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SUMMARY

The flutter stability of arigid wng with two degrees-of -freedom and
subject to the sinplest aerodynanmic forces including damping is considered. The
limts of conbinations of nodal axis positions which can lead to flutter are
found and a fairly sinple expression from which the flutter speed can be found
is given. The results are conpared with those from sinple frequency-coal escence
theory. The conparison shows that the present theory indicates that flutter wll
occur nore extensively than indicated by frequency-coal escence theory both in
ternms of nodal axis conbinations and range of airspeed.

* Repl aces RAE Techni cal Report 75008 - ARC 36164
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| NTRODUCT! ON

Large flexibly-nounted stores can have a considerable effect on the
flutter stability of an aircraft wing. The flutter speed of the wing, store
conbination will vary not only with the inertial properties of the store but
also with the flexibilities of the connections. Since these latter are difficult
to estimate it is generally thought prudent, in the design of aircraft, to
calculate flutter speeds for enough values of the nounting stiffnesses to cover
all those probable as well as covering the range of inertial properties of the
stores. Wil st there is a case for treating specific aircraft problens in this
way the results obtained add little to the general know edge of the effect of
wing stores on flutter. Fromthis point of viewit mght be nore profitable to
split an investigation in two, one part being the determination of the effect
of the stores on the deflections of the wing in the normal nodes of the air-
craft and the other the determination of the effect of the nodal shapes of the
wing on the flutter stability = for in general the wing is effectively the sole
source of aerodynanmic force. What follows is concerned with the second part of

the problem

It was thought that the investigation of the heave, pitch flutter of a
rigid wing under aerodynami c forces as given by M nhinnick derivatives (see
section 6.2) would be a useful prelimnary study of the effect of wing deflec-
tion shapes on flutter, conbining the sinplest structural assunptions with the
si nmpl est credi bl e aerodynam ¢ assunptions to conprehend the danping forces even
though the concept of a typical section would be needed to apply the results

to a deforming wng.

In what follows the theory is first developed for the flutter of a rigid
wi ng which can pitch about two spanwise axes, in nodes which are orthogonal
with respect to the structural mass and stiffness, under the general type of
aerodynam c forces to which M nhinnick and pi ston-theory derivatives : bel ong.
The ranges of conbi nations of pitching axes positions over which flutter is
possible are found and it is shown that the stiffness at which flutter occurs
at a nomnated critical equivalent speed is the sumof two terns, one indepen-
dent of the relative density of the body and the fluid and the other, which
always reduces the stiffness, linear in the relative density. A conparison is
then made with the results of applying frequency-coal escence theory, in which
the danping terns are onitted, to the same system The stability of the system
is also examned with the help of a graphical representation 2 of the flutter

equati ons.



2 EQUATI ONS CF PARTI CULAR SYSTEM

2.1 Basic flutter equation

The systemconsidered is a two-dinensional rigid w ng which can pitch
about two axes. The wing's positions at any particular time is described in
terms of two generalised coordinates which are orthogonal wth respect to
inertia and structural stiffness. The unit anplitudes in the generalised
coordinates are such that each generalised inertia coefficient is unity when the

equations have been nade non-dinensional.

The flutter equation, for unit span, can be witten

. I
- u24w21 + 1p23wuB + plzuzc + u24u)§ Lu_z_l

where y is a nomnal wing nass density, (mass per unit span)/!?,z
2 is the chord of the wing

w is the flutter frequency

is the unit matrix

p is the air density

=

is the flutter speed

B and C are real square matrices of non-dimensional aerodynam c
coefficients

wg is a noninal frequency, and
wzﬂ(% = 52,w2 where ®, and w, are the still-air frequencies pertinent
o 112, 1 2
to the normal coordinates, W, bei ng the higher.
Di vi di ng each el enent by pRZUZ and substituting o for o/u , i for
1 - -
iuzlw(piu) l and x for ulzmg(puz) ' the flutter equation can be witten
i ~
02 + o) + C+Xrt_u?;] =0 (2)
X 1S hereinafter called the stiffness nunber and X¢ ts value at a critical
flutter speed, i.e. a value that satisfies equation (2), is called the flutter

stiffness nunber. The val ue of this nunber can be taken as a neasure of the
propensity of the systemto flutter in that the higher it is the lower will be

the critical flutter speed.



