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SUMAlARY 

The theory of partial retraction of alinearly elastic ropes has been 
developed and illustrated with data on dynamic behaviour derived from slow-speed 
extension/recovery curves of nylon yarn and ropes. It shows that the retraction 
velocities are less than those calculated by converting all the strain energy 
released into kinetic energy of motion but that they can still reach 100 m/s when 
the tension is relaxed by about 80$. The analysis illustrates the need for direct 
measurements of dynasLc modulus and sonic velocity in ropes. 

1. Introduction 

It is well known that the speed of retraction at breakage of steel, polyester 
and nylon ropes is dangerously high; for qylon, because of the material's high 
specific strain energy and low density, it is about 100 m/s. In a partial 
retraction much energy is initially released at a hi& rate of working and this 
property has bees used to study the drawing of polymers at speedl,3the inflation of 
small parachutes and the performance of ply-tear webbing at speed . The principle 
of partial retraction lies behind the use of ply-tear 
the energy released by a breaking cable4. 

webbing as a device to absorb 

In the accounts of these applications the theory presented assumed a perfectly 
elastic, uniaxial material whereas in practice polyester and nylon ropes have marked 
alinear elasticity and also display non-elastic creep. It is, therefore, desirable 
to establish a more representative theory of partial retraction, or relaxation**, 
that applies to alinearly elastic materials. 

This note presents a theory d discusses 
data presented in the earlier work 19 5 

it using the load extension/recovery 
9 ' . The theory implicitly assumes fractional 

extension and would not be appropriate to a very extensi 
B 

le material like rubber for 
which the theory of retraction has been studied by Fdason treating the material as 
virtually incompressible. Attention is drawn to the apparent physical anomalies 
that arise in using the various approaches to estimate retraction velocities. 

Al 
--_------------_-------------------------- 

*Replaces A.R.C.35 795. 
** 

The phenomenon is called 'retraction' in this paper rather than 'relaxation' 
as in previous papers ' 9 2 because it appears that other authors use the former 
term. 'Relaxation' is sometimes associated with other plastic behaviour. 
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2. Simple Theory of Strain Recovery in a Perfectly Elastic Material 

2.1 Definition of modulus 

In basic mechanics it is usual to express the elastic modulus of a material in 
terms of change of stress, force per unit area, across an elementary section divided 
by the corresponding change in fractional extension (strain). In a system of 
uniaxial stress the modulus is known as Young's Modulus which, for metal rods whose 
area of cross-section can be satisfactorily measured, can be evaluated as defined. 
However, in the case of textile ropes the area of cross-section cannot be measured 
precisely so it is the practice to define an elastic modulus in terms of change of 
tension divided by the change in strain. Because of the difference in physical 
dimensions from Young's Modulus, force instead of stress, it has been called the 
Stretch Modulus. This quantity must be distinguished from 'Spring Constant' which 
is used with reference to a member of specific length and has the dimensions of force 
per unit length. 

In textile technology, when dealing with fibres and yarns, it is the practice 
first to divide the force by the unstrained mass per unit length of the material and 
to call the resultant quantity the specific stress. From this a modulus is obtained 
by dividing the change in specific stress by the corresponding change in strain. 
The modulus so derived is called the specific modulus and it has the physical 
dimensions of velocity squared. 

It is possible to put these various quantities in perspective when the velocity 
of propagation of changes in strain is considered. It can be shown7 that, by the 
interaction of the elastic properties with the inertia of the material, cyclic 
variations of strain will be propagated along the rope at a finite velocity, c, which 
is defined by 

c= = Young's Modulus = Stretch Modulus 
Density Mass per unit length = Specific Modulus .*(I) 

The above velocity, c, strictly relates to infinitesimal changes of strain at a finite 
frequency in a perfectly elastic uniaxial system. 

The concept of specific stress and modulus, as applied to fibres and yarns is, 
in this paper, extended to ropes because it shows up the efficiency with which yarns 
are used in the various constructions and because specific modulus has a direct 
dynamic significance. 

