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INTERFERENCE PROBLEMS ON WING-FUSELAGE COMBINATIONS 

PART III SYMMETRICAL SWEPT WING AT ZERO INCIDENCE 

ATTACHED TO A CYLINDRICAL FUSELAGE 

J. Weber 

M. Gaynor Joyce 

SUMMARY 

The interference effect on the incompressible displacement flow past a 

swept wing attached to a cylindrical fuselage in midwing position is studied. 

It is shown how this varies with the angle of sweep, with the section shape and 

with the ratio R/c between the body radius and the wing chord. 

To reduce the amount of computation only wings of constant chord and 

constant section shape are considered. For these wings the results can easily 

be derived from the velocity field past a single kinked swept source line in 

the presence of a fuselage. The streamwise velocity component induced in the 

plane through the source line and the axis of the fuselage and the streamwise 

and circumferential velocity components induced on the surface of the fuselage 

have been determined numerically and the values are tabulated. It is shown by 

comparison with results from other methods thafby means of these tables, good 

estimates of the interference velocity can be derived also for tapered wings. 

*Replaces RAE Technical Report 73189 - ARC 35 413 
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1 INTRODUCTION 

In a previous Report' the interference has been studied between a fuselage 

and an unswept non-lifting wing of finite thickness. Here we deal with swept 

wings, considering again an infinite cylindrical fuselage of circular cross 

section with the axis parallel to the main stream, and a wing of constant chord 

and infinite span with the same symmetrical section across the span. The 

fuselage is again attached in midwing position, and viscous and compressibility 

effects are again neglected. 

r 

t 

. 

The fuselage affects the flow near the wing-body junction in a way similar 

to an infinite reflection plate normal to the wing plane but the flow is 

influenced also by the finite curvature of the body. The aim of the present 

Report is to examine this second effect by determining the difference between 

the pressure distribution on a wing-fuselage combination and that on the wing 

when it is attached to an infinite reflection plate; this latter distribution is 

the same as that on the isolated swept wing with its centre section at the wing- 

body junction. 

The flow past the wing-fuselage combination is again represented by source 

distributions in the plane of the wing and on the surface of the fuselage. 

Within the accuracy of a first-order theory, the strength of the source distribu- 

tion on the nett wing is the same as for the isolated wing. The source distribu- 

tion in that part of the wing plane which is inside the fuselage can be chosen 

arbitrarily; the choice affects of course the strength of the source distribution 

on the fuselage. The requirements for the latter can be satisfied more easily 

when we choose the source distribution in the wing plane such that it takes 

account of the local reflection effect. This can be achieved in several ways, 

so we choose a source distribution which simplifies the computation of the 

induced velocity field. We use inside the fuselage the image (produced by a 

plane reflection) of that part of the wing source distribution outside the 

fuselage which has a spanwise width equal to the body radius. For the special 

case of wings of constant chord and constant section shape, this means that the 

source distribution in the wing plane is equivalent to a chordwise distribution 

of swept source lines of constant strength which are piecewise straight but 

have three kinks, namely at the wing-body juncticns and at the axis of the 

fuselage, as sketched in Fig.1. 
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The task is again to determine the strength of the source distribution on 

the fuselage, which cancels the normal velocity induced by the source distribu- 

tion in the plane of the wing, and then to determine the resulting velocity 

field. 

We examine the interference effect for configurations with different 

values of the ratio between fuselage diameter and wing chord and for wings of 

different section shape. To reduce the amount of computation we determine 

first, in section 2, the flow field past a single swept source line in the 

presence of a fuselage. We have computed the resulting streamwise velocity 

component in the wing plane and on the fuselage and also the circumferential 

velocity component on the fuselage. The results for three angles of sweep, 

$I = 30°, 45', 60°, are tabulated. 

In section 3 we use the results for the single source line to determine 

the interference effects for various wing-fuselage combinations, according to 

first-order theory. Some second-order effects are also studied. 

In practice, the wing of a wing-fuselage combination differs of course 

from the configurations mentioned so far, in that the wing is of finite span 

and in that the thickness distribution may vary across the span. We expect 

however that the results derived from infinitely long source lines will allow 

us to obtain a fair estimate of the interference velocity for a general wing 

shape. This assumption is based on the fact that, with many configurations, 

the fuselage has a noticeable effect on the displacement flow in only a fairly 

narrow area near the wing-body junction (measured in terms of the wing span). 

The interference velocity is of a magnitude which is usually appreciably 

smaller than the perturbation velocity of the isolated wing so that a crude 

estimate is often sufficient. The flow field past a wing attached to an 

infinite reflection plate can be evaluated,to first or higher order accuracy, 

by existing computer programs (see for example, J.A. Ledger2 and C.C.L. Sells3). 

We therefore consider only the interference velocity and not the total pressure 

distribution on the wing-fuselage configurations. 

In section 3.4, we compare more exact results for two particular wing- 

fuselage combinations,derived by means of source distributions on the surface 

of wing and fuselage, with the estimates obtained by means of infinitely long 

source lines, and in Appendix D a comparison is made with a simple estimate of 
11 

the interference effect derived 20 years ago . In the present Report, we have 

J 
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not included any comparisons with experimental results since the latter are 

modified by viscous effects. 

2 A SINGLE KINKED SWEPT SOURCE LINE IN THE PRESENCE OF A CIRCULAR 
CYLINDRICAL FUSELAGE 

2.1 Velocities induced bv the source line 

Let x, y, z be a Cartesian system of coordinates and x, r, 0 a system 

of cylindrical coordinates. We consider an infinitely long cylindrical fuselage 
2 2 

of circular cross section y + 2 = R* = 1 and an infinite source line in the 

plane z = 0 which is piecewise straight, swept by an angle 't$ and which has 

kinks at x = 0, y = R, at x = R tan I$, y = 0 and at x = 0, y = -R (see 

Fig.1). The position of the source line is thus given by 

x = IR - 1~1 1 tan 4 . (1) 

The strength of the source line is constant along the span and equal to Q per 

unit length. In the following equations all lengths are made dimensionless with 

the radius R of the fuselage. 

For the flow field induced by the source line, expressions for the 

velocity components parallel to the x, y, z axes can be written down in analytic 

form. Using these one can obtain a formula for the velocity component normal to 

the surface of the fuselage v ,q(x,e> ; this formula is given in equation (A-3) 

of Appendix A. Values of vnQ(x,e = 90') at the top of the fuselage are plotted 

in Fig.2. We note that at x = 0 (the chordwise position where the source line 

crosses the fuselage) the value of v nQ is independent of the angle of sweep 

for all values of 0 # 0 and is given by 

VnQ(X = 0, e z 0) = $ . (2) 

Using computed values of vnQ(x,e) , we have determined the mean value 

2 

VnQ(X> = & 
i" 

vnQ(x,we 

0 

by numerical integration. 

(3) 
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The integral of v ,QW) over the fuselage is 

vnQ(x,@dedx = (4) 
-00 0 

as is to be expected since the total source strength of that part of the source 

line which lies inside the fuselage is 2QJGZ7) . We may note that the 

normal velocity at the side of the fuselage, v,Q(x,8 = 0) , has non-zero 

values for I$ f 0 . As x tends to zero, 

VnQ( X+0, 0 =O) = -&sin24 . 

If we were to extend the source line within the fuselage without forming a kink 

at the body junction, then the normal velocity in f = 0 would tend to infinity 

as -Q tan 0121~~ , when x tends to zero; this type of singular behaviour is of 

course due to the fact that we are considering an isolated source line. 

2.2 Strength of the source distribution on the fuselage which makes the 
fuselage a stream surface 

We have said in the introduction that we intend to cancel the normal 

ity v ,Q(x,e) by a source distribution on the fuselage of strength 4(x,8). 

The function q(x,e) must satisfy the equation (see section 2.2 of Ref.4): 

veloc 

vnq(x,6) = - VnQW) , 

ccJ 2n 

where v = s(x,e> q(x',f3')[1 - cos (6 - 6')lde'dx' 
nq 2 + (X - ~1)~ + 2[1 - cos (e - ef)]” 

2lT 
= q(x,e) 

2 + i 

dx,") de I 
47r 

0 

m 27T 

+ 
Jr 

[q(x',e') - q(x,V)l [I - cos (e - e')lde'dx,' 
, 

-00 b x - ~1)~ + 2[1 - cos (e - ef)13 
. (5) 



An approximate solution of this equation can be derived in the same manner as 

for the unswept source line (see Ref.], section 2.2) by an iterative procedure, 

where the first approximation is given by 

q(o) cx,e> = - 2vn+x,e> + $(x> ' 

The mean value 

21T 

p (x) = 1 
37 

q(o) (x,e)de 

is equal to -Vnq(x> l 

The second approximation 

qw (x,e) = q (')(x,0) f A(')q(x,B) (8) 

is obtained from 

Aw q(x,e) + A(*):(x) = K(*)(@) , 

(6) 

(7) 

(9) 

03 2Tr 

where K (‘)(x,e) = - I 
[q(")(xf,e') - q(“)(x,ef)l [I - cos (e - ef>l de'dx' . 

s 2 + 2[1 
13 

-co - cos (e - e’>l 
. ..(lO) 

For $I = 45' , we have computed values of Ku) 
(x8) and of 

2lT 
p) 

(4 = & 
i 

K(l)(x,e)de . 

b 

(11) 

It was found that 
I 
K(1) (x,e> - it(l) is nowhere larger than 0.05 q - (0) cx = 0). 
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For 41 = 0 , I K(l)(x,e) - z(I) is nowhere larger than 0.032 ;i(‘)(x = 0) . 

It has been shown in Ref.1 that the term K (')(x,e) - i?(*)(x) which occurs in 

the approximate expression for s(x,e> , given by equation (19) of Ref.1, has a 

sufficiently small effect on v 
xq 

so that the term may be neglected. To 

reduce the computational effort, we have therefore neglected it in the 

approximate source distributions q(x,f3> for swept source-lines. 

Values of K - (*) (x) can be computed from single integrals. Since 

2 

I, 
t1 - cos (e - 8')]d0' 

13 = ktK(k) - E(k)] 

0 (x - x’) 
2 

+ 2t1 - cos (e - e’>l 

where K and E are the complete elliptic integrals (of the first and second 

kind respectively) with the modulus 

k2= 4 
4 + (x - xy2 

9 

we can obtain k(n) (x) from the relation: 

with 

,(n)(x) = - 1 
T ,(n-1) (x,) _ $n-O(x) 

47T 
k[K - ti'ldx' 

J 
-us 

have calculated values of K -(n)(x> for 

lgnG6. It was found that 

Ii+) (x) I,,, < 1 pi(n-l)(x) I ’ max 

(12) 

(13) 

as for 4 = 0 . 

For computing the velocity components induced on the wing and the fuselage, 

we have therefore used the approximate source distribution 

4(x,8) = - 2vn($x,9) + S@(X) + + 2 K(“)(x) . 
n=l 

(14) 
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The mean value 

2ll 

3x1 = & 
i 

q(x,0)d6 

0 

4(x) = - Q(x) -I- ; c iP) (x) . 
n=l 

(15) 

(16) 

To illustrate some of the effects of sweep, we have plotted in Figs.3 and 4 

values of the average of the source distributions on the fuselage 
p) (x) = -cnQ(x) and q(x) . The function i(x;4) is of course not symmetric 

with respect to x= 0 , when C$ # 0 . The maximum values of 4(x;+) occur at 

positive values of x . Near the x-value where q(x;#) has its maximum value, 

the function Sb;+) varies less rapidly for non-zero values of $I than for 

@ 0 = 

2.3 

plane 

. 

Streamwise velocity in the plane through the source line and the axis of 
the fuselage 

We consider now the streamwise velocity in the plane z = 0 , i.e. the 

through the source line and the axis of the fuselage. 

The source distribution q(x,@) produces the streamwise velocity 

q(x',B')(x - x')dfI'dx' 
$3 l 

(x - xy2 + y2 + I - 2y cos 8' 

(17) 

This relation can be written in the form (see equations (26) to (28) of Ref.1): 

* I T  

Vxq(X’Y $0) = 
is 

[q(x’,el) - q(x,e1) - q(d ,e = 0) + 9(x,8 = O>l (X - d)de’dd 
13 

-=O x - x')2 + y2 + 1 - 2y cos 8' 

+ Lqcx',e = 0) - q(x,e = 0)1 (x - x')E(k)dx' 

2 
+ (Y - - x')2 + (y + o2 

(18) 
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where E is the complete elliptic integral of the second kind with the modulus 

k2 = 4Y 
2 2 - (19) 

(x - x’) + (y + 1) 

The numerical evaluation of the integrals in equation (18) does not cause any 

difficulty, except for y = I and small values of 1x1 ' It is shown in 

Appendix B that the velocity v for y = 1 behaves as 
xq 

vx b,Y = 1 ,o> cos 3+ - 1 +$sin2 $I 
= - 

Q 47~ sin3 (6 
log 1x1 + 5 I(9) + f(x;4) (20) 

where I(4) can be evaluated numerically from a single integral and f(x;$) 

is a finite continuous function. Values of v xq(x'Y = l,O> for 1$=45’ are 

plotted in Fig.5. 

We have stated above that our aim is to determine the difference between 

the velocity fields past a swept wing attached to a circular fuselage and past 

a swept wing attached to an infinite reflection plate. To obtain this inter- 

ference velocity field for a single source line, xI,we have combined the 

velocity field induced by the source distribution q(x,6> on the fuselage with 

the difference between the velocity fields for the source line with three kinks 

v/q and the velocity field for the ordinary swept source line 
3. 

This 

means we derive v 
XI 

in the plane 2 = 0 from 

VxI(X’Y,O) = Vxq(x’Y,O) + vx*,Ylo) -  Vx*CX,Y,O> l (21) 

The relations from which we can derive the values of v - vxl\ are given in 
XM 

Appendices A and C, equations (A-4) and (C-2). 

For $ = 45', values of vxI in the wing-body junction are plotted in 

Fig.5. The figure shows that, for most values of x , the sign of the term 

V - v  
xpj XA 

is opposite to that of v 
xq l 

The largest value of vxM- vxA 

occurs at about x = tan #I . To judge the magnitude of the interference 

velocity, we have plotted also the term -0. 2VxA 

We have computed values of vxI for the angles of sweep (b = 30°, 45' , 

60° and for the spanwise stations y/R = 1.0, 1.25, 2.0 . Values of vxI are 
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tabulated in Table 1. Fig.6 illustrates how the interference velocity vxI in 

the wing-body junction varies with the angle of sweep. 

For $=45', we have plotted in Fig.7 vxI at z = 0 for various span- 

wise stations. Since chordwise distributions of isolated source lines will be 

used to represent swept wings and since the pressure distributions on swept 

wings are usually given as functions of the chordwise coordinate 5 , where 5 

is zero at the leading edge of the wing, this coordinate is used in Fig.7. 

Note that 

(22) c/R = x/R - (/y/RI - 1) tan 4 . 

2.4 Streamwise velocity on the fuselage 

The isolated infinitely long fuselage does not produce any perturbation to 

the free stream. Thus the pressure distribution on the fuselage is entirely due 

to the presence of the wing. 

In this section we determine the streamwise velocity due to a single 

source line in the presence of the fuselage. This velocity is produced by the 

source line with the triple kink and the source distribution 4(x,8) on the 

fuselage. 