2.2 CGeneral i sed coor di nat es

The inertia matrix in equation (1) is diagonal as a consequence of the
assunption that the generalised coordinates are orthogonal wth respect to
inertia. That the inertia matrix is unit inplies that the generalised

coordinates are normalised in some way.

Each of the generalised coordinates that will be used is a rotati on about
a nodal axis at some chordw se position. [t will be convenient to describe the
di stance of the nodal axis in front of the aerodynamc axis as % tan ¢ and

unit amplitude in the unnornalised coordinate as cos ¢ .

An inertia coefficient is derived by summ ng the products of masses and
the squares of their deflections when there is unit anplitude in the coordinate.
Consider a wing, of mass per unit span M, wth an inertia axis a distance
xg behi nd the aerodynam ¢ axis and radi us of gyration about the inertia axis
of k . The dinmensioned unnormalised inertia coefficient will be

M{(R tan ¢ + xg)2+ kz} cos2 ¢ '

. . . . . o . 4. -1
The factor used to non-di mensionalise the inertia coefficients is (uf )

(see equation (1)) so the dinmensionless unnormalised coefficient wll be
(M/uzz){(sin b + xgz'l cos ¢)2 + kzz_z cos2 ¢} '

The normalising factor, « , is the inverse of the square root of this

coefficient and wunit deflection in the normalised coordinate is a rotation of

K cos ¢ .

2.3 Aerodynanic coefficients

Let the aerodynamic matrices B and C be given by

3 [ L] L] \
B Cl a] 2z 2a C] ;2
Cz a -mé —m& OL] 0.2
e (3)

3
g




wher e zgr is the vertical anplitude of a reference axis and a is the
incidence for wunit anplitude in the rth coordinate. The particular aerodynamc
forces used here are those given by aerodynam c derivatives which are rel ated

to each other by the equations

g 27 = Jo 1le
z a a
—m -m 0 O
V4 ot__ -
and (4)
Qz 2& = 1 %}2
- —mi- 0 v

The derivatives are thus referred to an axis which is both the aerodynam c axis

(ma = () and the axis of independence (m} = 0).

Let the non-di nensional vertical deflection of this reference axis and the

pitch of the wing be given by

{ﬁ} = [k, sin ¢1 kK, sin ¢2 q, = %5 %809 (5)

o K

| cos ¢1 K, cOS ¢2 q, KiC) Koy q,

say, Where the factors Ko K have been included so that account may be taken

2
of the normalisation of the coordinates to give unit generalised inertias. The

¢r lie in the range -n/2 < ¢r=< /2 and the coordinates are rotations about

axes ¢ tan ¢r in front of the reference axes.

Substituting fromequations (4) and (5) in equations (3) gives the

aerodynamic coefficient matrices as

_ 2
C = 1816 K1K9S|Cy Ra
y) (6)
K KoS9C) K58 5C,
and
lc] = 0
and
} 2,2 2
B = Kp(s) + Bs e+ yep) clc2(sis2 + B51% 4 Y& 812,
2 2 2 (7
KIKZ(SISZ + BSZCI + yclcz) KZ(SZ + Bs2c2 + YCZ)



and

2 22 2
|B] = KiS| K8, IoBl2 = kksls oo = s,c) ¥R
Kiep X9 Y
Further,
22 ! 2
[B+c|l = «ky(sc, sye) |11+ s = [B] . (8)
0 Y
Hence,
- - = , 9
LT TP A B + c| - |B| - |cC] 0 (9)
€1 22 b1 By
2.4 Conditions for stability
If the expansion of equation (2) is witten
4 3 2
A+ p AT 4+ p AT +pghtp, = 0 (10)

the full conditions for stability are that all the p coefficients and
2 2
Ty(= p,P,Py = P|P, = P3)

are positive. From equations (6) to (9)

