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INTERFERENCE PROBLEMS ON WING-FUSELAGE COMBINATIONS 

PART IV THE DESIGN PROBLEM FOR A LIFTING SWEPT WING 

ATTACHED TO A CYLINDRICAL FUSELAGE 

J. Weber 

M. Gaynor Joyce 

SUMMARY 

The incompressible flow field past a circular cylindrical fuselage and a 

kinked infinite swept vortex, which lies in a plane through the axis of the 

fuselage, has been studied. In particular values for the downwash in this plane 

and on the surface of the fuselage have been determined numerically; the values 

are tabulated for four angles of sweep: 0, 30°, 45', 60'. 

The results are used to design wings of constant chord and infinite 

aspect ratio, attached to a cylindrical fuselage in midwing position, for which 

the chordwise load distribution is given and the spanwise distribution in the 

presence of the fuselage is required to be constant. It is shown how the 

interference effect varies with the angle of sweep, with the ratio R/c between 

the body radius and the wing chord, with the spanwise distance from the wing- 

body junction and with the thickness of the wing. 

* Replaces RAE Technical Report 73190 - ARC 35294 
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1 INTRODUCTION 

In a previous report*, we have considered the design of an unswept wing 

which, when attached to a cylindrical fuselage, produces a given chordwise load 

distribution which is constant across the span. In this Report, we extend the 

method to swept wings. We consider again an infinite cylindrical fuselage of 

circular cross section with the axis parallel to the main stream and a wing of 

constant chord and infinite span attached in the midwing position. 

The present investigation is to be of an accuracy similar to that of 

linear wing-theory, which means we may assume that the bound vortices lie in a 

plane. We assume further that we may place the vortices in a plane through the 

axis of the fuselage, which means that we neglect the effect of the wing-body 

angle. This implies that we consider chordwise load distributions for which the 

required angle of twist is small near the wing-body junction. Each half of the 

nett wing can thus be represented by a chordwise distribution of semi-infinite 

swept vortices in a plane which crosses the fuselage at right angles. 

The fuselage affects the flow near the wing-body junction in a way similar 

to that of an infinite reflection plate normal to the wing plane; thus the wing 

shape shows some similarity to that of an isolated wing, which produces the 

required loading, with its centre section at the wing-body junction. However 

there is a further effect caused by the finite curvature of the body. The aim of 

this Report is to examine this second effect; so we examine how the warp of the 

isolated wing has to be modified in order to retain the given load distribution. 

As with the symmetrical wing-fuselage configuration considered in Ref.3, 

we choose inside the fuselage a vortex distribution which takes account of the 

reflection effect. This is done by taking a chordwise distribution of swept 

vortex lines of constant strength which are piecewise straight and have kinks at 

the wing-fuselage junctions and at the axis of the fuselage, as sketched in 

Fig.1. 

We consider again, in section 2, first a single vortex in the presence of 

the fuselage and determine the strength of a source distribution on the surface 

of the fuselage such that the total normal velocity at the fuselage vanishes. 

From the known singularities in the wing plane and on the fuselage we determine 

the velocity component normal to the wing plane, vz . We have computed values 

of v 
z 

in the wing plane and on the fuselage. The difference between the 

values of v z for the vortex in the presence of the fuselage and for the 
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isolated swept vortex, v is tabulated for four angles of sweep, $ = 0, 30 0 

21 ' 
, 

45', 60°. 

In section 3, we use the values of vzI for a single vortex and determine 

by chordwise integration the downwash, which means in first-order theory the 

required wing warp, for a given chordwise load distribution. We select a few 

examples to demonstrate how the interference effect can vary with the angle of 

sweep, with the ratio R/c between the body radius and the wing chord, with the 

spanwise distance from the wing-body junction and with the type of chordwise 

load distribution. For the wing-body junction, we consider also the effect of 

the finite thickness of the wing on the additional wing warp caused by the 

presence of the fuselage. 

2 A SINGLE KINKED SWEPT VORTEX IN THE PRESENCE OF A CIRCULAR CYLINDRICAL 
FUSELAGE 

2.1 Velocities induced by the vortex 

Let x, y, z be a Cartesian system of coordinates and x, r, 0 a system 

of cylindrical coordinates. We consider an infinitely long cylindrical fuselage 

of circular cross section y 2 2=R2 + z = 1 and an infinite vortex in the plane 

z = 0 which is piecewise straight, swept by an angle +4 and which has kinks 

at x = 0, y = R, at x = R tan @I , y = 0 and at x = 0, y = -R . The 

position of the vortex is thus given by 

x = /R - 1~1 1 tan 4 . (1) 

The strength of the vortex is constant along the span and equal to P per unit 

length. In the following equations all lengths are made dimensionless by 

dividing by R . 

For the velocity field induced by the vortex, expressions for the velocity 

components parallel to the x, y, z axes can be written down in analytic form. 

Using these one can obtain a formula for the velocity component normal to the 

surface of the fuselage, vnr(x,B) ; this formula is given in equation (A-2) of 

Appendix A. We learn from equation (A-2) that 

v,,he> = - v,,(x,-a 

= v 
nP 

(x,r-e) . (2) 



2.2 Strength of the source distribution on the fuselage which makes the 
fuselage a stream surface 

The strength q(x,e) of the source distribution on the fuselage must 

satisfy the equation 

VnqW> = - v&Q) , 

where 

- cos (0 - B')ldf3'dx' 
'3 

- cos (e - e '>I 

q(x,e’> de 1 
41T 

03 27r 

+ 
Ji 

’ [qW,ef) - q(x,e1>1 [I - cos (e - ef)ldefdx’ . c3j 
13 

-co b x - ~1)~ + 2[1 - cos (e - et)] 

The source distribution q(x,B) has the same planes of symmetry or anti- 

symmetry as v ,,(x,e) , SO that 

2r” 
1 q(x,ef)de’ = 0 . (4) 

0 

An approximate solution of equation (3) can be derived by an iterative 

procedure, such that the nth approximation q h) (x,e> is derived from the 

(n - 1)th approximation by 

q(n) (0) = - 2vnr(x,e) 

_ /7 I' [q(n-l)(x - q(n-lhx,ef)l [I - cos (e - e’)]defdx’ 
'3 , 

-a 0 (x - x')2 + 2[1 - cos (e - et>] 

. ..(5) 
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where 

qw (x,*1 = - 2v,,(x,e> l 

The first step in the iteration procedure leads to 

qw (x,0) = q(')(x,e) + A(*)q(x,B) , 

(6) 

(7) 

where 

m 2lT 
A(l) qcx,ej = - 

Ji 

k,(') (XT,*') - q("'(x,e'>] [I - cos (0 - f3')] de'cjx 
. (8) 

-co b (x - xy2 + 2[1 
*3 

- cos (6 - e’>] 

We have computed values of Aw 
4(x,*) for 8 = 15', 45’, 90' ; for 

0 = 30°, 45’, 60’ . When A(*)q(x,B) is approximated by the function 

Au) 4(x,*) = Al(x) sin 8 + A3(x) sin 38 + A5(x) sin 56 , (9) 

numerical values for Al(x), A3(x), A5(x) can be derived from the computed 

values A (1) q(x,8 = 15'), A (1) q(x,0 = 45'), A (1) 
4(x,* = 90°) . It was found 

that the maximum values of IAl (xi+) ( are approximately the same for all values 

of 4 . The ratio /A, (x;Q> Imax 1 do) (x,* ;$) 1 
I 

decreases from about 0.18 max 

for +=O toaboutO.llfor $=60°. The functions IA3 (x) I and IAN 1 
have appreciably smaller values than 1~1 Imax . The ratio IA31,x/IAllmax is 
about 0.15 and 

IA51max/lAllmax 
is about 0.05, for all values of I$ ; this 

means that IA3(x) //lq(“‘Cx,O)[max < 0.03 and IA5(x) 1/14(0)(X,0)lrnax < 0.01 g 

(These values suggest that, with computations for further values of C$ , we need 

not compute A5(x) ; this would imply that it is sufficient to compute 
Aw 

q(x,*> , say 8 = 45' and 900.) When we 

consider for Only two the magnitude of va;~~;x;;/l~~o, (x,e) Imax , we may conclude that it is 

sufficient to derive only an approximate value of 

Q) 21T 
AC21 

4(x,*) = - 
[Aq(l)(x',0') - A(')s(x,e')][l - cos (0 - 6')ld6'dx' 

x - x’)2 + 2[1 - cos (e - et>1 
13 

. ..(lO) 
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by substituting for Ag (')(x,0) 

an approximate value of p 
the term Al(x) sin 8 . We therefore determine 

q(x,e) in the form 

p 
q(x,e) = B(x) sin 8 , (11) 

with 

B(x) = A(2) q(x,e = 90’) = - 
m 2T [Al(x') - A](x)] sin 8' (1 - sin 8')dO'dx' 

JJ 13 
. 

--m 0 + 2(1 - sin ef) 

. ..(12) 

The integral 

2lT 3712 

I 
14 

sin 6' (1 - sin ef)de’ = = 2 sin 8’ (1 - sin el)del 
I 

0 (X - x')~ + 2(1 - sin s'j3 
s J 

t 

-T/2 (x - xl)2 + 2(1 - sin efj3 

can be expressed in terms of the complete elliptic integrals K(k), E(k) with 

k2= 4 2. 
4 + (x - x’) 

(13) 

With the substitution 8' = 2~ - $ , we obtain 

= - - {(4 - k2)K(k) + (3k2 - 4)K(k)\ 2 
. (14) 

Thus B(x) can be determined from 



B(x) = Id= [A (x') - A (x)] [(4 - k*>E + (3k2 - 4)Kjdx' . (15) 
41T 1 1 

J 
-03 

We have computed values of B(x) ; it was found that the maximum values of 

b(w?) 1 are nearly independent of the value of 0 and that the ratio 

1 B(x;$) 1 max/lA1(X")lmax 
is about 0.15 (a value similar to that for the ratio 

IA3k4d Imax/lA] (x;Q) Imax * We conclude from this that we need not compute 

further modifications to the source distribution. This means that we consider 

the source distribution 

q(x,e) = 4 (')(X&I) + A(')q(x,f3) -+ A(*)q(x,e) , (16) 

defined by equations (6), (9), (ll), to be a sufficiently accurate solution of 

equation (3). We therefore derive in the following the velocity field induced 

by this source distribution which is given by the expression 

q(x,e) = - *vnr(x,9> + [A (x) + B(x)] sin 0 + A3(x) sin 39 + A5(x) sin 59 . 

