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SUMMARY 

The mathematical framework for a unified approach to the dynamical problems 

of deformable aircraft, set up by Taylor in his contribution to R & M 3776, 

is used as the basis for a limited numerical investigation of the usefulness of 

the residual flexibility concept in truncated modal analyses. A finite-element 

model of a supersonic transport aircraft of slender-delta configuration is the 

subject of stability and response calculations, in which various representations 

of the structural deformability are used. These comprise up to four natural 

modes both with and without the residual flexibility of the remaining modes. 

It is concluded that the addition of residual flexibility to a structural 

model which comprises only one or two modes significantly improves the accuracy 

of estimates of low-frequency characteristics. However, if a single model is to 

be used in an integrated approach to the aeroelastic problems of an aircraft, it 

must incorporate a fairly large number of modes in order to deal with the 

higher-frequency problems. In these circumstances the residual flexibility 

concept would seem to have little practical value. 

* Replaces RAE Technical Report 73119, ARC 35085 
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1 INTRODUCTION 

A series of recent reports by Taylor 192 , Woodcock3 and Niblett4 has dealt 

with the topic of establishing mathematical models suitable for studying 

dynamical problems of deformable aircraft. One of the central issues involved 

is the representation of the structural deformation of the aircraft. For the 

study of small perturbations from an initially steady flight condition, each 

author adopts a specification of the structural deformation primarily in terms 

of normal modes (which are defined as the natural modes of free vibration of the 

undamped structure in vacua). In theory, a continuous structure has an infinite 

number of such modes, while for a discrete-element model of this structure only 

a finite number exist. In practice a further simplification is usually made by 

retaining only a limited number of these modes in the analyses. In addition, 

Taylor advocates the use of the residual-flexibility approximation, first 

suggested by Schwendler and MacNeal', to incorporate the effect of the neglected 

modes. However, Niblett4 suggests that no real increase in accuracy of calcula- 

tions is likely to be obtained because of the basic inaccuracies inherent in the 

aeroelastic data. Instead, both Niblett and Woodcock suggest the use of a few 

selected arbitrary modes to supplement the basic normal-mode approach when the 

structure is subjected to certain discrete loads. All of these reports are 

concerned with establishing mathematical models, the usefulness of which can be 

determined only by numerical studies of specific problems. A certain amount of 

numerical experimentation with the residual-flexibility concept was reported in 

Schwendler and MacNeal's paper5 and related papers by Pearce et aZ. 697 but no 

firm conclusions were drawn as to its usefulness. It was with the object of 

providing further evidence on this score, as well as acquiring experience in the 

practical application of Taylor's method', that the numerical study described in 

the present Report was undertaken. 

The study was of limited scope, it being restricted to a consideration of 

the stability and response characteristics of one particular aircraft layout 

(slender delta) under's single set of operating conditions. A fairly crude 

finite-element (or 'lumped-parameter') representation of the aircraft was 

adopted, with the inertia properties represented by n point-masses distributed 

along the centre-line of the aircraft. Structural flexibility was represented 

by a matrix of influence coefficients, relating to the n mass points and 

derived, by simple beam theory, from an assumed longitudinal distribution of 

bending rigidity (EI). Two matrices of aerodynamic influence coefficients, 
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relating to the same set of points, and derived respectively from piston theory 

and slender-body theory, were used to provide alternative evaluations of the 

incremental aerodynamic loading due to structural deformation. These two 
theories were chosen because they are simple to apply in the present context. 

Neither was expected to give results of great absolute accuracy, but this was 

not of prime importance in an investigation of the influence of residual 

flexibility. It was necessary only to observe the general trends of calculated 

stability and response characteristics as the structural representation was 

varied, and it was expected that either aerodynamic theory would suffice for 

this purpose. The stability calculations were made using both sets of 

aerodynamic influence coefficients to check that conclusions as to trends are 

substantially independent of the choice of aerodynamic theory. A single set of 

calculations, based on piston-theory influence coefficients, was then considered 

sufficient for the response investigation. 

In attempting to assess the validity and relative importance of the 

residual-flexibility concept, one may adopt the n-mass finite-element 

representation as a datum mathematical model whose longitudinal-symmetric 

stability and response characteristics may (in theory at least) be determined 

'exactly' in terms of the characteristics of the (n - 2) natural modes of the 

structure and those of the two relevant 'rigid-body' modes. One may expect to 

obtain progressively better approximations to these 'exact' solutions by 

performing a series of truncated modal analyses in which the number of retained 

modes is progressively increased. In fact, one may perform two series of 

analyses, the first ignoring any effect of the excluded modes and the second 

taking account of them via a residual-flexibility approximation. Then, if the 

residual-flexibility concept is sound in principle and has been correctly 

implemented, the second set of results should converge rather more rapidly to 

the 'exact' values than the first set. In practice the 'exact' values for the 

datum model cannot be directly determined because the characteristics of its 

higher natural modes cannot themselves be accurately calchlated. Thus, in the 

present application, only the first four natural modes have been determined and 

solutions of the stability and response problems have been obtained by analyses 

(with and without residual flexibility) in which 0, 1, 2, 3 and 4 modes were 

retained. Comparison of the accuracies of the two sets of solutions is thus 

dependent to some extent on intuition, guided by judgment of the degree of 

convergence already achieved when 4 modes are retained. 
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To make the present Report reasonably self-contained the development of 

the appropriate equations of motion is presented in some detail in section 2, 

which is based on Taylor's work2. The derivation of the structural and 

aerodynamic influence coefficients appropriate to slender-delta configurations 

of the type considered is discussed in section 3 and particulars of the 

mathematical model used in the numerical work are presented in section 4. 

Results are given in sections 5 and 6, which deal respectively with stability 

and response to sinusoidal gusts, and in section 7 an attempt is made to draw 

some conclusions from this limited numerical investigation. 

2 EQUATIONS OF MOTION 

The analysis in this section is based on the work of Taylor', which has 

antecedents in Bisplinghoff and Ashley* and Milne 9 , while the residual flex- 

ibility theory is drawn from the work of Schwendler and MacNeal' and Pearce 

et ~22~. A finite-element representation of the aircraft is considered which is 

essentially two-dimensional in nature, no allowance being made for spanwise 

flexibility*. There are n discrete point-masses mi , whose centres are at 

distances x. 1 from a chosen origin (measured positively in the forward 

direction). The main feature of the subsequent analysis is that it utilises two 

sets of influence coefficients through which the structural and aerodynamic 

properties of the aircraft are represented. 

2.1 The basic equations 

The undisturbed aircraft motion is considered to be level flight, at speed 

'e ' and mean axes through the centre of mass are chosen for the coordinate 

system, the x-axis being directed forward and the z-axis downward. In the 

mathematical model considered, the rigid-body displacement corresponding to the 

phugoid motion is ignored, although it could easily be incorporated if desired. 

Two rigid-body modes are required to define the aircraft short-period motion, 

the associated coordinates <l ' <2 (which define the displacements of the 

nose in the positive z-direction) being related to the velocity-coordinates w , 

Q of classical stability and control theory, by the transformations 

. . . 
r, = w - 4Ve , c2 = - OXref 

* The aircraft configuration used as the basis of the numerical work described 
in section 4 is of the 'integrated' slender-delta type considered in the 
earliest project studies for a supersonic transport aircraft, for which 
longitudinal bending was considered to be the dominant elastic deformation. 
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where x ref is the coordinate of the nose, here taken as reference point. 

In the finite-element representation adopted here, the general motion of 

the aircraft structure may be assumed to be compounded of displacements in the 

two rigid-body modes and in (n - 2) independent natural vibration modes of 

the elastic structure, whose shapes are defined relative to the mean axes, 

Thus, for small perturbations, the displacements, Ei , (i i= l,...n) of the 

elements at points x. , 
1 

relative to their datum-path positions* are given by 

the matrix equation 

(2) 

The last (n - 2) columns of the square matrix [A] d escribe the natural mode 

shapes of the flexible structure relative to mean axes through the centre of 

mass, while the first two columns, corresponding to the rigid-body displacement 

of the mean axes relative to the datum-path axes, are specified by 

X. 

A il = 1 ; Ai = + ; (i = I,...n) . 
ref 

(3) 

The cj(t) represent the displacements, in the respective modes, of the 

reference point (nose) and are measured in the positive z-direction. The mode 

shapes are normalised with respect to the displacement at the nose. 

For j > 3 , the A.'s 
J 

satisfy an eigenvalue equation of the form 

where the matrix CD3 is defined by 

(4) 

(5) 

Here [G] is a matrix of influence coefficients describing the elastic 

properties of the unconstrained aircraft structure, which will be precisely 

defined in section 3.1. For the present we note only that it has the important 

* See Ref.2, section 3.6.2. Note that as we are concerned here only with 
incremental values of displacements and forces relative to datum values we 
will, for simplicitpuse unprimed symbols in place of the primed symbols of 
Ref.2. 
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property of being symmetrical, by virtue of which it may be established from 

equations (4) and (5) that the mode shapes satisfy the orthogonality condition: 

{AitT fmJ(8.j 1 = 0 ; i+j, i,j&3 . (6) 

Furthermore the equation 

jAjtT tmJ(Ajt = Mj ; j >, 3 

defines the generalised masses, M. , of the structural modes, for which 
J 

corresponding generalised stiffnesses, K. , are defined by 
J 

K. 
J 

= M.w2 ; 
J j 

j&3 

(7) 

(8) 

where the w. 
3 

are the natural frequencies of the aircraft and are related to 

the eigenvalues A. . 
J 

of equation (4) by the relationship A. = 1 U: If the 
3 / 

rigid-body modes are considered as zero-frequency structural modes 

(i.e. w =fJl 12 = 0) with zero generalised stiffness (K1 = K2 = 0) then 

equation (8) holds for j 5 1 . In virtue of the conditions defining mean axes 

it can be shown that the orthogonality condition (6) holds for i,j >/ 1 , while 

equation (7) with j = 1 or 2 defines the generalised masses for the rigid-body 

modes. It is readily shown that 

Ml = m and M =L 
2 

Xfef ' 

where m is the total mass of the aircraft and I 
Y 

is its pitching moment of 

inertia. 

The equations of motion may now be written in terms of the n x n diagonal 

matrices rMJ and [KJ formed from the M. and K. :- 
J J 

where 
(9) 

(10) 
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d with D E dt . The generalised forces {F} consist of a contribution, {F 
M 

} , 

due to the perturbations z , and one, {FD) , j t due to control deflections or 

atmospheric disturbances. The former may be expressed as 

(11) 

where [R] is the aerodynamic influence-coefficient matrix, which is defined 

later, in section 3.2. We note that, in general, the elements of [R] are 

quadratic expressions in the differential operator D . Thus the basic 

equation may be expressed as 

Cylb t = ~~I’r~l~~Ji~ t + CAIT& t (12) 

where j t FD is the column of incremental forces due to control deflections or 

atmospheric disturbances, acting at the nodal points. 

2.2 Approximate treatments of the equations of motion 

2.2.1 Truncated modal analysis 

The basic matrix equation (12) consists of n equations where n is the 

number of masses specified in the finite-element representation of the aircraft. 

As already mentioned it is not possible to determine accurately the character- 

istics of all (n - 2) natural modes of the structure, so that an accurate 

formulation of the complete set of equations is not generally feasible. 

However, one is usually only interested in the response of the aircraft over a 

(lower-frequency) part of the frequency spectrum covered by the natural modes 

and it is often argued, on a semi-intuitive basis, that a sufficiently accurate 

solution can be obtained by using a truncated system of equations, in which the 

effects of modes with frequencies outside the range of interest are completely 

ignored. It is then only necessary to evaluate the frequencies and mode shapes 

of (say) the lowest k structural modes, to retain only the first (k + 2) of 

the component equations in equation (12) and to reject the terms which coupled 

them to the other equations. 