The source distribution q(x,f3) produces on the fuselage the velocity 

vxqW) = 
q(x',V)(x - x')d@'dx' 

I3 l 

2 + 2[1 - cos (e - e’>l 

This equation can be written in the form 

(23) 

vxq(x,e) = 
iJ 

[4(x' 8') - q(x,e') - q(xl,e) f q(x,e)] (x - x')de'dx' 
13 

--m 0 x - ~1)~ e 2[ 1 - cos (e - et>1 

+ Lqcxf 3) - q(x,B)lE(k) 
I dx' (24) 

with 
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k2= 4 , 
4 + (x - xy2 

The numerical evaluation of vxq(x,6) f rom equation (24) does not cause any 

difficulty for 8 f 0 . We have already determined the values for 8 = 0 

since v ,q(x,e = 0) from equation (24) is the same as v xq(x,y = 1 ,z = 0) 

from equation (18). 

The total velocity vx at the surface of the fuselage is given by 

vx(x,e> = v ,,(xdQ + vxgv3) (25) 

where v x,.(x,tJ) = vxAx,y = cos 0,z = sin 0) is given by equation (A-5). 

Values of qx,e = 90') , i.e. the velocity at the top of the fuselage, are 

plotted in Fig.8 for various angles of sweep. 

Since our aim is the determination of the difference between the velocity 

fields past a swept wing attached to a circular fuselage and past a swept wing 

attached to an infinite reflection plate, we have subtracted from vx(x,e) the 

values of v XA in the plane y = 1, at z = sin 8 , given by equation (C-3) . 

Values of 

vx,(x.e) = vxq(x,e) + vx&be> - V~(X,Y = 1,~ = sin e) (26) 

are quoted in Table 2 and for 9 = 45' , are plotted in Fig.9. Fig.9 shows that, 

except close to X' 0 9 the magnitude of the values of vxI does not vary much 

with 8 . 

For $I = 45' and e = 90' , we have plotted the various terms v 
xq 

, v 
xM’ 

vti , vxI , vx in Fig.10. The figure shows that for most values of x , the 

sign of vxI is opposite to that of vxA (the same is true for 8 = 0 , as 

shown in Fig.5) and the sign of v v The 
w 

is opposite to that of 
xM’ 

velocity at the top of the fuselage vx = vti + vxI is of smaller magnitude 

than the velocity past the isolated source lines v 
XA 

, v 
VI' 

at the same 

position. This fact, which is true for all values of 4 , is to be expected 

since the fuselage straightens the streamlines past the isolated source lines. 

We have stated in the introduction that we prefer to quote the values of 

V 
XI 

instead of the values of the total velocity vx , because we anticipate 
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that the magnitude of the interference velocity is appreciably smaller than that 

of the perturbation velocity of the isolated wing. The assumption holds at the 

surface of the wing, i.e. in the plane of the wing, and on the fuselage for 

small values of 8 , say e 4 10 
0 

; but it becomes less valid with increasing 

values of 0 . At 0 = 90' , the values of v 
XI ' 

and v 
Xh 

are of comparable 

magnitude; this is because the velocity lvxlll is appreciably lower for z = 1 

than for z = 0 and not because the magnitude of vxI alters much with 

increasing z . (The results obtained so far refer only to a single source line. 

For a wing-fuselage combination, which corresponds to a chordwise distribution 

of source lines and sink lines, the magnitude of the perturbation velocity near 

the top of the fuselage varies of course with the distance between the top of 

the fuselage and the wing plane measured in terms of the wing chord, which means 

with the ratio R/c between the body radius and the wing chord.) We have 

nevertheless given in Table 2, also for large values of 8, the values of the 

term v 
XI ' 

As stated previously,it seems justified to assume that, for a wing 

of finite span,we can obtain a reasonably accurate estimate of the body inter- 

ference on the pressure distribution of the wing by means of the values of vxI , 

derived from infinitely long source lines of constant strength. This assumption 

may be less justified for the pressure distribution on the fuselage, particularly 

for larger values of 6 ; but, in practice,a knowledge of the pressure distribu- 

tion near the wing-body junction is more important than near the top of the 

fuselage. 

2.5 Circumferential velocity on the fuselage 

The source line in the plane z = 0 and the source distribution q(x,e) 

on the fuselage produce at the fuselage a circumferential velocity 

v,W) = vep,e) + veqwO l (27) 

A relation for vgM(x,B) is given in Appendix A, equation (A-6). The velocity 

veqw) can be obtained from the equation: 
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00 21T 

veq(x,O) = 
// J 

q(x',e') sin (8 - 8')dB'dx' 

0 4lT (x x') 
2 13 

-00 - + 2[1 - cos (cl - e')] 

00 21-r 

= 

-id 

[q(x'eV - q(x,ef) - q(d,e) + &,e>l sin (e - e’)defdxf 
13 

-co (X - xfj2 + 211 - cos (e - et)] 

2lT 

+ 
J 

[q(x,e’) - 4(x,8)1 [l + cos (e - e*)ldef 
HIT sin (e - et> 

. 

0 

(28) 

The evaluation of 
veq 

from equation (28) is straightforward except for the 

case x=0,8-+0. Due to the properties of symmetry of q(x,e) , the 

circumferential velocity vanishes for 6 = 90' and 8 = 0 except for X' 0 . 

Calculated values of v 
64 

are given in Table 3. When evaluating 
veq 

from 

equation (28), we have used for the source strength q(x,B) the approximation 

given by equation (14). We would of course obtain the same values of by 

using the first approximation q (o)(x,e) , g* 
veq 

rven by equation (6) , since only 

that part of q(x,8) which varies with 8 , namely -2vnq(x,e) , contributes 

to ve9 ' 
It is possible that small inaccuracies of the source distribution 

q(x,8) produce some inaccuracy in the values of 
vw 

for small values of x , 

where,for small 0, v 
eq 

varies fairly rapidly. We do not expect these 

inaccuracies to be important when we deal with chordwise distributions of 

source lines. 

To determine the pressure distribution on a wing in the presence of a 

fuselage to second-order accuracy (see section 3.2), we require the velocity 

component at the surface of the wing to second-order accuracy. We therefore 

need to know the velocity component v at 
z 

z f: 0 which is induced by the 

single source line in the presence of the fuselage. 

We have not computed values of vz(x,y,z # 0) for points away from the 

fuselage (which would require the evaluation of more double integrals) but, at 

the fuselage, vz can be determined without much further effort since 

vp, e> = cos e v,(x,e) + sin 8 v,(x,e> . (29) 
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The total normal velocity v,(x,B> is zero, so we can obtain vs(x,B) from 

VpN = cos 0 [veq(x,6) + v,/+,e)l . (30) 

Values of v 
04 

are tabulated in Table 3 and values of 
Vem 

can be determined 

from equation (A-6). 

We have again determined the interference velocity vzI , i.e. 

vzI(x,e) = vZ(x,e) - vzA(x,y = 1, sin e) 

= v .,(x,e) + vZ#,e) - vzAh,y = 1, sin 0) . (31) 

A relation for v ,*(x'Y = 1,~) is given in equation (C-4). Values of vzI(x,e> 
are quoted in Table 4 and for I$ = 45' are plotted in Fig.11 where we have also 

plotted values of the downwash induced by the isolated source line 

vzA(x,y = 1,~ = sin e) for 8 = 10' . 

3 PRESSURE DISTRIBUTIONS ON WING-FUSELAGE COMBINATIONS 

3.1 Pressure distribution on the wing according to first-order theory 

The calculated velocity components due to an isolated source line in the 

presence of the fuselage can be used to determine the pressure distribution on 

a wing of given section shape when attached to a fuselage in midwing position. 

We consider in this Report only wings of constant chord and constant 

section shape, 2 = qx,y> , along the span, so that 

zt(x,y) = z,(E = x - <IyI - R) tan 4) . (32) 

The wing is in a mainstream of velocity V. parallel to the chord plane. In 

the following, we make all velocity components dimensionless by taking V. = 1 . 

Within first-order theory, the source distribution q, (I) (X,Y> in the wing 

plane z = 0 has to produce a velocity v ;I' (X,Y,Z = 0) which satisfies the 

boundary condition 

vyx,y,z = 0) = 
azt by) 

ax 

dzt = hg (E = x - (1~1 - R) tan +> (33) 
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to first order accuracy. (We use the superscript (1) to denote terms derived 

by first-order theory.) The source distribution q(x,e) on the fuselage does 

not induce a velocity component = 0) in the plane z = 0 ; therefore, 

in first-order theory, 4" (X,Y> 

Vz(X,Y,Z 
can be chosen to be the same as for the wing 

alone, i.e. 

dz 
d" (X,Y> = qp) = 2 -& , (34) 

To determine the change in the pressure distribution due to the fuselage - 

to first-order accuracy - we have to determine only the change in the stream- 

wise velocity, Av;')(x,y,z = 0) . 

The formulae in section 2 are derived for a single source line for which 

the strength per unit length along the source line is Q . To derive the 
. velocity components, produced by a source distribution q(S) , from the results 

for the single source line, we have to replace Q by Qdn = cos I#I q(c)dE and 

perform the integration with respect to 5 . (It is shown in Appendix C, 

equation (C-6) that, with the factor co.5 0 to q(c) , we obtain the required 

value for Vz(X,Y,Z = 0) at the centre section of the isolated wing.) 

(1) We have determined values of Avx from the relation 

Av;l)(x,y,z 
V 

= 0) = cos I$ qyx') x1 
9&o 

0 

1 
(I ; 

ix' , 
2 

$ , 0 
= cos d(x'/c) Q/R 

d5 
0 

(35) 

0 

where c is the wing chord and values of v xIR/Q have been taken from Table 1,. 

It has been stated above, see equation (20), that v and with it 
x4 

x - x' 
V 

( 
ix 

XI R ’ R 
= l,o 

) 
tend to infinity when x' tends to x . For y = R , 

we therefore write equation (35) in the form 



a(l) (x,y 
I,0 

= R, z = 0) = 2 cos 0 f 
Q/R 

X -4-J V 
XI jY ' 190 

QR 
. (36) 

For the second integral in equation (36) we use the relation 

-- R/c 
cos 34 

= - - l +sin2 + ~(log$- 1> "L&z ~ogmL&- *)I 

4~ sin3 4 

x/c 

-- R/c 
(37) 

cos 39 - 1+; sin 29 
where r(X;$> = vxI(X,I ,O> + 

4T sin3 I$ 
1% I4 - J-g I($) (38) 

is a finite continuous function, and values of = ($4 are given in Appendix B. 

For sections with finite nose radius, dz,/dx behaves near the leading 

edge like l/e . To avoid a singular behaviour of the integrand in the first 

integral of equation (36), or in the integral in equation (35), we have used, 

for the interval 0 <x1/c < 0.25 , the usual transformation 'c =4Z. 

In order to determine the change in the pressure distribution at spanwise 

stations away from the wing-body junction, as function of the coordinate 5 , we 

have to substitute 



For the 10 per cent thick RAE 101 section and for E = 5, we have 

computed values of the velocity change in the wing-body junction, 

Av(') = Av 
XJ x ( 

(I)x y , = R,O) , for various.angles of sweep; some results are plotted 

in Fig.12. We have also plotted for comparison values of -0.1~~~) where 
,(I) 

xw' 

xw 
is the velocity for the wing with an infinite reflection plate at the 

root. In Fig.13,we have plotted the total streamwise velocity (from first- 

order theory) in the junction of the wing with a fuselage, vxJ , and in the 

junction of the wing with an infinite reflection plate, vxw . 

Fig.12 shows that, for wings with the same streamwise section shape, the 

velocity decrement in the wing-body junction, -Av;l)(x,y = R,O) , decreases 

with increasing value of + and that the position of the maximum value of 

-hV;;' moves rearwards with increasing value of + . 

We note from Fig.13 that the difference in the type of velocity distribu- 

tion between a swept and an unswept wing is not much affected by the finite 

body radius. (Near the leading edge, the values of the velocity from first- 

order theory are not representative of the actual velocity.) 

The rearward movement of the position of the maximum value of -A$) 

can be explained by the asymmetry of the values of IvxI(x,y = R,O)I with 

respect to x=0 ,for 1$#0 . The curves of vxI(x,y = R,O) plotted in 

Fig.6 show that, for $ # 0 and any streamwise length R , 

0 R 

F(R,@) = vxIbddx - 
i 

- vxI(x)dx ' 0 

0 

and that F(R,$) increases with $ . 

In Fig.14,values of Av(1) xJ 
/ 

cos 4, for various values of the ratio c/R , 

have been plotted against the coordinate x/c - 0.6$/r . The figure shows that 

the values for different angles of sweep collapse approximately on the curve 

for zero sweep. We note from Fig.14 that the rearward shift, in terms of the 

wing chord, is nearly independent of the ratio c/R . 

To examine how far the results obtained with the RAE 101 section may be 

generalised, we have also done some calculations for the RAE 103 section. The 
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results are plotted in Fig.15, which shows a somewhat larger variation of the 

values of Av::)l cos Cp with the angle of sweep. The dependence on I$ would be 

larger for elliptic sections, because for $ = 0 the curve lhJ(‘) xJ is 

symmetrical with respect to X/C = 0.5 whilst for increasing values of I$ we 

must expect that the curves will become more and more asymmetrical. 

For the case c/R = 5, we have plotted in Fig.16 the interference velocity 

at two spanwise stations outboard of the wing-body junction as function of the 

coordinate 5 = [x - x LE(YN /c l We note that, for both stations, the maximum 

value of the velocity decrement varies again approximately as cos 9 . The 

rearward shift of the position of the maximum value of - *p 
X 

, as function of 

5 , decreases with increasing y . For y/R = 2 and, Cp = 60' the maximum 

value of -&') 
X 

occurs forward of the position of 

( 1 

i 1 
-A(') 

X 
for 0 = 0 . 

However, the maximum value of -Av(') ~ 6oo 
max 

as function of x occurs 
x = 

rearward of the position for Cp = 0 . The results suggest that, near the 

junction RGy&2R, the values of the maximum decrement decrease approximately 

linearly with the distance from the junction ; for the particular 

case considered in Fig.16 

Avi’) (x,y,O;+) 1 max = [l - 0.5 ($- - ')I[- Av;:)O]~~~ . 

3.2 Pressure distribution on the wing according to second-order theory 
. 

In Ref.], it has been shown,for unswept wings, that the reduction of the 

velocity in the wing-body junction derived by second-order theory may be 

appreciably larger than that derived by first-order theory. The effect of the 

various second-order terms is therefore of interest also for wing-fuselage 

combinations with swept wings. 

To obtain the pressure distribution to second-order accuracy one has first 

to determine singularity distributions which satisfy the boundary condition to 

second order. When the singularity distributions are known, one has to 

determine the velocity at the wing surface to second-order accuracy; this 

requires the evaluation of, at least, some terms at zfo. 

3.2.1 The approximate boundary condition 

We consider first the boundary condition. At the surface of the wing, 

2 = Zt(X,Y) , the velocity field has to satisfy the equation 
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a=t a=t k. + Vx(X,Y,Zt)l jy + Vyb’Y’Zt) ay - vz(x,y,zt) = 0 l (39) 

For a swept wing of constant chord and constant section shape, with the centre 

section at y = 0 , 

azt a=t - = -tan$r 
ay 

for y>O , 

so that the boundary condition on the wing reads for y >R 

11 + Vx(X,Y,Zt) azt 
- tan 4 vy(x,y,z,)l r = Vz(X,Y,Zt) l (40) 

We intend to retain in this equation all terms of order cm2 . The left- 

hand side can be approximated, correct to second order, by 

1 + vg)(x,y,O) + Av;')(x,y,O) - ;) (X,Y,O) + 

We denote the various terms for the wing attached to an infinite reflection 

plate by the suffix w and the interference terms by the symbol A . The 

superscript (1) d enotes terms computed from the first-order source 

distribution 

dz 
p(s) = 2 -$ . 