} )
Py = Pjg = (b +Dyy)
P2 P + XPay = €, + Coo + O|B| + )(((:;2 + (:)2)
- 20 2] ~ 1] 22 | 2
(11)
~2 ~2 F
Pg = XP3y T Oix(b]1w2 * bggey)
~2 ~2 ~2~2
P, = x(py + XP,y) = )((clluu2 +ocyup * xw]wz)
J



2 2 2
Ty F X{p10p20p31 = P1oP41 + X(PygPy Py T ProPy) P31)} =

~2 ~2 ~2 ~2
ox Eb” + bz?_){(c]l + Chp + b)(b  uw, + bzzm]) - (b, + b?_z)(c”w2 + czzw])}

+ b b..) (“2 + “2) b, 0% + 1 AZ) - (b b )t
X§(0yy + byo) lwp +wy) (b wy + by, 11+ Popl9uy

1 i

.2 "2
= (bpyy + bypu)

‘ ) N 2 2 }
= ox kb“ # b, (e by, = by )@y = )+ Bby G+ by
~2 ~2
_ 12
+ xb] ]b22(m2 ml)i (12)

where b = o|B]| .

If x , which must obviously be positive, is varied continuously from an

initial stable condition flutter occurs at the first value which satisfies

T3 = 0, At low airspeeds x is large and the sign of T3 is the same as that

of the coefficient of XZ in equation (12) and will be positive if single
degree-of-freedom instability is absent. There are two values of x for which
T, = 0 . One is zero which indicates that all systems tend to neutral stability

3
as the airspeed tends to infinity. The other is given by

~2 A2, a2 A2 ‘]}
©py b22){(‘:11"22 " pPy ) = BBy ey + bypwy) (wy = wy)

x =
£ 2 A2
by Py luy —up)

2 2
(eyby + KZbZ)Qa{(SICZ -8 (e ey m8ySy)
2,2 2 2, 2. a2 _ ~2 —1}
) - oyf,m(slc2 Szcl) (K]b1w2+ bizm]) (w, W)
= 7 2
ble(wZ - wl)
2 2 2. 42 . 2 A2
) (K]b1 + biz)RaFO o (Klblw2 + bizml) (13)
S bl - oD N ato o2 - oh ’
P28 79 2 7



after substitution from equations (6) and (7) and wth

2 2
b, = s *BsC, e,
FO = (slf:2 --szcl)(\(c]c2 - SISZ)
and -1
fo = (SICZ - szcl)(\(clc2 - 5182)
The flutter frequency, We s is given by the solution of the inmmginary
part of equation®(10) when A is purely imaginary, i.e.
2 ~2 ~2
b =
(byy * byhg + (byywy + Pypoxg = 0
2 2 ~2 ~2
g 7 D118y ¥ Py¥y
— = - —— = b + b . (14)
Yo Xg 11 22

There is a possibility that the system diverges steadily. This first

happens at an airspeed which corresponds to a value of ¥ which satisfies

P, =0 Again the system is stable at low airspeeds since the coefficient of
x2 is positive (last of equations (11)). The divergence stiffness nunber is
given by
c -2 -2
R o B s ¥
Xqg = )
“192

(15)

3 UPPER BOUND OF FLUTTER STI FFNESS NUVBER

The flutter stiffness nunber, Xg o has the form of a typical structural
stiffness divided by the dynamc head at a critical flutter speed and hence, if

the structural stiffness and air density are constant, the flutter speed varies

inversely as its square root. Equation (13) gives the flutter stiffness
nunber as the difference between two terms, the second of which has the density
of the fluid relative to the body, a, as a factor. It can be seen from the

penul timate formof the equation that each of the factors in this second term
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is positive since 4y > 82 (equation (4)) for freedom from instability in a

singl e degree-of -freedomand that the flutter stiffness nunber decreases with

increase in the relative density o . Thus the flutter speed, as an equival ent
airspeed, increases with increase in relative density and indeed a flutter
mght be elimnated by such an increase. Therefore if the second termis taken

to be zero an upper bound of the flutter stiffness nunber, corresponding to a

lower bound of the equivalent flutter speed is obtained.

