.81 
15.80 
11.08 
8.30 
6.72 
5.69 
4.95 
4.38 
4.12 
3.89 
3.68 
3.48 
3.28 
3.10 
2.74 
2.39 
2.03 
1.63 
1.12 

33.91 
52.64 
21.42 
15.65 
12.88 
11.25 
10.84 
11.35 
10.34 

6.92 
4.68 
4.43 
4.08 
3.70 
3.40 
2.88 
2.59 
2.39 
2.26 
2.19 

28.39 
33.36 
22.16 
15.29 
13.15 
12.25 
10.88 

9.64 
8.59 
6.91 
5.43 
4.64 
4.03 
3.45 
3.08 
2.64 
2.38 
2.21 
2.07 
1.99 

(b) Phase angle in degrees 

0.0109 -30.4 -30.7 -30.7 -30.6 -30.6 - 30.3 
0.0283 -29.2 -29.9 -29.8 -29.8 -29.8 - 29.3 
0.0569 -27.2 -27.7 -28.1 -28.2 -28.4 - 27.6 
0.1086 -23.4 -24.4 -24.8 -24.8 -24.6 - 24.0 
0.1771 -18.4 -20.3 -20.9 -21.1 -20.3 - 19.4 
0.2464 -13.2 -16.4 -17.2 -18.1 -17.0 - 14.9 
0.3125 - 8.1 -13.0 -13.5 -15.7 -14.3 - 10.6 
0.3758 - 3.1 -10.5 - 9.7 -13.3 -12.0 - 6.4 
0.4375 + 1.7 - 6.8 - 5.8 - 8.8 -11.0 - 2.5 
0.4680 4.1 - 0.6 - 1.8 + 5.0 -11.5 - 0.5 
0.4984 6.6 + 8.2 + 3.4 132.9 -10.8 + 2.9 
0.5288 9.0 11.1 7.8 135.0 - 4.3 6.5 
0.5591 11.4 14.8 12.6 92.7 141.3 -172.2 
0.5894 13.8 19.1 18.6 56.7 117.9 -171 .o 
0.6198 16.2 23.5 24.0 47.0 95.5 -170.9 
0.6807 21 .o 33.8 33.6 48.7 68.2 + 61.4 
0.7420 25.7 42.5 42.3 52.7 63.2 34.9 
0.8042 30.6 50.6 49.9 57.2 63.5 38.2 
0.8683 35.6 56.5 56.0 60.9 64.8 43.7 
0.9360 40.8 62.5 62.2 64.7 67.3 54.0 

22.10 
35.33 
24.09 
15.32 
13.75 
15.38 
18.41 
20.98 
16.24 
5.98 
3.70 
3.83 
2.10 
2.21 
2.45 
2.50 
2.47 
2.44 
2.40 
2.41 

uO 
= 1.27’ 

15.97 
25.86 
27.56 
13.37 
IO.05 
10.04 
10.76 
11.84 
16.80 
27.68 
35.76 
14.45 
4.98 
2.84 
2.29 
2.28 
2.39 
2.44 
2.46 
2.51 

a0 
= 1.27’ 

15.97 
25.87 
27.58 
13.39 
10.09 
10.13 
10.98 
12.24 
17.77 
29.79 
39.52 
16.08 
5.60 
2.57 
1.25 
0.13 
0.43 
0.46 
0.42 
0.24 



34 

Table 3 

MEASURED PRESSURE COEFFICIENTS AND THEIR MEAN RATES OF CHANGE FOR 

0.027 
0.054 
0.105 
0.156 
0.207 
0.308 
0.410 
0.511 
0.610 
0.713 
0.824 
0.859 

