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SUMMARY 

Fibre waviness could affect the longitudinal shear and tensile moduli of 

unidirectional fibre reinforced composites. This paper considers these aspects 

theoretically, while the degree of fibre waviness which occurs in practice is 

determined experimentally. Attention is concentrated on CFRP but the analysis, 

albeit of an approximate nature, is quite general. 
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1 INTRODUCTION 

It is well known that certain fibres (notably those of glass, carbon or 

boron) have exceptional longitudinal strength and/or stiffness properties. When 

such fibres are embedded in a matrix to form a 'fibre reinforced composite' 

they can be used in a structural context. Unidirectional fibre reinforced 

composites are used as struts, ties or reinforcing stringers in which configura- 

tions the longitudinal properties of the fibres show up to maximum advantage. 

A proper understanding of the transfer of load into such members requires a 

knowledge of the longitudinal shear and tensile moduli of the composite. 

Measured values of the longitudinal shear modulus G; tend to be higher 

than theory predicts for a regular hexagonal array and the values also exhibit 

a fair degree of scatter'. Measured values of the longitudinal tensile modulus 
C 

E1 
show much less scatter and are in good agreement with a simple 'rule of 

mixtures' formula; this is to be expected as it can be shown theoretically that 
C 

El 
2 

is virtually independent of the actual fibre array . 

The experimentally determined increase in 
GP 

over the predictions of 

elementary theory could possibly be explained by taking account of the waviness 

of fibres which occurs in practice, although such waviness would also be 
C 

expected to reduce slightly the longitudinal tensile modulus El . 

The increase in 
GC 

due to fibre waviness stems from the fact that, in 

comparison with a composite with straight parallel fibres, the matrix-filled 

gaps between fibres are no.longer constant but varying (see Fig.1). Furthermore, 

the longitudinal shear modulus of a unidirectional composite is primarily 

dependent on the shear modulus of the matrix rather than that of the fibres. 

Now the varying width of the matrix between fibres results in a varying shear 

stress in the matrix and it is this which causes an increase in the effective 

shear modulus. However, the fibres themselves are no longer in a simple shear 

field, and the differential shears applied to them by the matrix produce 

varying longitudinal stresses and displacements. These have the effect of 

attenuating the variations in shear stress in the matrix: the longer the wave- 

length the greater the attenuation and the less the increase in Gy . 

The present paper determines theoretically the influence of the amplitude 

and wavelength of fibre waviness on the longitudinal shear and tensile moduli, 

while the amplitudes and wavelengths which occur in practice are determined 

experimentally. 
s 
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A 

PRINCIPAL NOTATION 

section area of fibre 

diameter of fibre 

tensile (Young's) modulus 

shear modulus 

second moment of area of fibre cross-section 

foundation modulus 

half wavelength 

longitudinal tensile load in fibre 

thickness of lamina containing fibre and matrix 

longitudinal displacement of fibre 

strain energy, nondimensional strain energy 

volume fraction (vm + vf = 1) 

average gap between fibres 

gaps defined by equation (1) 

longitudinal coordinate 

shear strain 

amplitude of sinusoidal variation, defined by equation (1) 

longitudinal shearing displacement of fibres 

E. direct strain 

4 fibre misalignment angle 

A nondimensional wavelength 

u direct stress 

i-2 defined in equation (33) 

Suffices or indices m, f, c refer to matrix, fibre and composite respectively. 
f 

Suffix 1 refers to longitudinal direction, e.g. El = longitudinal tensile 

modulus of fibre, G; = longitudinal shear modulus of composite. 