The abbreviati on of equation (13) which gives an upper bound of the
flutter stiffness nunber can be witten

w22 . L2 2
o K, K
Xe = o2 = (@2 = w) Vb, 4 b} Foo (16)
f 2 !

The following comments are of interest in the context of the evaluation
of structural stiffnesses from nmeasurenents of natural frequencies and
generalised inertias in still-air resonance tests. If the mass density of the
wing is changed whilst its stiffnesses and nodal axes renain the same the

flutter speed v, wll be constant for wz will vary inversely as the mass

f 0
density. But if the frequencies rather than the stiffnesses remain the same
the flutter speed will vary as the square root of the mass density. Thus

uni forminaccuracies in the generalised inertias assuned for the nodes have no
effect on the estimate of the | ower bound of the flutter speed unless they are
used in conjunction with the natural frequencies to obtain the structural
stiffnesses. Non-uni form i naccuracies affect the k and through these the
estimate of the |ower bound.

The « were introduced in section 2.2 to allow for the nornalisation
of the unit anplitudes in the coordinates with a consequent sinplification of
the flutter equation. Fromthe expressions given in that section it can be
seen that unit anplitude before nornalisation tends to a pure heave defl ection
of a chord's length as the di stance between the nodal and aerodynam c axes
tends to infinity and is a pitch deflection of one radi an when the nodal and
aerodynamic axes are coincident. For a wing of mass per unit span of uJL?‘ ,
k isunity inthe first case and the inverse of the radius of gyration about
the aerodynamc axis (in chords) in the second. If the massper unit span is

uQZD_I , these values are factored by ﬁ—%
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If w, is always the larger of the w the terms on the right-hand side

of equation2(16) are all necessarily positive apart from FO > la ,

(cﬁg - (3212) s KIZ and Ké by definition and bl and b2 because only systens
free from single degree-of-freedominstabilities are considered. Thus the
systemw || be assuredly stable* if F0 is negative.

FO , it will be renenbered (equation (13)) is (s]cz- szc])(yc]cz- slsz)
and will have the same sign as (t, - t,)(y = tltz). Hence the stability
boundaries in the ¢] - ¢2 pl ane are given by ¢>l = cbz and tan ¢1 tan ¢2 =y
When y is zero the second of these equations reduces to ¢1¢2 =0, so the
axes themselves are boundaries. (t1 - t2) is negative in the second to fifth
octants inclusive and (—t]tz) is negative in the first, second, fifth and sixth
octants. Thus stability is assured for systens represented by points in the
first, third, fourth and sixth octant: (see Fig.2); i.e. when the nodal |ine of
the graver nmode is downwind of the reference axis and the other nodal line is
upwi nd of the axis or when both nodal |ines are on the same side of the axis
and that of the graver node is the further upw nd.

When Yy is positive the axes are replaced as stability boundaries by two
curves, one of which lies wholly in the first quadrant and the other conpletely
in the third (see Fig.3). This change in the boundaries changes the stability
position only when both nodal lines are on one side of the reference axis and

one of them is sufficiently close to the axis.

4 COMPARI SON W TH FREQUENCY- COALESCENCE THEORY

The values of x at flutter which result from the application of

2
frequency-coal escence theory are those for which P, = APA , Wth b taken as
zero (equations (10) and (11)), i.e. the values given by

2
~2 ~2 ~2 ~2 ~242
= 1
{c“ * ey, t )((cul + mz)} = 4x{c”w2 + Coo) +xm|w2} (17)
which can be reduced to
"2 "2 2 2 "2 f—?. 2 _
(@5 = e x™ = 20c | = ) lwym wdx + (e | + cyp) = 0 (18)
I
- - - 2 2
(w2 - oT)xfe = S11 7 %22 f\/(c11 °22) - (°11 + °22)

= ¢,, =c.. & 2/=¢C (19)