5 l- 
0.80 0.82 0.84 0.86 0.80 0.82 0.84 0.86 

0.027 11.61 10.66 8.33 7.92 10.46 8.35 8.52 10.07 
0.054 4.54 3.26 1.94 3.67 7.26 5.70 5.76 7.37 
0.105 15.93 9.97 3.47 5.29 6.13 4.34 4.65 6.47 
0.156 20.75 18.47 7.76 6.00 5.62 3.71 3.83 5.89 
0.207 20.63 19.80 11.23 7.41 5.21 3.54 3.37 5.67 
0.308 1.82 14.81 17.94 8.72 4.26 3.06 3.68 5.96 
0.410 0.90 -1.46 10.16 14.70 3.87 2.41 2.89 5.28 
0.511 0.03 -0.97 -1.65 5.31 3.41 2.11 2.20 3.82 
0.610 0.43 +0.07 -1.96 2.50 2.02 0.68 0.58 2.19 
0.713 0.50 -0.27 -1.09 1.35 2.29 0.64 0.43 1.98 
0.824 0.07 -0.37 -0.53 1 .oo 1.28 0.25 -0.16 1.05 
0.859 -0.42 +0.30 -0.03 1.92 2.32 0.71 0.44 1.72 

VARIOUS MACH NUMBERS (n = 0.535, a0 = 2.07’, ~1~ = 0.0058 rad) 

Values of -C 
PUO 

for Mm = 
I 

Values of -C 
PLO 

for Mm = 

0.80 

0.702 
0.923 
0.889 
0.794 
0.640 
0.539 
0.493 
0.386 
0.313 
0.181 
0.054 
0.017 

0.82 

0.668 
0.888 
0.921 
0.904 
0.833 
0.595 
0.494 
0.393 
0.319 
0.183 
0.053 
0.020 

0.84 

0.620 
0.837 
0.894 
0.923 
0.899 
0.815 
0.541 
0.385 
0.306 
0.178 
0.051 
0.019 

0.86 0.80 

0.547 -0.061 
0.781 -0.067 
0.844 +0.014 
0.885 0.055 
0.876 0.107 
0.872 0,232 
0.803 0.269 
0.489 0.188 
0.279 0.044 
0.153 -0.074 
0.040 -0.151 
0.009 -0.185 

Values of -(ZIC~~/E~X)~ for Mm = 

0.82 

-0.049 
-0.063 
+0.027 

0.067 
0.119 
0.250 
0.287 
0.200 
0.054 

-0.072 
-0.151 
-0.191 

0.84 

-0.019 
-0.041 
qO.042 

0.084 
0.134 
0.271 
0.309 
0.219 
0.055 

-0.067 
-0.152 
-0.191 

+0.013 
-0.015 
+0.066 

0.107 
0.159 
0.307 
0.345 
0.248 
0.070 

-0.059 
-0.145 
-0.179 

T Values of + wpk/ad 1 for ?fm = 
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Table 4 

MEASURED PRESSURE COEFFICIENTS AND THEIR MEAN RATES OF CHANGE FOR 
VARIOUS INCIDENCES AND AMPLITUDES (M, = 0.84, rj = 0.766) 

Y = 0.0058 rad 
-?- 

aO 
= 2.07' 

-(acpu/a+ for a0 = -(acpu/aq for al = 

2.24' 0.0029 0.0058 0.0087 

7.18 6.18 10.18 5.69 6.18 8.93 
6.29 4.56 4.88 4.09 4.56 5.70 
6.08 5.80 5.02 4.37 5.80 5.79 
9.52 8.82 7.29 6.03 8.82 8.81 

25.40 17.37 11.69 11.04 17.37 19.63 
14.64 16.48 20.56 27.21 16.48 15.95 
-2.20 -1.42 1.68 -1.24 -1.42 -0.21 
-3.51 -4.07 -1.82 -2.03 -4.07 -2.96 
-1.55 -2.33 -2.34 -2.56 -2.33 -1.86 
-1.03 -1.08 -1.07 -2.22 -1.08 -0.87 
-0.28 -0.72 -0.89 -1.38 -0.72 -0.49 

a1 = 0.0058 rad ! "0 = 2.07' 

+(acpg/aa)l for a0 = +(acpR/aa)l for a1 = 

-C 
PUO 

for a0 = 

5 

1 .90° 2.07' ~ 2.24' 

0.024 0.328 0.355 
0.107 0.911 0.935 
0.157 0.924 0.944 
0.208 0.926 0.935 
0.310 0.856 0.860 
0.411 0.478 0.494 
0.512 0.325 0.321 
0.612 0.265 0.258 
0.714 0.144 0.147 
0.808 0.033 0.029 
0.858 0.004 0.006 