3 EFFECT OF FIBRE WAVINESS ON THE LONGITUDINAL SHEAR MODULUS 

We consider first the idealised two-dimensional problem shown in Fig.la 

in which shear is applied to a lamina of thickness t composed of alternating 

layers of matrix and fibre. Alternate fibres are straight and parallel, while 

the others vary sinusoidally as indicated. To simplify matters further we 

assume that the matrix only transmits shear and the fibres are 'line elements' 
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with finite longitudinal stiffness but zero flexural rigidity and infinite 

shear stiffness. Account is taken of the influence of these features in 

separate analyses. From symmetry the applied shear has no influence on the 

longitudinal strain in the straight fibres and accordingly the analysis is 

essentially also applicable to the arrangement shown in Fig.lb which omits 

these fibres. 

In Fig.2 attention is focused on a typical strip bounded by adjacent 

(and effectively rigid) straight fibres which are sheared by amounts +A . The 

gaps between the central fibre and the adjacent straight fibres vary sinusoidally 

according to the relations 

7’ 5 = w. + &.sin (~~x/k) , (1) 

where 6 is the amplitude, and R is the half wavelength. The following 

additional notation is introduced: 

Af = section area of fibre 
f 

E1 
= longitudinal modulus of fibre 

G" = shear modulus of matrix 

u = longitudinal (x-wise) displacement of fibre 

Ef 
= longitudinal strain in fibre 

VY2 = shear strains in matrix. 

The matrix and fibre are assumed to behave elastically and the longitudi- 

nal variations of shear and direct stresses will be determined by the principle 

of minimum strain energy. The shear strains in the matrix on either side of the 

central fibre are given by 

y1 = (A + u)/w, , y2 = (A - u)/w, , (2) 

and the direct strain in the fibre is given by 

&f 
= du/dx . (3) 

The strain energy U in the matrix and fibre over a length 2!2 is given by 



+ w2y; 

1 
2 

(A - u)2 = (A + u> 
T + S sin (~~x/k) + w. - 6 sin (TX/k) 

1 + E;Af($jdx (4) 

in virtue of equations (I), (2) and (3). 

The variation of u with x is such that U is a minimum. Now the dis- 

placement u satisfies the condition of repeatability: 

while from symmetry: 

and 

u(x) = u(x + 2a> , 

u w  = u(k-x) , 

u(x) = - u(2R - x) . 

(5) 

The displacement u can therefore be represented by a Fourier sine series with 

odd integers and in what follows we truncate such a series to two terms and 

write 

U = A($] sin (xx/a) + @2 sin (3nx/!L)) , (6) 

where the coefficients +,, 9, are to be determined from the conditions: 

2-z 
a+ 

0, au= 
a+2 

0 . (7) 

At this stage it is convenient to introduce the following nondimensional 

parameters: 

v = TJ , 

A 

(8) 
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V is a nondimensional measure of the strain energy and is equal to unity if 

6 is zero; it thus provides a direct measure of the apparent or effective 

increase in the shear modulus of the matrix caused by longitudinal variations 

in fibre spacing. The parameter u is a nondimensional measure of the amplitude 

of fibre waviness, while X is a nondimensional measure of the half wavelength 

!2 . 

Substituting equations (6), (8) into (4) and integrating yields 

'IO, 9 (9) v 
2 

= (1 - ,,2)-6 + hl 9, + h29; - 2h3+ 1 - 2h4$2 + 2h56 
1 L 

where 

and 

1 a 

h1 = 2x2+7 ' !J 
7 

9 (4 - 3u")B -- 
h2 = 2x2 2 

, 

a 
h3 = r , 

B 
h4 =-J ' 

P 

1 
a 

= J(1 
-1 , 

- l-42) 

f3 4-u2- = (4 - s?> . 
41 - lJ2> I 

Now from equation (7), 

h2h3 - h4h5 
@1= hh-h2 ' 

12 5 

hlh4 - h3h5 

" = h h - h2 
12 5 

(10) 

(11) 

so that V is known. 
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In Fig.3 the apparent or effective increase in the shear modulus of the 

matrix caused by longitudinal variations in fibre spacing is plotted against X 

for various values of b/w0 using the relation 

G" m=V. 
efflG (12) 

The error involved in restricting the series for u to two terms is very 

small because the first term is the dominant one. Thus if we take 
$2 

zero in 

equation (6) it may readily be shown that 

$1 = h3/hl , 

and hence 

v = l+ u2 

2x2 + 1 - )I2 + J(1 - u2) 
, (13) 

which differs from the two-term solution by less than 0.5% over the practical 

range of interest. 