11 22 11522

* 'Assuredly stable' neans here ‘'stable at all airspeeds'.
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~2 ~2. =1 _ 2 _ 2 /_——
)y =0 Xge = K56 T RFL, » 2Ky VIS eys,C (20)

The condition for Xfe to be real is that c ¢ is negative which neans

22
t hat ¢] and ¢2 have to be of opposite sign. Now (c“ - c22)2 is not less

t han (-4c11c22) and Xfo will have the sign of (cll - 022). Hence the
conditions for a positive real value of Xgo are t hat < must be positive
and Cy9 negative, i.e. the point in the ¢] - ¢>2 plane representing the
system nust lie in the fourth quadrant. For X¢e to correspond to true flutter

there is a further condition which is that the pertinent Az must be negative,

i.e. the frequency must be real.

and, using equation (19) to substitute for Xe o the flutter frequency is given

by
2 X X
<‘*’fc> ) (_ fc) _ Pag T PpiXee
“0 Xfe 2Xfc
(C11+c)(w-m2)+(§)2+2 - Cc,, t W-c . ¢ }
I i nt D T ah 22 * 1122 _
= ]/____“_ =
- + -
2{CH Cpp F 27C 1°22}
2 ~2 -2 2.
gy T ety B wy HwYme ey, an
- Y=c,.c._
11 T Cgp 2 PTCqCy
The sign of this depends solely on the sign of the numerator since the
denominator is necessarily positive in the cases considered. The sign of the
nunmerator will be positive for the higher Xfe since (c] I“’ZZ 22&)]%) is positive.
N,
The | ower Xee will not be meaningful if - < 22(“’ “11)2 is greater than
(c ?nz -c &2)2 a condition that can be reduced to
1172 2271 ’
A 4 ~4
Cootd) <c Wy < = CyoWsy . (22)

The expressions for X ¢ given by frequency-coal escence and the present
theory with zero mass density ratio o seemto have few points in comon which
is perhaps not surprising since frequency-coalescence theory takes no account of

the danping terns which are prominent in equation (16). Frequency-coal escence
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theory says that only systenms represented by points in the fourth quadrant of

t he ¢l - ¢2 plane are flutter-prone whilst the present theory includes parts
of the first and third quadrants as well. Coal escence theory says that there
will be an upper critical speed under certain circunstances whilst the present
theory says that all systems wll tend to oscillations of constant anplitude
when the airspeed approaches infinity. Conparing (16) and (20) it will be seen

that Xfe is given by a nore conplicated expression than Xg in that it is

not possible to extract an expression as sinple as that for FO

The result's for systems in which the graver node is pure heave (c” = 0)
typify the kind of discrepancy that exists between the two theories. Substitu-
tion of zero for 4 in equation (19) immediately gives the square of the
frequency- coal escence flutter speed as proportional to (-czz). . Substitution

for i in the first form of equation (13) (with b zero) gives the square of

. -1 -1 .
the flutter speed as proportional to b22(b” + b22) (—c22) . Further in the
case of coalescence theory the upper and |ower speeds are identical and there

is no speed at which the anmplitude of the oscillation grows.

The rel ati onshi p between frequency-coal escence and nore conprehensive
theories of flutter is clarified by a graphical representation of the flutter

equations and this is examned next.

5 GRAPHICAL REPRESENTATI ON

A graphical representation® of the flutter equations obtained by tracing
the curves whose equations are the real and imaginary parts of equation (10)

when A is purely inmaginary has been found to be an aid in distinguishing
between types of flutter. In the present case the equations of the curves can

be witten.