0.361 
0.935 
0.949 

~ 0.961 
~ 0.920 

0.637 
, 0.318 

0.254 
0.729 

i 0.020 
~ -0.004 

T -c 
PRO 

for a0 = 

1.90° 2.07' 2.24' I .90° 2.07' 2.24' 0.0029 0.0058 0.0087 

-0.063 -0.098 -0.114 8.84 8.22 6.98 8.82 8.22 7.80 
+0.051 +0.034 +0.022 5.26 4.61 4.37 4.98 4.61 4.76 

0.074 0.062 0.049 3.57 3.95 3.95 4.30 3.95 3.70 
0.118 0.103 0.097 3.23 3.36 3.37 3.64 3.36 3.25 
0.253 0.242 0.233 2.85 3.28 3.13 3.45 3.28 2.95 
0.333 0.317 0.310 3.51 3.77 2.37 3.92 3.77 2.85 
0.259 0.245 0.242 2.34 3.19 2.23 3.01 3.19 2.26 
0.080 0.110 0.122 -5.95 -6.03 -3.82 -7.31 -6.03 -4.60 

-0.057 -0.063 -0.069 +0.89 +0.83 +0.96 +1.93 +0.83 +0.74 
-0.161 -0.164 -0,160 0.52 0.45 0.21 -0.14 0.45 0.45 
-0.165 -0.170 -0.166 0.76 0.76 0.17 +0.21 0.76 0.54 
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Table 5 

SEMI-EMPIRICAL AND MEASURED OSCILLATORY CHORDWISE LOADINGS AT THREE SECTIONS 

(MO3 = 0.86, J = 0.385, cto = 2.07', ctl = 0.0058 rad) 

Semi-empirical values Semi-empirical values Semi-empirical values 
n = 0.535 n = 0.766 q = 0.882 

5 by 
(9 EA 

0.027 14.31 -33.8 
0.054 8.79 -31.7 
0.105 9.37 -28.6 
0.156 9.46 -25.4 
0.207 10.39 -22.5 
0.308 11.51 -16.7 
0.410 15.56 -12.0 
0.511 7.32 + 0.6 
0.610 4.25 17.4 
0.713 3.41 29.2 
0.824 2.65 42.7 
0.859 2.92 27.0 

lPpl 
7 EA EA 

0.026 13.70 -28.5 

0.108 8.79 -23.7 

0.207 8.41 -18.6 
0.311 10.53 -13.9 
0.412 14.33 - 9.1 
0.513 5.22 + 4.1 
0.610 2.70 150.7 
0.706 2.04 32.4 
0.780 1.86 34.2 
0.859 1.28 28.4 

5 5 

0.024 

0.107 
0.157 
0.208 
0.310 
0.411 
0.512 
0.612 
0.714 
0.808 
0.857 

12.40 -31.2 

9.50 -26.6 
9.21 -23.9 
9.36 -21.3 

10.00 -16.3 
8.94 -10.8 
5.97 - 1.6 
3.85 151.5 
2.84 16.1 
2.95 11.3 
2.92 1.6 

l- T Measured values 
n = 0.535 

Measured values 
n = 0.766 

Measured values 
n = 0.882 

Wpl 
7 

5 lA~pl 
c11 

EA 

0.050 10.39 -28.9 
0.100 7.62 -23.2 
0.150 6.71 -20.5 
0.200 6.66 -19.3 
0.300 6.91 -27.2 
0.400 10.94 -35.7 
0.500 24.76 -13.1 
0.600 5.12 +25.8 
0.700 3.59 58.1 
0.850 1.79 84.9 

5 lq 
7 

EA 

0.025 10.62 -29.0 

0.100 5.42 -25.2 
0.150 6.52 -26.4 
0.200 7.01 -25.8 
0.300 12.11 -41.0 
0.400 8.78 -39.5 
0.500 5.28 -19.7 
0.600 4.40 +17.5 
0.700 2.53 76.9 
0.850 2.08 64.7 