We have seen above, see Fig.12, that in the wing-body junction the 

interference term Av (1) is of a magnitude of only about O.lv(') . Further 

outboard -A$> T 
x max 1s smaller than the value in the junction 

7 I 
-Av:;) ; 

max 
thus within the accuracy required we can neglect the term Av 

X 
in the boundary 

condition (even though it is formally a term of order t/c>. 

We propose to neglect the term , which is zero in the wing- 

body junction, for all spanwise stations. The normal velocity vti vanishes 

in the wing-body junction, so that 
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vy(x,yJ,zt) = - tan BJ vzlx,Y,ztl . 

Therefore vy(x,yJ,zt) is approximately equal to -(zt/R)dzt/dx . The ratio 

zt/R is small compared to unity for the configurations we are interested in, 

so 
vYJ 

can be neglected in a second-order theory. 
1 

We therefore approximate the left-hand side of equation (40) by the same 

term as applies to the isolated nett wing and the approximate boundary condition 

on the wing at the wing fuselage combination then reads: 

[ 
1 + vz)(x,y,O) - tan $ v$)(x,y,O) 1 

az 
2 = VzkY,Zt) l (41) 

The solution of equation (41) for the wing-fuselage combination differs however 

from the solution for the isolated wing because the velocity vZ(x,y,zt) 

contains not only a contribution from the second-order source distribution q 
(2) 

W 

of the nett wing but also the interference velocity Avz(x,y,zt) . 

3.2.2 The second-order source distribution for the nett wing 

We discuss next the determination of source distributions in the wing 

plane and on the fuselage which satisfy equation (41), approximately. We 

express the source distribution in the wing plane as the sum of two terms 

cly' (X,Y> + Aq(x,y) , where a (2) (x ,y> satisfies the boundary condition, 

correct to second order, of the wing attached to an infinite reflection plate 

and Aqb,y) is an interference term. 

We consider first the source distribution qw (2) (x ,y> , which satisfies the 

equation 

[ 
1 + v;)(x,y,o) - tan 4 vi2(x,y,O)] 2 

= v (2) (X,Y,Zt) = v;&yx,Y,z& + 4 [qi2) (X,Y> - qy zw (x,Y)] ’ (42) 

(2) There exist several possibilities for determining a source distribution q, 

(see for example Refs.3 and 5). For the present purpose of deriving only the 

interference velocity field it seems sufficient to use an approximate expression 

derived by means of a Taylor series expansion of v ;A' (X,Y 4,) with respect to 
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z (even though such an expansion is not strictly permissible at the centre 

section of the wing, see Ref.5). (2) The resulting relation for qw reads 

q;2)b%Y) = 2 k 
I[ 
Zt 1 + v yx,Y,o)] 

1 I 
+ 2 k ztV;)(X,Y,O) 

1 
. (43) 

We do not evaluate the exact values of v(l) and (1) 

values given by the RAE Standard Method6. 

xw 
vF 

but use the approximate 

For a wing with constant chord and 

constant section shape across the span 

v(l) = S(‘)(S) cos (I 
dzt 

xw - K2(y)f (9) cos 0 - 
dS 

(1) a 
vyw - (1 - lK2(y)]) Scl)(C) sin 4 . 

(44) 

(45) 

(For details concerning the terms S (1) (5) 9 K,(Y), f(4) see Refs.3 and 6; note 

that the term K3(y) in equation (3) of Ref.; has been replaced by unity.) 

From equations (43) to (45) we obtain (2) for qw the relation 

qJ2' (x,y) = q.(y) (0 + 
l- 

I I K2 sin 24 
cos $I 2 

dS - 2K2fQ) cos 4 d 
dS 

dK2 +2- 
dy 

z,S(') sin 4 . (46) 

For spanwise stations sufficiently far away from the reflection plate (i.e. 

from the wing-body junction) where K2 = 0, dK2 dy = 0 , we obtain 
I 

2 
d2)(x,y 9 R) = d')(C) + - 

d(zt$)) 

cos 0 dS 

for the wing-body junction we obtain with K2 = 1 : 

d2’ (x,y = R) 

. , (47) 

(48) 
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Sells3 has suggested for the isolated wing, with the centre section at y = 0 , 

the function 

K2(y) = 
0.161 - 0.305ylc 

0.161 + y/c ' 
0 <y/c Co.53 . (49) 

This gives for the centre section of the isolated wing 

(dK2/dy)y=o = - 8 ; 

which means (dK2/dy)J = -8 . 

3.2.3 The interference source distribution 

(1) 
The interference velocity Avz(x,y,z) , related to q, 

;*' (x,y,z,> 

or q(w2), does 

not vanish at z=z po. We shall see that Av is numerically 

small, it is therefore sufficient to determine Av 
Z 

from qA*) . For the wing- 

fuselage combination the velocity vZ(x,y,zt) can be written, to second-order 

accuracy, as the sum 

vz (X,Y ,zt> = vi:) (X,Y ,z,) + Av;')(x,y,+ + Av;(x,yszt) (50) 

where Avz is produced by a source distribution Aq(x,y), yet to be determined, 

in the wing plane. When we combine equations (41), (42) and (50), we learn that 

the source distribution Aq has to produce a velocity Av$ which satisfies the 

equation 

Av;(x,y+Aq) = - Av;')(x,y,z& l (51) 

We have derived in section 2.5, equation (31) values of the interference 

velocity vzI(x,9) on the fuselage, related to a single source line,and have 

tabulated some values in Table 4. For the case of a wing swept by 45', with 

the section RAE 101, t/c = 0.1 , attached to a fuselage with the radius 

R/c = 0.2 , we have computed values of Av;')(x,e) f or various values of 8 . 

By graphical interpolation, (1) we have determined values of AvzJ in the wing- 

body junction, i.e. for eJ = sin These values are plotted in 

Fig.17, together with the values of = O.ldzt/dx . The figure 
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shows that Av (1) 
ZJ is of a magnitude comparable to O.lv(l) (which confirms 

that we need not consider the source distribution (2) 
% when we compute 

We have not yet computed values of vzI(x,y >R,z f 0) for spanwise 

stations outboard of the junction. We can therefore make only an estimate of 

the source distribution Aq(x,y) which would cancel the interference velocity 

A,;') (x,y,zt) at all spanwise stations. We can expect that Av(1) varies z 
rapidly across the span; this would imply that the strength of the source 

distribution Aq also varies rapidly across the span. Such a source distribu- 

tion induces at 2 f 0 a velocity component Av*(x,y,z) which can be quite 
Z 

different from the velocity induced in z = 0, Avz(x,y,O) = fAq(x,y) . 

The aim of deriving an estimate of Aq is of course to estimate its 

effect on the pressure distribution of the wing, which means on vx . In view 

of the uncertainty about the spanwise variation of the interference velocity 

Av(') 
Z , we may attempt to obtain an estimate of the effect on v by means of 

a distribution of threedimensional sources along the line 0 <xX6, y = R, 

z = 0 . We ignore the fact that such a source distribution produces a normal 

velocity at the fuselage and determine the strength of the line source 

distribution such that it induces the velocity 

Av;(x,y = R,zt) = - Av;;)(x) . (52) 

When we approximate the line source distribution by one which varies piecewise 

linearly, the distribution can be determined by solving a system of linear 

equations. 

We are not able to say whether the streamwise velocity produced by the 

line source distribution is a fair estimate of the velocity produced by Aq . 
(1) It is possible that the interference velocity Avz varies more rapidly across 

the span than the velocity Av*(x,y,zt) produced by the line source distribu- z 

tion in y = R, z = 0. If this were the case then we could derive an over- 

estimate of the effect of Aq on vx . If Av(') 
Z 

varies very rapidly across 

the span, then it would be very laborious (and perhaps even impossible) to 

determine a planar source distribution Aq which cancels Av(') z . It might 

prove necessary to use a source distribution on the surface of the wing, and 

also to modify the source distribution on the fuselage to ensure that the normal 
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velocity at the body vanishes. We do not intend to apply here such a laborious 

procedure, but consider the Av 
X 

induced by the line source distribution to be 

. 

only a measure of the possible error in v if we neglect the interference 

velocity Avil)(x,y,zt) 
X 

in the boundary condition. 

3.2.4 The velocity at the wing surface 

To evaluate the interference velocity Avx at the wing surface to second- 

order accuracy, we have both to take account of the change in the source dis- 

tributions and to determine the velocity at the wing surface instead of in the 

plane 2 = 0 . 

We consider first the effect of the additional source distribution 
(2) 

a 
-4". We can only make an estimate of the change in Avx because this 

source distribution is no longer of the type considered above, since it varies 

across the span, see equation (46). To obtain an estimate for the magnitude of 

the effect of (2) 
% 

- 4" , we have calculated values of Av xJ for two 

different source distributions, each of which is of constant strength across the 

span. We have considered the two extreme cases, firstly the distribution which 

pertains to the source distributions far away from the fuselage: 

(2) 
Rs -C'=~ 

d (ZtS(l)) 
and secondly the distribution which pertains to 

the wing-body junction: - qy given by equation (48). Results are shown 

in Fig.18. 

Next,we examine how the values of Avx at the wing surface z = zt differ 

from those in the plane z = 0 . From a Taylor series expansion of Avx with 

respect to z we obtain 

Av~(x,Y,z) = Avx(x,y,O) + z + . , . 

= Avx(x,y,O) f z 
aAvz(x,y,O) 

f 
ax . . . . (53) 

For the interference velocity field, the velocity component Avz(x,y,O) in the 

plane z = 0 vanishes, because vzI vanishes in z = 0 , except for x = 0 , 

Y = R where vzI is finite. The difference Avx(x,y,zt) - Avx(x,y,O) is 

therefore a term of third order. Nevertheless, we have computed values of 

Av(~) xJ (x4,) in the junction, using the values of the velocity component 
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vxI(x,e) given in Table 2 and the source distribution (2) qw 
S 

. By graphical 

interpolation, we have derived values of AvxJ (2+x,e ) 

Fig.19 together with the values of AvxJ (2) (x,e = 0) Jandan;vziy;;;; Ih;ye. inThe 

figure shows that, for the particular case considered, the maximum velocity 

decrement is increased by about the same amount, when we evaluate Av at 
2 = 2 instead of at 

lz (1) 
z = 0 as when we evaluate Avx from 4;:) x instead of 

from qw ; the ratio between and (-Av!:)(x,O)) is max 
about 1.5. 

Finally, we have determined the strength of the line source distribution, 

which satisfies equation (52) for the values of Av(') ZJ given in Fig.17, and 

have computed the streamwise velocity component Avg(x,y = R,zt) induced by the 

line source distribution. Values of the sum AvxJ (2) WJ) * Av;(x,R$) are 

also plotted in Fig.19. We note that the ratio between -Avg max and 

-Av~:)~~~ is about i . We have,however, to stress again the uncertainty of the 
(1) estimated Av* which means of the effect of Avs X in the boundary condition. 

When we compare the difference between the values of Av X computed from 
(2) qws - d') and from q$) - d*) , given in Fig.18, with the magnitude of the 

somewhat uncertain value of Av* then it seems justified to ignore the span- 

wise variation of (2) 
x ’ 

R and to use only the simpler term (2) 
RS 

when one 

evaluates the interference velocity Av If we were to take account of the 
a-2 x l ( 

term - axt [A V 
X 

- tan $ Avy] in the boundary condition, see equations (40) (41), 

we could expect a further, but rather small, increase of the maximum value of 

-AvxJ . (1) For the case considered, -Avx max is smaller than 0.02 and 
I I 
Av(') 

X 

decreases rapidly across the span; we therefore expect that the resulting effect 

on Av 
X 

is noticeably smaller than the effect of Av,(') (x,y,zt) 0) 

When we want to compute the pressure coefficient c to second-order 
P 

accuracy, we ought to take account also of the velocity components Av and 
Y 

Avs . We have not yet computed values of the spanwise interference velocity 

Av 
Y 

away from the wing-body junction. It is of course to be expected that the 

error in c , produced by neglecting Av 
P Y ' 

increases with increasing angle of 

sweep. The approximate boundary condition of equation (41) states that the 

velocity component v z at the surface of the wing attached to the fuselage is 

the same as for the isolated wing. Within the present approximations, the 

change in the pressure distribution caused by the fuselage is therefore only 

produced by the change in the streamwise velocity. 
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3.3 Pressure distribution on the fuselage 

The pressure distribution on the fuselage,to first-order accuracy, can be 

derived by computing the values of Av yxm ( computed with the values of 

VxIW) 
(1) of Table 2) and adding these to the velocity vxw at the reflection 

plate at z = R sin 0 computed by means of equation (C-3), using q For 

e = 9o", values of 

v$‘)(x,S) = $‘(x,y = R,z = R sin 0) + Avx (*)(x,e) , (54) 

are plotted in Fig.20. 

(2) More accurate values of vxw can be derived by using qw instead of 
qw 

w  with Ledger's program2 or by means of the iteration technique developed by 

Sells3. However, without further effort, we are not in a position to determine 

more accurate values of Av 
x ' 

since this would require a knowledge of the 

additional source distribution h(x,y) , which cancels the velocity 

Avz(x,y,zt) l 

Fig.20 shows that for the configuration considered, with c/R = 5 , the 

maximum perturbation velocity at the top of the fuselage is about half the 

velocity in the flow past the isolated wing in the plane of symmetry at 2 = R. 

The maximum velocity at the top of the fuselage decreases with increasing sweep, 

as for the isolated wing,and the position of the maximum velocity moves 

rearwards. 

3.4 Comparison of the results using the present method with those derived by 
particular other methods for 

The configurations considered so far deal with wings of constant chord and 

infinite span. We have mentioned already that we assume that the tabulated 

values of v xI for infinitely long single source lines can also be used to 

estimate the interference on wings of finite span (when the span is larger than 

say 5 times the diameter of the fuselage). It has also been suggested that wings 

of moderate taper can be dealt with. To examine the validity of these assump- 

tions and to provide information about the accuracy of the term Avz , we now 

compare results derived by the present method with those from more exact methods. 

For symmetrical wing-fuselage configurations at zero lift, it is generally 

assumed that nominally exact pressure distributions can be derived by means of 

singularity distributions on the surface of the wing and the fuselage, the 
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strength of which is chosen such that the exact boundary condition is satisfied 

at certain points of the surface. A method for solving the problem by means of 

planar source panels, each of constant source strength, was devised by 

A.M.O. Smith and J. Hess (see e.g. Ref.7). Recently, A. Roberts 899 has 

produced a computer program for solving the problem by means of curved source 

panels where the geometry of the panels and the strength of the source distribu- 

tion vary continuously between adjacent panels. 

Using both methods,calculations have been done (unpublished work by 

A.F. Jones, RAE and A. Roberts, RAC) for two particular wing-fuselage combina- 

tions and for the related gross wing without fuselage. Geometric details are 

given in Fig.21. The velocity components have been computed by Roberts' 

program for a free stream Mach number MO = 0.4 . In the following analysis, 

we want to compare only the streamwise perturbation velocity component pertain- 

ing to incompressible flow, which we have derived from the values of v 

computed by Roberts' program by multiplying them by the factor f3 = cz . 