2.2.2 Residual flexibility of the neglected modes 

The concept of residual flexibility was introduced by Schwendler and 

MacNeal as a means of making a partial allowance for the effects of the 

neglected higher modes in truncated modal analyses. Essentially it is assumed 
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that, when the system is responding to excitation in the frequency range of the 

retained (lower-frequency) modes, the inertial and damping forces arising from 

any motion in the higher-frequency modes will be negligible in comparison with 

the corresponding forces due to the (static) displacements in those modes. 

Accordingly the equations of motion that are completely rejected in the truncated 

modal approach may be retained in an approximate form, in which they may be 

regarded as a set of algebraic equations for the coordinates of the higher modes 

in terms of those of the lower modes. As such they may be used to eliminate the 

coordinates of the higher modes from the other (retained) set of equations and, 

thereby, to obtain a set of equations identical in form with those used in the 

truncated modal analysis, albeit with modified derivatives. 

If we denote the rigid-body and lower-frequency structural modes by the 

suffices 0 and 1 respectively, and the higher-frequency structural modes by 

the suffice 2 , then we may partition the matrices in equation (12) to obtain: 

Equation (13) is essentially two simultaneous matrix equations: 

(15) 

At this stage we introduce the crucial assumption, mentioned in the pre- 

amble to this section, that, when we are concerned with the response of the 

aircraft to disturbances which have frequencies much smaller than those of the 

higher structural modes, we may neglect the D and D2 terms in the aero- 

dynamic operator [R] in those terms of equations (14) and (15) which involve 

b , t  l 
It is also assumed that we may neglect the D2 term in rY2] , so that 

PJ = Pg * With these assumptions it is a straightforward matter to obtain 

from equation (15) an approximate solution for {<,I in terms of {I;O+l/ and 

substitution of this into the modified equation (14) leads, after some 

simplification, to 
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where 

L-G 1 = [I] - [RI] [Xl 

with [R'] d enoting the steady influence-coefficient matrix, and 

(16) 

(17) 

(18) 

representing the residual flexibility of the eliminated modes. Equation (16) is 

of an essentially similar nature to the nth order matrix equation (12) but 

consists of a smaller number (k + 2) equations, where k(< n - 2) is the 

number of structural modes retained in the analysis. Comparing equation (16) 

with the equation which governs the truncated modal analysis of section 2.2.1, 

(i.e. equation (14) with the term in {< 1 deleted) we note that the matrix 

expressions operating on (<O+lt and (;,.,I are each modified by the presence 

of the aeroelastic correction matrix IAl l 

It is a simple matter to express [x] in terms of [G] and other known 

quantities, i.e. those with suffix 1 . This is due to a basic result that [G] 

may be expressed as 

I31 = Lqrq%,1’ + C~21CKJ-‘C~~3T l 

The proof of this result is as follows. From equation (4) we have 

(‘9) 

(20) 

where rA] is the (n - 2) x (n - 2) diagonal matrix whose jth diagonal element 

is A = 
j+2 

1 Lu2 
/ j+2 

, (j = l,...n-2) . From equations (5) and (20) we have 

(21) 

where, from equation (8), 

(22) 



and, from equation (7) 

I? 9+2 J 

On substituting (22) and (23) in (21) we obtain 

from which it follows* that 

Fl = Ch1+21(IK1+2ir1 Ch1+21T 

and, by partitioning of the matrices, 

[G] = A 
1 

from which the result (19) follows immediately. Hence [x] , the residual- 

flexibility matrix, as defined by equation (18), is expressible in terms of 

known quantities by 

L-XI = CG] -  [A,l[K,l-‘CA,lT l 

2.2.3 Mathematical models for comparative numerical investigation 

(23) 

(24) 

(25) 

(26) 

The preceding two sections have provided two alternative mathematical 

models with which to seek approximations to the 'exact' solutions for the 

dynamical behaviour of a finite-element idealisation of an aircraft**. In both 

,models the set of n equations which describes the behaviour of the n-element 

idealisation 'exactly', is truncated to a set of (k + 2) equations where k , 

the number of structural modes to be retained explicitly in the analysis, is 

less than (n - 2) . Ostensibly, the more refined of the two models is that 

described by equations (16), (17) and (26), which incorporates an allowance for 

the neglected modes in terms of the residual-flexibility matrix [x] . In the 

other model the effect of the higher-frequency structural modes is completely 

neglected at the outset by simply deleting the last (n - k - 2) of the n 

equations comprised by equation (12) and also the corresponding coupling terms 

in the remaining equations. Mathematically the resulting set of equations can 

also be derived from the set which incorporates the residual-flexibility matrix 

[x] , by setting [x] = [0] , which leads to [A] = [I] . In the limiting case 

* For a rigorous proof of this statement see the Appendix to the R & M version 
of Ref.2, 

**We are not directly concerned here with the accuracy of the finite-element 
idealisation itself. 
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of k = (n - 2) it is, of course, exactly true that [x] = [o] and the sets 

of equations for the two models are identical. 

Thus, for various values of k < (n - 2) , the respective orders of 

magnitude of the elements of the corresponding matrices Cxl will give some 

indication of the relative importance of including residual flexibility in the 

different cases. Furthermore, if we consider two corresponding series of models, 

with and without residual flexibility, in which the number of retained modes is 

progressively increased, we may expect results for each series of models to 

converge towards the same limiting values, Viz. the 'exact' results for the 

chosen finite-element idealisation. Moreover, if the residual flexibility 

concept is soundly based, the convergence should be initially more rapid in the 

case of the models which incorporate it. 

3 THE INFLUENCE COEFFICIENTS 

3.1 Structural influence coefficients 

For the purposes of the present investigation, the aircraft is treated as 

a longitudinal beam with mass density and stiffness varying along its length; 

spanwise it is assumed to be infinitely stiff. The existence and nature of 

influence functions for beams is well known (see, for example, Milne'). At the 

outset, in defining the influence function for the beam, it is necessary to 

consider it to have sufficient kinematic constraint to prevent bodily motion. 

For our purposes it is convenient to restrain the beam at the point which 

coincides with the centre of mass when the beam is undeformed (i.e. at x = 0). 

Then the transverse displacement w(x) due to a loading distribution 

p(x) is determined by the equation 

= p(x) , 

subject to the boundary conditions 

dw w = z=o 

‘5 
<xc 

XN) 

at X== 0 

(27) 

(28) 

and 
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(29) 

where EI(x) is the bending stiffness of the beam. A formal solution of the 

differential equation is given by 

% 
w(x) = I C(x,x')p(x')dx' 

yr 

where the influence function C satisfies the differential equation 

“( > dx2 
EI d2C 

dx2 
= 6(x-x’) , 

6 being the Dirac function, and the boundary conditions 

C dC ===O at x=0 

(30) 

(31) 

(32) 

(33) 

The differential operator in (31) is self-adjoint, so that the function C(x,x') 

is symmetrical. For a freely flying aircraft we have to consider a beam subject 

to no kinematic constraint and having unloaded ends. For such a beam the 

boundary conditions (29) still apply and it is further necessary that 

% % 
J p(x)dx = 

J 
xp(x)dx = 0 . 

yr yr 

(34) 

In order to define an influence function for this case it is necessary to 

postulate a loading system to equilibrate the unit load 6(x - x'). Any 

convenient load distribution which, in combination with the unit load, satisfies 

the equations (34) may be used. For since, in any real motion, the resultant 

load distribution p(x) , including inertia forces, must itself satisfy 
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equation (34) (by virtue of the overall equations of motion) it will follow 

that the resultant of the arbitrary balancing systems will also satisfy 

equation (34); i.e. the balancing systems will constitute a null set and have 

no effect on the motion. If we think of the unit load being reacted by inertia 

loads, a convenient form for the balancing system is [a<x') * b(x')x]m(x) , 

where m(x) is the mass per unit length. The influence function G(x,x') for 

the unconstrained beam then satisfies the differential equation 

= 6 (x - x’) - [a(x') * b(x')x]m(x) (35) 

where, from equation (34), a and b are defined by 

% 
i ( 6 x-x’) - (a + bx)m(x))dx = x J 6(x - x') - (a * bx)m(x)tdx = 0 . 

yr . . ..(36) 

By using the condition that the origin is at the longitudinal location of the 

centre of mass, we have 

1 a = -9 m 
b+ 

Y 

where 

m= 
J 

m(x)dx ; I = 
Y 

m(x)x2dx 

are respectively the total mass of the beam and its moment of inertia. 

The influence function G(x,x') is then given by 

% 
G(x,x’) = C(x,x’) - C (x,5) [am(S) + bb’)Sm(S)]d5 

(37) 

(38) 

(39) 
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which is not a symmetrical function. It still satisfies the conditions 

G= dG/dx = 0 at x= 0 but, in its most general form, G is not required to 

satisfy these conditions since, for a fixed x' , it should define displacements 

which are arbitrary to the extent of a small rigid-body displacement. Thus the 

most general form of the unconstrained influence function may be taken as 

G(x,x’) = C(x,x’) - 
J C(x,O [am(C) * b(x')Sm(Z)]dS + c(x') + d(x')x (40) 

yr 

where the functions c and d are determined by the particular choice of body 

axes. For mean axes through the centre of mass 

% % 
J m(S')G(S',x')dS' = 

i 
m(S')S'G(S',x')dS' = 0 (41) 

?r yr 

which yields two simultaneous equations for c and d . Upon solving and 

substituting into equation (40), together with the expressions for a and b 

given by equation (37) we obtain the following expression for the influence 

function of the unconstrained beam:- 

5 

G(x,x') = C(x,x') - ; 
i 

C(x,E)m(S)dS - i 
T 

C(S,x')m(S)dS 

yr yr 

% %I 
C(S,x')m(E)WS - $- 

J 
C (x,S)m(S) MS 

YX m 

%% %“N 
C(S,S’)m(S)m(E’)dSdS’ + $ C(S,S’)m(S)m(S’)S’dSdS’ 

X 
+- 

mI 
Y 

%“N 
xx’ 

+yT- JI C(S,S’)m(S)m(S’)SS’dSdS’ . 
' YrXT 

(42) 
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It is readily shown that for this particular choice of axes, the influence 

function G(x,x') is symmetrical. 

It now remains to construct a finite-element representation of the above 

integrals. The first step is to replace the continuous influence function 

C(x,x'> , defined for values of x and x' in the range [xT,s] by an 

nxn symmetric matrix of influence coefficients CC..] , where i 
=J 

and j 

range from 1 to n, C., 
=J 

denoting the deflection at the ith mass point due to 

unit load applied at the jth mass point. Let i0 refer to the origin 

if it is a mass point or otherwise to the nearest mass point ahead 

of the origin. Physically we may regard the beam as two beams separately 

encastrg at the origin, so that a load applied at a point on one beam will 

produce no deflection at points on the other beam. Hence, in constructing 

if we consider the matrix to be partitioned along i = i. and j = i. , 

we may note at once that all elements in the top right-hand and bottom left- 

hand corners, B and C , are zero, i.e. C.. = 0 for i < i 
=J 0 ' J '%i 0 and 

for i >/ i. , j < i. (see sketch, which shows the combinations of values of 

i and j which characterise the remaining parts of the matrix) 
. 
Je 

3---------i0-------n 

I 

4 i>j \ C = 
ij 0 \ . \ 

l0 
; 

\ 
C \ D 

I \ 
I 
I iai 0 i&i 
i 

0 i<j 

i 
j<i 0 j>,i 0 

I \ 

The elements in the bottom right-hand corner D (i >, i. , j >, io> may be 

determined by consideration of the bending of the part of the beam ahead of the 

origin (x >, 0). From equations (31) and (33) we have, for x and x' 3 0 , 
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EI(x) dC = 

dx2 
0 , (x > x') 
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(43) 

and 

2 
EI(x)= = I 

dx2 
x -x , (x < x') . (44) 

Then the values of C.. in the upper triangular part of region D (i < j> 

be determined from a Aiuble integration of equation (44), 
may 

subject to the 

boundary conditions, equation (32), and the values in the lower triangular part 

(i > j> may then be written down by invoking the condition that [C] is 

symmetrical. 