F; &A 

0.050 9.06 -24.2 
0.100 8.26 -21.4 

0.200 7.58 -27.2 
0.300 8.51 -18.1 
0.400 7.23 -21.5 
0.500 14.96 + 1.0 
0.600 4.77 20.6 
0.700 4.54 106.7 
0.850 1.75 111.8 
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Table 6 

SEMI-EMPIRICAL AND MEASURED OSCILLATORY CHORDWISE LOADINGS FOR 

FOUR MACH NUMBERS (120 Hz, rl = 0.535, ~1~ = 2.07', ctl = 0.0058 rad) 

I I 1 
1 Semi-empirical IAcp(/al for M, = 

I 
Semi-empirical EA for M, = 

5 

0.60 0.80 0.82 

0.027 24.59 18.32 15.60 
0.054 14.20 9.79 7.35 
0.105 11.29 18.21 11.70 
0.156 7.17 21.61 18.03 
0.207 6.44 21.01 18.84 
0.308 4.71 5.19 14.25 
0.410 3.96 4.23 1.85 
0.511 3.04 3.38 2.02 
0.610 2.12 2.84 1.95 
0.713 2.44 2.97 1.92 
0.824 1.64 2.28 1.94 
0.859 1.44 2.22 1.93 

5 

0.84 0.60 

13.63 -22.1 
6.23 -20.0 
6.56 -16.7 
9.34 -11.5 

11.70 - 5.7 
17.01 + 0.4 
10.29 7.8 

1.75 18.1 
1.76 36.5 
1.70 23.7 
1.83 49.2 
1.79 39.3 

0.80 0.82 0.84 

-29.4 -30.6 -32.1 
-27.2 -28.4 -29.8 
-25.0 -26.0 -26.8 
-22.5 -23.8 -24.5 
-19.4 -21.0 -22.0 
- 1.8 -13.8 -17.0 
+ 7.3 +43.1 - 8.3 

18.9 41.8 +54.1 
30.5 50.9 100.5 
30.3 59.4 81.6 
47.7 68.5 79.5 
39.8 50.0 60.0 

Measured jAcp\/ctl for M, = Measured ~~ for M, = 

0.025 
0.100 
0.150 
0.200 
0.300 
0.400 
0.500 
0.600 
0.700 
0.850 

0.80 

16.09 
17.96 
26.21 
11.99 
8.16 
4.29 
2.64 
2.12 
1.47 
0.86 

0.82 

15.02 
11.72 
9.95 

22.55 
15.37 
6.89 
4.14 
3.12 
2.72 
1.42 

0.84 

12.91 
5.88 
9.08 

12.73 
16.88 
11.67 
5.75 
4.06 
3.17 
1.69 

0.60 

-26.8 
-28.3 
-25.8 
-16.2 
- 5.4 
+ 1.5 

1.2 
28.4 
58.2 
48.8 

0.80 

-21.5 
-32.8 
-39.6 
-23.3 
-I- 4.2 

27.5 
45.4 
55.0 
78.7 
96.7 

0.82 

-34.1 
-39.8 
-39.6 
-38.1 
-27.1 
+57.7 
101.1 
96.9 

117.9 
72.2 

0.84 

-34.6 
-34.3 
-40.5 
-49.6 
-52.7 
- 7.1 
+25.8 

82.2 
101.4 
92.2 
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Table 7 

IN-PHASE AND IN-QUADRATURE CHORDWISE LOADINGS AT n = 0.766 FOR 

FOUR MACH NUMBERS (120 Hz, a0 = 2.07', al = 0.0058 rad) 

Semi-empirical ACi/al for M, = 
5 

Semi-empirical ACi/al; for Mm = 

I 
0.80 0.82 0.84 0.86 0.80 0.82 0.84 0.86 

0.024 12.88 10.88 10.04 10.61 -16.28 -14.74 -J4.59 -16.69 
0.107 16.15 9.08 6.64 8.49 -17.39 -10.33 - 7.96 -11.03 
0.157 26.73 13.73 7.16 8.42 -26.50 -14.36 - 7.69 - 9.68 
0.208 21.18 21.28 9.02 8.73 -18.06 -20.35 - 8.76 - 8.81 
0.310 3.92 24.74 15.39 9.60 + 0.15 -18.03 -12.09 - 7.28 
0.411 2.66 -0.71 15.21 8.78 1.60 + 4.62 - 8.16 - 4.33 
0.512 3.11 +0.44 1.78 5.96 1.82 3.81 + 2.60 - 0.42 
0.612 0.35 -1.91 -6.49 -3.38 3.63 5.08 6.73 + 4.77 
0.714 1.83 +0.65 -0.45 +2.73 2.91 3.81 3.60 2.05 
0.808 1.61 0.63 +0.18 2.89 2.85 4.03 3.51 1.50 
0.857 1.27 0.87 0.55 2.92 2.86 3.68 3.17 0.21 