Finally we note that 

tion of Fig.lb if we write 

the present analysis is also valid for the configura- 

w. = i(average gap between fibres) . 

3.1 Adaptation to the three-dimensional case 

Alternative expressions for w. and A are necessary if the results of 

this two-dimensional analysis are to be applied to the practical three- 

dimensional case. We make use of the relation 

Af Vf -=- 
tw V , 

0 m 

and assume that w  
0 ' 

the average gap between fibres, can be 

equal to twice the width of the matrix annulus surrounding a 

to Hashin's mode13. This implies that 

(14) 

interpreted as 

fibre according 

Vf ' 



and hence 

d , (15) 

and 

(16) 

Of course, in the practical three-dimensional case the gaps between fibres 

vary across the section as well as longitudinally so that expression (15) above 

can only be regarded as the 'average of the average gaps'. By the same token 

the longitudinal variation is unlikely to be a simple harmonic so that there will 

also be some ambiguity in the interpretation of 6 from actual measurements 

(see section 4.2). Fortunately this aspect is not serious because, as will be 

seen later, we are primarily interested in a narrow band of wavelengths specified, 

roughly speaking, by 

1.5 G X G 2.5 . 

When h < 1.5 , values of 6/w. sufficiently high to influence m G eff are not 

possible without failure of the composite, while if X > 2.5 the increase in 

G:ff is negligible whatever the value of 6/w. l 

3.1.1 The longitudinal shear modulus of the composite 

If we denote by GE1 the longitudinal shear modulus of the three- 

dimensional composite with straight fibres - calculated, for example, for a 

regular hexagonal array 4 - the influence of longitudinally varying fibre spacing 

may now be estimated by replacing G m by GEff in the calculations for GC 
sl l 

If the fibres were rigid in shear this would lead to the following simple 
c expression for the longitudinal shear modulus of the composite Gl : 

GC/G;] = Gzff/Gm . (17) 

This formula is also numerically adequate, though not strictly valid, when 

the finite shear rigidity of the fibres is taken into account. This is because 

the ratio Gzl/Gm is not sensitive to variations in the ratio Gm/Gf provided 

that ratio is small in comparison with unity. 
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3.1.2 Limitation on 6/w, for fibres of circular cross-section 

When the longitudinal fibre variations are such that adjacent fibres touch, 
m 

the increase in Geff will be somewhat less than that predicted by the two- 

dimensional theory because the contact zone between fibres of circular section 

differs markedly from that between fibres of rectangular section - as the two- 

dimensional model can be regarded. The effect can be accounted for by imposing 

an upper limit in Fig.3 for 6 Iwo which is somewhat less than unity. This 

upper limit, Wwo) * say, is determined here by equating G; 
for a composite 

with touching (straight) fibres of circular cross-section in a square array 

with Gy for a two-dimensional model in which parallel fibres of width d are 

separated by matrix layers of width w' . The resulting value of W' represents 

a 'buffer zone' which is a lower limit to (w. - 6) . The ensuing brief analysis 

is quite general but attention is confined numerically to the case in which 

G;/Gm = 20 , appropriate to CFRP. 

For the square array Syrmn' and Mansfield' have shown that at maximum 

fibre packing 

G; ‘1 
- 2 2(GfGm)’ (18) 

provided G: % G" , while for the two-dimensional model it may readily be shown 

that 

. (19) 

Equating these two expressions yields, for Gi/Gm = 20 , 

W' = 0.0578 d , (20) 

which may be expressed in terms of w. by invoking equation (15). 