The elements in the top left-hand corner A (i < i 0 ,j<i> 0 may be 

evaluated similarly by considering the bending of the part of the beam which is 

aft of the origin. Finally, the elements of the matrix [G] for the uncon- 

strained aircraft can be determined by transforming the integrals in 

equation (42) into summations, i.e. 

G =C.. ij 13 

+ XiXjXRYc 

I2 1 “Pk l 

Y 

(45) 

3.2 Aerodynamic influence coefficients 

The essence of the aerodynamic lifting problem is the relationship between 

the distribution of lifting pressure and the surface distribution of downwash 

velocity. The mathematical formulation of the problem leads to an integral 

equation for the lifting pressure. The most general numerical formulation that 

can be obtained from the aerodynamic integral equation leads to a matrix of 

aerodynamic influence coefficients that relate the lifting forces (local surface 

integrals of pressure) at a set of points to the downwash velocities at those 
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points. Accordingly, if Li is the lift force and h i the surface deflection 

at the point x. , 
1 

there exists a relationship of the form 

bt = - rmd 

where, in general, R.. is second-order 
1J 

R ij 
= Rc2) & + 

'j dt2 

in time, so that we may write 

R(l) d + R(O) 
ij dt ij l 

(46) 

(47) 

The aerodynamic influence coefficients which are considered in the 

present application are derived from two approximate aerodynamic theories: 

(1) slender-body theory and (2) piston theory, which were used (in their quasi- 

steady forms) by Taylor and Urich 10 in their investigation of static aero- 

elastic characteristics of the configuration to be considered here. Although 
these theories are not expected to give particularly accurate representations 

of the incremental aerodynamics due to deformation, they are considered to be 

adequate for an investigation which is directed primarily towards an assessment 

of the relative importance of the residual-flexibility concept. 

A convenient basis for deriving the influence coefficients from slender- 
11 body theory is provided by Rodden and Revel1 , who cite Bisplinghoff, Ashley 

and Halfman (Ref.12, p.418) as the source of the relevant equations. We adapt 
the presentation of Ref.11 to our system of axes and nomenclature. Thus we 

relate the transverse displacement h(x,t) of the body's longitudinal centre 

line to datum path axes; i.e. x is measured positively forward and h 

positively in the (downward) direction of Oz . 

dL The lift force per unit length of the body, dx , at station x is the 

reaction to the substantial rate of change of the downward z-component of 

momentum of the virtual mass per unit length of the body at x . The downwash 

velocity at x is 

-.?z 
w(x,t) = at 

ah(x,t> _ v ah(x,t) 

e 3X 

and the corresponding component of momentum of fluid per unit length is 

(48) 



d1 
dx = peSw 

where the effective cross-sectional area S is taken to be 

s - S(x) = ns2(x) , 

s(x) being the semi-span of the planform. Hence 

dL 
dx- 

= (J/k- ‘e +{pes($F- ‘e g)} 
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(49) 

(50) 

(51a) 

i.e. 

dL 
dx = -'eve 

= -npeve&{S2(X)(- ve j$+ i$} +Wes2(X) y$ (- ve g+ +$-) (5lb) 

To obtain the lift on a specified length of body it is necessary to integrate 

equation (Sib) over that length. The total length of the body is divided into 

n sections with mid-points coinciding with the mass points except in the case 

of the end sections. The ith section (I < i < n) thus has its mid-point at 

X. 
1 

and its length Ai is defined to be (xi+1 - xi-1 l/2 l Then, if the 

locations of its aft and forward extremities are denoted by x. 1-1 
and x i+i 

respectively, 

A. X. 1-l xi+l 

x. = x* - 1 = -+ x. -- 

1-j 1 2 4 1 4 

'i X. 1-l X. 
1*I 

xi+i = xi 
+-= 

2 --+xX. 4 1 +- 4 1 

(52) 

The semi-spans at these locations are denoted by 'i--i and 'i+i respectively. 

For i = 1 and i = n , only half-sections, extending from x 1 to "14 and 
from x 

n-4 
to x n respectively are considered. 
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The lift, Li , acting on the ith section at the point x. 1 is given by 

xi+b 

Li = 
I 

2 dx 

xi-d 

2 fl i*i - 'i-l 

xi+l 
a - ITp - eat J 

s2(x)(Veh' - h)dx 

xi-l 

(53a) 

(53b) 

where dashes and dots denote differentiation with respect to x and t 

respectively. 

In the numerical application of equation (53b), evaluation of h and h' 

at xi+l and x i-4 is effected by parabolic interpolation: 

(x - 
h = 

xi>(x - xi+*) 

(x. 1-l - xi)(xi-l - xi+]) 

(x - x i-*>(x - xi+l) 

+ (Xi - xi-l)(xi - xi+l) 

h i-l 

(x - x 
hi + 

i-l) (x - xi> 

(x -X i-l)(xi+l - xi> hi+l ' (54) 
i+l 

For evaluation of the integrals in equation (53b) only linear interpolation is 

used. The evaluation of the expression for Li 

h i+l , provides the values of the (i-1)th , ith and 

the ith row of each of the influence-coefficient matrices 

[ 1 p when 1 < i < n ; the remaining elements in these rows are zero. The 

first and last rows in each case contain only two non-zero elements. Thus each 

of [R'o)] , [B(l)] , and [R(2)] is a band matrix with entries occurring in 

the leading diagonal and the two off-diagonals. 

In piston theory it is postulated that under certain conditions the 

instantaneous pressure Ap at a point on the aerofoil is proportional to the 

instantaneous downwash w at the point. In the present context we may write 
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2peve 
Ap(x,t) = M w(x,t) (55) 

where M is the Mach number; then the lift per unit length of the slender delta 

configuration is given by 

dL 
dx = Ap x 2s(x) 

= ?gxy (-veg+iq 
"i-1 

and the concentrated lift L i at the ith point by 

xi+4 

Li = 
I 

2 dx 

xi-l 

4peve =- 
M s(x)(- veh' + h)dx . 

(56) 

(57) 

Xd 1 i- 7. 

(2) In this case the matrix of influence coefficients is such that R.. = 0 for 
iJ 

all i,j . A numerical procedure similar to that used before leads to band 

matrices for CR")] and b'l)] . 

4 THE NUMERICAL MODEL 

In a series of studies 13,14 around 1960, various calculations were 

performed for an integrated slender-delta shaped aircraft. In these studies 

the aircraft's mass was about 317 500 kg and its length 69.19 m. Subsequently 

Taylor and Urich 10 used a model which was basically similar but which had 

smaller dimensions appropriate to the size and shape of the integrated super- 

sonic transport aircraft configurations which were being considered prior to the 

inception of the Concorde project. Both of these models differed from the 

Concorde inasmuch as they postulated an integrated all-wing configuration which 

could be considered infinitely stiff in the spanwise direction, while the 
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Concorde design featured a discrete fuselage, associated with a thin wing, 

whose spanwise flexibility could certainly not be ignored. However, the 

primary aim of the present investigation is to assess the relative importance 

of the residual-flexibility concept in aeroelastic investigations and, for this 

purpose, the integrated configuration provides a suitable model, free from too 

much structural complexity. Accordingly the model considered by Taylor and 

Urich is employed in the present analysis. 

4.1 Presentation of results in non-dimensional form 

For the presentation of various derived aircraft data and of the results 

of stability and response calculations, it will be convenient to introduce the 
15 non-dimensional systems of units advocated by Hopkin , which are summarised 

in Items 67001-67003 of Ref.16. The structural and aerodynamic influence 

coefficients will be expressed in the aero-normalised system while inertial 

data and stability and response quantities will be expressed in the dynamic- 

normalised system. In each of these systems the units of velocity and force 

are taken respectively equal to V e and ipeViSw , where Ve , p, are the 

datum values of aircraft speed and air density respectively and SW is a 

representative area, here taken to be the planform area. A basic triad of units 

is completed in the aero-normalised system by specifying a representative length 

R. (here taken to be the overall length of the planform) as the unit of length, 

and in the dynamic-normalised system by taking the datum mass of the aircraft, 

m e ' as unit of mass. A parameter which is useful in the consequential defini- 

tion of other units in the two systems is the relative density given by 

lJ = me 
I (ipeSwPo) - 

We now introduce the auxiliary coordinate 5 = xR - x , denoting distance 

aft of the nose and define the aero-normalised quantities g , i and ; by 

;=L= (%I - x> 
RO RO 1 

tVe t’ = - 
Ro ’ i 

(58) 
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It will be noted that, in accordance with Ref.15, the aero-normalised 

coordinates are denoted by the overscript dressing "(dip). Similarly, we shall 

denote dynamic-normalised quantities by the overscript dressing "(cap). 

Further details of the normalised notation used in subsequent sections are given 

in Appendix A. 

4.2 The basic characteristics of the aircraft 

The selected aircraft is essentially a delta-like wing of overall length 

&O = 51.206 m and semi-span at the trailing-edge sT = 12.802 m. In terms of 

the non-dimensional coordinate E defined by equation (58), the planform, which 

is illustrated in Fig.1, is defined by 

I I &, 0.68: - 1.7i2 + 0.476t4 ; 0 .s ; 4 0.328 
ST 

(59) 

I I &= l.l(l.26: - 0.26) - O.l(l.26: - 0.26)11 ; 0.328 4 i 6 1.0 (60) 
ST 

The planform area is SW = 592.35 m2. For the weight distribution it was 

considered appropriate to adopt the 'middle-of-the-cruise' condition defined in 

Ref.10. The relevant weight distribution is shown in Fig.2, the total weight 

being 1205.89 kN with a corresponding CG position of i, = 0.6471*. As no 

parametric study is attempted, only the one condition of flight is considered. 

For the purposes of this investigation the aircraft is idealised as a beam 

of varying cross-section, which is infinitely stiff in the spanwise direction. 

Thus the only structural data which needs to be specified is the distribution 

of (longitudinal) bending rigidity B(i) = EI($ along the representative beam. 

This is taken to be the 'basic' distribution defined in Ref.10 and is shown here 

in Fig.3. This curve is treated as a stepwise continuous function with the 

following values of the various parameters: B, s = !J , B2 BM = & , 

i, , i, 
I I 

= 0.4045 = 0.6824 and g, = 0.8015 . The value of s is 

7.748 x 10' N m2 . 