Somewhat different values would be obtained if Roberts' program were applied for 

incompressible flow. We may however expect that the difference is small because, 

for the wing alone, the values of vx derived in this way from the Roberts' 

program are very similar to those computed by the A.M.O. Smith program for 

M=O. Unfortunately, the two programs have produced values for vx at 

different spanwise and chordwise positions, so that we have to interpolate or 

extrapolate the computed values before we can make a comparison. In particular, 

we have to extrapolate the values of vx computed by the A.M.O. Smith and the 

Roberts programs, into the junction. In the neighbourhood of the wing-body 

junction, the two programs produce different values for v 
X 

, as shown in 

Fig.22. It seems reasonable to assume that Roberts' program, which uses 

continuous singularity distributions , produces the more reliable results. (We 

note also that in Roberts' method special singular source 'modes' are used near 

the wing-body junction, 10 in accordance with the results of Craggs and Mangler ; 

this feature should also increase the accuracy in this region.) 

Some further justification for the assumption can be derived by an 

examination of the values for the spanwise velocity component obtained by the 

two methods. The velocity components v and v 
Y z at the junction are related 

by the condition 

c 

vnJ(x,BJ) = cos BJvy(x,yJ,zt) + sin BJvz(x,yJ,zt) = 0 . 
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The values of vy(x,y > R,zt) given by Roberts ' program can easily be extra- 

polated to the approximate values 

- tan 8J viA)(x,y,O) X - ,$$p . 
X 

This is not possible with the values from the A.M.O. Smith program, unless one 

omits at least the two spanwise stations nearest to the junction. (We my 

mention that the values of v 
Y ' 

for lines of constant percentage chord,derived 

by Roberts' program for the wing-fuselage configuration,vary near the junction 

more rapidly across the span than the values near the centre section of the 

isolated wing.) 

In the present analysis, we have neglected the difference between the 

aspect ratio of the gross wing (A = 6) and that of the nett wing (A = 5.65) 

and have subtracted the values of v ,(E,n = 0) at the centre section of the 

gross wing from the v,J(C,yJ) in the wing-body junction at the same percentage- 

chord point 5 = 
x - xJY> 

c (Y> 
(where c(y) is the local chord and %,(y> the 

coordinate of the leading edge). In both programs, the velocity on the wing- 

body combination has been computed at values of 5 which differ from those used 

for the wing alone, i.e. the values of vxw had to be interpolated for the 

values of 5 for which vxJ was known. With the A.M.O. Smith program the 

velocity has been computed at a larger number of chordwise and spanwise stations 

than with the ,Roberts program. To obtain relatively reliable values of vxw , 

we herve therefore combined the values of vxw derived by the A.M.O. Smith 

program with those derived by Roberts when we determined the interference 

velocity Avx . Values of AvxJ are plotted in Fig.23. 

To derive an estimate for Avx by the method of the present Report, we 

have approximated the tapered wing by an untapered wing of 30' sweep and the 

same chord cJ as the tapered wing has in the wing-body junction; the ratio 

between body radius and wing chord is R/cJ = 0.24 . For this configuration we 

have computed values of Avx 

t 

(2) (x,0 J) using the source distribution Q, (2)ts) , 
given by equation (47). (2) When we use the source distribution %J , given by 

equation (48), we obtain for -Av::) at x/cJ = 0.35 the same value as with 
(2) 

%S 
; at X/CJ = 0.1 we obtain a value which is smaller by about 0.0015 and at 

X/CJ = 0.7 the value is larger by about 
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The fuselage is non-cylindrical at distances greater than one diameter 

forward of the apex of the gross wing. To estimate the effect of the body nose, 

we have computed, by slender-body theory, values of the streamwise velocity 

V xB for the isolated fuselage and have added these to AvC2) xJ . 

In Fig.23 we compare the values of Av::) + vxB with the values of AvxJ 

derived by the two panel methods. 

values of Av::) + vxB 

We note that for 0.1 < x/cJ < 0.6 say, the 

agree fairly well with those derived from the Roberts' 

program. 

It is likely that the differences over the rearward part of the chord are 

taper effects. (We have seen in Fig.12 that the position where Av vanishes 
X 

moves forward with decreasing angle of sweep.) An improved estimate of Avx , 

at the chordwise position x , would probably be derived if one were to 

represent the wing by one with the local sweep 4(x> instead of the sweep of 

the mid-chord line. Unfortunately, we cannot draw any definite conclusions 

because we cannot make statements about the accuracy of the interpolated values 

of v 
xw' 

We do not compare the various values of Avx near the leading edge 

because the interpolated values of v can be rather inaccurate and because 
xw 

the present method is based on a small-perturbation theory (without leading- 

edge corrections) which is by nature unreliable near the leading edge. 

We have computed values of Av(') zJ and hence, by means of a line source 

distribution, values of the corresponding change in the streamwise velocity 

Av" . If we consider the values of Av 
X x ' 

derived from Roberts' program, as 

reliable then Fig.23 suggests that the change in Avx , which is related to the 

change Avz at the surface of the wing, is smaller than Av* ; this could 
X 

imply that the interference term Av z decreases more rapidly away from the 

wing-body junction than the Avc(x,y,z+-) induced by the line source 

distribution. 

A calculation by Roberts' program has also been done for a combination of 

the same gross wing A with a fuselage, B. , for which the diameter of fuselage 

Bl has been reduced by the factor m . For this configuration, the ratio 

between the wing chord in the wing-body junction and the body radius cJ/R = 6 . 

From the computed results, we have derived values of AvxJ in the same way as 

for the larger fuselage. These are plotted in Fig.24 together with the values 

for the thicker body Bl . The maximum velocity decrement is larger for the 

thinner body because the projection of the junction shape into the chordplane, 
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Y,(X) , departs more from a straight line. We have also plotted in Fig.24 the 

values of Avx 
p 

(2) (x,0,) + VxB . (2) The values of Avx are again determined with 

ws l 

For the body BO , we have taken for vxB half the values of vxB 

for the body B1 . Fig.24 shows that the difference between the values of 

AvXJ 
for the two bodies is well predicted by the estimates. The maximum value 

of -Av$ , derived from Avd:) , is 20 per cent larger for the configuration 

ABO 
than for AB1 . If we consider the values of AvxJ , derived from the 

Roberts'results, as being correct, then Fig.24 suggests again that the change 

in Avx , related to Av~(x,Y,z& , is negligible. 

We have also derived values of Avx for the spanwise stations yJ + 0.25R 

and yJ + R and have plotted them in Fig.25 together with the estimates of the 

present method; note that, for y > R, Av (2) has been 2 = 
(2) 

X 
computed at 0 , 

using cl ws * 
The differences between the results from the two panel methods 

decrease away from the junction, see Fig.22. The output of the A.M.O. Smith 

program enables us to derive values of Avx at more chordwise points than the 

output of Roberts' program. In Fig.25, we have therefore shown mainly the Avx 

from the A.M.O. Smith program; they agree fairly well with the estimate 

Av;~)(x,Y,z = 0) + VxB . 

Summarising, we can say that the comparison of the present method with the 

results from Roberts' program for two particular configurations suggests that a 

fair estimate of the interference velocity AvxJ is given by Av L2' (x,e,> and 

by Avz2)(x,y,0) , when the terms Av (2) 
X 

are computed from 

source distribution and the velocity component vxI related 

long source line. 

of Avx(x,y > R) 

the second-order 

to an infinitely 

4 CONCLUSIONS 

The present Report gives tabulated values of the difference between the 

velocity components induced by a single swept source line in the presence of a 

circular cylindrical fuselage and those induced by the source line reflected at 

an infinite plate. It has been shown that, by means of these tables, one can 

derive fairly accurate estimates of the streamwise interference velocity for 

wing-fuselage combinations where the wings are of finite span, have some taper 

and are of uniform section shape. We may expect that estimates of sufficient 

accuracy can also be obtained for varying section shape if the variation is not 

too rapid near the wing-body junction. 
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The recommended procedure for estimating the change of the streamwise 

velocity Avx due to the presence of the fuselage is as follows. For the 

given section shape zt(x) , one determines the strength of the second-order 

source distribution 4;' (x> of the related infinite sheared wing: 

where S ('k‘) = $ 
’ dz$x’) dx’ 

i dx' x _ x' ' 
0 

(2) Using %s (2) one evaluates Avx from the single integral 

c/R x-x r 

Avi2)(x,y,z) = 
J 

V 
q(-f)(x') x1 

Y 
cos 4 "Q R ' R 

0 

values of v xI are given in Tables 1 and 2. Using the values of Table 1, one 

can determine the interference velocity in the wing plane. To obtain an 

improved estimate of AvxJ in the wing-body junction, it is recommended that 

Av(~) xJ (x,zt) be determined by evaluating the integral also with the values of 

vx,wN f rom Table 2 for various values of 8 and to interpolate between the 

values of Av i2)(x,8) to derive the value applicable to 6,(x) = sin -I (+x)/R). 

When the required angle of sweep differs from the values for which vxI is 
(2) tabulated, it is advisable to compute Avx with the tabulated values of v XI 

and to interpolate between the values of Av i2)(x,y,z;$) to derive Avi2) for 

the required value of r#~ . 
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Appendix A 

VELOCITY FIELD INDUCED BY A SOURCE LINE WITH THREE KINKS 

The velocity ~~(x,y,z) induced by an infinite source line in 

x’ = I1 - ly'll tan 4 ; z' 

obtained from the relation 

= 0 of constant strength Q per unit length can be 

i 

co 

q.p,Y,Z) = Q 
4lT cos I$ I 

1 

fx - (Y’ - 1) t-n $1 i + (Y - Y’)i + ‘k 

Ix - (y' - 1) tan $I2 + (Y - Yfj2 + ’ 
3 dY’ 

+ [x - (1 - 

/, 

y') tan $1 i + (y - y')i + zk 

[X - (1 - y') tan $1 2 
,3 dY’ 

0 + (Y - y’)2 + z2 

+ [x - (1 - /J y') tan $1 F + (y + y')i + Zk 

[x - (1 - y') tan $1 2 2 
2’3 dy’ 

0 + (y + y’> + z 

+ a[ x - (y’ - 

:J 
1) tan $1 i + (y + y')a + zk 

(A-1) I [x-(yf-l)tan@l 2 2 + (y + y’) + z f3 dy’ 
I 

where i, i, & are unit vectors parallel to the x, y, z axes. 

Using equation (A-l) we can determine at the fuselage y2 f z2 = R2 = 1 

the normal velocity v nQ(x,e) from 

vnQ(x,f3) = vy cos 0 + vz sin 0 . (A-2) 

We obtain 



I 

1 - cos 24 cos 0 (cos 8 + x tan c$ + tan2 4) - 
cos 4 (sin2 0 + x2 cos 8) - x(1 - cos e) sin C$ 

v,p,e) = 2 
x2 + 2(1 - cos e) 

9 c\ 
[(I cos 0) sin 4 + x cos $1' + sin‘ 8 

cos $I (sin2 8 + x2 cos e) + x(1 - cos e) sin $I _ sin C#I (X - tan I$) + cos $I cos 8 (x - tan $) 
2 

+ - cos e) I+ (~-tan$)~ 

[(l - cos e) sin $I - x cos 41 
2 2 

+sin 0 

cos (J (sin2 8 - x2 cos e) + x(1 + cos e) sin I$ _ sin (p (X - tan (I) - cos $I cos 8 (x - tan 6) 
2 

+ x2 + 2(1 + cos e> I+ (~-tan$)~ 

[(I f cos e) sin 4 - x cos $1 
2 2 

+sin e 

1 + cos2 4 cos e (- cos e + x tan 4 + tan2 4) - 
cos 4 (sin2 e - x2 cos e) - x(1 + cos e) sin C#I 

+ 2 + 2(1 + cos e) 
[(l + cos e) sin I#I + x cos $11 

2 2 
+sin 8 

. ..(A-3) 

From equation (A-3) we obtain for t3 = 0 

c 
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. 

VnQ(X,O = 0) = 

$ -p&i&‘- 
I 

- 2x sin + cos I$ + x2 

1 + (x - tan $)2 cos2$ -JS 

+ 2 sin Cp 
1 
- x cos 4 

[ 

+ 
Jx+ A/ 

tan $ - x 

+4 1 + (x - tan I$)~ 1 
1 

+ 2 sin I$ + x cos 4 
[ &F-- 

+ sin @ 
+4 II 

with 

lim vnq(x,O = 0) = -$ sin2 C$ . 
x-to 

From equation (A-3) we obtain for x = 0 

vnQ(x = o,e> = & 

which means 

3 (x=0) = Q 
nQ z 

for all values of Cp . 

For the streamwise velocity component in the plane z = 0 we obtain from 

equation (A-l) the relation: 

Vx~,Y,O) = 

Q 

i 

1 
HIT cos Cp x+ (y- l>tan$ 

L 

Y 
(x 

- tan I$)~ + y2 - 4x2 : (,'- 1 I)2 

+ 1 
x - (y + 1) tan Cp 

L 

'Y + Y+l 

(x - tan $)2 + y2 x2 + (y + 1 1)2 

+ Y 
x - (y -II) tan 0 'OS ' + dx2 + I,'- 

C 1 1)2 

1 
+ x + (y + 1) tan 4 

[ 
cos cp - 

y+l 

4/X2 11 +(y+l)2 l 

(A-4) 



For the velocity on the fuselage we obtain 

V 
\ XM 
x,e) = 

Q I 1 
4lT co.5 0 [ x - tan C$ (1 - cos e)l 2 + sin2 8 (1 + tan2 4) 

(x - 
L 

2 tan 4) (1 - CQS 0) + x cos 6 + tan Cp (1 - cos 0) 

x2 + 2(1 - cos e) (x - tan $J)~ + 1 - 1 
1 

+ [x - tan $ (1 + cos e)] 2 + sin2 8 (1 f tan2 0) [ 

(x - 2 tan 9>(1 + cos 8) + - x cos Cl + tan $I (1 + cos e) 

,1x2 + 2(1 + cos e) (x - tan $)2 + 1 3 

+ 1 

[ 
x cos $I + sin $I (1 - cos e) - (x + 2 tan $) (1 - CDS e) 

[x + tan I#I (1 - cos e>l 
2 

+ sin2 8 (1 f tan2 4) 2 + 2(1 - cos e> 1 
1 + 

[ 

x cos (I + sin 4 (1 + cos e) - (x + 2 tan @)(I + cos e) 

[X + tan 4 (1 + cos e>12 + sin2 8 (1 +- tan2 4) II 
. . . (A-5) 



. . . . 

ve/,pm = 

s I 
sin 0 cos (J 

sin I$I (x + tan 4) + cos $ cos 0 + x(x + tan 6) + 1 - cos f3 

[Cl - cos 6) sin #I + x cos $1 
2 

+ sin 2e [ x2 + 2(1 - cos 0) 1 
+ sin 8 cos (J 

I(1 - cos 0) sin $I - x cos $1 
2+sin29[Jm-I(j/;y2;; -;sq 

sin 6 cos $I x(x - tan 4) + 1 + cos 0 

[(l + cos 0) sin $I - x cos +I 
2 

1 + (x - tan I$)' - 
+ sin ‘8 P x2 + 2(1 + cos e) 1 

sin 4 (x + tan 4) - cos $J cos e + x(x + tan 9) + 1 + cos e 

[(I + cos e) sin L$ + x cos $11 
2 + sin ‘e 1 JX2 + 2(1 + cos e) 11 sin 0 cos Q 

. . . (A-6) 
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Appendix B 

THE BEHAVIOUR OF vx (x,y = 1,O) FOR SMALL VALUES OF 1x1 

By using the relations 

m  

(x - x')dx' = 
$3 

0 

(x - XVI2 + 2(1 - cos e> 

de' Wk) 

2 '3 
(x - x') + 2(1 - cos e> 

= (x - x')2J(x - x')2 + 4 

and q(x,6) gi ven by equation (14), we can derive v ,q(X'Y = l,O> from the 

equation 

vnq(x',f3>(x - x')dedx' 

13 
- xy2 + 2(1 - cos e> 

co 

+ 
i 

- G&x) + @+x’) - @“)(x)]E(k)dx 
. 