. ..(17) 

2.3 Downwash in the plane through the vortex and the axis of the fuselage 

We consider now the velocity which the source distribution q(x,0) on 

the fuselage induces in the plane z = 0 , i.e. the plane through the vortex 

and the axis of the fuselage. 

The velocity vnr(x,f3) is an asymmetrical function of 6 , 

v,,(x,e) = -vnr(x,-Cl) ; as a consequence 

4(x,8) = - 4(x,-8) . 

Such a source distribution produces no velocity component tangential to the 

plane 8 = 0 , i.e. z = 0 . Therefore 

Vxq(X,Y,Z = 0) = 0 , 

vyq(x,y,z = 0) = 0 . 
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The source distribution q(x,0) produces a velocity normal to the plane z = 0 : 

CQ 21T 

Vzq(X’Y,O) = - 
ii 

sin 8 d0dx' 

(x - x’)2 + y2 f 1 - 2y cos e3 

. ‘ (18) 

-co * 0 

For the numerical evaluation of v 
24 

, we have written equation (18) in the form 

[q(x',e> - 4(x,8)1 sin 8 d0dx' 

(x - xf)2 + y2 + 1 
(3 

- 2y cos e 

IT 

-J 

q(x,e> sin 8 de 

o dy2 + i - 2y cos el 
* (19) 

The evaluation of the integrals does not cause any difficulty, except for y = 1 

and small values of 
1x1 l 

It is shown in Appendix C that the function 

vs,(x,y = 1,O) behaves as 

Vzq(X'Y = l,O> = - & sin 4 cos 42 log 1x1 + fi I# f f(x;$) , (20) 
(1 + cos 4) 

where 15($) can be evaluated numerically from single integrals and f(x;$) is 

a finite continuous function. 

It has been stated above that our aim is to determine the difference 

between the required shape of the wing when it is attached to the fuselage and 

the shape of the wing when it is attached to an infinite reflection plate. To 

obtain the corresponding interference term for the downwash of a single vortex, 

V 
21 ' 

we have to add to v the difference between the downwash from the 
24 

vortex with three kinks, v 
ZM’ 

and the downwash from the swept vortex (with one 

kinkat y= l),vzn: 

VzIkY,O) = Vzq(X’Y,O) + VZ/$%Y,O) - VZhhY,O) . (21) 

A formula for v z/,p,Y,o) - Vz*b,Y,O) is given in equation (B-2) of Appendix B. 
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For $I = 45' and y = 1 , we have plotted values of v and of v in 
=q 21 

Fig.2. To provide a measure for the importance of the interference downwash, we 

have plotted also the term 0.2~~~ . When we compare Fig.2 with the correspond- 

ing figure for a source line in the presence of a fuselage, Fig.5 of Ref.3 

(where we have plotted v 
xq' 

vxI together with -0.2vx,>, we note that the 

interference effect seems to be more important with respect to the downwash 

from a vortex than with respect to the streamwise velocity component from a 

source line. 

We have computed values of vzI for the angles of sweep $I = 30°, 45', 

60' and for the spanwise stations y/R = 1.0, 1.25, 2.0 . Values of vzI are 

tabulated in Table 1. Fig.3 illustrates how the interference velocity, vzI in 

the wing-body junction varies with the angle of sweep. 

For Q = 45' , we have plotted, in Fig.4, vzI for various spanwise 

stations as function of 

c/R = x/R - <jr/RI - 1) tan $I . (22) 

When we compare Fig.4 with the corresponding figure for a source line, Fig.7 of 

Ref.3, we note that lvzIl decreases more rapidly with increasing distance from 

the wing-body junction than the interference velocity lvxIl for a source line. 

2.4 Downwash at points away from the plane z = 0 

In practice, we are interested in designing wing-fuselage combinations 

with wings of finite thickness. We would therefore like to know how much the 

interference velocity at points away from the plane z = 0 differs from the 

interference velocity in the plane 2 = 0 . 

The velocity component v 
zq 

induced by the source distribution q(x,O) 

on the fuselage can be obtained from the relation 

q(x',fY)[z - sin 8'1dC3'dx' 
(23) 

- xy2 + (y - cos et> 
2 

+ (2 - sin et> 
i3 l 

We are particularly interested in the downwash at the junction of a thick wing 

with the fuselage, i.e. at y = cos e ,z=sinf3. The values of v at the 
zq 

fuselage can be derived from 
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q(x',e')[sin f3 - sin 9']de'dx' 4(x,8) 

- x’)2 + 2[1 
13 

+ sin 8 
2 l 

(24) 

- cos (e - et>] 

This relation can be written in the form 

m2 

vzqb,e) = 
.ii 

[q(x’ ,811 - q(x,e’> - q(d,e) + q(x,B)l [sin 8 - sin e']dB'dx' 
13 

-00 0 (x - x’)2 + 2[1 - cos (e - et>] 

27l 

+ 
J 

[q(x,e’> - q(x,e)l [sin 0 - sin efl def + sin 0 q(x,e) 
4~ [i - cos (e - et>1 

0 

co 

+ sin e 
i 

qw ,e) - 4(u) 
-co 2TJx-x;s?G [K(k) - E(k)ldx’ ’ 

(25) 

with 

k2= 4 2. 
4 + (x - x’> 

The numerical evaluation of vzq(x,k3) f rom equation (25) does not cause any 

difficulty for 8 4 0 . We have already determined the values for 0 = 0 , 

since v zq(x,e = 0) f rom equation (25) is the same as v zq(x'Y = l,O> from 

equation (19). 

For the wing-fuselage combination, the total velocity component v at 
Z 

the fuselage is given by the sum 

VZ(x,e) = v ,,(x,e) + vz*,y = cos 8, z = sin e> . (26) 

Values of v zAx,Y = cos 8,~ = sin e) can be derived from equation (A-l) of 

Appendix A. 

Since our aim is to determine the difference between the velocity field 

induced by a planar vortex distribution in the presence of a fuselage and the 
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velocity field of the vortex distribution in the presence of a plane reflection 

plate, we define vZ,(x,f3) by 

vzI(x,e) = vZq(x,9) + vzAx,y = cos 8, 2 = sin 6) - vzA(x,y = I,2 = sin e> . 

. ..(27) 

A relation for vzA can be derived from equation (B-l) of Appendix B. 

Values of vZ,(x,e) are quoted in Table 2. For 4 = 0 and 0 = 45' , 

values of vZ,(x,e) are plotted in Figs.5 and 6. The figures show that near 

x = 0 (where the vortex crosses the fuselage) the value of the interference 

downwash depends strongly on the value of 8 . A somewhat different behaviour 

might be expected since a Taylor series expansion of v ZI with respect to z 

reads, except for x=O,y=R, 

VzI(x.Y,Z) = vzl(x,y,O) + 

= v zI(x’Y,o) - 

= v zI(x’Y,o) + 

avxI(x,Y,o) 
Z 
[ 

+ 
avyI(x,m 

ax ay 1 + . . . . 
O(z2) . (28) 

(We have not yet examined the behaviour of vxI and vyI when we approach the 

point x = 0, y = R, z = 0 along different paths.) Figs.5 and 6 show that the 

first two terms of the Taylor series do not give a reasonably accurate 

approximation to v  ,,(x,e) for -1 + 0.5 tan Q < x/R < 1 + 0.5 tan C#I and 

8 < IO0 say. 

We note that Fig.5 replaces Fig.5 of Ref.1. The argument put forward on 

page 14 of Ref.1 for obtaining an estimate of the interference between a thick 

lifting wing and a fuselage is not sound. When we intend to represent a thick 

warped wing attached to the fuselage by singularity distributions in the plane 

of the wing and on the fuselage, we can retain source distributions on the part 

of the fuselage surface which is inside the thick wing. The downwash at the 

surface of the thick wing which is induced by a planar vortex distribution in 

the presence of the fuselage is related to the same source distribution q(x,e) 

on the fuselage as is the downwash on the thin wing, but we have to evaluate 

the interference downwash at the surface of the thick wing. 
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2.5 Streamwise velocity at points away from the plane z = 0 

We have noted above that the source distribution q(x,e) on the fuselage 

does not produce a streamwise or a spanwise velocity in the plane z = 0 ; but 

at z f- 0 finite velocities Vxq(X,Y, z f 0) and vyq(x,y,z f 0) are induced. 

The velocity component v 
w  

can be computed from the relation 

q(x'$)(x - x')df3'dx' 
,  

23 l 

(29) 

- x'j2 + (y - cos e') 
2 

+ (z - sin 0') 

The interference velocity 

v,,(X,YJ) = Vxq(X’Y,Z) + Vx/.p,Y,Z) - V,,kY,Z) (30) 

can be determined by deriving vxM and vxh from equations (A-l) and (B-I). 

We have not yet computed any values of vxI for z f 0 . However, for an 

unswept vortex in the presence of a circular cylinder, Kramer 
4 

has computed (by 

an approximate method which differs from the present one) the pressure distribu- 

tion at the fuselage and has tabulated values of the pressure coefficient, 

cp(x,e) * Using Kramer's values of Cp(x,B) , one can derive values of 

vx,(x,e;$ = 0) : 

vxl(x,e;+ = 0) = -+ kp(x,-8) - cp(x,e)I ’ sin e 
- z x2 + sin2 e l 

(31) 

Values of the ratio between the interference velocity vx,(x,e) and the stream- 

wise velocity v xr(x,e) of the isolated vortex are plotted in Fig.7 (Kramer has 

given values of C for 1x1 k 0.2 only; therefore the values for 
P 

o,< x < 0.2 

are extrapolated.) Note that 

00 
J vx,(x,e;$ = 0)dx = 0 . 

0 

Values of the spanwise interference velocity at the fuselage can easily be 

found since 
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vyqW) + vyAx,O) = - tan 8 [v,,(x,e) + v  ,/$o)l . 