In order to construct the aerodynamic influence-coefficient matrix the 

only remaining data which need to be specified are the design cruising 

conditions. The selected conditions are:- 

* These figures are consistent with the discrete-mass representation subsequently 
adopted (see Table 1). 
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Cruising altitude : 19202 m 

Corresponding air density p, : 0.0969 kg/m3 

Cruising speed Ve : 649.10 m/s 

Mach number M : 2.2 

4.3 Derived structural and aerodynamic quantities 

4.3.1 The natural modes and the associated generalised masses and 
stiffnesses 

Given an n-point discrete-element representation of the aircraft it is 

theoretically possible to calculate its lowest (n - 2) structural frequencies 

and mode shapes from the (n - 2) distinct eigenvalues and related eigen- 

vectors of the eigenvalue equation (4). In practice it is difficult to achieve 

numerical accuracy of solutions corresponding to the higher-frequency modes so 

that usually only a limited number k are calculated, The value of n is 

arbitrary and the upper limit is determined almost certainly by the available 

store-size in a computer. In turn this limits the size of k . At the other 

extreme Huntley 14 considered a model in which n = 6 and calculated only the 

lowest (fundamental) structural mode. This model was perfectly acceptable for 

the problems which were studied. For our purposes there is no advantage to be 

gained by choosing n as large as possible, since we do not wish to model 

accurately a particular aircraft. However, we do need n sufficiently large 

to permit the accurate determination of an adequate number, k , of modes so 

that the models with and without residual flexibility may be seen to be 

converging to the same solution as k is increased. Two possible models were 

investigated initially, with n = 14 and n = 26 respectively. The features 

of residual flexibility appeared to be demonstrated with sufficient accuracy by 

the 14-point model, and therefore this is the one we choose to describe in this 

Report. In this model it is considered that only the first four natural 

frequencies and mode shapes are of sufficient accuracy. 

The selected finite-element scheme is related to 14 points whose 

coordinates (aero-normalised) and associated masses (dynamic-normalised) are 
" 

shown in Table 1. The continuous functions s(i) and EI(S) may be evaluated 

at the discrete points ii and it is then possible to construct the matrix of 

structural influence coefficients G , the elements of which may be calculated 

according to the procedure specified in section 3. Aero-normalised values are 

shown in Table 2. In turn, equation (5) may be used to obtain the matrix EDI 
which is relevant to the eigenvalue problem. 
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In order to construct a numerical procedure for solving the eigenvalue 

equation, it is noted that only the first few largest eigenvalues (corresponding 

to the lowest natural frequencies) and the associated eigenvectors are required. 

As the eigenvalues are also real and widely spaced, the Power Method 17 provides 

the simplest analytical technique for the solution of the equation, which is 

performed with the aid of a standard scientific subroutine. The first four 

natural frequencies (dynamic-normalised) and mode shapes are specified in 

Table 3 and the mode shapes are also plotted in Fig.4. 

From the calculated frequencies and mode shapes the diagonal matrices of 

generalised masses and stiffnesses, bo+J *[Ko*,] ' have been calculated by 

applying equations (7) and (8) for i,j = 1; 2, . ..(k * 2) , and remembering 

that the rigid-body mode shapes are given by equation (3) and that wl = w2 = 0 . 

Dynamic-normalised values of the diagonal elements of the two matrices are 

presented in Table 4. 

4.3.2 The matrices of aerodynamic influence coefficients 

A description of the method of calculating the matrices of aerodynamic 

influence coefficients is provided in section 3.2. For the planform defined by 

equations (59) and (60) the aero-normalised elements of the matrices (see 

Appendix A) have been evaluated and, for one of the two theories, namely 

slender-body theory, the elements are specified in Table 5. A side-investigation, 

described in Appendix B, indicates that the numerical scheme based on influence 

coefficients should provide tolerably accurate estimates of the aerodynamic 

loading due to deformation. 

4.4 Magnitude of the residual-flexibility effects 

The effect of residual flexibility is included in the equations of motion 

(16) through the non-dimensional matrix A which, by equation (17), is given 

by 

PI- l = Cd - I33 (61) 

where 

PI = [R'][X] . (62) 
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If residual flexibility is neglected we have [E] = [O] . If all the elements 

of the matrix PI are small compared with unity, then, to a first approxima- 

tion, we have 

L-AI = 111 + PI (63) 

so that the values of the elements of the matrix [E] determine the magnitude 

of the residual-flexibility effects. Two factors are involved in determining 

Cd 3 namely the steady aerodynamic influence-coefficient matrix, b’l , and 

the residual-flexibility matrix [x] . However, each acts in a different 

manner. The first factor, [R'] , is independent of the number of structural 

modes that are retained in the model and, as far as determining the magnitude 

of [El is concerned, it acts as a constant for a given aerodynamic theory. 

The second factor, [X] , determines the variation in magnitude of [E] as the 

number of structural modes retained in the model is varied. From equations (26) 

and (24), it is seen that, as the number of structural modes retained is varied 

from zero to (n - 2) , so [x] varies from [G] to [O] . Thus, an upper 

bound to the magnitude of [E] is given by [E'] = [R'][G] . 

With the results obtained from the numerical model so far, it is a simple 

matter to estimate the magnitudes of the elements of [E] . Firstly, the 

residual-flexibility matrix [X] is calculated from equation (26), using the 

already calculated matrices [G] , (Table 2), [Kl] (Table 4) and [Al] (Table 3). 

This has been done for various situations, in which different numbers of 

structural modes have been retained in the analysis, and the aero-normalised 

results for two cases are presented in Table 7*. Finally, an upper bound to the 

magnitude of [E] is obtained by calculating the elements of the matrix [E'] , 

selected elements of which are shown in Table 8. It is to be noted that these 

results are for the situation in which the aerodynamic influence coefficients 

are derived from slender-body theory. However, the use of influence coefficients 

based on piston theory would not alter the general order of magnitude of the 

elements of 
CE3 l 

Table 8 also gives values of the corresponding elements of 

the aeroelastic correction matrix [;i] derived from the approximate relation- 

ship [A] = [I] + [E'J ( see equation (79)). [i] is the correction matrix 

appropriate to the quasi-static (no modes retained) solution. 
. 

* Since one is interested primarily in the order of magnitude of [E] , results 
are given to only one significant figure. 
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5 STABILITY 

In this section we examine the simplest of the problems which are governed 

mathematically by equation (16). This is the problem of stability of the 

aircraft when subjected to an infinitesimal disturbance, the relevant form of 

equation (16) being obtained by setting {F,,) = (01 . This gives a set of 

(k + 2) ordinary differential equations which are linear and second-order in the 

differential operator D E -& . In the dynamic-normalised system they take the 

concise form 

where, from equation (A-18) of Appendix A, the (k + 2) x (k + 2) matrices 

[z] , [b"] and [c] are defined by 

[ii] = [I] + [$"']' 

[q = $1 ' [ 1 
[C-J = [ Li2J + [gp]' . 

(64) 

(65) 

(66) 

(67) 

Equation (64) may be reduced to a set of first-order differential equations by 

setting 

dy" . 
5Oj+k+2 = dt" ' ' 

and then solutions are sought in the form 

(j = I,... k * 2) (68) 

(69) 

where, in general, { may be complex. The presence of a positive real value 

for 1;' will indicate a divergence, while the presence of a pair of conjugate 

complex values with positive real part will indicate an oscillatory instability. 

By substituting equations (68) and (69) into equation (64), we obtain the 

eigenvalue equation 
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(70) 

where the 2(k + 2) x 2(k + 2) partitioned matrix [^d] is defined by 

[Z-J = (71) 

The matrix [a] possesses no special properties so that we are faced 

with the solution of the general algebraic eigenvalue problem, for which the 

QR algorithm has proved to be the most effective of known methods of solution 

(see Wilkinson's 17 'The algebraic eigenvalue problem'). The matrix is first 

transformed into an upper Heisenberg form, i.e. a matrix of an upper triangular 

form with one extra sloping line below the leading diagonal. In the present 

application the calculation of the eigenvalues has been effected by use of two 

standard scientific subroutines. 

The eigenvalues have been calculated for the various cases in which 

k= 0,1,2,3 and 4, and for the two situations in which residual flexibility is 

respectively included and neglected. Dynamic-normalised results obtained by 

using the two different aerodynamic theories in turn are shown in Table 9. In 

general the order of the matrix [2] is 2(k + 2) , which leads to (k + 2) 

pairs of complex conjugate eigenvalues. In fact there are only (k+ 1) non- 

zero pairs, corresponding to the rigid-body short-period mode and the lowest k 

structural modes. The remaining two eigenvalues are zero in virtue of the fact 

that, in the whole-body sense, the aircraft is neutrally stable with respect to 

displacements in the coordinates 51 and c2 . In the numerical-model 

evaluation these eigenvalues actually occur as very small non-zero values. 

If the results for the two aerodynamic theories, given in Table 9, are 

compared, little agreement is seen to exist. This is not unexpected since both 

theories represent a very rough approximation to the true aerodynamics. However, 

there is a measure of agreement with the results obtained by Huntley 14 who used 

piston theory in his calculation of the stability of an aircraft having a delta 

planform roughly similar to, but larger than that of the aircraft considered 

here. An indication of the effects of residual flexibility is obtained if we 

examine the results for each aerodynamic theory separately. These show clearly 

certain main features. Firstly, the overall effects of aeroelasticity in this 



29 

example are quite small. Secondly, the two sets of solutions for a given aero- 

dynamic theory converge towards the same set of values, as the number of 

structural modes' retained in the basic model is increased. (This common set of 

limiting values may effectively be considered as the 'exact' solution.) The 

convergence is achieved very rapidly in the case where residual flexibility is 

included. For example, if we consider the piston-theory results, then as far as 

the rigid-body short-period mode is concerned, the quasi-static solution (k = 0) 

already gives a reasonable approximation (1; 0 = -1.7309 + 17.361i) to the 

'exact' solution (co = -1.7133 5 17.303i) and convergence to the 'exact' 

values is, for practical purposes, complete when k = 1 (;, = -1.7146 f. 17.304i). 

Similarly, a fair approximation to the pair of eigenvalues corresponding to the 

first structural mode is given by the k = 1 solution, (G, = -1.2137 + 107.61i) 

with convergence to the 'exact' solution (c, = -1.1956 + 107.5Oi) being 

virtually complete at k = 2 (cl = -1.1962 -t 107.5Oi) . When residual flex- 

ibility is not included, it is necessary to increase k by 1 or 2 to achieve 

the same degree of convergence as in the case where it is included. However, 

in an example like the present, where overall effects of aeroelasticity are 

fairly small, it appears likely that a generally acceptable approximation to the 

rth pair of eigenvalues (which corresponds to the (r - 1)th structural mode*) 

will be provided by a model which incorporates the first r structural modes, 

with or without the residual flexibility of the neglected modes. 

6 RESPONSE TO A SINUSOIDAL GUST DISTURBANCE 

In this section we study another simple problem, namely the response of 

the aircraft to a sinusoidal gust disturbance, and examine the effect of 

residual flexibility on the calculated accelerations at various stations along 

the length of the aircraft. If we consider the gust to be represented by a 

simple standing wave, of spatial frequency k rad/unit length, then the gust 

velocity, w 
g ' 

experienced by the aircraft travelling at a speed V e , is 

given by 

wg = % sin (kc - wt) (72) 

where w = kV is the temporal frequency in rad/unit time. The local incidence e 
due to the gust is 

* The first pair of eigenvalues corresponds to the rigid-body short-period 
mode. 
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ag =$, 
e 

(73) 

In this instance we consider only piston-theory aerodynamics, according to 

which the lift per unit length along the aircraft is 

dL(c,t) 
G = b,Vz $ ag2sW 

= 
4p,ves (5) 

M w sin (kc - wt) . 
-8 

Thus the lift on the ith element (extending from 5 i*l to 5 i-i > is 

J 
s(C) sin (kc - wt)d{ , 

5. 14 

(74) 

(75) 

This may be expressed in aero-normalised form as 

ii = Li = 244 Ro " 

lP,vfSw 0 c 
W p.(Z) Mpg1 COS Gt + Qi(L) sin Z 1 (76) 

where 

pi(;) = 43 - 
ST 

sin ;sdt 

cos ;idi 

(77) 

(78) 

and A is the aspect ratio of the planform, while 



To simplify the integration procedure in equations (77) and (78) for the 

numerical work, the actual planform given by equations (59) and (60) was 

approximated by a triangular shape, defined by 

I I s(i)=(& , 
RO 
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(79) 

030) 

which has an area S' = 655.52 m2 and an aspect ratio A' = 1.0 . With the 

substitution of equa:ion (80), the integrals in equations (77) and (78) are 

readily performed and, by use of equations in z corresponding to equation (52) 

in x , pi(') and qi(;) can be expressed in terms of ii-1 9 ii and YSi+l* 

The response problem is governed by a set of (k + 2) ordinary 

differential equations which, from equation (A-18) of Appendix A, take the 

concise dynamic-normalised form 

(81) 

where [Ei] , [G] and [E] are defined by equations (65)-(67) and 

by use of equations (A-17), (A-15) and (76), it being noted that { iDi = - {;I , 

3 = c;if , and i; =; 
% -%' 

The solution of equation (81) may be expressed in the form 

ii = (g(2) $)(Bi cos 6; + Ci sin ZEj ($3) 

where B. and C 1 i may be determined from the set of 2(k + 2) equations 

described by 
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(84) 

For a particular value of w^ , the solution for can be obtained directly 

by using a standard scientific subroutine, which based on a Gaussian 

elimination method. 