-a) lT(x - x - xl)2 + 4 

. ..(B-1) 

The single integral is a finite continuous function for all values of x . The 

singular behaviour of the double integral for small values of 1x1 arises 

from 

b 6 vnq(xf ,e> (X - x')de 

(X - x’)~ + 2(1 - cos e> 
'3 (B-2) 

where a, b, 6 are large compared to 1x1 . By using equation (A-l) for 

vnqbbe) it can be shown that, for 8 s 1 and x @ l/sin 24 , the leading 

terms in v ,p,e> are 



Appendix B 39 

. 

vnq(x,e) = .$ 
i 

2 _ x2 cos2 ; (2 ;os2 4 ; sin2 0) _ 2x4 sin2 0 cos4 4 

X cos o+e Ix2 2 cos 4 f e21 2 

'OS2 +)I + o(x,e2) 

1 

,(B-3) 

We consider first the contribution 
=2 

to vxq(x,l,O) where 

d 6 

12(x) = 1 
- - Ld '0 

x' sin $I [3x' e ~0s' 2 $>I (x ' ' 

4TT2 ii J== ix,* co;2++e;(;2;22j=-J53)dedx 

6 

= sin Q -- 
42 ,pi 

3d2e2 ~0s~ + + e4(1 + 2 cos2 0) 

2 x 0 0 [xl2 ~0s~ 4 + e2] &&T 

x [J*  -  &--+-Jdedxf l (B-4) 

We choose 6 = d and introduce the variable CT , defined by 

8 = (3x 1 

1 

I2 = sin C$ -- 

i 

i 
41T2 (j 

da 3a2 cos2 $ + 04(l -+ 2 cos2 $1 x 

[ cos 2 (I + a212 J-3 

d 

X 

J 
0 

00 
+ I 

do 3a2 cos2 Q + 04(l + 2 cos2 $I) x 

1 I cos 29 + 0212&-7 

X 
x’ (x - x’) 

13 
- xy2 2 l2 +0x 

dx' 
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The integrals 

d I- -1 

6 

and 

d/o 

i 
0 

contain the term 

iz, x’(x - x’) I 
(x - x') 

2 + ,2xf23 

i 

x'(x - x') 

&yTm' 

2 

G-s3 
1% 1x1 l 

K log 1x1 , where 

K 
sin C#I J 2 302 = cos2 4 2 -- $ + u (1 + 2 cos 

$) 4n2 [ cos 24 do -I- a21 2 
o 

[I * 021 2 

x’(x + x’) 
dx' 

(x 

This means that 
I2 

contains the term 

cos 34 -1+; 20 sin 
= - 

4~ sin3 $ 
. 

We now consider the contribution 
I3 

to vxq(x,l,O> where 

(B-5) 

X+E 6 

- 1 
2 

13(x) iii - x' COS2 (p(2 COS2 $ - = - sin2 9) 2xf4 sin2 cos 
4Tr2 xl2 cos2 c$ + e2 

_ 4 44 

x-E: 0 [XI2 cos2 $I + e2] 2 I 

13(x) is discontinuous at x = 0 . The value 

I($) = lim 13(x > O,$) 
X-HO 

(R-7) 

can be determined by a technique similar to that of Appendix A of Ref.1. This 

leads to the expression 
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l 

(B-8) 

m 

I(($) = - cos 2$ 

4 

(1 +r)2[2 (sin2 (p 

4a2 -00 

- C;S2 @IT2 + 

"L [T - (1 + T) 

i2 - sin2 4) cos2 $I (1 +-c)~] 

cos2 $4 2 

+ T 1 + T [2,r 
2 

- (2 + sin2 Cp)(l + ~>~l f(=) do 
K 

i 111 2 2 
T - (1 + r) cos2 @IId J 

where f(T) = tan -1 

--m<T<- cos QJ 
and cos@ < 

1 + cos + l- cos f.j 

and 
1 

f(r) = - log (1 + T> cos $I +d(1 + r)2 cos2 $ - T2 
2 

(1 + -c> cos + - J-(1 + r>2 cos2 C$ - ,r2 
for 

cos $ cos $J 
1 + cos $I < ,r < 1 - cos $ * 

We have evaluated the integral in equation (B-8) numerically and have obtained 

the values 

The remaining 

Thus Vxq(X'Y 

4 I($) 
0 -0.05305 

3o" -0.04853 

45O -0.04240 

60' -0.03288 

contributions to v xq(x' 190) are finite continuous functions. 

= 1,O) behaves as 

vx (x,y = 1 ,o> cos 3. - 1 ++sin2 0 

Q =- HIT sin3 + 
log 1x1 + 5 I(4) + f(x;+) (B-9 1 

where f(x;$) is a finite continuous function. 
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Appendix C 

VELOCITY FIELD INDUCED BY A SWEPT SOURCE LINE 

The velocity field v+(x,y,z) induced by an infinite swept source line 

with the kink at x' = 0, y' = 1 can be obtained from the relation 

Q 
qx,Y,z) = 4r cos ($ 

- 1) tan $1 i.+ (y - y'>i + zk3 dyl 
I 

LX - (y' - 1) tan $1 
2 

+ (Y - yf)2 + z2 

y') tan $1 i + (y - y').j + Z& 
(C-1 > 

- y’> tan 01 
2 

+ (Y - yt)2 + zi 

This equation gives for the x-component of the velocity in the plane z = 0 the 

relation: 

vfi(x9Y,o) = 4r ,Q,, 4 x + (y -'I) t-n $ 'OS 4 - 
I [ 

' - ' 
2 + (y - 1,2- 

+ x - ty -li) tan 9 

For the velocity components in the plane y = 1 , we obtain the relations: 

r 

Vx*(X,Y = 1 ,z> = g 2 l 
z2 * 

x cos 
X cos 2 9 + z2 t 

‘(-$a 
I 

VZA(X’Y = l,z) = g 2 z l+ 
x sin $J 

l X cos 2 Q + z2 I 4 x2 + z2 I  

(C-3) 

(C-4) 

When we substitute for Q in equation (C-4) the term f(S)dS and perform 

the integration with respect to 5 , we obtain 
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l 

.1 
vz(x,y = 1 ,z) = & 

i 
f(E) 

Z 

0 (x - 5) 
2 

cos 2 $I + z2 

1 = f(x) s Z 

21T dS 

0 ( 
x - zg2 cos2 cp + z2 

1 
+% :I 

f(S) - f(x) 
(x - 5) 

2 
+ 

0 
cos 2 c$ + z2 

r 

i 4 

l+ 
(x - 5) sin (9 

(x - 5)2 + z2 

+ (x - Elf(S) sin 4 

[(x - <)2 co2 c#l + z21&x - o2 + z2 
dC 

The first term on the right-hand side is equal to 

f(x) z 
2Tr z cos 4 

[ 

tan-l (1 - x> cos 4 + tan-l x cos 0 . 
Z Z 1 , 

. (C-5) 

when z tends to zero the term tends to f(x)/2 cos 4 . The integrand of the 

second term changes its sign at 5 = x ; the second term therefore vanishes when 

Z tends to zero. With f(S) = cos 4 q(5) , we obtain therefore from 

equation (C-5) the limit 

q(E) lim vz(x,y = l,z) = 2 
l 

z-to 
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COMPARISON BETWEEN RESULTS FROM THE PRESENT METHOD AND FROM 
THE APPROXIMATE 'SOURCE METHOD' GIVEN IN REF.11 

At the time when Ref.11 was written, the evaluation of a series of double 

integrals seemed too laborious a procedure. Therefore an estimate of the 

interference effect produced by a fuselage was derived by means of only a source 

distribution on the axis of the fuselage. For an unswept isolated source line 

in x = 0 ,the effect of the source distribution q(x,0) on the fuselage, used 

in the present method, was approximated by the velocity field of a single sink 

in x=y=z=o. The strength of the source was chosen such that there is 

no overall flow through the fuselage, which means the condition of zero normal 

velocity at the surface of the fuselage is satisfied in the average but not 

locally, as by means of q(x,0) . 

With a swept wing attached to a circular fuselage, the source distribution 

in the wing plane was the same as in the present method, however the difference 

between the velocity fields for a source line with three kinks and for a source 

line with one kink, xfl- IA , was neglected. For a single source line through 

x = 11 - 1~11 tan 9 , the source distribution q(x,e) on th e fuselage was 

approximated by a sink distribution in 0 < x < tan I$ of strength 

E(x) = -2Q/sin $ . This sink distribution induces the streamwise velocity 

component 

tan #I 

vxs (X,Y,Z = 0) = h,-fTn $ 
x-x 1 

1 dx' 
- ,I)2 -k y23 = - Q 

HIT sin 4 c 1 
(tan 4 - x>2 + y2 

-d--& 1 l (D-1) 

To judge how good an approximation can be derived by means of the axial 

source distribution, we compare first some results for an isolated source line. 

For 4 = 45' and y = 1 , we have plotted in Fig.26 vxs from equation (D-l) 

together with v and v 
xq 

xI from Fig.5. We note, for larger values of 1x1 , 

that v xs gives an overestimate of v 
xq (th 

e same is true for $I = 0 as 

shown in Fig.5 of Ref.1). The axial source distribution was suggested as an 

approximation of the interference effect; we are therefore more interested in a 
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comparison of vxs with vxI . Fig.26 shows that vxs produces, for most 

values of x , a large overestimate of the magnitude of the interference 

velocity lvxIl . We have seen in Fig.5 that the terms v and v - v 
=I XM xh 

are for most values of x of opposite sign, therefore the neglect of the term 

V -V 
xM xii 

in the 'source method' of Ref.11 produces a less satisfactory 

approximation to v xI for larger values of C$ . 

We are of course more interested in a comparison of the results for a 

complete wing-fuselage combination than in a comparison of the results for a 

single source line. For an unswept wing, a comparison is made in Fig.27 between 

the values of Avc: from the 'source method' with the values of Av (1) 
XJ 

computed from equation (35); we learn that the maximum value of -Av** is about 

-Av;;) . 
XJ 

twice the maximum value of We have plotted in Fig.27 also the values 

of Avii)(x,BJ) and of Av::) + Av* . 
X 

For the particular values of wing thick- 

ness, t/c = 0.1 , and ratio between wing chord and body radius, c/R = 5 , the 

agreement between the values of A+: from the 'source method' (related to the 

wing source distribution of first-order theory qw (1)) and the values AvxJ 

from second-order theory seems to be sufficient for preliminary estimates. 

When we apply the 'source method' to configurations with wings of the same 

chordwise section but with varying angle of sweep, then we find that the maximum 

velocity decrement in the junction is almost independent of sweep in contrast to 

the results shown for example in Fig.12. We follow therefore a suggestion made 

by D.A. Treadgold 
12 

who found that an improved estimate of Avx can be obtained 

from the 'source method' of Ref.11, when the strength of the axial source 

distribution is reduced by the factor cos C$ . For a wing-fuselage combination 

with a wing swept by 45', we have plotted in Fig.28 the estimate of the inter- 

ference velocity, Av$ , determined from the 'source method' multiplied by the 

factor cos 4 (i.e. from equation (35) when vxI is replaced by cos $ vxs , 

with v 
xs 

from equation (D-l)), together with the values of Av(1) 
XJ 

and Avii) 

from Fig.19. When we compare Figs.27 and 28, we note that the relations between 

Av** and Av (1) 
, xJ XJ 

and also between AvG; and AvxJ from second-order theory 

are for the swept wing similar to those for the unswept wing; this fact demon- 

strates the beneficial effect of the factor cos ql applied to the 'source 

method' of Ref.11. 

In Ref.11, a further estimate for the interference effect was suggested by 

means of the 'vortex method'. This estimate was based on the assumption that 
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the curved shape of the intersection line between a thick wing and a fuselage 

(in particular the projection into the plane of the wing) were mainly respons- 

ible for the velocity decrement in the junction. If this were true, then the 

velocity decrement would be nearly independent of the angle of sweep; however 

the results in Figs.12 and 14 show that the assumption is invalid. 

. 
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Table I 

STREAMWISE COMPONENT OF THE INTERFERENCE VELOCITY ON THE WING. 
VxI(X.Y,Z - 0) 

Q/R 
, FOR A SINGLE SOURCE LINE 

0.0014 0.0015 
0.0051 0.0052 
0.0060 0.0061 
0.0072 0.0072 
0.0086 0.0084 
0.0104 0.0102 
0.0128 0.0123 
0.0160 0.0152 
0.0180 0.0168 
0.0202 0.0187 
0.0228 0.0208 
0.0259 0.0228 
0.0274 0.0235 
0.0288 0.0243 
0.0303 0.0248 
0.0321 0.0252 
0.0341 0.0252 
0.0364 0.0243 
0.0389 0.0222 
0.0423 0.0181 
0.0467 0.0106 
0.0495 0.0056 
0.0516 0.0022 

?0.0530 0 
-0.0516 -0.0022 
-0.0495 -0.0056 
-0.0467 -0.0106 
-0.0423 -0.0181 
-0.0389 -0.0222 
-0.0364 -0.0243 
-0.0341 -0.0252 
-0.0321 -0.0252 
-0.0303 -0.0248 
-0.0288 -0.0243 
-0.0274 -0.0235 
-0.02’9 2 -0.0228 
-0.0228 -0.0208 
-0.0202 -0.0187 
-0.01l30 -0.0168 
-0.0160 -0.0152 
-0.0128 -0.0123 
-0.0104 -0.0102 
-0.0086 -0.0084 
-0.0072 -0.0072 
-0.0060 -0.0061 
-0.0051 -0.0052 
-0.0014 -0.0015 

$10 

1.25 1.25 

0.0015 
0.0045 
0.0051 
0.0059 
0.0068 
0.0078 
0.0089 
0.0100 
0.0104 
0.0106 
0.0105 
0.0101 
0.0097 
0.0092 
0.0085 
0.0077 
0.0068 
0.0056 
0.0044 
0.0030 
0.0015 
0.0008 

0 

-0.0008 
-0.0015 
-0.0030 
-0.0044 
-0.0056 
-0.0068 
-0.0077 
-0.0085 
-0.0092 
-0.0097 
-0.0101 
-0.0105 
-0.0106 
-0.0104 
-0.0100 
-0.0089 
-0.0078 
-0.0068 
-0.0059 
-0.0051 
-0.0045 
-0.0015 

l- 0 - 300 

0.001 I 
0.0041 
0.0049 
0.0060 
0.0074 
0.0093 
0.01 I8 
0.0152 
0.0174 
0.0201 
0.0233 
0.0275 
0.0295 
0.0319 
0.0346 
0.0378 
0.0413 
0.0464 
0.0526 
0.0612 
0 0742 
0.0869 
0.1033 

0.0063 
-0.0066 
-0.0152 
-0.0220 
-0.0241 
-0.0246 
-0.0243 
-0.0237 
-0.0231 
-0.0222 
-0.0215 
-0.0208 
-0.0102 
-0.0179 
-0.0167 
-0.0156 
-0.0136 
-0.0116 
-0.0100 
-0.0086 
-0.0073 
-0.0064 
-0.0018 