2.2 Geometric continuity in the propagation 

The equation of motion,8 uniaxially, in a heavy elastic rod is 

a'U a2U 
m- = E- 

at2 axa 
..(2) 

where u, m and E are respectively the particle displacement, the mass per unit 
length and the Elastic (Stretch) Modulus. The distance, x, is measured from an 
origin at the end of the rod. This same relationship will apply to a rope so long 
as it is always in positive tension. 

The general solution of equation (2) is of the form 

U = f,(ct - x) + f,(ct+ x) ..(3) 

where f : and f2 are arbitrary functions and c2 = E/m. If the rope is initially 

at rest and a displacement suddenly applied to one end, then it is sufficient to 

retain/ 
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retain only one function to represent the propagation of the motion away from the and 
of the rope, that is, 

u = f(ct - x> e.(4) 

showing that the disturbance at x = 0 travels away with a velocity, c. 
By partial differentiation of the function with respect to the variables 

au all 
-= cf'(ct - x) 7 -c- ..(5) 
at 8X 

Now au/at is the particle velocity, v, and, by definition, au/ax is the strain, e. 
If the distance, x, is measured positively along the rope the strain and the particle 
velocity will be of opposite sign and, therefore, 

v = ce .A@ 

This equation holds at all points behind the wave front, irrespective of its form, 
and relates the particle velocity at any point with the change of strain at that 
point. If v and e are replaced by differential quantities dv and de, then 
the equation can be extended to an alinearly elastic material so long as there is 
negligible creep, that is, v.ae/ax is much greater than &/at. 

2.3 Rate of change of momentum 

As the retracted rope moves it is gaining momentum towards the wave front. If 
the rope were perfectly elastic, then the relation E = T/&$/ad could be used from 
which it follows that the tension, T, is given by 

T = mvc 

This equation is the basic one in the earlier theories 192 . 

..(7) 

2.4 Equation of enerm 

It follows from equations (6) and (7), by eliminating c, that 

$Te(Strain energy) = $mvl(Kinetic energy) ..w 

This equation has been used in the earlier work to estimate the retraction velocity 
of an alinearly elastic rope although one could only make equations (7) and (8) 
compatible by assuming that a different value of c from that given by equation (1) 
satisfied equation (7). Thus, whereas equation (1) defined the phase velocity a 
finite wave front travelled along the rope with a group velocitya. 

2.5 Partial retraction in a perfectly elastic rope 

A partial retraction will require a resisting force on the end of the rope. 
The initial strain energy in the rope will be apportioned between residual strain 
e=wxc rope kinetic energy and work done against the resistance. Let the tension be 
reduced by a fraction, r. The fall in tension across the strain front will be 
(1 - r)T and this will be equal to the rate of change of momentum of the retracting 
rope. Thus the velocity of retraction, vr, will be given by 

V 
r 

= (1 - r)T/mc ..(9) 

In unit time the length of rope whose state of strain and motion is changed will be 
of length c. The strain energy retained will be @Tee, the kinetic energy gained 

bY/ 
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by the rope will be *(I - r)qec and the tiork done will be r!L'vr which can be 
rewritten as r(l - r)Tec. Thus it is seen that 

. $r'Tec + %(I - r)aTec + r(1 - r)Tec = $Tec. ..(lO) 

Equation (7) can be rewritten in a form for a partial retraction. If To is 
the initial tension in the rope and it is allowed to fall to a tension, T then 
the partial retraction velocity will be v given by P' 

P 
Tc - T = mcv 

P P . 

and the rate of working (power) of the system will be T v 
P P* 

3. Alinear Elastic Theory 

3.1 Definition of modulus 

When the stress-strain curve of a rope is no longer straight and 
proportionality between T and e no longer holds, it is necessary to redefine 
the modulus as a differential dT/de. Its value must be related to the 
appropriate tension, T. In a real rope which shows plastic creep the stress- 
strain curve for increasing load will differ from the unloading curve and their 
slopes at the same level of tenslon will differ. In a slow-speed load-extension 
curve the creep taking place during the change in strain could be significant and 
it is, therefore, desirable to express the modulus as a partial differential 