The displacements w  and accelerations bl of the mass-points normal 

to the datum flight path are related by {f/ = {ii , and the displacements may 

be expressed as 

(85) 

The column vector &I is determined from equation (15) which, with the 

approximations used in developing the residual-flexibility concept, may be 

written as 

B&J b2 1 = [PJTCR’l PO+ Jr %I+ 1 I + [r*21T~RT*21]r 52 t + r*,3’iqJ l (86) 

Premultiplication of equation (86) by [*,][K,J-' and use of equation (18) 

leads to 

[PI - L-4 co] P& t = CxlCR’l Po+J{~o+J + CXIPJ * (87) 

On substituting for P&,I in equation (85) we obtain, in terms of 

normalised quantities previously introduced, 

(:I = !$ = [A1][[Ao+,];o+l - ; i : 
0 

c I( I] (8% 

where 

[A']-1 = [I] - [X][R'] . (89) 

Finally, the displacement and acceleration at the ith point may be 

expressed in the form 



ii 
2 

02 'i - = 'a - = 
n n 
% % 

- 12bio(C) sin {X * si(lj)} 

where 

and 

ei(G) = tan 
-1 pf 

0 
Q' 

i 
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(90) 

(91) 

(92) 

while, through the use of (76) and (83), (PI) and {Q'\ are defined by 

If residual flexibility is neglected, [A'] = [I] and [Z] = [o] . Then, in 

equations (91) and (92), P! and Qi are replaced by Pi and Qi where 1 

M = [Ao+llfB t 
(94) 

n 

The vectors i t ;0 and E j t have been evaluated for ranges of values of "w 

centred about the frequencies of the aircraft short-period mode and the first 

four structural modes. The calculations were performed for a number of cases 

both with and without allowance for residual flexibility. A selection of these 

results has been used in preparing Figs.5-14, which illustrate the relative 

accuracies of the computed responses derived by use of the various structural 

models. 

Pairs of figures: 5 and 6, 7 and 8, and 9 and 10 show the amplitudes and 

phase angles of the acceleration response at Stations 14, 7 and 1 for gust 

excitation frequencies in the vicinity of the aircraft's short-period frequency 
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and of the first structural-mode frequency. These stations are at the nose, 

near the CG and at the tail-end of the aircraft. The amplitude of the response 

per unit amplitude of gust velocity is expressed in dynamic-normalised form 

; ; 
I 473 

where L denotes the dynamic-normalised amplitude of acceleration 

expressed in 'g'-units, rather than in the basic unit of acceleration in the 

dynamic-normalised system; i.e. $ = i/lg" , where i 

(in UK or SI system). 

=(me/ipeVES)g = 0.09974 , 

Now 

Thus the amplitude of acceleration in 'g'-units, per unit amplitude of gust 

velocity may be obtained, in a system of 'ordinary' units, from the plotted 

results, by use of the relationship 

In examining the figures it may be considered that the curves for 

'4 modes retained, with residual flexibility' represent the 'exact' solution 

for the 14-element model, to engineering accuracy. The '0 modes retained, 

without residual flexibility' curves correspond to the 'rigid-aircraft' solu- 

tion, while the '0 modes retained, with residual flexibility' curves represent 

the 'quasi-static' solution for the flexible aircraft. 

From the left-hand halves of Figs.5-10 it is clear that the response of 

the actual (flexible) aircraft to sinusoidal gusts in the frequency-range of 

the aircraft short-period mode is very inaccuractely predicted by a'rigid- 

aircraft' calculation. The quasi-static solutions and the solutions based on 

the retention of a single mode, without residual flexibility, give tolerably 

good approximations to the 'exact' solution, the errors in the two cases being 

of roughly the same magnitude, albeit of opposite sign. The addition of 

residual flexibility to the '1 mode retained' model provides a solution which 

approximates the 'exact' solution with engineering accuracy. The computer 

results show a progressive increase in the accuracy of the calculated response 

as more modes are incorporated in the structural model (without or with 
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residual flexibility) but for practical purposes the (1 mode + residual 

flexibility) model or the (2 modes without residual flexibility) model provides 

an acceptable solution. 

From the right-hand halves of Figs.5-10 it is seen that, in order to 

predict response at frequencies near that of the first structural mode, it is, 

of course, essential to retain that mode in the structural model. Moreover, if 

residual flexibility is included, the retention of this one mode is sufficient 

to ensure a solution that approximates the 'exact' solution with engineering 

accuracy. The computer results show that a solution of comparable accuracy is 

obtained from the (2 modes without residual flexibility) model and that the 

addition of residual flexibility and/or further modes then results in refine- 

ments of accuracy that are of academic interest only. 

The computer results for frequencies near those of the second and higher 

structural modes suggest that acceptable results are provided by models which 

incorporate all the modes with frequencies up to and including that at which the 

response is required, with or without residual flexibility. Typical results, 

supporting this conclusion, are illustrated in Fig.11, which shows the amplitude 

of the acceleration response at Stations 1 and 14 to sinusoidal gusts of 

frequencies near that of the second structural mode. (Station 7 lies nearly at 

a node for this mode and response there is consequently negligible.) It will 

be noted that solutions for the (2 modes without residual flexibility) and 

(4 modes with residual flexibility) models are practically identical. 

Similar conclusions as to the adequacy of the various structural models 

are suggested by consideration of Figs.12-14, which compare displacements of 

the aircraft centre-line from the datum flight path, as calculated for selected 

models, responding at frequencies close to the resonance frequencies indicated 

by Figs.5-11. As indicated on the figures, the displacements shown are those 

occurring at the instant when the displacement at Station 14 (nose) is at its 

maximum. Because the phase-angle of the response varies along the aircraft, the 

displacements at stations other than the nose are somewhat below their maxima. 

7 CONCLUDING SUMMARY AND DISCUSSION 

A simple fourteen-element idealisation of an aircraft of slender-delta 

configuration has been used as the basis of a numerical investigation of the 

validity and usefulness of the residual-flexibility concept in the analysis of 

the dynamical behaviour of deformable aircraft. The only form of elastic 
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deformation admitted by this model is longitudinal bending and, in assessing 

the incremental aerodynamic effects of such bending, two simple but very 

approximate theories - slender-body theory and linearised piston theory have 

been employed. Thus no great reliance can be placed on the czbsoihhe values of 

any of the calculated quantities. However, the main object of the investiga- 

tion has been to assess the reZative accuracies of various truncated modal 

analyses in which only a limited number (up to four) of the natural modes of 

the basic model have been used, in conjunction with 'rigid-body' modes, to 

specify the displacement of the aircraft from its datum-flight-path configura- 

tion. For this purpose, the accuracy of the aerodynamic theory employed is 

relatively unimportant. 

The effect of residual flexibility has been examined in the context of 

stability and response calculations which were performed for structural models 

incorporating 0,1,2,3 or 4 structural modes, with or without an allowance for 

the residual flexibility of the neglected modes. The 'zero modes-retained' 

cases, without and with residual flexibility, respectively provide the 'rigid- 

aircraft' and 'quasi-static' aeroelastic solutions. For the models incorpora- 

ting the rigid-body mode and k elastic modes (k = 0,1,...4) the stability 

calculations provided (k + 1) pairs of complex eigenvalues, representing 

approximations to the lowest (k+ 1) eigenvalue-pairs of the basic (14- 

element) model. The corresponding response calculations yielded displacement- 

and acceleration-responses to harmonic gusts of frequencies up to the vicinity 

of the kth natural structural frequency. In general, results for the two 

series of models (i.e. without and with residual flexibility) exhibit a pattern 

of convergence which justifies the following conclusions:- 

(1) For practical purposes the model incorporating four structural modes, 

with residual flexibility, may be considered to give 'exact' solutions for the 

stability and response characteristics of the basic (14-element) model in a 

frequency range extending up to the fourth natural frequency. 

(2) Results for both series of models converge quite rapidly to the 

'exact' values. However, for a given value of k , the model with residual 

flexibility provides the better approximation. It is roughly true that the 

addition of residual flexibility to a model without residual flexibility 

effects an improvement of the same magnitude as would the addition of another 

mode. 



37 

(3) At the lower end of the frequency range the residual-flexibility 

effect is quite significant, and its inclusion in the 'O-modes retained' model 

leads to the well-known 'quasi-static' solution for the aircraft's short-period 

characteristics, whereby the considerable errors involved in the 'rigid-aircraft' 

solution are largely eliminated. Addition of residual flexibility to the 

'l-mode retained' model converts solutions of tolerable accuracy into ones which, 

for engineering purposes, are virtually exact. 

(4) As one progresses up the frequency range and necessarily incorporates 

more modes in the model, the effect of including residual flexibility, though 

seen to be consistently favourable, diminishes quantitatively. Thus, in the 

present example, there is little to be gained practically by adding residual 

flexibility to a,model which incorporates more than two modes. 

(5) Summing up the results of this limited numerical study we may 

conclude that the concept of residual flexibility is sound in principle and 

that, as applied here, it leads to results that are consistently meaningful in 

a mathematical sense. Moreover, when the low-frequency characteristics of an 

aircraft are being investigated by means of a structural model which incorporates 

very few modes dynamically, the inclusion of residual flexibility may result in 

an increase in accuracy which is of engineering significance. However, in the 

case of the models incorporating more modes, which are necessary to evaluate 

the higher-frequency characteristics, the small increase in accuracy resulting 

from the inclusion of residual flexibility is of academic interest only. In 

the context of the so-called integrated approach to aeroelastic problems, 

wherein a structural model incorporating a fairly large number of modes must be 

used in order to deal with the higher-frequency problems, the residual-flex- 

ibility concept would thus seem to have little practical value. 
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Appendix A 

THE AERO-NORMALISED AND DYNAMIC-NORMALISED SYSTEMS OF UNITS 

A.1 Units for fundamental quantities 

As mentioned in section 4.1 of the main text, it was considered convenient 

to present numerical results of this investigation in terms of the aero- 
15 normalised and dynamic-normalised systems of units introduced by Hopkin . The 

following table gives expressions for the units of five fundamental quantities - 

force, speed, mass, length and time - in the two systems. Evaluation of these 

expressions for values of V , p,, S e w' $0' me in a given system of ordinary units 

provides the normalising divisors for converting quantities in that system to 

corresponding quantities in the appropriate non-dimensional system. Table Al 

below shows the values of these divisors in UK ordinary units (lb,ft,second) and 

in SI units (kg, metre, second). 