(23)

If |<:]1 c22| » a|B| , p2 can be approximated to be (c), * C22) +
(1312 + &s%)x and the two equations can bhe witten



4 2 A2 ). 2 { -2 oy 2.2
ALK {(CH *eyy) (W) ‘“2))(}A ey ey e+ w1w2§x = 0
(24)
2 ~2 ~20 0
(bH + b22)>\ + (b”wz + b22w1)x =
Then, renenbering that KX-% = ig , replacing ' by y and choosing
wg = m|2 + w22 , equivalents of the equations can be witten
-4 N )A2 A2+( -2 + AZ) N ~2~2
wo= (e +ocpuy mwn ey uy 22917 Wy =0
(25)
~2 2 -2
(b] |+ b22)w _ waz N b22wl

which can be recognised as the equations of a conic and a straight line in the
y,(;z pl ane. It is shown in Ref.2 that critical flutter speeds are given by
intersections of the straight line and the conic in the first quadrant and the
possibilities are analysed. Enpl oying the findings of this analysis in the

present case it can be said that

. . . ~2 . - .
(a) the conic will intersect the w axis at wlz and 6)?2 with slopes at

the intersections of
i i Cll and c22

(b) the conic will be an NS hyperbola for systens represented by points in the

respectively;

first and third ¢>‘, ¢2 quadrants and an EW hyperbola for systens in the
second and fourth quadrants;

() the centre of the hyperbola will be at negative y for systems represented
by points in the second ¢ ¢2 quadrant and at positive y for systens in

the fourth quadrant, i.e. (c - ¢,.) IS positive;

I 22
(d) the sl opes of the asynptotes of the hyperbola will be (c” +¢,,) and zero

~ ~

. . . . ~2 . . p
and their |nter5fe;t|ons with the w axis will be at (c”w] + C22w2)(cll + c22)

ot (€1 + ¢y
(e) the danmping line will be a line of zero slope at an w'z of

a2 "2 -1
(wa2 + bzzwl)(bll + b22)

The stabilities of systens which are represented by EWhyperbolas with

-1

and (c]](ﬁé + )'1 respectively:;

centres at positive or negative ys (fourth or second ¢>l, ¢>2 guadrant s
respectively) are easily seen to be consistent wth these properties. In the
case of the systemconsidered in the |ast section in which the graver nmode is
pure heave the conic degenerates into two straight lines, the flutter speed



fromthe present theory is given by the intersection of the danping line with
the conic line of non-zero slope and the identical upper and |ower frequency
coal escence speeds by the centre of the conic where the straight |ines intersect

each other.

In the first and third ¢]- ¢2 quadrants signumy at the centre of the
(NS) hyperbolas is given by signum (c1 . c22) and since 1 and €9 depend
on the ¢ as well as the ¢ , it is not imrediately obvious how the stability
boundaries given by the present theory are independent of «. Fig.4 shows the
two types of hyperbola possible when the system can be represented by a point
in the first ¢] - ¢2 gquadrant. For both types of hyperbola flutter at sone air-

speed will occur if the danping line is closer to the origin than the zero-sl ope

asynpt ot e. From (d) and (e) above the inequality to be satisfied is
~2 ~2 -1 ~2 "2 -1
(b”m2 + bzzml)(bIl + b22) < (c”wz + czzw])(c“ + c22)

or

-9 ~2 ~2 ~2 >
(c:”uu2 + czzwl) (b] L * b22) - (b”w2 + b22wl)(cl Tt C22) 0

whi ch reduces to

~2 ~2 2 ~2 ~2
)(w2 - w]) 12F0 (mz -wl) > 0 . (26)

m
2y
o)

(c..b

11022 = C22P

11
A sinmlar inequality holds for points in the third ¢>I, ¢2 quadrant. This

confirns that the flutter boundary is independent of « but the critical air-
speeds of systens that are unstable wll depend on the values of the «.

6 F0 CONTQURS

6.1 Piston theory

Piston theory, wi thout thickness effects, gives aerodynamc forces of the
type considered. The aerodynamic axis is at md chord and the only non-zero

aerodynamic derivatives with this as reference axis are Ra (and hence 2;)
and m&. Ra has the value 2M-1 , where Mis the Mach nunber, and (—m&) is
Za/lz, i.e. Yy is 1/12, Since ?v(; is zero, B is zero and the aerodynanic

axis is also the axis of m ni num danpi ng coefficient (br) .

Contours of positive F, for the ¢] - ¢>2 pl ane are given in Fig.5.