0.0011 
0.0041 
0.0049 
0.0060 
0.0073 
0.0091 
0.01 I4 
0.0146 
0.0166 
0.0191 
0.0219 
0.0254 
0.0270 
0.0286 
0.0304 
0.0322 
0.0340 
0.0356 
0.0365 
0.0358 
0.0320 
0.0284 
0.0256 
0.0237 
0.0216 
0.0185 
0.0128 
0.0029 

-0.0044 
-0.0093 
-0.0125 
-0.0145 
-0.0157 
-0.0164 
-0.0168 
-0.0169 
-0.0167 
-0.0161 
-0.0153 
-0.0145 
-0.0128 
-0.0113 
-0.0099 
-0.0087 
-0.0076 
-0.0067 
-0.0022 

2 
-- 

0.0011 
0.0038 
0.0044 
0.0053 
0.0063 
0.0077 
0.0091 
0.0108 
0.0117 
0.0127 
0.0134 
0.0139 
0.0141 
0.0141 
0.0139 
0.0137 
0.0133 
0.0127 
0.01 I9 
0.0109 
0.0097 
0.0091 

0.0084 

0.0077 
0.0070 
0.0055 
0.0040 
0.0025 
0.001 I 

-0.0002 
-0.0016 
-0.0027 
-0.0036 
-0.0044 
-0.0060 
-0.0070 
-0.0076 
-0.0079 
-0.0080 
-0.0076 
-0.0069 
-0.0063 
-0.0057 
-0.0052 
-0.0020 

l- 
I 1.25 

0.0009 
0.0037 
0.0045 
0.0055 
0.0069 
0.0087 
0.0112 
0.0147 
0.0170 
0.0199 
0.0235 
0.0282 
0.0305 
0.0332 
0.0364 
0.0401 
0.0446 
0.0503 
0.0578 
0.0685 
0.0850 
0.1033 
0.1259 

0.0431 
0.0213 
0.0066 

-0.0058 
-0.01 I9 
-0.0150 
-0.0167 
-0.0176 
-0.0179 
-0.0179 
-0.0178 
-0.0175 
-0.0167 
-0.0160 
-0.0153 
-0.0147 
-0.0134 
-0.0120 
-0.0106 
-0.0093 
-0.0081 
-0.0070 
-0.0019 

0.0009 
0.0037 
0.0045 
0.0055 
0.0068 
0.0085 
0.0109 
0.0143 
0.0164 
0.0191 
0.0223 
0.0263 
0.0282 
0.0303 
0.0326 
0.0350 
0.037) 
0.0402 
0.0425 
0.0437 
0.0422 
0.0397 
0.0377 
0.0362 
0.0344 
0.0316 
0.0264 
0.0161 
0.0076 
0.0013 

-0.0033 
-0.0066 
-0.0089 
-0.0105 
-0.01 I6 
-0.0124 
-0.0134 
-0.0137 
-0.0136 
-0.0133 
-0.0124 
-0.01 I4 
-0.0105 
-0.0095 
-0.0085 
-0.0077 
-0.0028 

+ - 450 

2 

0.0009 
0.0035 
0.0041 
0.0050 
0.0060 
0.0074 
0.0090 
0.01 IO 
0.0121 
0.0133 
0.0145 
0.0155 
0.0159 
0.0161 
0.0163 
0.0163 
0.0162 
0.0159 
0.0154 
0.0148 
0.0139 
0.0134 

0.0128 

0.0122 
0.01 I6 
0.0102 
0.0088 
0.0073 
0.0059 
0.0045 
0.0031 
0.0018 
0.0007 

-0.0004 
-0.0025 
-0.0041 
-0.0052 
-0.0060 
-0.0068 
-0.0069 
-0.0067 
-0 0063 
-0.0058 
-0.0054 
-0.0024 

T- 
I 

0.0008 
0.0034 
0.0041 
0.0050 
0.0063 
0.0081 
0.0107 
0.0143 
0.0167 
0.0196 
0.0235 
0.0286 
0.0312 
0.0342 
0.0377 
0.0419 
0.0470 
0.0536 
0.0623 
0.0749 
0.0967 
0.1185 
0.1470 

0.0856 
0.0547 
0.0341 
0.0161 
0.0058 

-0.0004 
-0.0045 
-0.0073 
-0.0093 
-0.0107 
-0.01 I6 
-0.0123 
-0.0130 
-0.0130 
-0.0128 
-0.0125 
-0.0121 
-0.01 I3 
-0.0105 
-0.0096 
-0.0086 
-0.0076 
-0.0019 

+ - 60° 

1.25 

0.0007 
0.0033 
0.0040 
0.0049 
0.0062 
0. ooeo 
0.0104 
0.0138 
0.0161 
0.0190 
0.0225 
0.0270 
0.0292 
0.0316 
0.0343 
0.0373 
0.0407 
0.0443 
0.0479 
0.0510 
0.0519 
0.0510 
0.0498 
0.0488 
0.0476 
0.0454 
0.0412 
0.0317 
0.0227 
0.0154 
0.0095 
0.0049 
0.0014 

-0.0014 
-0.0036 
-0.0053 
-0.0080 
-0.0095 
-0.0103 
-0.0107 
-0.0109 
-0.0107 
-0.0105 
-0.0102 
-0.0096 
-0.008’) 
-0.0038 

1 
2 

0.0008 
0.0032 
0.0038 
0.0046 
0.0057 
0.0067 
0.0088 
0.011I 
0.0124 
0.0138 
0.0154 
0.0169 
0.0174 
0.0179 
0.0184 
0.0188 
O.Ol?O 
0.0191 
0.0190 
0.0187 
0.0182 
0.0179 

0.0175 

0.0170 
0.0165 
0.0155 
0.0142 
0.0129 
0.01 I5 
0.0101 
0.0087 
0.0074 
0.0061 
0.0049 
0.0023 
0.0002 

-0.0015 
-0.0028 
-0.0044 
-0.0053 
-0.0056 
-0.0057 
-0.0056 
-0.0054 
-0.003c 



Table 2 

STRCMNISC COXFONCNT OF TiE INTERFERENCE VELOCITT ON Ttll! FUSELACE~ 
v,Iwo 

“,= , FOR A .91NGLc SOURCE LINE 

*-0 

5O IO0 3o” 

-10 0.0016 0.0016 0.0015 
-5 0.0051 0.0052 0.0055 
-6.5 0.0060 0.0061 0.0065 
-6 0.0072 0.0073 0.0079 
-3.5 0.0086 0.0087 0.0096 
-3 0.0106 0.0106 0.01 I9 
-2.5 0.0129 0.0132 0.0152 
-2 0.0161 0.0165 0.0199 
-1.71 0.0182 0.0187 0.0231 
-1.5 0.0205 0.0212 0.0272 
-1.21 0.0233 0.0243 0.0325 
-1.0 0.0265 0.0282 0.0395 
-0.9 0.0280 0.0302 0.0430 
-0.8 0.0297 0.0323 O.Ob66 
-0.7 0.0316 0.0348 0.0506 
-0.6 0.0338 0.0380 0.0545 
-0.5 0.0364 0.0420 0.0582 
-0.6 0.0399 0.0477 0.0584 
-0.3 0.0450 0.0553 0.0551 
-0.2 0.0535 0.0602 0.4446 
-0. I 0.0683 0.0603 0.0254 
-0.0: 0.0629 0.0386 0.0131 
-0.02 0.0382 0.0154 0.0052 

0 0 0 0 
0.01 -0.0382 0.0156 -0.0052 
0.0s -0.0629 0.0386 .0.0131 
0.1 -0.0683 0.0603 .0.0254 
0.2 -0.0535 0.0662 -0.0446 
0.3 -0.0450 0.0553 a.0551 
0.6 -0.0399 0.0677 .0.0584 
0.5 -0.0364 0.0420 .0.0582 
0.6 -0.0338 0.0380 .0.0545 
0.7 -0.0316 0.0368 .O .0506 
0.8 -0.0297 0.0323 .o .0466 
0.9 -0.0280 0.0302 .0.0430 
I.0 -0.0265 0.0282 .0.0395 
1.25 -0.0233 0.0243 a.0325 
I 5 -0.0205 0.0212 a.0272 
1.75 -0.0182 0.0187 0.0231 
2 -0.0161 0.0165 0.0199 
2.5 -0.0129 0.0132 0.0152 
3 -0.0106 0.0106 ,0.0119 
3.5 -0.0086 0.0087 ,0.0096 
6 -0.0072 0.0073 0.0079 
6.5 -0.0060 0.0061 0.0065 
5 -0.0051 0.0052 0.0055 

IO -0.0016 rJ.OQlb 0.0015 

T T l- 0 - 3o” * - b5O 1 6 - 60’ 

IO0 3o” 60’ 9o” 5O IO0 3o” 60’ 

0.001 I 0.001 I 0.001 I O.OOli 0.0009 0.0009 0.0009 0.0009 
0.0041 0.0042 0.0045 0.0066 0.0037 0.0037 0.0037 0.0038 
0.0050 0.0051 0.0054 0.0056 0.0045 0.0065 0.0045 0.0016 
0.0060 0.0062 0.0067 0.007c 0.0055 0.0055 0.0056 0.0058 
0.0076 0.0077 0.0085 0.0085 0.0069 0.0069 0.0070 0.0076 
0.0096 0.0099 0.0111 0.0117 0.0087 0.0087 0.0090 0.0097 
0.0120 0.0129 0.0150 0.0161 0.01 I2 0.01 I3 0.01 I9 0.0133 
0.0154 0.0176 0.0212 0.023C 0.0148 0.0169 0.0162 0.0190 
0.0178 0.0204 0.0257 0.028C 0.0171 0.0173 0.0192 0.0231 
0.0206 0.0213 0.0313 0.0343 0.02w 0.0203 0.0231 0.0286 
0.0241 0.0295 0.0387 0.0615 0.0237 0.0241 0.0283 0.0357 
0.0288 0.0370 0.0477 0.0508 0.0285 0.0292 0.0356 0.0669 
0.0312 0.0404 0.0517 0.0561 0.0309 0.0318 0.0390 0.0491 
0.0340 0.0452 0.0557 0.0576 0.0337 0.0369 0.0438 0.0536 
0.0374 0.0506 0.0596 0.0607 0.0369 0.0385 0.0691 0.0582 
0.0415 0.0562 0.0631 0.0630 0.0608 0.0429 0.0552 0.0628 
0.0467 0.0630 0.0658 0.0643 O.Ob58 0.0487 0.0623 0.0669 
0.0539 0.0692 0.0668 0.0642 0.0520 0.0562 0.0700 0.0702 
0.0640 0.0746 0.0660 0.0623 0.0607 0.0668 0.0776 0.0721 
0.0787 0.0764 0.0627 0.0586 0.0743 0.0827 0.0832 0.0720 
0.0943 0.0713 0.0565 0.0529 0.1000 0.1032 0.0840 0.0697 
0.0932 0.0653 0.0526 0.0696 0.1198 0.1090 0.0817 0.0676 
0.0840 0.0610 0.0500 0.0477 0.1245 0.1062 0.0791 0.0661 
0.0735 0.0574 0.0478 0.0464 0.1165 0.1012 0.0773 0.0651 
0.0613 0.0530 0.0460 0.0646 0.0990 0.0935 0.0761 0.0640 
0.0391 0.0471 0.0433 0.0619 0.0606 0.0775 0.0710 0.0619 
0.0026 0.0345 0.0377 0.0377 0.0090 0.0669 0.0628 0.0583 

,0.0351 0.0111 0.0256 0.0273 ,0.0198 -0.0046 0.0428 0.0494 
Q.0411 -0.0101 0.0127 0.0167 ~0.0222 -0.0237 0.0218 0.0388 
Q.0389 -0.0254 0.0003 0.0060 .0.0219 -0.0286 0.0036 0.0276 
,o .0359 -0.0366 -0.0103 *o.w39 .0.0216 -0.0288 -0.0104 0.0165 
0.0325 -0.0392 -0.0201 -0.0133 .0.021 I -0.0277 -0.0201 0.0061 
.o .0300 -0.0616 -0.0283 -0.0216 ,0.0206 -0.0262 -0.0263 -0.0031 
0.0278 -0.0607 -0.0326 -0.0284 ~0.0201 -0.0269 -0.0299 -0.0109 
,0.0260 -0.0399 -0.0362 -0.0341 ,0.0195 -0.0236 -0.0316 -0.0172 
0.0266 -0.0379 -0.0385 -0.0357 ,0.0189 -0.0226 -0.0322 -0.0222 
0.0217 a.0332 -0.0399 -0.0392 ,0.0176 -0.0201 -0.0310 -0.0298 
0.0199 .0.0290 -0.0375 -0.0390 0.0167 -0.0183 -0.0285 -0.0324 
0.0184 4.0255 -0.0345 .0.0367 0.0158 .0.0172 -0.0259 -0.0323 
0.0167 -0.0226 -0.0309 9.0336 0.0151 *0.0162 -0.0236 -0.0308 
0.0162 .0.0180 -0.0245 .0.0268 0.0136 -0.0143 -0.0195 -0.0263 
0.0121 0.0147 -0.0198 ~0.0214 0.0122 .0.0125 -0.0163 -0.0219 
0.0103 ~.OlZO -0.0160 0.0172 0.0107 9.01 IO -0.0138 -0.0182 
0.0088 ~0.0100 -0.0130 .0.0139 0.0096 -0.0096 -0.01 I8 -0.0152 
0.0074 .0.0085 -0.0107 .0.0115 0.0082 -0.0083 -0.0101 -0.0129 
0.0065 .0.0073 -0.0090 .0.0097 0.0071 .0.0072 -0.0086 -0.0111 
0.0018 ~0.0021 -0.0028 .0.0032 0.0019 ~0.0020 -0.0026 -0.0037 

60’ 9o” 5O 

0.0018 0.0019 O.WlO 
0.0062 0.0066 O.W.kI 
0.0076 0.0080 0.0050 
0.0091 0.0098 0.0060 
O.OlIG 0.0123 0.0074 
0.0167 0.0159 0.0093 
0.0196 0.0212 0.01 I8 
0.0263 0.0289 0.0152 
0.0309 0.0360 0.0175 
0.0365 0.0396 0.0202 
0.0428 0.0456 0.0235 
0.0692 0.0506 0.0279 
0.0510 0.0516 0.0300 
0.0530 0.0524 0.0325 
0.0536 0.0514 0.0354 
0.0528 0.0698 0.0388 
0.0502 0.0462 0.0430 
0.0651 0.0606 0.0486 
0.0372 0.0327 0.0563 
0.0269 0.0229 0.0686 
0.0141 0.01 I8 0.0916 
0.0072 0.0059 0.1064 
0.0029 0.0024 0.1020 
0 0 0.0845 
0.0029 0.0026 0.0571 
0.0072 -0.0059 0.0121 
0.0141 .0.0118 0.0280 
0.0269 Q.0229 0.0366 
0.0372 0.0327 0.0329 
0.0651 a.0404 0.0301 
0.0502 a.0462 0.0283 
0.0528 Q.0698 0.0264 
0.0536 -0.0516 0.0251 
0.0530 0.0524 0.0238 
0.0510 0.0516 0.0227 
0.0492 0.0506 0.0218 
0.0428 0.0456 0.0199 
0.0365 0.0396 0.0184 
0.0309 0.0360 0.0171 
0.0263 0.0289 0.0158 
0.0194 0.0212 0.0137 
0.0167 0.0159 0.0116 
0.01 I6 0.0123 0.01 IO 
0.0091 0.0098 0.0086 
0.0076 0.0080 0.0073 
0.0062 0.0066 0.0064 
0.0018 0.0019 0.0018 