We shall see in section 3.2 that when we intend to determine, to second- 

order accuracy, only the shape of a wing with finite thickness for which the 

vorticity distribution in the wing plane is given, then we do not require to 

know the values of the interference velocities Avx(x,y,z), Avy(x,y,z) , which 

implies we do not need the values of vxI(x,y,z); v yI(x,y,z) . However, if we 

want to know the pressure distribution at the fuselage and at the surface of the 

wing and in particular the difference, AC 
P' 

between the pressure coefficients 

on the upper and lower surfaces of the wing, to second order, then a knowledge 1 

of v ,I(x,y,z) (and for large angles of sweep perhaps also of v,,(x,y,z)> 

would be required. 

3 DESIGN OF THE MEAN SURFACE OF A WING-FUSELAGE COMBINATION FOR A GIVEN 
CHORDWISE LOAD DISTRIBUTION 

3.1 Mean surface according to first-order theory 

We consider now the design problem for a wing of constant chord, c , and 

infinite aspect ratio, attached to a circular fuselage in the midwing position. 

We consider first the isolated wing which is to have a camber surface, 

zp (X,Y) , and a twist distribution, IX (‘)(Y>, such that it produces a chord- 

wise load distribution which is constant across the span: 

- ACp(x,y) = - ACp(S = x - (Iyj - R) tan $1 

= acti> l (32) 

The superscript (1) denotes that the wing warp is to be obtained by first-order 

theory. 

In first-order theory, such a load distribution can be represented by a 

chordwise distribution of infinite swept vortices in the chordal plane of 

strength v(S) , where the vorticity is related to the pressure difference by 

the relation 

act.1 = 2 cos 4 y(s) . (33) 

Thus, the strength of an elemental strip of vortices, which are parallel to the 

leading edge, is 
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y(E)dn = Y(6) cos 4 dS = @(c)de , (34) 

where dn is a length measured normal to the leading edge. . 

In first-order wing theory, one usually makes the assumption that the 

normal velocity at the wing surface can be approximated by the velocity 

component vs(x,y,O) in the chordal plane, so that the first-order boundary 

condition reads 

a$‘) (x,y) Vz(X,Y,Z = 0) 

ax 
- Jqy) = - 

vO 
, (35) 

where V 
0 

is the magnitude of the free stream velocity, which we take as unity. 

For load distributions like those considered in this Report, where the 

direction of the vorticity vectors changes somewhere discontinuously, the 

downwash induced in the plane z = 0 tends logarithmically to infinity as we 

approach the station where the vorticity vectors have a kink. In a practical 

design, this difficulty can be avoided since one needs to determine the mean 

surface for a wing of finite thickness, Z,(X,Y> ; for this the first-order 

boundary condition can also be written in the form 

az~‘+x,d 

ax 
- p(y) = vz(x,y,zt(x,y)) . (36) 

The design of the isolated wing (attached to an infinite reflection plate) can 

therefore be performed by means of equation (36). 

We examine in the following only how the presence of the fuselage modifies 

the required shape of the mean surface. The interference downwash, Avz (x,y,O) , 

in the plane z = 0 is everywhere finite including the wing-body junction. We 

therefore consider first the interference downwash in the plane z = 0 . 

It follows from equation (34) that 

Avz(x,y,O) = T K 
1 c b' R (d-) %I k ii;; ' i ' ') d (5) (37) , 

where values of v zI are given in Table 1. 
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It has been stated above, see equation (20), that, for y = R, v and 
zq 

with it v 
21 

tend to infinity when x' + x . For y = R , we therefore write 

equation (37) in the form 

Avs(x,y = R,O) = 2 R hji [, (.) - R ($j 

0 

i' ?ZI i",jRx' " ") d ($j , 

0 

For the second integral in equation (38) we use the relation 

= - sin C#I cos 4 

8~(1 + cos #I)~ 

+ I&$) (2:- I) + 1 r2(xix1 ; m)d($) , 

0 

(38) 

(39) 

where 

is a finite continuous function, and values of I@4 are given in Appendix C. 

As an example, we have chosen the load distribution 

R 5. 0 = 4acosQ 1T/c,o+i 
J- 

- s/c 
C 

(41) 
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which produces at spanwise stations far away from the fuselage, IyI %R , the 

downwash 

v$,y s R,O) = - a . 

Values of 
Avz(x,y = R,O) 

ci 
for $ = 45' and various values of c/R are plotted 

in Fig.8. Fig.8 shows that the interference downwash in the wing-body junction 

can be large and that it increases with increasing value of c/R , as is to be 

expected since Avs vanishes for c/R -t 0 . 

For c/R = 5 and various values of $I , values of Avs(x,y = R,O) are 

plotted in Fig.9. The figure shows that, for the flat-plate load distribution, 

the interference downwash does not depend much on the angle of sweep. The 

relatively weak dependence of Av 
z 

on the angle of sweep differs appreciably 

from the variation of the interference velocity Avx(x,y = R,O) for the dis- 

placement flow with the angle of sweep, shown in Figs.12, 14 and 15 of Ref.3. 

We have computed values of Avs(x,y = R,O) also for the elliptic chordwise 

load distribution 

= 16kcos$ c 
n-i 

I I.2 
C 

(42) 

which produces at spanwise stations far away from the fuselage the velocity 

v&y % R,O) = 2k 1 - 2 : 
i ) 

(the lift coefficient is CL = k2r cos 4). Values of Av=(x,y = R,O) are 

plotted in Fig.10; they show a stronger dependence on the angle of sweep than 

the values of Av 
z 

related to the flat-plate load distribution. We can also 

expect that the variation of Av z with 0 depends somewhat on the ratio c/R . 

For Q = 45' , c/R = 5 and the flat-plate load distribution, the inter- 

ference downwash has also been determined at spanwise stations away from the 

wing-body junction. In Fig.11, we have plotted Avz as a function of the 

coordinate t;/c (where x = (IYI - R) tan 4 + 5) . We note that the magnitude 

of bzl decreases rapidly with increasing y/R , as was to be expected from 

Fig.4. 
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When Avs(x,y,O) is known, the required change of the wing surface can 

be derived from the first-order boundary condition, see equation (35) 

aAz(')(x,y) aAz;l)(x,y) 

ax = ax - do(')(y) 

= Avs(x,y,O) . (43) 

If we keep the z-coordinate at the trailing edge, =TE (Y) = z(S/c = l,y), the 

same as for the isolated wing, then the additional wing warp AZ(') is given 

by the relation 

AZ(‘) (6,~) = 
C 

- J1 Avz(t = (& - $ tan I$ + $- ,y,a)d($) . (44) 

C/C 

Values of AZ (1) , derived from equation (44) and the downwash Avz given in 

Fig.11, are shown in Fig.12. The additional wing warp can be expressed as a 

change in the twist, Aa%> , and a change of the camber shape, AZ(') 
S 

, 

where 

1 

Au(')(y) = - Avr(?,y,O)d 

0 

and 

Az;')(c,y) 
= 

C 
AvZ@',y,O)d (l)(Y) l 

0 

(45) 

(46) 

For an unswept wing, which, when attached to a fuselage, produces a flat- 

plate load distribution, the mean surface has the twist distribution Aa (I) (Y> 

and the camber Azs (%Y) l For a swept wing, the mean surface of the isolated 

wing is already twisted and cambered. 

To illustrate the magnitude of the interference downwash for a combination 

of a swept wing and a fuselage, we have computed values of the downwash at the 



19 

centre section of the isolated wing, at a station far away from the centre 

section and at the wing-body junction. We have mentioned that, with a load 

distribution which is constant across the span, the downwash at the centre 

section must not be computed at 2 = 0 . We have therefore computed the down- 

wash for a constant finite value of z , namely z/c = (R/c) sin 10' 

= 0.2 sin IO0 = 0.035 . To allow a proper comparison, we have computed also the 

interference downwash and the downwash of the sheared wing at zfo. For 

c$ = 45O and the flat-plate load distribution, the various downwash distributions 

are shown in Fig.13 and for the elliptic chordwise load distribution of 

equation (42) in Fig.14. The figures show that, for a wing with 45' sweep, more 

of the difference between the required wing shape in the wing-body junction and 

the shape far away from the junction is produced by the reflection-plate effect 

than by the effect of the curvature of the body. 

3.2 Mean surface according to second-order theory 

When the effect of a fuselage on the streamwise velocity of a non-lifting 

wing-fuselage configuration is computed both by first-order and by second-order 

theory, it is found 2,3 that the inclusion of the various second-order terms can 

increase the computed interference effect appreciably. We would therefore like 

to learn something about the effect of second-order terms on the shape of a 

wing, with prescribed load distribution, when attached to a fuselage. 

In this Report, we consider only configurations for which the axis of the 

fuselage is parallel to the main stream. Secondly, we consider only planar 

singularity distributions in a plane through the axis of the fuselage. A second- 

order wing theory is based on singularity distributions which lie in the chordal 

surface. This means that we can use the results of section 2 only for load 

distributions which produce a relatively small value for the twist a (Y> near 

the centre section of the isolated wing (a(y) includes the angle of incidence 

for the sheared wing) and for the interference twist ha(y) ; we thus ensure 

that the wing-body angle is sufficiently small for us to ignore its effect on 

the interference velocity Av . We consider therefore load distributions of low 

strength, i.e. with small lift coefficient C 
L' 

and wings with finite thickness. 

We do not attempt to derive a complete second-order theory, but our aim is to 

determine the effect of the finite thickness on the additional wing warp caused 

by the presence of the fuselage. (We may note that, for a swept wing, the mean 

surface, derived from a load distribution which is constant across the span, may 

change its shape fairly rapidly near the centre section of the wing, so that the 
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terms azs ay 
I 

and da (y> / dy may be of first-order magnitude and be dis- 

continuous at the centre section. When this is so, one could obtain a more 

accurate solution for the isolated wing, if one were to take account of the 

'local dihedral effect', see for example Ref.5, and place the singularity 

distributions in semiplanes which are not coplanar. We cannot yet apply a 

similar procedure when we deal with a wing-fuselage combination. This is a 

further reason why we consider only load distributions of low strength.) 