0

The maxi mum val ue of F0 occurs when the nodal line in the graver node is about
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5/3 chords in front of the aerodynamic axis and the other nodal line is the sane
distance behind. The contours can be plotted as continuous curves if the
appropriate ranges of ¢] and ¢, are chosen, i.e. (- arc tan é ) < P <

(2r = arc tan yi) and (- arctanyl)>¢2>(- 2n + arc tan yj)but it is
thought that the presentation given here allows easier appreciation of the

results.

FO gi ves the dependence of the flutter stiffness nunber on the nodal
line positions only in part. The nore conprehensive expression is
(.<]2/b2 + Ki/bl)FO_ Contours of positive Fob]_] are given in Fig.®6. The
maxi mum val ue of FObl-l occurs when the nodal line of the graver node is just
aft of 20%chord and the other nodal line is about three chords behind the
trai I]i ng edge. Si nce br is symetric about the reference axis, contours of
Fob‘2 e
i.e. Fig.6 gives contours of F0b2 if the positive ¢] axis is taken to be the

are the reflections of those of Fobl~I in the line qtl + ¢2 =0

negative ¢2 axis and vice versa. The maximum value of Fob'zl occurs when the
nodal line of the graver node is about three chords in front of the |eading edge

and the other nodal line is just forward of 80% chord.

Wth the aid of Fig.6 one can obtain an upper limt of the flutter stiff-
ness nunber fromthe mass, stiffness, natural frequency ratio, nodal I|ine

positions and Mach nunber.

6.2 M nhi nni ck derivatives

M nhi nni ck suggested that the oscillatory aerodynam c derivatives for w ngs
of fairly-low aspect ratio in inconpressible flow were approximated to by the
steady state values where there were relatives. In this way values can be

2
i ndependent of vertical position and fromthe lift coefficient and the position

obtained for &_ m, %+, m-, 2 and m from the fact that steady lift is
z z A a a

of the aerodynamic axis. M nhi nni ck further suggested that the ratios of RO-L
and . to la should be taken to have the values given by the two-dinensional
derivatives when the frequency paraneter tends to infinity. These asynptotic
val ues are 10/11 for (2&/2(!) and 9/22 for (- m&/la) when the | eading edge of the
wing is the reference axis. The aerodynanmic axis for this type of flowis at
the quarter chord and this is the axis for which equation (4) is applicable.

g and Yy are 29/44 and 2/11 respectively, br has its mininum value, 0.0696,
when the nodal line is at about 60% chord and its maxinum value, 1 ,116, when the
nodal line is about 24 chords in front of the |eading edge. This contrasts with
piston theory which gives B zero and only one turning point.



17

Contours of positive FO are given in Fig.7. The nmaxi mum val ue occurs
when the nodal line in the graver node is about 8/5 chords in front of the
reference axis and the other nodal line isthe sane distance behind. Contours

of positive Fobi1 are given in Fig.8.  The maximum value occurs when the nodal

line in the graver node is alnost 1/5 of the chord in front of the |eading edge
and the other nodal line is just over 14 chords aft of the trailing edge. Since
the value of the danping coefficient is not symmetric about the aerodynamc axis
there is no sinple relationship between Fob]-] and Fobél . Contours of

positive Fob;' .are given in Fig.9. The maxinum value occurs when the nodal

line in graver mode is two chords in front of the leading edge and the other

nodal line is at alnost 70%chord, The naxi mum of Fob;] is alnmost ten tinmes
-1

that of Fo_tﬂ

7 EFFECT OF DENSITY RATIO

The fractional reduction in flutter stiffness nunber when the density ratio
is non-zero is
"2 a2 ~2  A20 -]

from equation (13). Al the terns in this expression are necessarily positive

) -1
except for f0 . fo is (SIC2 -Szcl)(yClC —Slsz) and hence has the same

sign as F0 but whereas FO tends to zerozat the boundaries of the region in
which it is positive, fCI tends to zero at the (¢] :¢2)Iim't and infinity at
the (tan ¢l tan 452 = vy)limt. Full account of the effect of nocia]ll l'ine position
requires consideration of fobr rather than fO al one (cf. Fobr and FO).
Contours of positive f(j and fob2 for piston theory are given in Figs.10 and
11.  The fobl contours are the reflection of the fab2 contours in the line