5O IO0 9o” 9o” 30° 

0.0009 0.0008 O.WO8 0.0008 0.0008 0.0008 
0.0038 0.0034 0.0034 0.0034 0.0033 0.0033 
0.0047 O.W6l O.Wbl 0.0041 0.0060 0.0060 
0.0059 O.WSl 0.0051 0.0051 0.0051 0.0050 
0.0076 0.0064 0.0066 0.0066 0.0065 0.0065 
0.0101 o.waz 0.0082 0.0083 O.W86 0.0087 
O.OlbO 0.0107 0.0107 0.01 IO 0.01 I8 0.0122 
0.0203 0.0143 0.0144 0.0151 0.0170 0.0180 
0.0250 0.0167 0.0169 0.0181 0.0209 0.0222 
0.0309 0.0196 0.0199 0.0218 0.0259 0.0277 
0.0382 0.0236 0.0239 0.0270 0.0327 0.0347 
0.0478 0.0288 0.0293 0.0341 0.0416 0.0462 
0.0516 0.0315 0.0321 0.0379 0.0456 0.0683 
0.0557 0.0345 0.0356 0.0423 0.0504 0.0525 
0.0597 0.0381 0.0393 0.0475 0.0553 0.0569 
0.0634 0.0425 0.0461 0.0537 0.0603 0.0612 
0.0662 0.0478 0.0501 0.0609 0.0653 0.0654 
0 -0685 0.0549 0.0581 0.0691 0.0697 0.0687 
0.0699 0.0666 0.0693 0.0778 0.073b 0.071 I 
0.0693 0.0794 0.0860 0.0855 0.0755 0.0721 
0.0664 0.1076 0.1090 0.0903 0.0759 0.0722 
0.0646 0.1300 0.1188 0.0907 0.0755 0.0718 
0.0635 0.1400 0.1203 0.0903 0.0754 0.0715 
0.0624 0.1388 0.1184 0.0896 0.0749 0.071 I 
0.0613 0.1305 0.1155 0.0887 0.0743 0.0707 
0.0594 0.1054 0.1067 0.0864 0.0732 0.0698 
0.0566 0.0586 0.0841 0.0818 0.0713 0.0686 
0.0489 0.w97 0.0386 0.0687 0.0661 0.0647 
0.0399 -0.0040 0.0089 0.0529 0.0592 0.0594 
0.0318 4.0086 -0.0063 0.0368 0.0510 0.0525 
0.0229 -0.0108 -0.0136 0.0224 0.0422 0.0454 
0.0128 -0.0121 -0.0168 0.0102 0.0336 0.0379 
0.0045 -0.0131 -0.0182 O.WO6 0.0269 0.0301 

-0.w31 -0.0137 -0.0187 -0.0069 0.0170 0.0226 
-0.0106 -0.0141 -0.0187 -0.0125 0.0098 0.0156 
-0.0166 -0.0143 -0.0185 -0.0165 0.0035 0.0098 
-0.0265 -0.0143 -0.0175 -0.0220 -0.0089 -0.0035 
-0.0317 -0.0139 -0.0164 -0.0235 -0.0168 -0.0128 
-0.0327 -0.0135 -0.0156 -0.0234 -0.0214 -0.0187 
-0.0318 -0.0131 -0.0146 -0.0224 -0.0237 -0.0219 
-0.0282 -0.0124 -0.0135 -0.0200 -0.0263 -0.0265 
-0.0236 -0.0116 -0.0125 -0.0176 -0.0225 -0.0237 
-0.0197 -0.0108 -0.01 lb -43.0155 -0.0202 -0.0216 
-0.0166 -0.0099 -0.0104 -0.0136 -0.0178 -0.0190 
-0.0160 -0.W89 -0.0091 -0.0119 -0.0156 -0.0168 
-0.0120 -0.0078 -0.0080 -0.0106 -0.0138 -0.0169 
-0.0038 -0.0019 -O.WZl -0.0033 -0.0055 -0.0063 

. c 



l . f . 

l- 6 - 550 

750 

, *  60° 1 e 

\ x 

6 - 300 

-7-- 

L 

60’ 

-- 
7s” 

0 0001 0 woo 
o.wo5 0 0003 

0.0006 0.0003 
0.0008 0.0005 
0.0012 0.0007 
0.0017 0 0010 

O.W27 0.0016 
0.0045 O.OOZJ 
0.0058 0 0032 
0.0074 0.0042 
0.0093 0 w51 
0 0113 O.W60 
0.0120 0.0063 
0.0126 0.0066 
0 0131 0.0067 
0.0132 00067 
0.0130 0.0065 
0.0124 0.0061 

0.01 I5 0.0056 
0.0100 0.0049 

O.W84 0.0041 
o.w75 0.0037 
0.0070 0.0035 
0.0067 0.0033 
0.0063 0.0032 
0.0058 0.0030 
0.0051 0.0026 
0.0039 0.0020 

0 0035 0.0017 
0.0036 0.0017 
0.0347 0 0021 
0.0066 O.W28 
0.0093 0.0039 

0.0127 0.0053 
0.0165 0.0069 

0.0206 0 0088 
0.0307 0.0138 

0.0388 0.0182 

0.0434 0.0210 

0.0445 0.0222 
0.0412 0.0213 
0.0357 0 0167 

0.0305 0.0163 
0.0262 O.Olh! 
0.0226 0 0123 

0.0197 0 0108 
0.0068 0.0038 

100 200 300 450 60” 150 

00001 0.0002 0.0003 o.WO3 o.ooo3 0 cool 

O.WO5 0 ooo9 0.0012 O.WI5 0.0012 O.C-307 

0.0006 0.0011 0.0015 0.0017 0 WI5 0.0009 

0.0008 0 0015 o.wzo 0.0023 0.0020 O.WII 

O.WII 0.0020 0.0027 0.0031 0.0026 o.w15 

0 0015 O.W28 0.0038 o.ooo3 0.0037 O.WZl 

0.0022 0.0042 o.ws5 0.W63 O.OOJ3 0.0030 

0.0035 0.W65 0.0086 0.0096 0.0080 o.co45 

0 0045 0.0083 0.0109 0.0120 0.0099 o.w55 

o.w59 0.0109 0.0141 0.0151 0.0122 0.0067 

0.0080 0.0154 0.0183 0.0190 0.0149 0.0081 

0 0111 0 0195 0.0238 0.0234 0.0177 o.w93 

0.0128 0.0221 0.0265 0.0252 0.0186 0 0097 

0.0159 0.0252 0.0293 0.0269 0.0195 O.OlW 

0.0176 0.0287 0.0322 0.0284 0.0199 0 0101 

0 0209 0.0327 0.0351 0.0294 0.0201 O.OIW 

0.0253 0.0370 0.0374 0.0297 0.0198 0.0098 

0.0310 0.0412 0.0388 0.0292 0 0190 o.wv5 

0.0385 0.0543 0.0386 0.0278 0 0179 0.0088 

0.0471 0.0454 0.0362 0.0215 0 0164 0.0081 

0.0‘99 0.0395 0.0320 0.0230 0.0150 0.0075 

0 0447 0.0359 0.0298 0.0218 0.0155 0.0071 

0.0507 0.0338 0.0287 0.0212 0.014, 0.0070 

0.0380 0 0331 0.0281 0.0209 0.0139 0.0069 

0.0371 0 0325 0 0277 0.0207 0.0137 0.0069 

0.0391 0.0322 0.0274 0.0204 0.0136 0.0068 

0 0511 0.0343 0 0276 0.0204 0.0135 0.0067 

0.0765 0.0463 0.0327 0.0220 0.0151 0.0069 

0 0816 0.0607 0 0414 0.0257 0.0157 0.0076 

0.0758 0 0706 0.0509 0.0308 0.0183 0.0086 

0.0674 0.0745 0.0587 0.0365 0 0214 O.OlW 

0.0591 0 0741 0.0636 0.0518 0.0243 0 0116 

0.0519 0.0710 0 0657 0.0559 0 0278 0.0131 

0.0457 0.0667 0.0656 0.0487 0.0304 0.0155 

0 0405 0.0618 0.0650 0.0502 0 0323 0 0155 

0 0359 0.0570 0.0614 0.0505 0.0334 0.0163 

0 0273 0 0459 0.0531 0.0579 0.0337 0.0170 

0.0213 0 0370 0.0546 0.0427 0.0316 0.0164 

0.0170 0.0301 0.0373 0.0352 0.0284 O.OIJo 

0.0138 0.0248 0.0313 0.0322 0.0251 0 0135 

0.0096 0.0175 0.0225 0.0240 0.0193 0.0106 

0.0070 0.0129 0.0168 0.0182 0.0150 0.0083 

0 0053 0.0098 0.0129 0.0143 0.01 I8 0.0066 

0.0042 0.0077 0.0102 0.0115 0.0095 0 0054 

0.003‘ 0.0062 0.0083 0.0093 O.W76 0.0044 

0.002.9 O.OOSl 0.0068 0.0077 0.0065 0 0037 

0.0007 0.0014 O.Wl9 o.w21 0.0018 O.WII 

loo 200 w 550 60° so IO0 2o” 3o” 4s” 

0.0000 0.0001 O.OW1 0.0001 0.0002 O.OWl 0.0001 0.0000 o.oooo 0.0001 O.WOI O.WOl 
0.0002 0 ooa3 O.OW6 0.0007 o.wo9 0.0007 0.0004 O.ooOl 0.0002 0.0003 0.0005 0.0005 
o.OwJ2 OOOW. 0.0007 O.WlO O.Wl/ 0.0010 O.OOOJ 0.cm1 0.0002 O.WO5 0.0006 o.WO7 
o.OaI3 0.0+05 O.WlO 0.0013 o.wi5 0.0013 0.0007 0.0002 o.ow3 o.wo+ 0.0008 o.ooo9 
O.WOh o.OW7 0.0013 O.WI8 o.w21 0.0018 0.0010 0.0002 0.0005 o.ooo9 0.0012 0.0013 
0.0005 0.0010 0.0019 0.0026 0.w30 0.002s O.WI5 O.WO5 0.0007 0.0013 0.0018 o.wzo 
O.CQW O.W16 0.0030 0.0040 0.0045 O.W38 0.0022 0.0006 O.Wll 0.0021 0.0028 0.0032 
O.Wl3 0.0026 0.0048 0.006‘ 0.0071 0.0060 0.0034 O.WlO 0.0019 0.0035 O.W47 0.0053 
0.017 0.0033 0.0062 0.0082 o.w91 0.0076 0.0042 O.Wl3 0.0026 0.0047 0.0062 0.0069 
0.0023 0.0055 0.0083 0.0108 0.0117 0.0096 0.0052 0.0018 o.w35 0.0063 O.W83 0,009o 
o.w31 0.0061 0.0111 0.0142 0.0159 0.01 I8 0.0065 o.w25 0.0048 0.0086 0.01 IO 0.0116 
O.WbJ 0.0066 0.0152 0.0188 0.0187 0.0152 0.0076 0.0035 0.0068 0.0119 0.0158 0.0158 
0.0052 0.0100 0.0174 0.0210 0.0203 0.0151 0.0079 o.w51 0.0078 0.0136 0.0165 0.0161 
0.0061 0.01 I7 0.0198 0.0233 0.0218 0.0159 0.0082 0.0058 0.0092 0.0156 0.0165 0.0173 
O.W72 0.013e 0.0227 0.0258 0.0231 0.0165 0.0085 0.0057 0.0108 0.0179 0.0205 0.0163 
O.OOS8 O.OI65 0.0259 0.0262 0.0241 0.0166 0.0085 0.0069 0.0129 0.0205 0.0223 0.0191 
0.0109 0.0199 0.0295 0.0303 0.0255 0.0165 o.Wa2 00085 0.0156 0.0232 0.0239 0.0193 
0.0139 0.0245 0.0331 0.0317 0.0252 0.01J9 0.5079 0.0109 0.0192 0.0259 0.0248 0.0189 
0.0186 0.0305 0.0358 0.0317 0.0231 0 0150 o.w74 0.0145 0.0238 0.0278 0 0244 0.0177 
0.0266 0.0375 0.0361 0.0298 0.021 I 0.0136 0.0067 0.0206 0.0290 0.0275 0.0223 0.0156 
0.0395 0.0502 0.0320 0.0259 0.0186 0.0122 0.0060 0.0302 0.03w 0.0230 0.0182 0.0129 
0 0420 0.0358 0.0285 0.0236 0.0173 0.01 Ih o.w57 0.0310 0.0252 0.0192 0.0157 0.0114 
0.0363 0.0315 0 0264 0.0223 0.0166 0.0110 0.0055 0 0259 0.0205 0.0167 0.0151 0.0105 
0.0302 0.0285 0.0250 0.0215 0.0161 0.0108 0.0055 0.0178 0.0169 0.0150 0 0130 0.w99 
0.0282 0.0265 0.0240 0.0208 0.0157 0.0105 0.w53 0.0125 0.0137 0.0135 0.0120 0.0093 
0.0351 0.0258 0.0227 0.02w 0.0152 0.0102 O.WSl 0.01 I8 0.0103 0.0112 0.0106 0.0085 
0.0663 0.0336 0.0226 0.0191 0.0155 0.0098 0.0059 0.0346 0.0111 0.0087 0.0086 0.0072 
0.0901 0.0659 0.0307 0.021 I 0.0146 o.w95 0.0047 0 0837 0.0342 O.OlW 0.0069 O.W5J 
0.0803 0.0845 0.0462 0.0278 0.0166 0.0102 o.wso 0.0958 0.0636 0.0194 0.0090 O.WJ2 
0.0673 0.0682 0.0620 0.0379 0.0207 0.0120 0.0056 0.0892 0.0835 0.0338 0.0159 O.W65 
0.0567 0.0843 0.0737 0.0488 0.0265 0.0157 0.0067 0.0800 0.0925 0.0595 0.0236 0.0096 
0.0483 0.0778 0.0803 0.0585 0.0330 0.0182 0.0082 0.0711 0.0945 0.0636 0.0338 0.0141 
0.0518 0.0707 0.0827 0.0660 0.0396 0.0221 0.0100 0.0634 0.0923 0.0748 0.0555 0.0198 
0.0366 0.0641 0.0822 0.0710 0.0455 0.0260 0.0118 0.0568 0.0865 0.0829 0.0544 0.0262 
0.0323 0.0580 0.0798 0.0736 0.0504 0.0297 0.0137 0.0513 0.0836 0.0880 0.0632 0.0330 
0.0288 0.0526 0.0762 0.0742 0.0539 0.0329 0.0155 0.0466 0.0787 0 0907 0.0705 0.0396 
0.0221 0.0415 0.0655 0.0703 O.OJ75 0.0378 0.0184 0.0375 0.0669 0.0903 0 0815 0.0539 
0.0174 0.0332 0.0550 0.0628 0.0556 0.0387 0.0195 0.0308 0.0568 0.0852 0.0840 0.0628 
0.0140 0.0269 0.0560 0.0545 o.osio 0.0370 0.0189 0.0257 0.0580 0.0756 0.0808 0.0656 
0.0115 0.0222 0.0387 0.0470 0.0458 0.0351 0.0179 0.0215 0.0408 0.0667 0.0741 0.0658 
o.ooEio 0.0156 0.0280 0.0351 0.0359 0.0279 0.0150 0 0156 0.0299 0.051 I 0.0604 0.0567 
o.ws9 0.0116 0.0210 0.0268 0.0282 0.0225 0.0122 0.0117 0.0225 0.0395 0.0583 0.0574 
0.0046 0.0089 0.0163 0.021 I 0.0226 0.0184 0.0101 0.0091 0.0176 0.0313 0.0391 0.0395 
0 0036 0.0071 0.0130 0.0170 0.0185 0.0152 0 0084 0.0073 0.0141 0.0254 0.0322 0.0333 
0.0029 0.0058 0.0106 0.0139 0.0153 0.0127 0 w71 0.0059 0.0116 0 0210 0.0269 0.0284 
0 0024 0.0058 0.0088 0.0116 0.0129 0.0108 0.0060 O.OOJO 0.0097 0.0177 0.0228 0.0244 
0.0007 O.Wl3 O.W25 0.0033 0.0038 0.w33 0 0019 0.0015 0.0029 0 0054 0.0071 O.W80 