Now w' is a lower limit to (w 
0 

- 6) so that an upper limit to 6 is 

(w 0 
- w'), hence 

(6/wo)* = 1 - WI/W0 

0.5784~~ 
= l- 

1 - Jv, 
(21) 
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At vf = 0.6 , this yields 

wwo)* = 0.80 , 

which is a conveniently round number, bearing in mind the approximations 

involved. The corresponding curve in Fig.3 is identified by a broken line. 

3.2 Limitations on A/w0 , X imposed by fibre strength 

If the stress in a fibre reaches a certain critical value the fibre breaks, 

and this imposes a restriction on the range of values of Go , A which are 

meaningful. Thus, from equation (1) the longitudinal curvature of the fibre 

is given by 

&= 7126 
dx2 R2 

sin (xx/R) (22) 

and hence, from engineers' theory of bending - assuming the fibre to be 

unstressed when straight - the maximum bending strain in the fibre is given by 

cf = a26d 
llBX 

2g2 ' 
(23) 

To express this in terms of A , etc. it is necessary to invoke equations (15), 

(16) which yield 

(24) 

This critical relationship between 8/w. and X is shown in Fig.3 for various 

values of c 
f 
IWX 

assuming Ef/Gm = 50 , appropriate to CFRP, and vf = 0.6 . 

3.2.1 Limitations on Geff/Gm imposed by fibre strength 

From Fig.3 it is seen that at vf = 0.6 and ei, = 0.01 , say, the 

maximum possible value of G m 
efflG 

is about 1.075 at X = 1.9 . Similar 

critical values can be determined for other values of vf by using 

equations (21) and (24) to define (6/wo)* and A 
crit ' 

which are then 

substituted into equations (9) or (13) to yield (Geff/Gm)max . Table 1 below 

shows (6/wo)* , hcrit and (Geff/Gm)max for a wide range of fibre volume 

fractions. It is seen that 
(Geff'Gm)max 

varies with vf in a 'flat topped' 

manner, reaching a maximum at about 
vf 

= 0.45 , and falling off markedly only 
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at very high and very low values of vf . In practice it is probable that very 

few fibres will be flexurally prestressed to such an extent and of those that 

are, it is unlikely that they will also exhibit the maximum amplitude of wavi- 

ness (6/wO)* . Thus, insofar as they apply to the composite as a whole rather 

than localised regions between individual fibres, the values of (Geff'Gm)max 
in Table 1 must be regarded as extreme upper limits which, on statistical 

grounds will not be approached in practice. 

Table 1 

Values of (Geff/~m)mx , etc. for ef,, = 0.01 , E;/Gm = 50 

0.10 0.973 2.85 1.057 
0.15 0.963 2.63 1.067 
0.20 0.953 2.49 1.071 
0.25 0.942 2.38 1.076 
0.30 0.930 2.29 1.079 
0.35 0.916 2.22 1.081 
0.40 0.901 2.16 1.082 
0.45 0.882 2.10 1.082 
0.50 0.860 2.04 1.082 
0.55 0.834 1.98 1.080 
0.60 0.801 1.92 1.077 
0.65 0.760 1.85 1.073 
0.70 0.704 1.76 1.067 
0.75 0.626 1.64 1.058 
0.80 0.510 1.47 1.044 
0.85 0.317 1.15 1.022 

3.3 Limitations on 6/w. , X imposed by matrix stresses 

In the (externally) unloaded state of CFRP the normal stresses between 

fibre and matrix should not exceed those necessary to break the fibre-matrix 

bond or the matrix itself, but the stresses are also limited by the method of 

manufacture. Such limitations impose further restrictions on the meaningful 

range of values of 6/w. , X which are discussed below. 