Table Al 

Aero-normalised system Dynamic-normalised system 

Quantity 
Unit 

Divisor Unit Divisor 

UK units SI units UK units SI units 

Force he+" 0.27181 x lo7 0.12091 x lo8 
lbf newtons 

be+, 0.27181 x IO7 0.12091 x lo8 
lbf newtons 

Speed "e 0.21296 x lo4 0.64910 x lo3 
ft/s m/S 

'e 0.21296 x 10 
4 0.64910 x IO3 

ft/s m/S 

Mass me/u 
0.10069 x IO3 0.14695 x 10 4 m 0.84259 x 10 4 0.12297 x 10 6 

e 
(= lPesw~o) 

slugs ka slugs kg 

Length "0 
0.168 x 10 3 0.51206 x 10' 0.14059 x lo5 0.42850 x IO4 

ft UkO m ft m 

Time lo ve 
I 

0.78888 x IO -1 0.78888 x lo 
-1 

rA = TD = 
S 

MO ve 0.66015 x IO 0.66015 x 10 
S I S S 

2 2 
!J = m e meswao> 

1 
= 0.836818 x 10 ; g = 0.32174 x 10 = 0.98067 x 10 

ft/s2 m/S2 

A.2 Normalised forms of some other quantities 

The aerodynamic influence coefficient R.. and the related coefficients 
Rt2) 

ij , R(1) and R!?) 
1J 

ij 1J 
are defined by equations (46) and (47) of the main text 

which, with the substitution of equation (B-l) of Appendix B, may be written in 

the aero-normalised forms 
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and 

i ij 
= p>p + pi + p 

ij ij ij l 

Appendix A 

(A-1) 

(A-2) 

Basically, R.. 
=J 

is a force per unit deflection (length) and is thus 

aero-normalised by means of the divisor Then it is evident from 
(0) equation (A-2) and equation (B-3) that the aero-normalising divisors for R.. , 

R(l) . . and R(2) are (1~ V2S /e,> , (ipeVeSw) and ipeSwRo respectively.iJThe 

ftilowing tf'le gives valie: If these divisors appropriate to the UK and SI 

systems of ordinary units 

Table A2 

Aero-normalised Relationship with Value of normalising divisor in: 

quantity ordinary quantity UK units SI units 

Rym 
ij R:;'/(~oeV:Sw/~o) 0.1;;;;,; 105 0.~~;:2%,;,'06 

$1) 
ij Ri;)/ boeVeSw) 0.1;;;3s;f:04 0,;:;:; ;,;' 

p 
ij 0.10068 x lo3 0.14694 x 10 4 

lbf s2/ft newton s2/m 

By use of equation (B-2), equation (53b), which relates to slender-body 

theory,may be expressed in the aero-normalised form 

Li 

IPV~Sw = 

“’ TA 
2 

(A-3) 
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where S w ' A are the planform area and aspect ratio, which are related to the 

trailing-edge semi-span, ST , by 

4s; 
SW = -/j- . 

Then the elements of [i(o)] , [i(l)] and [i( may be determined by 

considering, in turn, the expressions 

(A-4) 

(A-5) 

(A-7) 

and using the aero-normalised form of the parabolic interpolation formula, 

equation (54), (i.e. with &, in place of h and i intplace of x , etc.). 

In similar fashion, equation (57), for the piston-theory case may be 

expressed in aero-normalised form: 

Y 
5. 

Li 
1-A Y 

ii = 
XL 2fl Ro = e -- 

M% J 
y (iI + :&)di 

F i+i 

(A-8) 

and the matrices [<(")I and [l;;(l)] may be derived from consideration of the 

expressions 

(A-9 > 
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and 

Appendix A 

E. 1-t 
c s(i) ” ” -LdS , 

"9 ST 
(A-10) 

respectively. (The matrix a(2) c 1 is null in this case.) The structural 

flexibility influence coefficient G.. 
1J 

is a deflection (length) per unit force 

and is thus aero-normalised by means of the divisor (~o/!2Pe+w) , i.e. 

E ij = Gij X (i ~difS~/'o) 

where the values of the multiplier ('pev3w/'O) in UK and SI units are equal 

to the respective values of the corresponding normalising divisors for p 
ij 

in Table AZ. Elements of the residual-flexibility matrix [X] have the same 

dimensions as G.. . Hence 
1J 

ii = x x (iPeVfSw/!Lo) . 

As the generalised masses and stiffnesses of the aircraft modes (Mj ,Kj > 

are defined for use in the dynamical equations they are best normalised with 

respect to the dynamic-normalised system of units. From equation (7) of the 

main text, since the mode shape {A} is non-dimensional, it is clear that Mj 

has the dimensions of mass and hence should be normalised by dividing by m e ' 
i.e. 

where the values of m e appropriate to the UK and SI systems are given in 

Table Al. From equation (8) it is seen that K. 
J 

has the dimensions Mass/Time2 

and hence the appropriate normalising divisor is I 
2. m e TD , i.e. 
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where the divisor -2 m r eD assumes the values:- 

0.19334 x 10 3 slugs/s 2 in UK units 

0.28217 x lo4 kg/s2 in SI units. 

The frequency of a structural mode, o. , has the dimensions of (time) -1 
J 

so that the appropriate normalising divisor is -1 
TD , i.e. 

j = w 
-1 

'D 

where the divisor ~~~ has the value 

0.15148 s-l in both UK and SI units. 

A.3 Normalised form of the equations of motion 

The non-dimensional form of the equations of motion recommended in Refs.15 

and 16 is the concise dynamic-normalised form. To obtain equations in this form 

we start from the expanded aero-normalised form of equation (16) 

f 
&(ii2 + t2) (;o+l\ = [Ao+l]T[A]b(2)ij2 + ii(')6 + ii(') [Ao+l]($+l\ 1 

+ cA,+,lTIAl~‘,k ’ 
and write 

” (0) 
[ I EM = [a,+,3T~~(09P~+J 

and 

(A-11) 

(A-12) 

-CO) ' [ 1 EM = ~~~+~lT~~~r~~o~lC~o+~l ’ (A-13) 

Similarly, write pil)] and pi')]' for the corresponding expressions with 

p v(1) . . replaced by R.. 

b;' Rc2) 
1J 

, and pi')] , pL2)]' for those with giy) replaced Y 
ij . Also, write 
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and 

Appendix A 

(A-14) 

(A-15) 

(The primes here denote 'modified' values of the quantities concerned, which 

incorporate the effect of residual flexibility, through the matrix [A].) Then 

equation (A-11) becomes 

and, if both sides are pre-multiplied by and we write 

) (A-17) 

the required concise form of the equations of motion is obtained as 
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Appendix B 

A CHECK ON THE ACCURACY OF AERODYNAMIC LOADING 
DERIVED BY USE OF INFLUENCE COEFFICIENTS 

For two simple situations it is possible to compare the approximate 

results for total lift and pitching moment obtained from the numerical scheme 

based on influence coefficients with 'exact' results obtained analytically. 

Firstly, we set 

h(S,t) = ehtP(S) 

or, in aero-normalised form: 

% 
h(t ,5 = e h(i) 

where G(E,;) and ; are defined by equation (58) of the main text, and 

ARO 
yx=y--. 

e 

Then we consider in turn the two displacement mode shapes 

h(g) = 5 tan fi 

= iz, for small a 

(B-1) 

03-2) 

(B-3) 

(B-4) 

and 

g, = ;<1 - t$ . (B-5) 

The corresponding profiles are sketched in Fig.5; for the first, the amplitude 

of the angle of attack, CC , is constant along the aircraft; for the second it 

varies linearly from CL at the nose to -u- at the tail-end. 

The total aero-normalised lift is given by 

1 

L= L2 = 1 

ipevesw 
ip v2s J 

1 Y 

zdt = 
I 

g dt 

eew0 0 

(B-6) 
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while the aero-normalised nose-up pitching-moment about the nose, i , is 

given by 

1 1 Y 
ii = M 

lPefSw$) = - 
Rot $ 

" dL dt = - 

6 

k i$ d! . 
dS 

03-7) 

dL The longitudinal distribution of lift dx , according to slender-body theory, 

is given in the main text by equation (51b) which, by use of equations (58), 

(61) and (62), can be written in the aero-normalised form 

where dashes denote differentiation 

ratio of the planform (‘4 = qsw) 

I, = tei; = $0) + - 
(- 

. . . (~-8) 

with respect to i , and A is the aspect 

. Hence, if we set 

we have 

(B-9) 

Similarly, if we set 

ci = fie’XE = 
( 
g(O) + $1) ~ yhQp> .huf - - - - ) (B-11) 

we have 
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(B-12) 

* (r) The expressions for k , iicr) , r = 0,1,2, in equations (B-10) and (B-12) may _ 

be evaluated analytically for the distributions of L(E) defined by equations 

(B-4) and (B-5). Results obtained in this way are shown in Table 6, together 

with values of these quantities calculated from the numerical model. Reasonably 

good agreement is seen to exist and, therefore, the exercise has not been 

repeated for the case where the aerodynamic influence coefficients are derived 

from piston theory. 

It may be noted that, since in the cases considered, ;: (r) and G(r) - 
will be proportional to 2 , then, if we write 

i(i - 
a=ae , - we can express 

equations (B-9) and (B-11) in the forms 

where 

Y 
r, = E.+--. ai. +a&, 

a& y Y say Y 

. aa R ati, ., &&= k2 a2a . 
c(v=z=yz , ay = at'2 

-m 

v2 af2 

are the normalised angular velocity and angular acceleration. Then 

ai f(O) a: i(l) ai 32) 
-- -=- 

aa= z 'aiy cL 
"a;; = L 

Y a 

(B-13) 

(B-14) 

(B-15) 

(~-16) 

(B-17) 
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Element 
number 

i 

1 -0.3529 1.0000 0 

2 -0.3384 0.9855 0.037736 

3 -0.2809 0.9280 0.047954 

4 -0.2064 0.8535 0.173740 

5 -0.1224 0.7695 0.165993 

6 -0.0363 0.6834 0.146812 

7 0.0438 0.6033 0.126893 

8 0.1248 0.5223 0.089932 

9 0.2045 0.4426 0.059536 

10 0.3036 0.3435 0.059665 

11 0.4111 0.2360 0.060200 

12 0.5011 0.1460 0.030314 

13 0.5941 0.0530 0.001225 

14 0.6471 0 0 

Table 1 

DISTRIBUTION OF DISCRETE MASSES 

Location 
Y 

X. = x. R 
1 

1 0 

1 I 

ii= 
( xl4 - xi )I '0 

Normalised mass 
n 
m. = m. m 

1 I 1 e 



Table 2 

THE AERO-NORMALISED STRUCTURAL FLEXIBILITY INFLUENCE COEFFICIENTS E,; 

2 3 4 5 6 7 8 9 10 11 12 13 14 

1 0.0613 0.0545 0.0299 0.0060 -0.0093 -0.0157 -0.0167 -0.0140 -0.0076 0.0053 0.0243 0.0424 0.0621 0.0735 

2 0.0545 0.0482 0.0272 0.0059 -0.0082 -0.0143 -0.0154 -0.0131 -0.0072 0.0047 0.0222 0.0392 0.0574 0.0680 

3 0.0299 0.0272 0.0160 0.0050 -0.0043 -0.0090 -0.0104 -0.0093 -0.0056 0.0024 0.0146 0.0265 0.0395 0.0469 

4 0.0060 0.0059 0.0050 0.0025 -0.0001 -0.0029 -0.0043 -0.0045 -0.0034 0.0000 0.0057 0.0115 0.0178 0.0215 

5 -0.0093 -0.0082 -0.0043 -0.0001 0.0019 0.0023 0.0015 0.0004 -0.0005 -0.0015 -0.0022 -0.0026 -0.0029 -0.0030 