We consider wings of constant chord, with given thickness distribution 

Zt (X,Y> and given vorticity distribution R (x,y> in the chordal plane 2 = 0 . 

When designing the wings by second-order theory, one considers first a more 

accurate approximation to the condition that the total normal velocity at the 

wing surface must vanish than that given by equation (35). Secondly, one takes 

some account of the fact that the values of the various velocity components at 

the wing surface differ from those in the plane 2 = 0 . The velocity 

components produced by the body interference vary also with the distance from 

the wing plane 2 = 0 , so that we obtain a different modification to the wing 

shape, AZ 
s ' 

Au(y) depending on whether we compute it by first-order or by 

second-order theory. 

In a practical design case,one would also like to know how the second- 

order terms affect the pressure distribution on the surface of the wing. Such 

computations can be done for the isolated wing, see for example Ref.5; but, for 

wing-fuselage combinations with swept wings, we cannot consider the effect until 

we have computed values of v 
xI(x,Y,z + 0) l 

Our next task is to derive an equation for the additional wing warp 

correct to second order, i.e. to the order (C,t/c) , where t/c is the 

thickness-to-chord ratio. The boundary condition for the isolated wing can be 

written, to second-order accuracy5, in the form 

12 + $#I + vxt(x’Y,o) + Vxe(X,Y,O;I 

+ [i 2 + ~~yt~x,y,o, k Vya(X,Y,O)] 

= +v - Zt(xsY9Zt f zs> + Vzg(X,Y,Zt + zs> + a(y) . (47) 
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The velocity components with the suffix t are related to a source distribution 

in the wing plane and those with the suffix R to the vorticity distribution 

a(S) * The upper and lower signs refer respectively to the upper and lower 

surfaces. 

The boundary condition for the wing attached to the fuselage can be 

approximated by the relation: 

1 
5 

azt azs aAzs 
-+-+- 
ax a~ ax I[ 1 + vxt(x.Y,O) + Avxt(x,y,O) k vxe(x,y,O) rf: AvxR (X,Y,O)] 

azt azs anzs I[ - F+F+ ay vyt(x,~.O) f Avyt(x,y,O) If: vyR(x,y,O) of AvyR (X,Y m] 
= +v Zt(~,y,~t t zs 5 Azs) + Avzt(x,y,zt 5 zs t Azs) 

+ vzL(x,y,zt + zs + Azs) + AvzL(x,y,zt t zs + Azs) 

+ a(y) + Aa(y) . (48) 

The term a(y) occurs in equation (47) since z = 0 represents the chordal 

surface of the wing and not a plane parallel to the mainstream. In equation (48), 

z=o represents again the chordal surface, which here differs both from that 

for the wing alone and from a plane which contains the body axis. However we 

assume that these differences can be ignored with respect to the perturbation 

velocities v and Av . - - 

The terms Avxt, Av 
Yt' 

Avzt are the components of the interference 

velocity for a wing-fuselage configuration with an uncambered wing at zero 

angle of incidence. The terms AvxR, Av 
YR' 

AvzR are the components of the 

interference velocity which is so related to the load distribution R(x,y) in 

the wing plane, that Av zR denotes the same velocity component as Av in 
Z 

section 3.1. We make use of the fact that the terms Avxa(x,y,O) and 

AVyL(X'Y,O) vanish in the plane z = 0 . Following the reasoning in 

section 3.2.1 of Ref.3, we neglect the terms Av 
xt 

and Av 
Yt 

on the left-hand 

side of equation (48). 

By subtracting equation (47) from equation (48), we obtain two relations 

for the interference terms, one referring to the upper surface of the wing, the 
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other referring to the lower surface. Adding these two equations, we obtain for 

*=s and Au the relation 

aazs 
2- 

ax [ 
1 + vxt(x.y,O)] + 2 a;;s - vyt (X,Y 90) 

= v Zt(x,~,~t + zs + AZ& - vZt(x,y,zt + zs) 

- Vzt(X,Y,Zt - zs - *zs) + vZt(x,y,zt - zs> 

+ *vztk~rz t 
+ zs + Azs) - *vzt(x,y,zt - zs - Azs) 

+ vZRb,~,zt + zs + *zs) - vZR(x,y,zt + zs) 

+ vzt(x,~,zt - zs - *zs) - vZR(X,y,zt - zs> 

+ AvZQ(x,y,zt + zs + *zs) + *vZR(x,y,zt - zs - *zs) 

+ 2Au(y) . (49) 

When we approximate vZt(x,y, zt(x,y> + z*> by the first two terms of a 

Taylor's series expansion with respect to z* , then the sum 

vZt(X,~,zt + zs + *zs) - vzt(x,y,zt + zs> 

- vZt(x,~,zt - zs - *zs) + vZt(x,y,zt - zs) 

can be replaced by 

2Azs (avzt~~~y~z'x, . 

(We choose a Taylor series expansion from z=z * 

because the derivative 
javzt,azjz=O at t ' 1-y ": from z = O ' 

z = 0 tends to lnflnlty at the 

centre section of the nett wing.) We approximate the derivative 
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(av ZtkY,ZvwZ=Z 
t 

by the terms 

avxt(x,Y,zt(x,Y)) av ,(x,Y,z,(x,Y)) 

ax ay 
. 

It is known3 that the values of Avzt are of similar magnitude to 0.1/v 
zt 

1 ; 

we therefore ignore the term 

AvZt(x,~,zt + zs + Azs) - Avzt(x,y,zt - zs - Azs) 

in equation (49). When we approximate vzR (x,y,z) by the first two terms of a 

Taylor series about z = z 
t ' then the term 

vZR(x,y,zt + zs + AZ& - vZR(x,Y,zt + zs) 

+ vZR(x,y,zt - zs - Azs) - vza(x,y,zt - zs) 

can be neglected. Finally, we can replace the terms v xt(x,Y,o) 9 Vyt(X,Y,~) 
on the left-hand side of equation (49) by vxt(x,y,zt) , v yt(x,~,zt) . With 

these various modifications, equation (49) reads 

aazs 
- + & (Azsvxt(x’~,zt))+ 5 (Azsvyt(x,~,zt)) ax 

= Au(y) + 1 + zs + Ass) + AVZQ(X,Y,Z~ - zs - Ass) 1 l (50) 

We approximate this equation by the following: 

ad2) (X,Y) = 
aAzi2) (x,y) 

ax ax - Ad2) (y) 

= Avza(x,y,zt> - & 
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where AZ(') is the interference term derived by first-order theory and v (1) 

(1) s 
xt ' 

VYt 
are the velocity components on the isolated wing, induced by the source 

a2 
distribution q yx,y> = 2 & . We have added the superscript (2) in 

equation (51) to indicate that we expect AzC2) and Aa(2) to be accurate to 
S 

second-order, in the sense that AZ (2) is correct to the order 
(2) 

(C,t/c> . We 

note that the term AZ given by equation (51) varies linearly with the 

strength of the load distribution. If one were to take account of the wing- 

body angle, then one might expect that AZ would also contain a term of order 
2 

CL ; one might further expect that this term would become more important for 

larger values of c/R . 

When we compare equation (51) with the corresponding equation from first- 

order theory, equation (43),we note two differences; firstly the interference 

downwash AvzR is computed at z = zt instead of at z = 0 , secondly there 

is an additional term: - & (Azsvxt) -  $ (Azsvyt) l 

In section 2.4 we have computed values of vzI at z # 0 only at the 

fuselage. We consider first how the interference downwash in the wing-body 

junction changes with the thickness of the wing, which means with the angle 
z w  

eJ 
= sin-l ' ' 

( ) R-F-. 
For I$ = 45' , c/R = 5 and the flat-plate load 

distribution, the interference downwash Avzg(x,O) is plotted in Fig.15 for 

various values of 0 . (We note that, for a 10 per cent thick section and 

c/R = 5 , the angle e,(x) has a maximum value BJ max = 14.5'.) Fig.15 shows 

a strong dependence of AvZe(x,6) on 8 , even for relatively small values of 

0 . This behaviour seems to be at variance with the fact that a Taylor series 

expansion of AvZ,(x,y,z) in powers of z does not contain a linear term; the 

results shown in Fig.15 can however be explained by the variation of v zI (x,e> 

with increasing 8 which is shown in Fig.6. When a thickness distribution is 

given, one can determine values of e,(x) and derive values of Avz,(x,eJ(x)) 

by interpolation between values similar to those shown in Fig.15. For the 

numerical examples we have chosen a 10 per cent thick RAE 101 section. For the 

flat-plate load distribution and c/R = 5 ,values of AvZ,(x,eJ) are plotted 

in Figs.16 and 17, for 0 = 45' and 4 = 0 . The figures show also the values 

of AVzk(X,B = 0) . We see that the difference between Avz,(x,8,) and 

Avz,(x, e = 0) is much larger for the swept wing than for the unswept wing. 

This is a consequence of the different variations of vzI(x,e;$) with 0 for 

6 = 45' and Q = 0 , shown in Figs.5 and 6. When the value of c/R is reduced, 

and the thickness distribution and the load distribution are kept constant, then 
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the difference between Av zp'eJ) and Avze(x,e = 0) is also reduced because 

OJ 
varies nearly linearly with c/R . 

To determine the second and third terms on the right-hand side of 

equation (51), we use for v (1) 
xt 

and vii) the approximate values given by the 

RAE Standard Method6. For a wing with constant chord and constant section shape 

across the span 

VC*) = S(')(S) cos $J 
dzt 

xt 
- K2(Y)f (9) cos + - 

dS 

(1) x 

VYt 
- (1 - IK 2 (Y> ld%) sin 4 

(52) 

(53) 

(for details concerning the terms p (c), K2(y), f(4) see Ref.6). For the 

wing-body junction, where K2(y) = 1 and dK,/dy = -8 , we obtain for AzJ2) 

the approximate equation: 

dAzj2) 

dx = Avz,WJ) 

dzt 
- f($) cos 0 &- 1 

d2zt 
- f(Q)) cos QI - - 

dx2 
8d') (x) sin #J . 1 (54) 

For the flat-plate load distribution and c/R = 5 , we have plotted values of 

dAzs"'/ dx in Figs.16 and 17. (The small discontinuity in the curves at 

x/c = 0.3 is a consequence of the discontinuity in the slope dS(')(x)/dx at 

x/c = 0.3.) For the swept wing, we note that the second-order results differ a 

great deal from the first-order results given by dAz;l) 
/ 

dx = Avz,(x,e = 0) ; 

the difference is less for the unswept wing. Fig.18 gives a comparison between 

the first- and second-order results for the elliptic chordwise loading. 