From equation (l), again assuming that the fibres are free from stress 

when straight, the longitudinal distribution of transverse load/unit length 

p(x) acting on a single fibre is given by 
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p (x> 

n5Ef6d4 1 E 
64R4 

sin (nxlJ?> (25) 

for a fibre of circular cross-section. 

These loads/unit length result from 'built-in' or manufacturing stresses 

and they are therefore very dependent on the viscous and visco-elastic properties 
. 

of the matrix during the curing process. If the matrix were inviscid prior to 

curing, individual fibres would be free to straighten themselves unless they 

were misaligned and tangling with other fibres. However, although such tangling 

may well occur, the liquid matrix is highly viscous so that for values of 

vf a 0.6 , say, the inter-fibre gaps are sufficiently small to retard the stress 

relieving flow. The resultant pattern of internal stress in the hardened matrix 

will be complex; in particular, the stresses acting at the fibre-matrix inter- 

face, which maintain the fibre in its curved state, will have normal and 

shearing components which vary circumferentially and longitudinally. In what 

follows we arbitrarily ignore the shearing component and assume that the 

circumferential distribution of normal stress acting at any fibre-matrix inter- 

face is constant over half the circumference and zero elsewhere; the magnitude 

varies longitudinally as sin (ITX/!&) . On this basis the maximum normal stress 

is given by 

r5Ef6d3 m 1 cs = 
max 64R4 

, (26) 

from equation (25). 

The corresponding value of the strain ei,, can be expressed in terms of 

6/w. , X as 

m E = 
lM.X 

which is shown in Fig.3 for various values of E m 

E;/Gm = 50 , 
max assuming vf = 0.6 , 

Gm/Em = 0.4 . 

(27) 

By comparing these curves with those for given values of tzf,, , it can 

be concluded that the limitations imposed on 6/w. , X by matrix stresses are 

less severe than those imposed by fibre stresses. 
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4 EXPERIMENTAL DETERMINATION OF FIBRE WAVINESS 

4.1 Preparation of the specimen 

A typical 2mm thick laminate of carbon fibre reinforced plastic (high 

strength, type II carbon fibre/ERCA 4617 resin) was selected for examination. 

The composite was fabricated from ten resin preimpregnated carbon fibre sheets by 

an autoclave process6 which produces a composite of high quality. 

A random sample 10 x 10 x 2 mm was cut from the laminate, mounted in a 

resin block and polished in a plane perpendicular to the fibre axes. Successive 

operations of abrading and polishing the surface led to a series of photographs 

at sections separated by small intervals along the fibre axes. Because of the 

difference in hardness between the fibres and the matrix, a small amount of 

differential polishing was inevitable, leaving the fibre ends slightly rounded 

and proud of the matrix. In optical photomicrography this leads to some 

ambiguity in determining the exact boundary of a fibre and for this reason a 

scanning electron microscope was employed. The large depth of field possible 

with this instrument allowed adequate measurement of the separation of the 

fibres. Fig.4 shows part of the section at xl00 magnification. Lines of resin- 

rich composite between the original individual laminae are clearly visible. The 

light circle at C is a fine wire mounted in the resin block as an identifica- 

tion mark. Area A , which has a local fibre volume fraction of 0.6, was chosen 

to be representative of the more uniform fibre distribution between the 

laminating lines. 

The section was then abraded and re-polished as previously described to 

obtain six sectional photographs of area A at xl000 magnification, shown in 

Fig.5a-f. It was difficult to obtain equal gaps between sections and the 

distances of successive sections from the first are 0.025, 0.06, 0.10, 0.15 and 

0.18 mm with an accuracy of kO.005 mm. The average of the fibre diameters is 

approximately 8 urn so that, with interest centred on values of h of about 2, 

the corresponding half wavelength R is approximately 0.09 mm. 

4.2 Measurement of fibre waviness 

Fig.5a-f are typical of CFRP sections at a fibre volume fraction of 0.6. 