6 -0.0157 -0.0143 -0.0090 -0.0029 0.0023 0.0052 0.0059 0.0049 0.0026 -0.0018 -0.0080 -0.0137 -0.0197 -0.0233 

7 -0.0167 -0.0154 -0.0104 -zO.O043 0.0015 0.0059 0.0084 0.0083 0.0055 -0.0011 -0.0112 -0.0210 -0.0315 -0.0375 

8 -0.0140 -0.0131 -0.0093 -0.0045 0.0004 0.0049 0.0083 0.0095 0.0077 0.0006 -0.0116 -0.0239 -0.0374 -0.0451 

9 -0.0076 -0.0072 -0.0056 -0.0034 -0.0005 0.0026 0.0055 0.0077 0.0076 0.0028 -0.0084 -0.0207 -0.0345 -0.0422 

10 0.0053 0.0047 0.0024 0.0000 -0.0015 -0.0018 -0.0011 0.0006 0.0028 0.0037 0.0012 -0.0046 -0.0120 -0.0163 

11 0.0243 0.0222 0.0146 0.0057 -0.0022 -0.0080 -0.0112 -0.0116 -0.0084 0.0012 0.0155 0.0299 0.0429 0.0503 

12 0.0424 0.0392 0.0265 0.0115 -0.0026 -0.0137 -0.0210 -0.0239 -0.0207 -0.0046 0.0299 0.0684 0.1158 0.1427 

13 0.0621 0.0574 0.0395 0.0178 -0.0029 -0.0197 -0.0315 -0.0374 -0.0345 -0.0120 0.0429 0.1158 0.2103 0.2767 

14 0.0735 0.0680 0.0469 0.0215 -0.0030 -0.0233 -0.0375 -0.0451 -0.0422 -0.0163 0.0503 0.1427 0.2767 0.3689 
1 1 

Note: (1) Eij = Gij x where values of the normalising factor (~peV~SwleO) in UK and 

SI units may be obtained from Table A2. 

(2) For ease of presentation, values of E ij are shown only to 4 places of decimals; this is 

sufficient to indicate relative orders of magnitude. 
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Table 3 

PROPERTIES OF THE FIRST FOUR NATURAL MODES OF THE STRUCTURE 

Mode number 1 2 3 4 

Dynamic-norylised 
frequency w 102.54 234.45 452.19 848.63 
radldysecond 

Mode shape: Displacements normalised with respect to 
displacement at station 14 (nose) 

Station 

1 0.44963 -0.51998 0.25530 -0.18956 

2 0.41027 -0.43955 0.18919 -0.10896 

3 0.26340 -0.17236 0.00986 0.04255 

4 0.09597 0.06315 -0.08319 0.05640 

5 -0.04593 0.15835 -0.05114 -0.01132 

6 -0.14222 0.10630 0.05581 -0.08695 

7 -0.19131 -0.01420 0.11441 -0.00965 

8 -0.19427 -0.14364 0.06560 0.09362 

9 -0.14135 -0.23077 -0.06274 0.08809 

10 +0.01032 -0.20516 -0.18254 -0.05507 

11 0.26757 0.02238 -0.08584 -0.09143 

12 0.53266 0.34402 0.20283 0.08275 

13 0.82926 0.75666 0.69288 0.61186 

14 1.00000 1.00000 1.00000 1 .ooooo 
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Table 4 

ELEMENTS OF THE DIAGONAL MATRICES OF GENERALISED 

MASSES AND STIFFNESSES lMO+IJ AND fKo+lJ 

Dynamic-normalised values 

i Eii = Mii me 
I 

iii = Kii meTi" 
I 

1 1.00 0 

2 0.10990 0 

3 0.03762 395.26 

4 0.02706 1489.6 

5 0.01005 2053.4 

6 0.00483 3480.9 
i 

Values of the normalising factors 

Normalising 
factor 

Value in UK units Value in SI units 

m 

-e2 

0.84259 x lo4 slugs 0.12297 x lo6 kg 

2 
rnT 

eD 
0.19334 x IO6 slugs/s 0.28217 x lo4 kg/s2 

I 



Table 5 

NORMALISED AERODYNAMIC INFLUENCE COEFFICIENTS DERIVED FROM SLENDER-BODY THEORY 

ii 
ij 

= $2)x2 + $1) 
ij 

ij x + p 

The tables below give values of the elements H.. in the leading diagonal and of elements H and ii 

in the off-diagonals of the matrices [R ” (2) 1 , tk”‘] and [k (O)] 
i,i-1 i,i+l 

. All other elements are zero. 

Matrix [ii C2)] Matrix [i”)] Matrix [ii(O)] 

i 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

p 
i,i-1 

-0.00017 
-0.00065 
-0.00108 
-0.00111 
-0.00084 
-0.00072 
-0.00056 
-0.00065 
-0.00035 
-0.00007 
-0.00007 
-0.00001 

0.00000 

$2) 
ii 

0.00000 
-0.06206 
-0.10635 
-0.10775 
-0.089 28 
-0.06307 
-0.04226 
-0.02674 
-0.01639 
-0.00642 
-0.00337 
-0.00140 
-0.00018 

0.00000 

p 
i,i+l 

0.00000 
0.00001 
0.00039 
0.00085 
0.00106 
0.00098 
0.00071 
0.00058 
0.00042 
0.00030 
0.00010 
0.00006 
0.00003 

i p> 
i,i-1 

$1) 
ii 

j$l> 
i,i+l 

1 - 0.0000 0.0000 
2 -6.8455 6.3850 0.4326 
3 -2.1111 0.7061 1.2216 
4 -1.5731 0.1098 1.1728 
5 -1.1173 -0.1781 0.9886 
6 -0.7386 -0.3064 0.7829 
7 -0.5602 -0.1478 0.4952 
8 -0.3508 -0.1377 0.3194 
9 -0.2551 -0.0220 0.1364 

IO -0.0879 -0.0441 0.0575 
11 -0.0304 -0.0267 0.0374 
12 -0.0184 -0.0116 0.0132 
13 -0.0021 -0.0076 0.0037 
14 0.0000 0.0000 - 

-I I- 

i 

1 
2 
3 
4 
5 
6 
7 
8 
9 

IO 
11 
12 
13 
14 

$0) 
i,i-1 

-120.15 
-29.68 
-20.32 
-14.40 
-10.32 

-7.95 
-5.21 
-3.40 
-1.21 
-0.39 
-0.27 
-0.06 

0.00 

;(O) 
ii I 

; (0) 
i,i+l 

0.00 
149.96 

50.12 
34.87 
24.88 
18.15 
13.19 
8.38 
4.71 
1.64 
0.64 
0.36 
0.05 
0.00 

0.00 
-29.81 
-20.44 
-14.56 
-10.48 

-7.83 
-5.24 
-3.11 
-1.31 
-0.43 
-0.25 
-0.08 

0.01 

Note: For values of the aero-normalising constants in lJK and SI units, see Table A2 of the Appendix. 
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Table 6 

DERIVATIVES OF AERODYNAMIC LIFT AND PITCHING MOMENT COEFFICIENTS 
AS DETERMINED ANALYTICALLY AND NUMERICALLY 

(Slender body theory) 

Test Case 1 

Derivative Numerical Analytical 

p) at 
-=- 

a aa 1.7343 1.7104 

i(l) ai 
-- = - 

a a&, 

tC2) a; 
-=e 

c1 ati, 

2.2719 2.2281 

0.4246 0.4151 

-1.1970 -1.1727 

$1) ak 
- = 

a aBy 
-1.7344 -1.6913 

-0.3407 -0.3498 

Test Case 2 

Analytical Numerical 

-1.6931 

Derivative 
u 
L(O) ai: =L-.=- 

a aa 

i(l) ai 
-=- 

ci a& Y 

t(2) a: 
=--=T a 

Y 

go) ak 
-=- 

a aa - 
;(I) a; 
-=- 

a a6 - Y 

ct2) ai 

---=zr- a 
Y 

-1.7343 

-0.3120 -0.2954 

0.07478 0.07378 

1.3812 

0.3345 

1.4223 

0.3498 

-0.05268 -0.05232 



Table 7 

ELEMENTS OF THE NORMALISED RESIDUAL FLEXIBILITY MATRIX [;;I 

(a) One mode retained 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 0.02 0.02 0.005 -0.003 -0.005 -0.002 0.001 0.005 0.006 0.005 -0.001 -0.008 -0.02 -0.02 

2 0.02 0.01 0.05 -0.002 -0.005 -0.002 0.001 0.003 0.005 0.003 -0.001 -0.006 -0.01 -0.02 

3 0.005 0.005 0.001 -0.0003 -0.002 -0.001 0.0002 0.001 0.002 0.002 -0.0003 -0.003 -0.006 -0.008 

4 -0.003 -0.002 -0.0003 0.0005 0.0008 0.0000 0.0005 -0.0006 -0.0005 -0.0002 0.0003 0.0006 0.001 0.001 

5 -0.005 -0.005 -0.002 0.0008 0.001 0.0008 -0.0005 -0.001 -0.002 -0.001 0.0003 0.003 0.005 0.006 

6 -0.002 -0.002 -0.001 0.0000 0.0008 0.001 0.0002 -0.001 -0.002 -0.001 0.0001 0.002 0.005 0.006 

7 0.001 0.001 0.0002 -0.0005 -0.0005 0.0002 0.0006 0.0005 -0.0002 -0.0006 -0.0003 0.0006 0.002 0.003 

8 0.005 0.003 0.001 -0.0006 -0.001 -0.001 0.0005 0.002 0.002 0.001 -0.0006 -0.002 -0.003 -0.005 

9 0.006 0.005 0.002 -0.0005 -0.002 -0.002 -0.0002 0.002 0.003 0.003 -0.0005 -0.005 -0.01 -0.01 

10 0.005 0.003 0.002 -0.0002 -0.001 -0.001 -0.0006 0.001 0.003 0.003 0.0006 -0.006 -0.01 -0.02 

11 -0.001 -0.001 -0.0003 0.0003 0.0003 0.0001 -0.0003 -0.0006 -0.0005 0.0006 0.0003 -0.0003 -0.003 -0.006 

12 -0.008 -0.006 -0.003 0.0006 0.003 0.002 0.0006 -0.002 -0.005 -0.006 -0.0003 0.008 0.02 0.03 

13 -0.02 -0.01 -0.006 0.001 0.005 0.005 0.002 -0.003 -0.01 -0.01 -0.003 0.02 0.06 0.1 

14 -0.02 -0.02 -0.008 0.001 0.006 0.006 0.003 -0.005 -0.01 -0.02 -0.006 0.03 0.1 0.2 
1 

Notes: (1) ;;ij = xij x (lPevfsw/e,) where values of the normalising factor (tpev3w/'O) in DR and SI units 

may be obtained from Table A2. 