..(12) 

In imperfect elastic materials it has been the practice in past work ’ 2 to define 
the elastic (stretch) modulus at a given tension, T, as the slope of the tension- 
strain recovery curve immediately below this value0 However, it could be too 
high because, if the rope is held at the constant strain, the tension in the rope 
will be observed to fall. Load-extension curves are usually performed on test 
machines at a constant rate, say a, and, therefore, the apparent modulus 
dT/de can be related to the true modulus by 

al! 
- will be different for increasing and decreasing strain and it is also known 
ae 
that it is dependent upon, from the general knowledge of polymeric materials, 
on the preceding tension-time integral. 

In the interpretation of the modulus irr/ae the constant time relates to 
the moment of stress reversal. For the purposes of the further analysis the modulus 
will be considered as a complete differential which is a function of T. 

3.2 Determination of retraction velocity 

In place of equation (6) the following equation is used 

dv = c.de ..(a) 

and/ 
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and co is given by (dT/de)/m. Equation (14) is assumed to hold for 
infinitesimal changes of strain. 

If the concept of specific stress, TS, of textile technology is 
introduced the modulus can be written ms/de and is the same as the specific 
modulus M 

S* 
Thus one can write 

co = as/ae(Ts) = Hs(Ta) ..(15) 

indicating that the modulus and the velocity of propagation of strain disturbances, 
the sonic velocity, is a function of Ts. Therefore, the retraction velocity 
can be expressed as an integral 

..W) 

Because c now depends upon the tension, equation (7) no longer holds and the 
strain energy given up no longer equals the kinetic energy acquired by the rope, 
A thermodynamic equilibrium has to be satisfied. 

3.3 Determination of a consistent stress-strain relationstiE 

In order to perform the integration of equation (16) it is necessary to 
express dTs/de as a function of the strain, e, whereas it has been determined 

for particular stress levels from which a plot of dTs/de against Ts can be 
constructed. With respect to a particular initial tension To the drop in 
the strain level corresponding to a lower stress level, Ts, can be determined 
from the following integration, 

To 
eo-e = 

4 

q/Car/de) .dTs 3 ..(17) 

S 

from which a purely elastic recovery curve can be constructegd. Whilst this 
conversion has not been used in this paper it has elsewhere for data on nylon 
fibre where it indicates that the estimated elastic recovery departs more 
steeply from the experimental strain recovery curve at low stresses. For a 
relief of stress not more than half there is very little difference between the 
experimental and derived curves. In this paper the transposition of dTs/de 
from a function of stress to one of strain has been made with reference to the 
experimental stress-strain recovery curves for the evaluations in Figure 7 
onwards. This procedure will give overestimates of the retraction velocity 
particularly when the relief of stress is substantially complete. 

3.4 Energy in an alinear material 

l The specific strain energy, Es, released by the rope can be expressed by 
e 

I 

0 

ES = Ts.de ..(18) 

e 

and the specific kinetic energy, KS, is given by 



KS 
= +p = qeo(gde): 

e 
..(lY> 

Although it is possibly more convenient to evaluate the retraction velocity and 
the energies by graphical integrations of the aDpropr5ate variables plotted 
against the strain, further analysis is possible if Ts is expressed as a 
polynomial function of e. (See Appendix A). 

4. Extension/Recovery Data for Ropes 

4.1 Representation of data 

The load extension/recovery \data for the ropes referred to in earlier 
work are represented in Figs. l-3 using S.I. Units. It is interesting to note 
the difference in the characteristics of the two nylon ropes (Figs. 2-f) because 
the latter shows nruch more hysteresis than the former. This difference 
probably depends upon the history of each rope: the former was a much used rope 
and treated with a proofing agent to reduce abrasion; 
untreated rope as tested by the manufacturers. 

the latter was a new, 
The difference may be an indication 

of the degree of hysteresis that can be worked out of ropes of nylon by use. 