At this value of vf the theoretical value of the average gap between fibres, 

as defined by equation (15), is 0.29 d whereas the minimum gap, w  . 
min say, 

between fibres in a regular hexagonal array is 0.23 d. This follows from the 

general relation: 
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(28) 

The fact that w0 and wmin differ is a consequence of the application of two- 

dimensional analysis to a three-dimensional problem. However, the fact that 

(w -w 
0 min 

> is almost identically equal to w' , introduced in section 3.1.2, 

is a fortuitous but reassuring check on the arguments employed there. 

From a practical standpoint the actual minimum gap, timin say, between 

adjacent fibres is the simplest to measure and, insofar as this differs from the 

theoretical value of w  . 
min ' 

the difference I Wmin - wiinI could be interpreted 

as a deviation from the average gap. However, measurements of w*. show that 
min 

approximately 60% of 'adjacent' fibres are actually in contact (i.e. w*. min = 01, 

while for the remainder w* min varies up to about 2d. It is thus more 

realistic to recognise the fact that the ZocaZ fibre volume fraction varies 

considerably across a section. The influence of fibre waviness on the longitudi- 

nal shear modulus is governed largely by the variation in the matrix gap between 

fibres and is thus essentially dependent on localised phenomena. Thus a plot of 

the longitudinal variation of w*,in is more meaningfully interpreted as a 

variation - assuming there is one - about a local mean. 

For those fibres in Fig.5d which are in contact, or nearly so, measurements 

at surrounding sections indicate only small or negligible changes in wZin ' 
This is to be expected because within local regions of high fibre volume 

fraction, fibre waving is necessarily more restricted. Indeed, when 

w;&/d G 0.05 , 

which corresponds to a range of local fibre volume fractions given by 

vf 2 0.82 , 

it follows from Table 1 that the influence on G 
m 
eff 

is much reduced, even if 

the fibre waving is at its most extreme. 

In what follows we have confined attention to those pairs of adjacent 

fibres in Fig.5d for which 

w*. -w. 
min min ' 

so that Fig.3 is directly applicable. 
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There are 17 such pairs identified by the adjacent fibres ab, bc, de, 

fg, . . . etc. and Fig.6 shows for each pair the variation of (wmin - wiin>/wO 

with x , the distance along the fibres from the first section (Fig.5a). It is 

seen that x varies from 0 to 0.18 mm, a distance of approximately 2acrit ; 

thus it should be possible to identify half sine wave components of length 

!2 
crit ' 

or thereabouts, if they occur within the measured region. Furthermore, 

if the gaps between fibres varied in the simple manner of equation (l), it 

would be possible to identify the term (wmin - +min>/~O with (6/wo) sin (xx/a). 

Now the measured gap between fibres wtin is necessarily positive or 

zero, so that (w 
min 

- w* 
min)'wO 

cannot exceed w  
min 

/w 
0 ' 

i.e. 0.8. However, 

W&n 
is not restricted to the upper limit imposed by the assumed theoretical 

variation of the gap between fibres. Thus values of (wmin - wgin)/wo more 

hegative than -0.8 are possible and, indeed, frequently occur. In practice this 

means that initially adjacent fibres have wandered sufficiently far apart for 

them to be either no longer adjacent (e.g. fibres fg, am) or still adjacent but 

in a region of very low local fibre volume fraction (e.g. fibres qr). For 

these reasons we confine attention in Fig.6 to positive values of 

(w min - W;kmin>/WO ' In this region it is seen that the gap between fibres varies 

approximately sinusoidally but that the half wavelength R is markedly more than 

R 
crit ' 

Indeed, the shortest half wavelength, which occurs for fibres de , is 

approximately 2acrit . 

If this sample is typical of CFRP it can be concluded that the effect of 

fibre waviness on the longitudinal shear modulus is negligible. 