For the swept wing and both types of chordwise load distribution, the 

change in twist produced by the body interference, Aa 
J' 

is less when we apply 

second-order theory than first-order theory; the maximum amount of camber is 

larger and the position of maximum camber is further rearwards. We have not 

derived the effect of the second-order terms on the wing shape away from the 



26 

junction, but we may assume that they are less important, because the fact that 

the linear term in the Taylor series expansion of Avz(x,y,z) with respect to 

z vanishes is likely to have a more decisive influence on the difference 

between Av~(x,Y,+ and Avz(x,y,z = 0) for y > R than for y = R . As a 

consequence, we may expect that the change in the wing warp caused by the body 

interference varies less rapidly across the span when it is determined by 

second-order theory than by first-order theory. 

In a practical design case, the thickness distribution and the pressure 

distribution on the upper surface of the wing attached to a fuselage at zero 

incidence may be prescribed. From this we can derive a first-order load 

distribution R (1) (x,y) by a procedure similar to that of equation (85) in 

Ref.5, when we substitute for VA:) the sum vi:) f Avi:) . The resulting 

load distribution varies most likely across the span, and the effect of the 

trailing vortices on the normal velocity at the surface of the fuselage has also 

to be considered. By applying the method developed in this Report, we can 

derive therefore only an estimate of the additional wing warp AZ , the accuracy 

of which would depend on the spanwise variation of the load distribution 

!P)(x,y) . When one neglects the interference velocities AvxR and Av 
yR at 

the surface of the wing, then one can improve the accuracy of the load 

distribution and of the mean surface of the isolated wing by a procedure 

similar to that suggested in section 3.2 of Ref.5. We can expect that 

Avx,(x,y,d contains a term of order (zc,> l We can also expect that the 

wing-body angle is not small, so that the application of the present method, 

which neglects the effect of the wing-body angle, can produce an error in AZ 

which may be of a magnitude similar to that of the second and third terms on the 

right-hand side of equation (51). In a practical application of the present 

method, we therefore suggest that these terms in equation (51) should be 

ignored, and that in the wing-body junction AZ 
J 

should be derived from the 

interference downwash Av~~(x,~~~> computed at eJ , 

dAzJ 
- = Av&,eJ> dx 

(55) 

and not from Avz,(x,e = 0) computed at 0 = 0 , i.e. not from equation (43). 

For spanwise stations away from the fuselage, one may expect that equation (43) 

produces a sufficiently accurate estimate of Az(x,y > R) . 
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An examination of the accuracy of the proposed design procedure requires a 

method for determining the pressure distribution on a wing of given shape, when 

attached to a fuselage. The present work does not provide such a method. The 

results for a non-lifting wing fuselage configuration obtained by the panel 

method of A.M.O. Smith7, see Fig.22 of Ref.3, cast doubts on the pressure 

distribution near the wing-body junction computed by any method which uses 

planar source panels of constant strength. We would prefer a computation which 

uses Roberts'program 8 ( curved panels of varying source strength), but such a 

computation for a wing-body configuration, designed by the suggested procedure, 

has not yet been done. (We can expect that the geometry changes fairly rapidly 

near the wing-body junction, unless the body departs from a cylinder. This makes 

it necessary to use a large number of curved panels to describe the configuration.) 

So we do not yet know how useful the present method is for deriving a first 

estimate of AZ(') in a practical design case. For this reason it does not 

seem important to extend the present work, for wings with infinite aspect ratio 

and constant spanwise load distribution, to the computation of the streamwise 

interference velocity at points away from the wing plane nor of the interference 

downwash at points away from the fuselage and the wing plane. 

4 CONCLUSIONS 

The present Report gives tabulated values of the difference between the 

downwash induced by a single kinked swept vortex in the presence of a circular 

cylindrical fuselage and the downwash induced by the vortex reflected at an 

infinite plate. These tables can be used to design wings of constant chord and 

infinite aspect ratio, attached in midwing position to a fuselage, such that 

the wing-fuselage combination produces a given chordwise load distribution which 

is constant across the span. 

The method applies to fuselages for which the axis is parallel to the 

mainstream and to load distributions for which the resulting twist is small near 

the wing-body junction (the method neglects the effect of the wing-body angle). 

The computed interference effect on the wing warp is generally accurate only to 

first order, but it is shown how some account may be taken of the effect of the 

finite wing thickness on the additional wing warp. 

It is found that the downwash caused by the body interference can be 

important, both for swept and unswept wings, since it can be of a magnitude 

comparable to that for the basic sheared wing. 
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In this Report, we have considered only configurations for which the axis 

of the fuselage is parallel to the mainstream. When the fuselage is set at an 

angle of incidence, 
uB ' 

to the mainstream and the load distribution over the 

wing remains unaltered, then (within first-order theory, in which the effect of 

a wing-body angle on the interference downwash can be neglected) the downwash in 

the wing plane would be altered only by the additional upwash from the flow 
2 

past the isolated fuselage, vzB = crB(R/y) . This implies that the twist 

would be reduced by ~r,(R/y)~ . 

In a practical design case,the present method can give only an estimate 

of the additional wing warp since it does not take account of the spanwise 

variation of the load distribution. It seems therefore desirable to extend the 

method to general vorticity distributions in the plane 0 = 0 . 

For swept wings and load distributions which are constant across the span, 

one can obtain quite different values for the interference downwash in the wing- 

body junction depending on whether one computes the downwash in the wing plane 

or on the surface of the wing. It would be of interest to learn how the 

interference downwash varies with the distance from the wing plane for load 

distributions for an actual design, where it is likely that the bound vortices 

in the neighbourhood of the wing-body junction are less swept than the leading 

and trailing edges of the wing. For general load distributions, it may also be 

desirable to compute the streamwise interference velocity AvxR at points away 

from the wing plane (AvxL(x,y,z = 0) = 0) to learn whether AvxR makes an 

important contribution to the pressure distribution on the wing. 

When these extensions have been made, one might consider the more general 

configuration of a warped wing with finite thickness, attached to a fuselage of 

non-circular cross section in a low- or high-wing position, forming a non-zero 

angle with the body axis. 
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Appendix A 

VELOCITY FIELD INDUCED BY A VORTEX WITH THREE KINKS 

The velocity v&x,y,z) induced by a vortex in x1 = I1 - IY'II tan $ , 

z ' = 0 of constant strength I' per unit length can be written in the form 

= r 
--JAY 

i 

- zi - - 2 tan 4 F + [x + (y - I> tan $I& x 

Lx + (y - 1) tan $1 2 2 + z /cos 2+ 

X 

1 

1 -y+xtan+ + y-tan+ (x-tan$) 

2 2 
X +(y-1) +z2 (x - tan $)2 + y2 + z2 

- zi + z tan $ j + [x - (y + 1) tan $lk 
+ - - 

2+ 

-X 

ix - (y + 1) tan $3 
2 

+ z2/cos 

X LJ l+y+xtan$ _ y + tan 9 (x - tan I$) 

2 
x2+ (y+ 1) +z2 - tan I$)~ + y2 f z2. 

- zi + z tan cp i + [x - (y - 1) tan $lk 
+ - 

[X - (y - 1) tan $1 2 + z2/cos2 4 
-X 

1 
X 

[ 1/ 
- - l-y-xtan$ 
cos (I 2 

X + (Y - 1)2 + z2 1 
- zi - + - z tan (P j + [x + (y + 1) tan +lk - -X 

2 
[x + (y + 1) tan $1 f z2/cos2 I$ 

X 

where i-, F, k are unit vectors parallel to the x, y, z axes. 

(A-1 > 

From this equation we obtain for the normal velocity vnr at the fuselage 

y2 + z2 = 1 the relation 
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V,r(X'e> = - & 

i 

sin 8 (x - tan $1 
2 

+ sin2 e/cos2 4 
X 

Ix - (1 - cos 0) tan (PI 

Appendix A 

1 
X 

[d 

- cos 8 + x tan 4 + cos e - tan $ (x - tan (9) 

x2 + 2(1 - cos e) Jzzz7l 1 
+ 

sin 8 (x - tan $) 
X 

ix- (1 + cos e> tan $1 
2 

+ sin 2 e/c0s2 $ 

X 
1 + cos 8 + x tan 4 cos 8 + tan 4 (x - tan t$) _ 

2 + 2(1 + cos e) (x - tan $J)~ + 1 

+ 
sin e (x + tan 4) 

X 

[x + (1 - cos e) tan $1 
2 

+ sin 2 e/c0s2 + 

X 
[ -- 1 II 1 - cos 8 - x tan C$ 

cos (I 
x2 + 2(1 - cos e) 1 

+ 1 

sin e (x + tan 4) 
2 

X 

x + (1 + cos e> tan $1 + sin 2 e/c0s2 4 

X [ -- cos 1 $I 4 1 + cos e - x tan 4 II . 

x2 + 2(1 + cos e) 

(A-2) 

For x = 0 

VnT(X 
= o,e> = + & sin 0 cos Q 

Jl - cos e 1 . . + cos + J-i--ZZ 

. ..(A-3) 

For small values of 1x1 and small values of I4 , the leading terms in the 

relation for v 
nr 

are 
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r 
v = 

nr 
i 

2x9 cos3 $ (x2 + e2) 
-zY [2 

X cos 2+ 22 + 8 1 
c 

+ 8 sin C$ cos 9 [2x4 cos2 
22 

o+xe cos 24 -e41 + 
Jm [x2 cos2 + + 82]2 

1 

****  l (A-4) 

We may note here that, if the swept vortex outside the fuselage were 

continued inside the fuselage without a kink at the body junction then, for 

small values of I4 and small values of I4 9 the normal velocity would 

behave like 

r 

- z- x2 
0 sin 4 + . . . 

cos 2$+e2+ .  .  .  l 

This type of singular behaviour is of course due to the fact that we are 

considering an isolated vortex. 
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Appendix B 

VELOCITY FIELD INDUCED BY A SWEPT VORTEX 

The velocity ~~(x,y,z) induced by a vortex in x' = Iy'- 11 tan $, z'= 0 

(i.e. a vortex with a kink at x' = 0 , y' = I) of constant strength r per 

unit length can be written in the form 

$X,Y,Z) = - & 
z tan 0 i + 1x + (y - 1) tan $I& x 

lx + (y - 1) tan $1 2 + z2/cos 24 

X L 1-y+xtan$ 1 + 

2 2 
+(y-1) +z2 

cos + 
X 1 

- zi + z tan $ L + Lx - (y - 1) tan $lk 
+ - 

[X - (y - 1) tan $1’ + z2/cos2 4 
X 

. 