It is interesting to compare the same data for the ropes with that on 
fibres and yarns when all is presented on a specific stress basis. This is done 
in Fig. 4 which shows how efficiently the intrinsic strength of the nylon yarn is 
achieved in the constructions. The tenacity (specific stress to break) drops 
and the ultimate extension increases as the construction becomes more complex and 
bulky. The information for a tubular woven rope, nylon tubular webbing to 
Specification IAC ~1116, is included for comparison because this construction is 
representative of the cord described in Fig. 1. 

4.2 Efficiency of construction 

The efficiency of the various constructions can be compared on the basis 
of specific energy and stress. This has to be done in Table 1 below for iqylon 

Type 242. It is seen that, as the fihres become coml;our.ded into larger woven 
structures, the 

Table 1 

Comparison of Specific Energies Recovered and Expended 

Specific $Ult. Work to Energy i'iork Scaled to 70% Ult. 
Stress Stretch Recovered Expended Recovered Expended 

x l@ x lo' x lo' x lo' 

Fibre 8.2 x 106 8% 4063 2.46 2.17 x 104 2.07 1.83 

Yarn 6.2 82% 2.70 1.55 1.15 1.42 I.05 

~1116 3.6 w45 2.96 2.26 0.70 1.97 0.81 

Rope A 1.5 
Fig.2 

66% A.30 1 .Ol 0.29 1.15 0.33 

Rope B 1.8 68s 2013 1.07 1.06 1.18 1.17 

Fig. 3 S.I. Units 

specific stress that can he supporlxd falls. The specific work to stretch and 
the specific energy recovcrrd also fall but no? so markedly and this ccmparsison 
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has been based upon the measured values being scaled to 7C$ ultimate tenacity 
assuming that these small corrections can be made on the basis +&at specific 
energy is proportional 50 the square of the specific stress as if the material 
were perfectly elastic. Although ~1716 nylon tubular webbing is an efficient 
construction, because the tension-bearing yarns can straighten under load without 
pressing on one another, the values for it,quoted in Table 1, appear to be rather 
too high as one would hardly expect the webbing to be better than the yarn. 
On the other hand, Rope A is about H heavier than its unproofed counterpart 
and this would make the eff'iciency of the unproofed rope comparable with the yarn. 

The data in Table 1 has been collected from miscellaneous sources and, as 
it has been impossible to check the original measurements, it is to be expected 
that some small discrepancies may be presented. However, the value oi' the 
basis for comparison has been illustrated and it is recommended that a broader 
range of constructions are studied and compared in this way. 

5. Evaluation of Retraction Velocity 

5.1 The elastic moduli 

The moduli of the ropes have been determined from the slopes of the stress 
recovery curves. Although this estimate may be affected by plastic creep 
the time of unloading, evidence from tests on fibres9 shows that it is not 

during 

significant and within the error within which one can assess the slope of a curve. 
Creep will be neglected at this stage to simplify the analysis. Plots of the 
specific modulus against specific stress for the ropes are presented in Fig. 5. 
In this figure the determination of this modulus for one of the ropes (~1116) by 
an oscillation method10 is plotted for comparison; it shows that the effective 
modulus for vibrations increases more with specific tension 'San that determined 
from the slope of the recover-/ curve. However, the moduli for the fibre and 
yarn are much higher than for the ropes and it is necessar,- to plot theso basic 
elements against a more closed-u 
the stiffest of the ropes (~1116 P 

scale of specific modulus in Fig. 6 including 
for comparison. The measurement of these 

moduli from steep-sloped recovery curves can only bo made ap;Jroximatdy and it 
may be fortuitous that the yarn appears to be slightly stiffer. 