5 EFFECT OF MISALIGNMENT OF STRAIGHT FIBRES ON THE LONGITUDINAL SHEAR MODULUS 

The measurements of fibre waviness discussed in section 4.2 indicate a 

predominance of wavelengths yielding values of X considerably in excess of 

x 
crit ' 

At the same time fibre misalignment angles dw/dx of about 0.05 (see 

Fig.6) are not uncommon, and it is appropriate to augment the previous 

theoretical analysis of fibre waviness by an analysis of the effect of mis- 

alignment of straight fibres on the longitudinal shear modulus. We consider 

a basically unidirectional composite built up from a number of laminates in each 

of which the fibres are straight and parallel. Alternate laminates, however, 

have small misalignments specified by 

dw 
dx = +1$ , (29) 

where 0 is the total misalignment angle between adjacent laminates. 
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Under an applied longitudinal shear it may be shown from symmetry that the 

deformation of the composite is one of pure shear strain y , say. In terms of 

this shear strain the extensional strain in the fibres is therefore given by 

Ef = +y sin J$I cos 14 

f22 
The extensional energy in the fibres/unit volume of composite is thus ivfEI$ Y 

and the shear energy in the composite/unit volume is ?G;r2 . The total strain 

energy/unit volume is therefore 

and it is seen that the influence of such fibre misalignment is to increase the 

longitudinal shear modulus of the composite by a factor K , say, where 

K = . 

For CFRP at vf = 0.6 , we have 

Ef/Gm = 50 , say 

G;/Gm -3.5 , 

so that 

Thus, for example, if 

K = 1+2.Q2 . 

4 =i 0.05 , 

this yields 

K = 1.005 , 

so that the increase is negligible; but if 

+ = 0.1 , say, 

K = 1.02 

and the effect is perhaps just noticeable. 

(31) 



18 

6 EFFECT OF FIBRE WAVINESS ON LONGITUDINAL TENSILE MODULUS 

For the fibre matrix arrays shown in Fig.1 the longitudinal direct stiff- 

ness of the curved fibres is necessarily less than for the straight fibres. 

However, for the range of values of 6/w. , X that we are considering, it is 

shown below that the reduction in stiffness is negligible. Thus, confining 

attention to a single curved fibre and regarding it as a curved beam on an 

elastic foundation we can write 

w  - 6 sin (nx/R)/ + k(w - 6 sin (*x/e)/ = P d2w - , (32) 
dx2 

where w  = transverse deflexion of 'beam' measured 

P = longitudinal tensile load, 

k = foundation modulus (defined later). 

Equation (32) may be integrated to yield: 

where 

w  = 
6 sin (ITX/~) 

1 +sl 

n = P?T2/R2 

k + T~E~I/R~ 
1 

from a centre-line, 

(33) 

Now the average longitudinal strain due to fibre bending, sb , say, is given 

by 

dx 

The longitudinal strain due to fibre extension is given by 

t 
& = P/(E;Af) , 

(34) , 

(35) 

so that the total longitudinal strain is given by 

t b 
E = E +E . (36) 
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The longitudinal stiffness is accordingly given by 

dP dc 
t 

deb -' 
z = dP+dP -1 

l14cs2 
I 
-1 

2a4(k + ~~+/a~)(1 + L-O3 ' 
(37) 

In order to determine the relative importance of terms in the above expression 

for dP/ds it is convenient first to confine attention to k and IT~E~I/R~ 
1 * 

The foundation modulus k is such that 

kW = p(x) 

where W(= w  - 6 sin (ITX/R)) is the transverse displacement of the fibre under 

end load and p(x) is the resulting transverse load/unit length. Now we can 

write 

and 

p(x) = 2do; 

where 
3 

is the transverse stress in the matrix averaged across a diameter 

and the factor 2 is introduced because of the presence of restraining matrix on 

either side of the fibre. Accordingly, 

k 

and the ratio 

(38) 