for Mm = 
5 

Measured ACi/a, Measured ACi/a,; for Mm = 

0.80 0.82 0.84 0.86 0.80 0.82 0.84 0.86 

050 13.48 10.47 8.74 9.10 -22.08 -21.77 -22.52 -13.02 
100 16.00 8.50 6.20 7.00 -22.80 -16.20 -12.70 - 7.80 
150 17.81 8.24 5.51 6.28 -23.42 -15.02 -10.84 - 6.09 
200 23.22 16.05 6.54 6.28 -28.50 -30.76 -11.98 - 5.72 
300 6.01 19.43 10.12 6.15 + 8.25 -29.24 -31.04 - 8.20 
400 2.59 7.60 24.77 8.88 5.75 - 3.43 -37.83 -16.60 
500 1.45 5.51 5.20 24.12 4.85 + 2.44 +10.54 -14.53 
600 -1.37 1.14 -2.63 4.61 5.01 4.51 16.82 + 5.77 
700 -0.15 1.53 -1.30 1.90 3.30 3.00 9.36 7.91 
850 +0.07 -1.20 -0.97 0.16 1.73 - 0.21 3.04 4.64 
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SYMBOLS 

a 

A 

Ar 
C 

C 

cLLo 

N 

t 
u 
X 

X 

Ql 

Y 
Z 

aO 

“1 
Y 
r 

4 
i; 

4 

speed of sound 

aspect ratio of wing; 29/r 

coefficient in equation (43) 

local chord of wing 

geometric mean chord; reference length in Fig.1 

mean local lift coefficient 

pressure coefficient; (p - p,) 
!( 1 

~p_U~ 

Cb + iC" 
P 

; oscillatory pressure coefficient, e.g. equation (33) 

local mean flow parameter in equation (13) 

complex integrand of equation (26); 3Uco/(GUo) 

complex function in equation (21) 

complex function defined above equation (33) 

complex function in equation (22) 

steady non-dimensional loading AC p from linear theory 

!?,' + ii" ; loading coefficient from linear theory in equation (17) 

Mach number; u/a 

number of terms in linear chordwise loading 

static pressure 

integer l(l)N denoting term in chordwise loading 

real part of 

semi-span of wing in Fig.1 

time 

speed 

ordinate in streamwise direction 

local ordinate of swept axis in Fig.1 

local ordinate of leading edge 

spanwise distance from centre line 

upward vertical displacement 

incidence of wing at crank station n = 0.319 (in radians unless 
otherwise stated) 

mean value of o 

amplitude of oscillation in equation (30) 

ratio of specific heats of air (= 1.4) 

steady spanwise loading function in equation (17) with w = 0 

complex spanwise loading function in equation (17) from Ref.3 
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EA 
rl 
3 
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R 
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lin 
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SYMBOLS (concluded) 

non-dimensional local loading coefficient; C - C 
PR Pu 

AC;, + iAC" 
P 

; oscillatory loading coefficient 

amplitude of Ac 
P 

in equation (36) 

phase lead of Acp in equation (37) 

non-dimensional spanwise distance; Y/S 
frequency parameter; G/U, 

non-dimensional chordwise distance in equation (18) 

air density 

angular chordwise parameter in equation (18) 

velocity potential 

complex oscillatory velocity potential 

periodic variable; wt 

circular frequency of oscillation 

subscript denoting mean steady flow at c.x=a 0 
subscript denoting amplitude c1=Ci 1 
subscript denoting undisturbed stream 

subscript denoting lower surface 

subscript denoting upper surface 

subscript denoting linear theory 

subscript denoting steady flow 
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