X 
1 

L 4 - - l-y-xtan$ 
cos c$ 

Ii 

. 

x2 + (Y - 1)2 + z2 

When we combine equations (A-l) and (B-l) then we obtain for the 

z-component of the velocity x/y- Xh in the plane z = 0 : 

Vz/+,Y,O) - vz*(x,y,O) 

r 
r 

\ 

1 = -- 
47r x+ (y- l)tan$ L y - (x tan - tan 9 (x $)' - + tan y2 9) -- cos 1 0 1 

(B-1 > 

1 + 
x - (y + 1) tan $I 

[ 
;*! - y~xt~t~n~1,2 :8:2@) 

1 
+ x + (y + 1) tan $ 
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Appendix C 

THE BEHAVIOUR OF vs (x,y = I,O) FOR SMALL VALUES OF 1x1 

The function v ,q(x,y = l,O> , i.e. in the body junction, is singular 

when x tends to zero. The singular behaviour arises from the integral 

and the two leading terms in the relation for v 
nI ' 

given by equation (A-4). 

By a technique similar to the one used in Appendix B of Ref.3, it can be 

shown that the second term in the relation for v , equation (A-4), produces 

for vzq(x, 1 ,O> a behaviour like K log 1x1 Wit? 

K = 1 sin 4 cos $I 
-z 

(1 + cos 4)" 
. 

The first term in the relation for vn. given by equation (A-4) produces 

a discontinuity, 
T%- 

Lp , in the values of v $x,1,0) as x tends to zero. 

I5 
is given by the relation 

I5 
= lim - 

x-t+0 
( 

d 6 
cos 3G 

2lT* 

x' (x' 
2 

+ e2> x(x2 f e2) 
2- 

X’ 
2 

cos * 4 + e* 1 [ x2 cos * 4 + e* * ' Ii 

6 
_ cos 3@ 

i 

x(x2 + e2)de 

n2 o 
C 
x2 cos i 

2 + + e212 ' 

The single integral has the value - 
1 + cos* $I 

47r * 
By a procedure similar to that 

in Appendix B of Ref.2, the double integral can be expressed as a single 

integral: 
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I5 = - 
1 + cos* 4 

41T 

m  

1.u cos3~ 

:‘i 

+ T)3[T2(2 cos* (p - 3 sin* 4) - 2(1 + T) 
2 

cos 4 $1 

*IT* -oo T 2-r* [T2 - (1 + T) 
2 cos* 41* 

J1 +Tj(l +r>[T*(* cos* + - sin* 0) - 2(1 ;r,* cos* 41 
1 

IT2 - (1 + .,>* cos* $1 
f, (.c> 

2 
(2 

2 
‘I cos Q; - 3 sin* 4) - 2 cos4 4 _ 

2T2 IT2 - cos* (PI * 

where f,(T) = tan-’ 
2 

- (1 + -c> 
2 

cos *+ 
11 + ‘cl CO6 $ 

for 

cos -co<T<- 4 and cos 0 <a 1 <T + cos 4 1 - cos 4 

and f,(T) = 1 log 
(1 + T) cos ql + (1 + d2 cos* 9 - T2 for 

(1 + -c> cos (p - (1 + T> 
2 

cos * cj - T2 

cos (I 
CT‘<, 

cos f$ 
1 + cos 4 1 - cos 9 

and f*(T) = tan 
-1 JT2- for 

cos 4 

-com<<-coSf$ and cos $J < T < O” 

and f*W = 1 log 
cos Q + li2-i-7 for 
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We have evaluated the integral numerically and have obtained the values 

0 =5 
0 -0.10610 

3o" -0.10283 

45O -0.09906 

60' -0.09337 

The remaining contributions to v zq(x' 190) are finite continuous functions. 
Thus vzq(x,l,O> behaves as 

vzq(x,y = 1,O) = - & sin 4 cos $ log 1x1 
(1 + cos 0) 

+* 
15($) + f(x;$) (C-1 1 

where f(x;$) is a finite continuous function. 
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Table I 

DOWNWASH COHPONENT OF THE INTEBPEllENCE VELO4ZTY ON THE WING, 
v,I(x.Y.a - 0) 

l-/R 
,FOR A SINGLE VORTEX 

YlR 

\ IR 

20.0 0.0080 0.0051 0.0020 
10.0 0.0161 0.0104 0.0041 
-8.0 0.0201 0.0129 0.0051 
-6.0 0.0266 0.0170 0.0066 
-5.0 0.0314 0.0200 0.0075 
-4.5 0.0343 0.0217 0.0081 
-4.0 0.0378 0.0238 0.0087 
-3.5 0.0418 0.0260 0.0093 
-3.0 0.0466 0.0288 0.0098 
-2.5 0.0522 0.0316 0.0102 
-2.0 0.0589 0.0347 0.0104 
-1.75 0.0628 0.0361 0.0102 
-1.5 0.0670 0.0374 0.0099 
-1.25 0.0717 0.0383 0.0093 
-1.0 0.0768 0.0384 0.0083 
-0.9 0.0790 0.0381 0.0078 
-0.8 0.0812 0.0325 0.0072 
-0.7 0.0836 0.0365 0.0065 
-0.6 0.0861 0.0350 0.0058 
-0.5 0.0886 0.0328 0.0050 
-0.4 0.0914 0.0295 0.0041 
-0.3 0.0944 0.0249 0.0031 
-0.2 0.0979 0.0186 0.0021 
-0. I 0.1018 0.0101 0.001 I 
-0.05 0.1039 0.0052 0.0005 
-0.02 0.1052 0.0021 0.0002 

0 fO.1061 0.0 0.0 
0.02 -0.1052 -0.0021 -0.0002 
0.05 -0.1039 -0.0052 -0.0005 
0. I -0. IO18 -0.0101 -0.001 I 
0.2 -0.0979 -0.0186 -0.0021 
0.3 -0.0944 -0.0249 -0.0031 
0.4 -0.0914 -0.0295 -0.0041 
0.5 -0.0886 -0.0328 -0.0050 
0.6 -0.0861 -0.0350 -0.0058 
0.7 -0.0836 -0.0365 -0.0065 
0.8 -0.0812 -0.0375 -0.0072 
0.9 -0.0790 vO.0381 -0.0078 
I.0 -0.0768 -0.0384 -0.0083 
1.25 -0.0717 -0.0383 -0.0093 
1.5 -0.0670 -0.0374 -0.0099 
1.75 -0.0628 -0.0361 -0.0102 
2.0 -0.0589 -0.0347 -0.0104 
2.5 -0.0522 -0.0316 -0.0102 
3.0 -0.0466 -0.0288 -0.0098 
3.5 -0.0418 -0.0260 -0.0093 
4.0 -0.0378 -0.0238 -0.0087 
4.5 -0.0343 -0.0217 -0.0081 
5.0 -0.0314 -0.0200 -0.0075 
6.0 -0.0266 -0.0170 -0.0066 
8.0 -0.0201 -0.0129 -0.0051 

10.0 -0.0161 -0.0104 -0.0041 
20.0 -0.0080 -0.0051 -0.0020 

r- 
I.0 I.25 2.0 I .o 1.25 2.0 I.0 1.25 2.0 I .o 1.25 

0.0048 
0.0102 
0.0129 
0.0174 
0.0208 
0.0230 
0.0256 
0.0287 
0.0324 
0.0369 
0.0425 
0.0459 
0.0496 
0.0537 
0.0584 
0.0605 
0.0626 
0.0649 
0.0674 
0.0701 
0.0731 
0.0767 
0.0812 
0.0875 
0.0926 
0.0982 

0.0032 0.0013 
0.0067 0.0029 
0.0085 0.0037 
0.01 I4 0.0050 
0.0137 0.0058 
0.0151 0.0064 
0.0168 0.0070 
0.0188 0.0076 
0.0210 0.0083 
0.0236 0.0090 
0.0267 0.0096 
0.0284 0.0098 
0.0300 0.0099 
0.0315 0.0098 
0.0326 0.0094 
0.0330 0.0092 
0.0332 0.0089 
0.0332 0.0086 
0.0328 0.0081 
0.0320 0.0076 
0.0306 0.0070 
0.0282 0.0063 
0.0242 0.0055 
0.0181 0.0047 
0.0141 0.0042 
0.01 I4 0.0040 
0.0094 0.0038 
0.0085 0.0036 
0.0053 0.0033 
0.0006 0.0028 

-0.0086 0.0018 
-0.0166 0.0008 
-0.0229 -0.0002 
-0.0279 -0.001 I 
-0.0317 -0.0021 
-0.0347 -0.0030 
-0.0370 -0.0038 
-0.0388 -0.0046 
-0.0401 -0.0053 
-0.0420 -0.0068 
-0.0426 -0.0080 
-0.0424 -0.0088 
-0.0417 -0.0095 
.O .0396 .0.0101 
.0.0371 .0.0103 
.0.0345 ~0.0101 
.0.0322 .O .0098 
.0.0300 -0.0094 
-0.0280 -0.0090 
.0.0245 .0.0082 
-0.0194 -0.0067 
-0.0158 -0.0057 
-0.0083 -0.0031 