(39) 

which is negligible in comparison with unity for the range of values of X 

under consideration. This means that the matrix is much more effective than 

the fibre flexural rigidity in maintaining the curved shape of a fibre under end 

load. The expression for Cl is thus adequately given by 
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2 f 
m 

~~(1 + Jvf) Gm ul 

1 6Vf 
0 
-iii-F 

E1 

which is also negligible in comparison with unity. This means that the curved 

1 (40) 

fibre embedded in matrix does not exhibit any noticeable nonlinear behaviour 

under end load. The expression'for dP/dc can therefore be further simplified 

to give 

dP m 
EfAf 1 

ds r4g2EfAf 
(41) 

I 
l+ ' 

2kR4 

and finally we note that 

.462EfAf 1 m 
T2Vm(l + Jv,) 

2kR4 16~: 

which is again small in comparison with unity, so that 

dP 
TiF 

= EfAf 
1 l 

(42) 

(43) 

The fibres thus behave as if they were straight. 

7 CONCLUSIONS 

Simplified analyses have been made of a two-dimensional model of a uni- 

directional fibre reinforced composite under longitudinal shear and tension. 

Account is taken of fibre waviness by assuming that the fibres are displaced 

laterally by an amount that varies sinusoidally. The solutions have been 

adapted to describe the practical three-dimensional composite in which fibre 

waviness is introduced, albeit unintentionally, in the process of manufacture. 

It is shown that an increase in the amplitude of the fibre waviness causes an 

increase in the longitudinal shear modulus G; , but the increase is smaller 

the longer the wavelength. For very short wavelengths increases in C G1 in 
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excess of 30% are theoretically possible. However, for fibres which were 

straight in the stress-free state prior to manufacture of the composite there 

are restrictions on the degree of waviness which the fibre or matrix can 

tolerate without breaking. Because of this, interest is restricted to a narrow 

band of wavelengths. In unidirectional carbon fibre reinforced plastic (CFRP), 

for example, increases in G 5 of up to 8% are theoretically possible at half 

wavelengths R 
crit 

of about ten times the fibre diameter. The degree of 

waviness which occurs in practice in CFRP has been estimated from measurements 

of fibre positions at successive sections. These show marked variations in the 

local density of fibres with about half the fibres in contact with others, thus 

effectively prohibiting any waviness. For the remaining fibres the amplitude 

of waving can be severe but the half wavelengths exceed Rcrit by factors of 2 

or more. It follows that fibre waviness in CFRP has a negligible influence on 

the longitudinal shear modulus. A separate analysis on the influence of 

misalignment of straight fibres also predicts a negligible increase in the 

longitudinal shear modulus for misalignment angles comparable to those which 

occur in practice. 

Attention is also given to the influence of fibre waviness on the longi- 

tudinal tensile modulus. It is shown that for all practical composites the 

matrix is sufficiently rigid to prevent any effective change in the amplitude of 

fibre waviness under end load. Thus, and in contrast to the behaviour of an 

unsupported wavy fibre, the matrix-embedded wavy fibre does not exhibit any 

noticeable nonlinear hehaviour under end load and the influence of fibre waviness 

on the longitudinal tensile modulus is negligible.* 

With fibre waviness eliminated as a possible cause of the discrepancy 

between theory and experiment in predicting the longitudinal shear modulus of 

unidirectional fibre reinforced composites, a further paper will consider the 

influence of fibre distribution on the composite moduli, focusing attention on 

the ways in which the distributions observed in practice differ from the 

idealised hexagonal array. 

Finally, we note that the techniques developed for adapting simplified 

two-dimensional models to describe the practical three-dimensional composite 

will also be relevant in simplified load diffusion studies of composites with 

broken fibres. In additior, the simplified analysis and experimental observa- 

tion of fibre waviness, with its attendant built-in stresses, will be relevant 

in the fields of fracture and fatigue. 
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Fig. la&b Sinusoidally varying fibres in lamina under shear 
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Fig.2 Notation for sinusoidally varying fibre 
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