¢l + ¢2 = 0, Contours of positive fo, fob, , fob2 for Minhinnick derivatives

are given in Figs.12-14,

Sorre of the other factors in the expression are identical to factors in
the expression for the upper bound of flutter stiffness number (equation (16))
and the effects tend to cancel each other. Thus if the upper bound is high due
to large za or snall (&»g -&:]2), the fractional decrease wll also tend to be

large for the same reason.
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8 CONCLUDING ~ REMARKS

The flutter of a two-dinensional wi ng under sinple aerodynam c forces has
been anal ysed. The forces differ fromthose assuned in frequency-coal escence
theory in that forces in phase with the velocity of displacement are included.

The inclusion of these danping forces results in increased possibilities of

flutter in terns of conbinations of nodal -1ine positions which can lead to
instability over those given by frequency-coal escence theory. Which extra
conbi nati ons of nodal -1ine positions nake flutter a possibility is dependent to

some extent on the aerodynamic danping nonment about the aerodynamic axis

(. Figs.2 and 3). This danping noment in pitch is also a significant factor in
det erm ni ng whi ch conbinations of nodal lines lead to mnimumflutter speeds as
well as the actual value of these mininum speeds. It also determines the only
nodal -line positions, one for the lower- and one for the higher-frequency node,

which elinnate the possibility of flutter altogether.

The expression for the upper bound of the flutter stiffness nunber given
in equation (16) is disappointing in that it contains terns dependi ng on
generalised masses in the nodes. However, contour plots are given fromwhich it
is possible to obtain the value of the upper bound for any conbi nati on of nodal
line positions once the generalised nasses are known. Thi s dependence on
general i sed nasses is also present in the case of frequency-coal escence theory
but conplicates the equations to an extent such that conparabl e contours cannot

be drawn.

The effect of the density ratio is conplicated and involves the relative
frequencies of the nmodes as well as the generalised masses. Contour plots,
however, are again given to aid the evaluation of the effect in specific cases.
Two points are of general applicability. One is that the drop in flutter stiff-
ness nunber is proportional to the damping in pitch. The other is that if the
val ue of the upper bound of flutter stiffness nunber is large due to the
proximty of the frequencies, the drop in stiffness nunber due to density-ratio

effects will also be large.
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MAXI MA OF F, AND Fob; (EQUATION (16))

Fq wi Il have maxima with respect to 9 when 99 is constant and it can

be shown that these will occur when

- 2 } -
tan ¢, = —T2+(T2+|) (A-1)

- 2 -1
where T r— (1 = y)tr(tr + Y) .

respect to ¢2, ¢l constant, occur when

[t can al so be shown that the maxima with

tan ¢, = ~ T - (Tf st (a-2)

F, wi |l also have an absolute maxi numw th respect to 9, and 92 - This lies

on the line o, = —¢, and is at

2 tan® §, = = 2 tan’ 6, = 3(1 =) +T (A-3)

where T 5J9(1 —y)2+ 4y and this maxi numvalue will be

. 230 -y s {3a+ v + s - 3y + 1}
64(1 = ) - (A4
max
Fobil and Fob;.l will also have nmaxima and absolute maxim. The maxi ma of
Fobl‘l , ¢, constant, and those of F01512 , ¢, constant, wi || have the sam
| ocations as those of FO under the same conditions but the maxim of Fob]—]
with o, constant are all at tan ¢’1=Yi and those of Fob'z1 with ¢

constant are all at tan ¢y = ‘Y£ The val ues of the maxim are

rp;l = of - el s o x D7 (A-5a)

and

1 - -
by = GF - epfad -mTe)T (4-5b)

The absolute maxinum of Fob']1 is located at (arc tan Yi, arc tan -‘y-i) and

-1

Fpy gy = (0 + DY ) (A 62)
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That of Fob;] is located a: (erc tan Y—%, arc tan —yé) and
Ebs = oo Dyt - o7 (A-6b)
0 2 ‘max )
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