0.0036 
0.0077 
0.0098 
0.0134 
0.0162 
0.0179 
0.0200 
0.0226 
0.0257 
0.0295 
0.0343 
0.0372 
0.0404 
0.0441 
0.0483 
0.0502 
0.0522 
0.0544 
0.0567 
0.0594 
0.0623 
0.0658 
0.0704 
0.0772 
0.0831 
0.0902 

0.0024 0.001 I 
0.0052 0.0024 
0.0066 0.0030 
0.0090 0.0041 
0.0108 0.0049 
0.0120 0.0053 
0.0134 0.0059 
0.0150 0.0065 
0.0169 0.0072 
0.0193 0.0080 
0.0220 0.0087 
0.0236 0.0090 
0.0252 0.0092 
0.0268 0.0093 
0.0283 0.0093 
0.0288 0.0091 
0.0292 0.0090 
0.0295 0.0089 
0.0296 0.0085 
0.0294 0.0082 
0.0287 0.0077 
0.0268 0.0073 
0.0249 0.0068 
0.0206 0.0062 
0.0178 0.0058 
0.0158 0.0055 
0.0143 0.0054 
0.0129 0.0053 
0.0105 0.0051 
0.0064 0.0047 

-0.0021 0.0039 
-0.0100 0.0031 
-0.0166 0.0023 
-0.0223 0.0014 
-0.0268 0.0005 
-0.0308 -0.0002 
-0.0337 -0.0012 
-0.0362 -0.0020 
-0.0382 -0.0028 
-0.0413 -0.0044 
-0.0434 -0.0059 
-0.0441 -0.0060 
-0.0442 -0.0079 
.0.0432 .0.0091 
.0.0414 .0.0096 
~0.0392 .O .0098 
.0.0372 .O. 0098 
.0.0352 .0.0097 
-0.0332 .0.0095 
.0.0297 .0.0089 
-0.0241 -0.0077 
.0.0201 .0.0067 
-0.01 IO -0.0039 

0.0024 
0.0054 
0.0068 
0.0095 
0.01 I6 
0.0129 
0.0145 
0.0164 
0.0188 
0.0217 
0.0254 
0.0277 
0.0303 
0.0332 
0.0368 
0.0383 
0.0401 
0.0420 
0.0439 
0.0462 
0.0489 
0.0520 
0.0561 
0.0628 
0.0689 
0.0765 

-0.1059 
-0.1097 
-0.1111 
-0.1107 
-0.1090 
-0.1071 
-0.1053 
-0.1034 
-0.1014 
-0.0995 
-0.0976 
-0.0957 
-0.0910 
-0.0864 
-0.0825 
-0.0782 
.0.0708 
.O .0646 
.O ,0587 
.0.0540 
.0.0497 
.0.0460 
.0.0397 
-0.0311 
-0.0253 
-0.0131 

-0.1068 
-0.1121 
-0.1154 
-0.1167 
-0.1161 
-0.1151 
-0.1138 
-0.1125 
-0.1110 
-0.1094 
-0.1078 
-0.1062 
-0. IO20 
-0.0980 
-0.0940 
-0.0901 
.O .0828 
.0.0763 
.0.0705 
.O .0654 
.O .0609 
.0.0568 
-0.0499 
-0.0397 
-0.0328 
-0.0176 

-0.1094 
-0.1157 
-0.1202 
-0.1232 
-0. I238 
-0.1237 
-0.1230 
-0.1221 
-0.1210 
-0.1200 
-0.1190 
-0.1179 
-0. II49 
-0.1117 
-0.1084 
-0.1050 
.0.0985 
.0.0923 
.O .0867 
.0.0816 
.0.0769 
.0.0726 
.0.0651 
.0.0535 
.0.0452 
.0.0255 

0.0016 0.0007 
0.0038 0.0018 
0.0048 0.0023 
0.0066 0.0031 
0.0079 0.0038 
0.0086 0.0042 
0.0099 0.0047 
0.01 IO 0.0052 
0.0127 0.0058 
0.0146 0.0065 
0.0168 0.0073 
0.0181 0.0076 
0.0196 0.0080 
0.021 I 0.0083 
0.0228 0.0084 
0.0233 0.0084 
0.0238 0.0085 
0.0243 0.0084 
0.0247 0.0083 
0.0251 0.0082 
0.0248 0.0080 
0.0244 0.0078 
0.0232 0.0075 
0.021 I 0.0071 
0.0196 0.0069 
0.0185 0.0068 
0.0177 0.0067 
0.0165 0.0066 
0.0146 0.0064 
0.01 I6 0.0061 
0.0052 0.0056 

-0.0017 0.005c 
-0.0077 0.0044 
-0.0134 0.0031 
-0.0183 0.0031 
-0.0226 0.0024 
-0.0262 0.0011 
-0.0296 0.000s 
-0.0321 0.000: 
-0.0370 -0.0014 
-0.0408 -0.0027 
-0.0432 -0.0035 
-0.0444 -0.005( 
.0.0455 -0.0066 
.0.0451 -0.0077 
.0.0440 -0.0084 
.0.0428 -0.0088 
.0.0412 -0.0091 
.0.0397 -0.0092 
.0.0366 -0.0091 
.0.0310 -0.0086 
.0.0267 -0.0078 
.0.0156 -0.0051 

+-0 I * - 3o” l- $ - 49 l- 6 - 60” 
1 

2.0 
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a 

\ l/R 

-20 
-10 
-8 
-6 
-5 
-4.5 
-4 
-3.5 
-3 
-2 5 
-2 
-1.7: 
-1.5 
-1.2: 
-I 
-0.9 
-0.8 
-0.7 
-0.6 
-0.5 
-0.4 
-0.3 
-0.2 
-0.1 
-0.01 
-0.0; 

0.0 
0.0; 
0 01 
0. I 
0.2 
03 
0.4 
0.5 
0.6 
07 
08 
0.9 
I 0 
I.25 
I.5 
I 75 
2 
2.5 
3 
3.5 
4 
45 
5 
6 
8 

IO 
20 

l- 

Table 2 

DOWWASH COMPONENT OF THP INTERFERENCE VELOCITY ON THE FUSELAGE, 
VZIb.9) 