0 0001 
O.OW2 

0 0003 
O.OW5 
0.0005 

0 0008 
0 WI1 
0.0018 

0.0023 
o.w30 

O.Whl 
0 w5a 
0.0067 

0.0078 
0 w93 
0 0112 

0.0139 
0 0177 

0.0237 
0.0339 
0.0499 

0 0525 
0.0460 

0 0405 
0.0419 
0.0534 

0 0790 
0.0792 

0.0630 
0 0502 

0.0509 
0.0341 
0.0290 

0.0250 
0.0217 

0.0191 
0.0143 

0.01lI 
0 0088 

0.0071 
O.WhV 
0 0036 

O.W27 
0.0021 
0.0017 

0.0014 
0 000‘ 

-10 

-5 
-* J 
-5 
-3 J 

-3 
-2 5 

-2 
-I 75 

-I 5 
-1 25 

0 

2 9 
-0 8 

-0 7 
-0.6 
-0 5 

-0 4 
-0 3 
-0 2 

-0 1 
-0.05 
-0 02 

0 
0 0: 

0 05 
c I 

02 
03 

0 i 
0.5 
06 
0 7 

08 

09 
1 0 
I 25 

I 5 
I 75 

2 
2 I 

3 
3 5 
i 

“5 

3 
IO 

L 
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Table 4 

z-COMPONENT OF THE INTERFERENCE VELOCITY ON THE FUSELAGE, 
vzlW) 

,,,,, , FOR A SINGLE SOURCE LINE 
. 

n 4 + - 3o” 4 - 60° 

I \I 
I I 

x so IO0 2o” 30° 5O IO0 2o” 3o” so IO0 zoo 3o” so IO0 2o” 3o” 

-10 0.0001 0.0003 0.0004 0.0004 0.0000 0.0000 0.0000 -0.0001 0.0000 0.0000 -0.0001 -0.0002 0.0000 -0.0001 -0.0002 -0.0003 
-5 0.0006 0.0011 0.0017 0.0016 0.0001 0.0002 0.0002 -0.0001 0.0000 -0.0001 -0.0003 -0.0006 -0.0001 -0.0003 -0.0006 -0.0010 
-4.5 0.0007 0.0013 0.0021 0.0020 0.0001 0.0003 0.0003 -0.0002 0.0000 -0.0001 -0.0004 -0.0006 -0.0002 -0.0003 -0.0007 -0.0011 
-4 0.0009 0.0017 0.0027 0.0026 0.0002 0.0004 0.0005 -0.0001 0.0000 0.0000 -0.0004 -0.0007 -0.0002 -0.0003 -0.0007 -0.0013 
-3.5 0.0012 0.0022 0.0035 0.0033 0.0003 0.0006 0.0007 0.0000 0.0001 0.0000 -0.0004 -0.0007 -0.0002 -0.0003 -0.0008 -0.0015 
-3 0.0016 0.0030 0.0048 0.0045 0.0005 0.00013 0.0011 0.0003 0.0001 0.0001 -0.0003 -0.0007 -0.0001 -0.0003 -0.0009 -0.0017 
-2.5 0.0022 0.0042 0.0067 0.0063 0.0007 0.0014 0.0020 0.0012 0.0003 0.0005 0.0004 -0.0005 -0.0001 -0.0002 -0.0007 -0.0019 
-2 0.0034 0.0063 0.0099 0.0090 0.0013 0.0024 0.0035 0.0024 0.0006 0.0011 0.0013 0.0000 0.0001 0.0001 -0.0003 -0.0022 
-1.75 0.0042 0.0079 0.0123 0.0110 0.0017 0.0032 0.0047 0.0033 0.0009 0.0016 0.0021 0.0005 0.0003 0.0005 0.0001 -0.0018 
-1.5 0.0054 0.0102 0.0154 0.0131 0.0023 0.0044 0.0065 0.0046 0.0014 0.0025 0.0033 0.0013 0.0006 0.0010 0.0007 -0.0015 
-1.25 0.0071 0.0133 0.0195 0.0155 0.0033 0.0062 0.0089 0.0061 0.0021 0.0038 0.0050 0.0021 0.0011 0.0019 0.0018 -0.0012 
-1.0 0.0098 0.0179 0.0248 0.0173 0.0049 0.0090 0.0123 0.0075 0.0032 0.0058 0.0074 0.0029 0.0019 0.0033 0.0035 -0.0011 
-0.9 0.0113 0.0205 0.0271 0.0174 0.0058 0.0105 0.0140 0.0079 0.0039 0.0070 0.0087 0.0031 0.0024 0.0042 0.0043 -0.0013 
-0.8 0.0131 0.0235 0.0298 0.0167 0.0068 0.0124 0.0159 0.0079 0.0047 0.0084 0.0101 0.0029 0.0030 0.0052 0.0052 -0.0017 
-0.7 0.0154 0.0272 0.0324 0.0149 0.0083 0.0147 0.0178 0.0074 0.0057 0.0102 0.0115 0.0023 0.0038 0.0065 0.0061 -0.0026 
-0.6 0.0184 0.0317 0.0343 0.0115 0.0101 0.0177 0.0198 0.0057 0.0072 0.0124 0.0130 0.0008 0.0048 0.0082 0.0070 -0.0044 
-0.5 0.0226 0.0373 0.0349 0.0053 0.0127 0.0215 0.0213 0.0024 0.0091 0.0154 0.0141 -0.0022 0.0063 0.0103 0.0075 -0.0075 
-0.4 0.0285 0.0442 0.0327 -0.0040 0.0164 0.0264 0.0214 -0.0035 0.0120 0.0192 0.0140 -0.0075 0.0085 0.0131 0.0069 -0.0127 
-0.3 0.0375 0.0515 0.0252 -0.0168 0.0221 0.0322 0.0183 -0.0129 0.0164 0.0238 0.0113 -0.0161 0.0118 0.0164 0.0038 -0.0211 
-0.2 0.0508 0.0543 0.0110 -0.0321 0.0316 0.0375 0.0095 -0.0262 0.0239 0.0280 0.0035 -0.0288 0.0174 0.0191 -0.0040 -0.0336 
-0.1 0.0646 0.0401 -0.0075 -0.0451 0.0452 0.0327 -0.0066 -0.0418 0.0348 0.0239 -0.0118 -0.0448 0.0252 0.0141 -0.0193 -0.0505 
-0.05 0.0545 0.0256 -0.0144 -0.0490 0.0440 0.0218 -0.0158 -0.0491 0.0340 0.0139 -0.0215 -0.0531 0.0231 0.0039 -0.0296 -0.0592 
-0.02 0.0425 0.0191 -0.0164 -0.0501 0.0340 0.0144 -0.0209 -0.0530 0.0248 0.0058 -0.0273 -0.0580 0.0136 -0.0048 -0.0361 -0.0646 

0.0 0.0355 0.0181 -0.0169 -0.0504 0.0264 0.0098 -0.0234 -0.0552 0.0162 0.0005 -0.0309 -0.0610 0.0038 -0.0110 -0.0403 -0.0683 
0.02 0.0425 0.0191 -0.0164 -0.0501 0.0268 0.0075 -0.0254 -0.0571 0.0124 -0.0036 -0.0340 -0.0638 -0.0037 -0.0167 -0.0444 -0.0718 
0.05 0.0545 0.0256 -0.0144 -0.0490 0.0389 0.0087 -0.0273 -0.0593 0.0187 -0.0064 -0.0381 -0.0676 -0.0062 -0.0230 -0.0501 -0.0769 
0.1 0.0646 0.0401 -0.0075 -0.0451 0.0680 0.0219 -0.0265 -0.0610 0.0520 0.0007 -0.0414 -0.0723 0.0172 -0.0250 -0.0575 -0.0843 
0.2 0.0508 0.0543 0.0110 -0.0321 0.0735 0.0541 -0.0121 -0.0566 0.0810 0.0361 -0.0348 -0.0750 0.0700 -0.0009 -0.0616 -0.0943 
0.3 0.0375 O.O:lS 0.0252 -0.0168 0.0596 0.0656 0.0086 -0.0445 0.0742 0.0610 -0.0165 -0.0687 0.0843 0.0319 -0.0529 -0.0966 
0.4 0.0285 0.0442 0.0327 -0.0040 0.0479 0.0643 0.0257 -0.0291 0.0629 0.0696 0.0041 -0.0563 0.0809 0.0553 -0.0366 -0.0920 
0.5 0.0226 0.0373 0.0349 0.0053 0.0393 0.0588 0.0366 -0.0143 0.0531 0.0693 0.0212 -0.0414 0.0732 0.0677 -0.0181 -0.0826 
0.6 0.0184 0.0317 0.0343 0.0115 0.0329 0.0526 0.0422 -0.0079 0.0454 0.0655 0.0334 -0.0266 0.0652 0.0726 -0.0008 -0.0705 
0.7 0.0154 0.0272 0.0324 0.0149 0.0281 0.0468 0.0444 0.0075 0.0394 0.0606 0.0411 -0.0135 0.0581 0.0730 0.0139 -0.0573 
0.8 0.0131 0.0235 0.0298 0.0167 0.0243 0.0418 0.0444 0.0142 0.0345 0.0556 0.0454 -0.0026 0.0521 0.0712 0.0254 -0.0443 
0.9 0.0113 0.0205 0.0271 0.0174 0.0213 0.0374 0.0431 0.0187 0.0306 0.0509 0.0474 0.0060 0.0469 0.0682 0.0341 -0.0322 
I.0 0.0098 0.0179 0.0248 0.0173 0.0189 0.0336 0.0412 0.0215 0.0273 0.0466 0.0478 0.0125 0.0425 0.0647 0.0404 -0.0214 
1.25 0.0071 0.0133 0.0195 0.0155 0.0144 0.0262 0.0355 0.0241 0.0213 0.0376 0.0452 0.0220 0.0341 0.0558 0.0483 -0.0005 
1.5 0.0054 0.0102 0.0154 0.0131 0.0114 0.0209 0.0300 0.0233 0.0171 0.0309 0.0406 0.0255 0.0281 0.0481 0.0499 0.0128 
1.75 0.0042 0.0079 0.0123 0.0110 0.0092 0.0170 0.0254 0.0213 0.0140 0.0257 0.0358 0.0258 0.0236 0.0414 0.0480 0.0204 
2 0.0034 0.0063 0.0099 0.0090 0.0075 0.0141 0.0216 0.0191 0.0117 0.0217 0.0315 0.0248 0.0201 0.0360 0.0450 0.0243 
2.5 0.0022 0.0042 0.0067 0.0063 0.0053 0.0101 0.0159 0.0150 0.0086 0.0161 0.0244 0.0214 0.0152 0.0278 0.0381 0.0264 
3 0.0016 0.0030 0.0048 0.0045 0.0040 0.0076 0.0122 0.0119 0.0065 0.0124 0.0193 0.0179 0.0119 0.0220 0.0319 0.0252 
3.5 0.0012 0.0022 0.0035 0.0033 0.0031 0.0058 0.0095 0.0095 0.0052 0.0098 0.0156 0.0151 0.0096 0.0179 0.0269 0.0230 
4 0.0009 0.0017 0.0027 0.0026 0.0024 0.0047 0.0076 0.0078 0.0042 0.0080 0.0128 0.0128 0.0080 0.0149 0.0229 0.0207 
4.5 0.0007 0.0013 0.0021 0.0020 0.0020 0.0039 0.0062 0.0065 0.0034 0.0066 U.0107 0.0108 0.0066 0.0126 0.0197 0.0185 
5 0.0006 0.0011 0.0017 0.0016 0.0017 0.0032 0.0052 0.0055 0.0029 0.0056 0.0091 0.0094 0.0057 0.0108 0.0172 0.0165 

IO 0.0001 0.0003 0.0004 0.0004 0.0005 0.0009 0.0015 0.0016 0.0009 0.0017 0.0028 0.0031 0.0019 0.0036 0.0060 0.0065 

. 

. 
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SYMBOLS 

C 

C(Y) 

#) (x,0> 

K(l) (x) 

it(“) (x) 

Q 
scx,e> 

qw (x,8) 
q(l) (x,0> 
‘i 64 

4fW) 

\hY) 

q$ ) (X,Y) 

cl;*) (x,y> 

wing chord 

local wing chord 

see equation (IO) 

see equation (11) 

see equation (13) 

strength of single infinite source line 

strength of source distribution on the fuselage related to a single 
source line with triple kink in the plane 2 = 0 

first approximation to q(x,e) , see equation (6) 

second approximation to 4(x,@) , see equations (8) to (IO) 

mean value of source strength q(x,0) at a station x , see . 
equation (15) 

strength of source distribution on the fuselage related to the 
source distribution in the plane z = 0 

strength of source distribution in the wing plane representing the 
wing attached to an infinite reflection plate 

source distribution in first-order theory 

source distribution in second-order theory 

$I, d;’ see equations (47) and (48) 

Aq(x,y) 

R 

t/c 

X¶Y,Z 

x,0 

zt (6) 

interference term of source dist ibution in the plane z = 0 , 
which cancels the velocity Av(lr(x,y,z ) 

Z t 
, see equation (51) 

radius of fuselage 

thickness-to-chord ratio 

rectangular coordinate system, x along the axis of the fuselage 

system of cylindrical coordinates 

section shape 

z w = sin-’ ’ t 
( > R--c- 

= x - <IYI - R) tan 4 

angle of sweep 

sweep of leading edge 

free stream velocity, taken as unity 

perturbation velocity 

velocity induced by single source line with three kinks, see 
equation (A-l) 
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SYMBOLS(concluded) 

V 
X' 

V 
vys 2 

V 
n 

VnQ 

,w 
xw 

Av 

d), Av(1) 
X 2 

d2) 
X 

AvxJ' %J 
Av; 

Av** 
X 

velocity induced by single source line with one kink 

velocity induced by source distribution on fuselage, s(x,e> 
=v 

-4 + qy- Q , interference velocity, related to single source 

line 

velocity field past the wing attached to an infinite reflection 
plate 

components of perturbation velocity 

velocity component normal to the surface of the fuselage 

normal velocity induced by single source line with three kinks, 
=v 

nM 
mean value of v,Ix,0) 

circumferential velocity component at the surface of the fuselage 

streamwise velocity on isolated fuselage 

streamwise velocity component in the flow past the wing attached 
to an infinite reflection plate according to first-order theory 

vW according to second-order theory 

difference between the velocity field past the wing-fuselage 
combination and the velocity field past the wing attached to an 
infinite reflection plate 

interference velocity components derived from the source 
distribution Cp 

interference velocity derived from the source distribution (2) 
%S 

interference velocity components in the wing-body junction 

streamwise velocity induced by line source distribution in y = R, 
z = 0 for which Avz(x,y = R,zt) = -Av$i)(x> 

interference velocity according to the 'source method' of Ref.11, 
multiplied by factor cos (I 
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