(2) When no modes are retained, x'.. = E... 
J-J =J 

The elements of [;I are given in Table 2. 
Y 

(3) Values of X.. 
13 

, quoted above to only one significant figure and a maximum of 4 decimal places, are 

intended only to indicate order of magnitude, for comparison with corresponding values of E.. . 
=J 



Table 7 (continued) 

(b) Four modes retained 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 -0.0003 0.0002 -0.0001 -0.0001 0.0002 0.0000 -0.0002 0.0000 0.0002 0.0000 -0.0001 0.0001 0.001 0.002 
2 0.0002 0.0000 0.0001 -0.0001 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 -0.0001 0.0000 0.001 0.001 

3 -0.0001 0.0001 -0.0003 0.0002 -0.0002 0.0000 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0003 0.0005 

4 -0.0001 -0.0001 0.0002 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0002 -0.0003 

5 0.0002 0.0001 -0.0002 0.0001 -0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0003 

6 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0003 0.0006 

7 -0.0002 0.0001 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 -0.0005 -0.0006 

8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0005 -0.001 

9 0.0002 0.0001 0.0001 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000 0.0001 -0.0001 0.0001 0.0006 0.001 

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 -0.0002 0.0001 -0.0002 0.0008 0.002 

11 -0.0001 -0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 -0.0001 0.0001 -0.0001 0.0002 -0.0001 -0.002 

12 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 -0.0002 0.0002 -0.0002 0.0008 0.0005 

13 0.001 0.001 0.0003 -0.0002 0.0002 0.0003 -0.0005 -0.0005 0.0006 0.0008 -0.0001 0.0008 0.003 0.02 

14 0.002 0.001 0.0005 -0.0003 0.8003 0.0006 -0.0006 -0.001 0.001 0.002 -0.002 0.0005 0.02 0.03 
, 
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Table 8 

VALUES OF SELECTED ELEMENTS OF THE MATRICES [E] AND [A] 

(a) Values of E. . 
11 

j 

\ i 

2 

4 

7 

10 

13 

2 

-0.13 

-0.23 

-0.022 

0.0070 

0.0012 

(b) Values of i;: 

4 

0.015 

-0.013 

-0.010 

0.0017 

-0.0004 

j 

\ i 

2 0.87 0.015 -0.0091 -0.0054 0.017 

4 -0.23 0.987 0.041 -0.027 -0.14 

7 -0.022 -0.010 0.980 -0.0031 -0.063 

10 0.0070 0.0017 -0.0037 1.0021 0.0039 

13 0.0012 -0.0004 -0.0007 -0.0005 1.0063 

2 4 

7 

-0.0091 

0.041 

-0.020 

-0.0037 

-0.0007 

10 13 

-0.0054 0.017 

-0.027 -0.14 

-0.0031 -0.063 

0.0021 0.0039 

-0.0005 0.0063 

7 10 13 



Table 9 

NORMALISED EIGENVALUES CORRESPONDING TO VARIOUS STRUCTURAL REPRESENTATIONS IN 
ASSOCIATION WITH TWO DIFFERENT AERODYNAMIC THEORIES 

I--- Slender-body theory aerodynamics Piston-theory aerodynamics 

h- L.0. ,f flexible 
No residual flexibility Residual flexibility included No residual flexibility Residual flexibility included 

mode; included A 
(a) Elgenvalues 

“0 
corresponding to ‘rigid-body’ short-period mode 

I I 

I 0 -3.0707 i 10.639i -2.8584 + 11.184i -1.8613 + 19.958i -1.7309 + 17.36li 
1 -2.9577 r 11.2OOi -2.8924 5 11.192i -1.7254 + 17.607i -1.7146 + 17.3041 
2 -2.8925 f 11.084i -2.8891 -+ 11.194i -1.7132 ? 17.383i -1.7133 2 17.303i 
3 -2.8851 f 11.087i -2.8890 + 11.194i -1.7125 + 17.305i -1.7133 k 17.303i 
4 -2.8847 k 11.168i -2.8899 i 11.194i -1.7126 f 17.308i -1.7133 _C 17.303i 

(b) Eigenvalues 
6 

corresponding to first structural mode (j 
1 

= 102.54) 

-4.2314 k 104.3Oi 
-4.1736 + 104.4Oi 

(c) Eigenvalues - 
p2 

corresponding to second structural mode (w  ̂
2 
= 234.45) I 

2 
3 
4 

-8.2162 + 236.36i -8.2208 + 236.513. -1.3263 i 24O.lOi -1.3194 f 240.041. 
-8.1271 f 236.473. -8.2241 f 236.59i -1.3173 i 240.02i -1.3162 ?r 240.02i 
-8.1555 + 236.51i -8.2321 _+ 236.6Oi -1.3157 ?r 240.02i -1.3161 f  240.02i 

(d) Eigenvalues j3 corresponding to third structural mode 
L 

(W 
3 

= 452.19) 

3 
4 

-5.3441 + 451.4Oi -5.3841 + 451.52i -1.0599 + 453.18i -1.0603 + 453.17i 
-5.3545 5 451.43i -5.4006 5 451.53i -1.0607 2 453.17i -1.0605 5 453.17i 

(e) Eigenvalues i4 corresponding to fourth structural mode (G, = 848.63) 

I I I 
4 -6.1560 2 847.04i -6.1573 + 846.97i -1.1811 k 848.75i -1.1821 + 848.75i 

1 

Note: (1) G (radldysecond) = w (rad/s) x rD where TV = 6.6015 s 

(2) I? (rad/dysecond) = u (rad/s) x TV 
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CA1 
CA3 

A 

A’ 

B(S) = EI(S) 

B1> B2, ‘a3 

Bi 
c (x,x'> 

C 
ij 

'i 

IID3 

L-a 
ca 
(r) c 1 EM 3r = 0,1,2 

b-1 ’ [ 1 EM 

G(x,x’) 

I(C) (section 3.1) 

(section 3.2) 

I 
Y 

SYMBOLS 

aeroelastic correction matrix defined by equation (17) 

approximate aeroelastic correction matrix appropriate to 
quasi-static solution 

aspect ratio of planform 

aspect ratio of approximate (triangular) planform 

bending rigidity of representative beam 

parameters defining longitudinal stiffness 
(Fig.3) 

see equation (83) 

distribution 

structural influence function for constrained beam 

structural influence coefficient for constrained beam 

see equation (83) 

matrix defined by equation (5) 

differential operators 

Young's modulus 

matrix defined by equation (62) 

upper bound to matrix [El 9 appropriate to quasi-static 
solution 

matrices of generalised aerodynamic forces due to 
perturbation motion 

matrices of generalised aerodynamic forces due to 
perturbation motion, modified to allow for residual 
flexibility 

matrices of generalised aerodynamic forces due to control 
deflections or atmospheric disturbances, respectively 
unmodified and modified to allow for residual flexibility 

column of generalised forces 

contributions to bl due to perturbation motion and 
external disturbances respectively 

column of incremental forces, due to external disturbances, 
acting at nodal points 

matrix of structural influence coefficients, G., , for the 
unconstrained structure iJ 

structural influence function for the unconstrained 
structure 

second moment of area of beam section at station 5 (about 
neutral axis) 
momentum of cross-flow virtual mass at station 5 

pitching moment of inertia of aircraft 
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SYMBOLS (continued) 

unit matrix 

generalised stiffness of jth mode 

diagonal matrices of generalised stiffnesses relating 
respectively to modes retained and modes not retained in 
analysis 

lift concentrated at ith station 

total unsteady lift and its amplitude 

coefficients in quadratic expression for L (equation (B-9)) 

generalised mass of jth mode 

diagonal matrices of generalised masses relating respectively 
to modes retained and modes not retained in analysis 

M (sections 3.2 and 6) Mach number 

M , g (Appendix B) total unsteady pitching moment and its amplitude 

M(O), M(l), MC21 

(pq ,Gt - 
[Rl,b’l 

Rt2), R(l), R(O) 
ij ij ij 

S 

sw 

El 

ab'), b(x') 

M 
El 
cb’), d(x’) 
I31 

coefficients in quadratic expression for g (equation (B-l 1)) 

column matrices defined by equation (93) 

matrices of unsteady and steady aerodynamic influence 
coefficients 

coefficients in quadratic expression for the unsteady 
aerodynamic influence coefficient R ij (equation (47)) 

effective cross-sectional area in slender-body theory 

representative area used in defining systems of units (taken 
as planform area) 

area of approximate (triangular) planform 

equilibrium flight speed 

residual-flexibility matrix 

M,D2 + K, 
.L I 

diagonal matrices of Y. relating respectively to the modes 
(rigid body and struct&al) retained in the analysis and to 
the structural modes not retained 

defined by equation (65) 

coefficients in expression for balancing load system used in 
defining structural influence functions (section 3.1) 

defined by equation (66) 

defined by equation (67) 

arbitrary functions introduced in equation (40) 

defined by equation (71) 
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SYMBOLS (continued) 

[I 1 43 ‘, r 54 = 0,1,2 

cq’ 

fi 
g 

hi = h(xi,t) 

% 
k 

RO 

m. 1 
m(x) 
n 

P (x> 

9 

s(x) , ‘i 

ST 
t 

w w 
W 

wg 3 ; w 
X. 

1 

X ref =xN 

yr 
A 

GA+ ,I 

0 

A. 
3 

matrices of concise generalised aerodynamic forces due to 
perturbation motion, modified ty allow for residual 

flexibility related to M 
c [ 1 

I by equation (A-17) 
1 

matrix of concise generalised aerodynamic forces due to 
external disturbances, modified to allow for residual 
flexibility (related to [ED]' by equation (A-17)) 

acceleration of ith point-mass 

acceleration due to gravity 

displacement of ith point-mass normal to surface 

amplitude of hi 

(i) number of structural modes retained in analysis; 
(ii) spatial frequency of standing wave 

reference length used in definition of systems of units 
(= overall length of aircraft) 

mass of ith element 

mass per unit length at station x 

number of elements in finite-element model 

longitudinal loading distribution 

defined by equations (77) and (78) 

incremental pitching velocity 

semi-spans of planform at station x , and at ith station 

semi-span at trailing-edge 

time 

transverse displacement of beam at station x 

z-component of incremental aircraft velocity relative to 
air 

velocity of sinusoidal gust; amplitude of gust velocity 

x-coordinate of ith concentrated mass 

x-coordinate of reference point (nose) 

x-coordinate of trailing-edge 

ith element of vector {Aj] defining jth mode shape 

modal matrix corresponding to rigid-body modes and 
structural modes retained-in analysis 

modal matrix corresponding to structural modes not retained 
in analysis 

increment in aircraft's angle of inclination to horizontal 

jth eigenvalue of equation (4) 
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SYMBOLS (continued) 

a, 2 

% . . 
&,a 
67x 

Y 
- x’) 

s E 6(x,t) 
pi (t> 

i 
iO 

E. 
1 

5' 52 

5 Aa3 

bo+J 

)i 

5 = (s - x> 
$5 5,s 5, 

P 

rA ' rD 

Wj, j >,3 

Suffices 

D 

M 

N 

T 

e 

(O+l) 

2 

angle of attack and its amplitude 

local incidence due to gust 

normalised angular velocity and angular acceleration 

Dirac function 

displacement at station x relative to datum-flight-path 

displacement of ith mass relative to datum-flight-path position 

defined by equation (91) 

defined by equation (92) 

generalised coordinates associated with rigid-body modes 

generalised coordinate associated with (j - 2)th structural 
mode 

vector of generalised coordinates associated with rigid-body 
modes and structural modes retained in analysis 

vector of generalised coordinates associated with structural 
modes not retained in analysis 

see equation (B-l) 

aircraft relative density (= me/('PeswaO)) 
see equation (69) 

auxiliary longitudinal coordinate 

values of 5 at stations used in definition of stiffness 
distribution (Fig.3) 

air density 

units of time in aero-normalised and dynamic-normalised systems, 
respectively 

frequency of (j - 2)th natural mode 

due to external disturbance 

due to perturbation motion 

related to nose station 

related to trailing-edge station 

related to equilibrium flight condition 

associated with rigid-body modes and structural modes retained 
in analysis 

associated with structural modes not retained in analysis 
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SYMBOLS (concluded) 

Raised suffices 

T indicating transposed matrix 

' (dash or (1) denoting differentiation with respect to x 
prime) (2) denoting modification to allow for residual flexibility 

of neglected modes 

Overscripts 

l (dot) denoting differentiation with respect to time 

y (dip) aero-normalised form or value 

c, (cap) dynamic-normalised form or value 
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Fig. 14 Response to sinusoidal gust of frequency near to second structural 
resonant frequency : displacements from datum flight path 
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