-iYE---’ 
FOR A SINGLE VORTEX 

4-O s$ = 3o” .$ = 45O ( = 60’ 1 
0 5O 

1 

IO0 l5O 0 5O IO0 15O 0 5O IO0 l5O 0 5O IO0 l5O 

0.0080 0.0079 0.0075 0.0069 0.0048 0.0048 0.0046 0.0042 0.0036 0.0035 0.0034 0 0031 0.0024 0.0024 0.0023 0.0021 
0.0161 0.0158 0.0151 0.0140 0.0102 0.0100 0.0096 0.0089 0.0077 0 0076 0.0072 0.0067 0.0054 0 0053 0.0051 0.0047 
0.0201 0.0198 0.0,89 0.0174 0.0129 0.0127 0.0122 0.0113 0.0098 0.0097 0.0093 0.0086 0.0068 0.0068 0.0065 0.0060 
0.0266 0.0262 0.0250 0.0230 0.0174 0.0172 0 0164 0.0152 0.0134 0.0132 0.0127 0.0118 0.0095 0.0094 0.0090 0.0084 
0.0314 0.0309 0.0294 0.0271 0.0208 0.0205 0.0196 0.0182 0.0162 0.0160 0.0153 0.0142 0.0116 0.0114 0.0110 0.0102 
0.0343 0.0338 0.0322 0.0295 0.0230 0.0227 0.0217 0.0201 0.0179 0.0177 0.0170 0.0158 0.0129 0.0127 0.0122 0 0114 
0.0378 0.0372 0.0354 0.0324 0.0256 0.0252 0.0241 0.0223 0.0200 0.0198 0.0189 0.0176 0.0145 0.0143 0.0137 0.0128 
0.0418 0.0411 0.0391 0.0357 0.0287 0.0282 0.0270 0.0250 0.0226 0.0222 0.0213 0.0198 0.0164 0.0162 0.0155 0.0145 
0.0466 0.0458 0.0434 0.0395 0.0324 0.0319 0.0304 0.0281 0.0257 0.0253 0.0242 0.0225 0.0188 0.0185 0.0178 0.0166 
0.0522 0.0512 0.0484 0 0438 0.0369 0,0364 0.0346 0.0319 0.0295 0.0291 0.0278 0.0257 0.0217 0 0214 0.0205 0.0191 
0.0589 0.0577 0.0542 0.0485 0.0425 0.0418 0.0397 0.0363 0.0343 0.0338 0 0322 0.0296 0.0254 0.0251 0.0240 0 0222 
0.0628 0.0614 0.0574 0.0509 0.0459 0.0450 0.04tL6 O.OJBB 0.0372 0.0361 0.0348 0.0319 0.0277 0 0273 0.0261 0 0241 
0.0670 0.0654 0.0606 0.0530 0.0496 0.0486 0.0458 0.0413 0.0404 0.0397 0 0376 0.0343 0.0303 0 0298 0 0284 0 0261 
0.0717 0.0696 0.0637 0 0545 0.0537 0.0526 0.0492 0.0438 0.0441 0.0432 0.0407 0.0368 0.0332 0 0327 0.0310 0 0283 
0.0768 0.0741 0 0663 0.0545 0.0584 0 0569 0.0525 0 0458 0.0483 0.0472 0.0441 0.0392 0 0368 0.0361 0.0340 0.0307 
0.0790 0.0758 0 0670 0 0537 0.0605 0.0588 0.0539 0.0463 0.0502 0.0490 0 0454 0.0400 0.0383 0.0375 0.0352 0.0315 
0.0812 0.0776 0.0673 0.0522 0.0626 0.0606 0.0550 0.0465 0.0522 0.0508 0.0468 0.0406 0.0401 0.0392 0.0365 0.0323 
0.0836 0.0792 0.0670 0 0496 0.0649 0.0626 0.0560 0.0463 0.0544 0.0527 0.0480 0.0410 0.0420 0.0408 0 OJ75 0.0330 
0.0861 0.0805 0.0656 0.0453 0.0674 0.0646 0.0567 0.0453 0.0567 0.0547 0.049, 0.0408 0 0439 0.0426 0.0389 0.0334 
0.0886 0.0813 0.0625 0 0385 0.0701 0.0664 0.0565 0.0429 0.0594 0.0568 0 0497 0 0400 0.0462 0.0446 0.0400 0.0335 
0 0914 O.OBlI 0 0563 0.078J 0.0731 0.0681 0.0550 0.0387 0.0623 0.0588 0.0496 O.OJ78 0.0489 0.0465 0.0405 0.0327 
0.0944 0.0783 0.0446 0 0136 0 0767 0.0688 0.0507 O.OJl5 0.0658 0.0604 0.0476 0.0336 0.0520 0.0485 0 0402 0.0309 
0.0979 0.0682 0.0235 -0.0036 0 0812 0.0665 0.0408 0.0212 0.0704 0.0603 0.0420 0.0270 0.0561 0 0498 0.0378 0.0275 
0.1018 0.0343 -0.0030 -0.0126 0 OS75 0.0520 0.0241 0.0125 0.0772 0.0526 0.0911 0 0206 0.0628 0.0470 0.0322 0.0238 
0.1039 0.0049 -0 0071 -0.0086 0.0926 0.0343 0.0185 0.0129 0.0831 0.0411 0.0267 0.0205 0 0689 0.0411 0 02Y6 0.0238 
0.1052 -0.0027 .O OOJB -0.0038 0.0982 0.0260 0.0192 0.0157 0.0902 0.0351 0.0170 0.0224 0.0765 0.0376 0.02Y8 0.0249 
0.1061 0.0 0.0 00 - 0.0266 0.0217 0.0185 - 0.0353 0 0289 0 0246 - 0.0378 O.OJOY 0.0264 
0.1052 +0.0027 -0 0038 +0 0038 -0.1059 0.0313 0.0256 0 0220 -0.1068 0.0397 0.0320 0.0274 -0.1094 0.0409 0 0330 0.0279 
0.1039 -0.0049 -0 0071 +0.0086 -0.lOY7 0 0337 0.0319 0.0277 -0.1121 0 0470 0.0383 0.0325 -0.1157 0.0492 0.0378 0.0320 
0 1018 -0.0343 0.0030 0.0126 -O.llll 0.0090 0.0369 0.0366 -0.1154 0.0367 0.0477 0.0421 -0.1202 0.0555 0.0476 0.0398 
0.0979 -0.0682 ,0.0235 0 OOJ6 -0.1107 -0.0481 0.0168 0.0398 -0.1167 -0.0219 0.0423 0.0540 -0.1232 0 0206 0.0584 0.0556 
0 0944 -0.0783 .0.0446 -0.0136 -0 1090 -0.0736 -0.0139 0.0252 -0.1161 -0.0592 0.0151 0.0490 -0.1238 -0 0237 0.0490 0.0632 
0.0914 -0.0811 .O 0563 -0.0283 -0.1071 -0.0845 -0.0372 0.0054 -0.1151 -0.0778 0.0122 0 0334 -0.1237 -0.0537 0.0283 0.0606 
0.0086 -0.0813 -0 0625 -0.0385 -0.1053 -0.0894 -0.0522 -0.0122 -0.1138 -0.0876 0.0331 0.0152 -0.1230 -0.0722 0.0060 0.0564 
0.0861 -0.0805 .0.0656 -0.0453 -0.1034 -0.0914 -0.0617 -0.0260 -0.1125 -0 0928 0.0479 -0.0015 -0 1221 -0 0836 -0.0135 0.0419 
0.0836 -0.0792 .0.0670 -0.0496 -0.1014 -0.0921 -0.0677 -0.0362 -0.1110 -0 0957 0.0583 -0.0155 -0.1210 -0.0909 -0.0294 0.0264 
0.0812 -0.0776 -0.0673 -0.0522 -0.0995 -0.0919 -0.0714 -0.0437 -0.1094 -0.0970 0.0655 -0 0267 -0 1200 -0.0956 -0 0420 0.0118 
0.0790 -0.0758 .O 0670 -0.0537 -0.0976 -0.0912 -0.0737 -0.0492 -0.1078 -0.0975 0.0705 -0 0354 -0.1190 -0.0988 -0.0518 -0.0012 
0.0768 -0.0741 -0 0663 -0.0545 -0.0957 -0.0902 -0.0750 -0.0531 -0.1062 -0.0974 0.0739 -0 0423 -0.1179 -0.1008 -0.0594 -0.0125 
0.0717 w.0696 .0.0637 -0.0545 -0.0910 -0.0870 -0.0757 -0.0586 -0.1020 -0.0958 0.0784 -0.0534 -0.1149 -0.1029 -0.0718 -0.0336 
0.0670 -0.0654 -0.0606 -0.0510 -0.0864 -0.0834 -0.0744 -0.0605 -0.0980 -0.0932 0.0795 -0 0592 -0.1117 -0 IO26 -0 0783 -0.0470 
0.0628 -0.0614 .0.0574 -0 0509 -0.0825 -0.0797 -0.0722 -0.0606 -0.0940 -0.0901 0.0789 -0.0619 -0.1084 -0.1012 -0.0815 -0.0554 
0.0589 -0.0577 ,0.0542 -0.0485 -0.0782 -0.0766 -0.0696 -0.0596 -0.0901 -0 0868 0.0774 -0.0628 -0.1050 -0 0991 -0.0826 -0.0603 
0.0522 -0.0512 0.0484 -0 0438 -0.0708 -0 0691 -0.0641 -0.0562 -0.0828 -0.0804 0.0732 -0.0618 -0.0985 -0.0942 -0.0819 -0.0645 
0.0466 -0.0458 0.0434 -0.0395 -0 0646 -0.0630 -0.0589 -0.0524 -0.0763 -0.0743 0.0685 -0.0597 -0.0923 -0.0889 -0.0791 -0.0648 
0.0418 -0.0411 .0.0391 -0 0357 -0.0587 -0 0576 -0 0542 -0.0485 -0.0705 -0.0688 0.0639 -0.0561 -0 0867 -0.0819 -0.0758 -0.0636 
O.OJ78 -0.0372 0.0354 -0 0324 -0.0540 -0.0529 -0.0499 -0.0450 -0.0654 -0.0639 0.0597 -0 0528 -0.0816 -0 0792 -0.0723 -0.0611 
O.OJ43 -0.0338 ,0.0322 -0.0295 -0 0497 -0.0488 -0.0461 -0.0417 -0.0609 -0.0596 0.0558 -0.0498 -0.0769 -0 0748 -0.0688 -0.0593 
O.OJl4 -0.0309 ,O 0294 -0.0271 -0 0460 -0.0452 -0.0428 -0.0388 -0.0568 -0.0557 0.0523 -0.0468 -0 0726 -0 0708 -0.0655 -0 0570 
0.0266 -0.0262 ,0.0250 -0.0230 -0.0397 -0 0391 -0.0371 -0.0338 -0.0499 -0.04H9 0.0461 -0.0416 -0.0651 -0.0636 -0.0593 -0.0523 
0.0201 -0.0198 ,O 0189 -0.0174 -0.0311 -0.0307 -0 0290 -0.0265 -0.0397 -0.0390 0.0369 -0.0335 -0.0535 -0.0524 -0.0493 -0.0441 
0 0161 -0.0158 0.0151 -0.0140 -0.0253 -0 0249 -0.0237 -0.0217 -0.0328 -0.0323 0.0306 -0.0279 -0 0452 -0.0444 -0.0418 -0.0377 
0.0080 -0 0079 ,0.0075 -0.0069 -0.0131 -0.0129 -0 0123 -0.0113 -0.0176 -0.0173 0.0165 -0.0151 -0.0255 -0.0251 -0.0238 -0.0217 
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SYMBOLS 

C wing chord 

cL lift coefficient 

R(x,y) strength of the distribution of lifting singularities 

q(x,e) strength of source distribution on the fuselage related to a 
single vortex with triple kink 

qw 
cx,e> first approximation to q(x,0) , see equation (6) 

qw 
(x,0> second approximation to scx,e> , see equations (7) to (9) 

R radius of fuselage 

t/c thickness-to-chord ratio 

vO 
free stream velocity, taken as unity 

V - perturbation velocity 

IM 
velocity induced by single vortex with three kinks, see 
equation (A-l) 

velocity induced by single vortex with one kink, see 
equation (B-l) 

% 
velocity induced by source distribution q(x,0> on fuselage 

3 = Xq + q-/- 3 , interference velocity related to single vortex 

V 
n 

velocity component normal to the surface of the fuselage 

V 
nr normal velocity induced by single vortex with three kinks = v 

nM 
V 

X' vy9 vz 
components of perturbation velocity with respect to the various 
axes 

V 
XR' VyR' VzR 

velocity components for the isolated wing induced by the load 
distribution ~(x,y) 

V V 
xt' yt' 

V 
zt 

velocity components for the isolated wing induced by the source 
distribution in the wing plane 

Av - 

-AvZJ 
x9 Y, z 

:;,;I, e 

zs (X,Y> 

2zt (X,Y) 

Az(x,Y) 

AZ(') 

difference between the velocity field past the wing-fuselage 
combination and the velocity field past the wing attached to an 
infinite reflection plate 

interference downwash in the wing-body junction 

rectangular coordinate system, x-axis coincides with the axis 
of the fuselage 

system of cylindrical coordinates 

ordinate of trailing edge 

camber distribution of isolated wing 

thickness distribution 

= Az,(x,Y) + Aa (y> (xTE - x) , change in wing warp produced by 
the body interference 

additional wing warp from first-order theory 
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AZ (2) 

Azs (x,Y> 

a. (Y> 

Aa (Y> 

r 

r(S) 

SYMBOLS (concluded) 

additional wing warp from second-order theory 

additional camber produced by the body interference 

twist distribution of isolated wing 

additional twist produced by the body interference 

strength of isolated vortex 

strength of vorticity distribution 

= sin-l (5%) 

=x - (IYI - R) tan + 

angle of sweep 
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