5.2 The sonic velocity 

In the absence of direct measurements of + .he sonic velocity in the ropes, 
this quantity has been determined from the square root of the specific modulus. 
Plots of this velocity agains t strain are required and these are given in Fig.7. 
In the same figure the retraction velocity is also plotted against strain, 
obtained by integration under the sonic velocity curves, assuming that the strain 
has been relieved suddenly from the level at which the tension was reversed in 
the recovery test, 

The slope of the recovery curve for a fibre is extremely steep and the 
estimates obtained thelbefrom of the modulus and sonic velocity at the high tensions 
are much higher than that to be expecte.3. 11 

5.3 Retraction ve1ocitN 

The retraction velocity has been calculated for particular initial conditions 
by using equation (Y6). A plot of the retraction veloai!;r against specific 
tension will give the partial retraction velocity at that tension for t'ne given 
initial tension. Plots for the examples evaluazed are given in Fig. 8. 

It is strictly necessary to make the above calculations for each ini'.ial 
tension selected. However, from a small number of selected cases it, is possible 
to interpolate for any initial tension. 
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It is noted that the alinear trend of the retraction velocity with 
specific tension is to make the curves slightly concave upwards. There is not 
a great difference between the two ropes of earlier work although the older rope 
has a steeper curve. It is useful to coware these estimates of retraction 
velociQ with those based upon the direct equation of strain energy to kinetic 
energy. This has been done for ropes A and B in Fig. 9. It is seen t-hat the 
equation of energy substantially overestimates the retraction velocity in a 
partial retraction; in fact, only a half, or slightly less, of the strain 
energy goes into kinetic energy for the remainder must be dissipated as heat. 
It is noted, however, that the disparity is least, or may even show a gain of 
energy, in a complete retraction but it is expected that, for such a large change 
in strain level, the sonic grout velocity is just that much less than the sonic 
phase velocity, as estimated from the modulus, so that the estimate of the 
retraction velocity in such an extreme case is lowered so that the kinetic energy 
gained does not exceed the strain energy given up. 

From the ratio of velocities in Fig. 9 it is possible to calculate the 
efficiency of the conversion. The square of these velocities is the energy 
ratio and the percentage of energy converted into retraction energy plotted 
against the percentage relief of tension in Fig. 10. It appears that a better 
conversion occurs for the greater relief of tension. This is a little 
surprising but it must be remembered that any marked disparity between phase 
and group velocities has not been taken into account and it is "he group velocity 
that must be used in equation (16) if the continuity of the solid medium of the 
rope is to be satisfied. 

The two ropes show much the same trend and in view of the uncertainties 
in the data and of the approximate methods of calculation, no account should be 
taken of the small differences. 

6. Propagation of Finite Strain-Recovery Fronts 

The data in the paper points to the fact that a small disturbance of 
strain will travel faster in a rope at a higher tension than at a lower tension. 
Thus, if a finite drop in tension occurs causing initially a finite relief of 
strain, the strain front will not remain sharp as it travels away; it transforms 
into a wedge front becoming flatter the further it travels along the rope. 
This is illustrated in Fig. Ii. 

Although one may initiate a sharp recovery front with the breakage of a 
rope it must be remembered that, when dealing with mechanisms like catapults and 
safety devices, releases and links cannot be designed vcithout introducing smaJ.1 
terminal inertias. These can be very important in suppressing the sharpness of 
any initial recovery phenomena. 

7. The Measurement of Dynamic Modulus and Sonic Velocity 

Yhereas the analysis of this ?aper has used esi.ismtes of the elastic 
modulus based upon the slopes of slow-speed stress curves, it is apparent that 
direct measurement of ths elastic modulus by a dynamic method will give different 
values. This has been revealed in Fid. 5 for a particular material. The 
method of allo;-ring a weight to spring on a length of rope is a simple experiment 
that can be arranged to cover a range of tensions and frequencies. This method 
would tend to give an estimate of the phase velocity. The experiment that is 
particularly desirable, although not so simple to Ferform, is to study the 
travel of finite stress/strain pulse along a length of rope, its change of form 
and effective velocity of travel. Field experiments have been conducted with 
ropesI but it would be preferable if one could devise some laboratory 
experiments on a modest scale. Such experiments should reveal whether differences 
between phase and group velocities are si@.ifiCan~. 

8./ 



8. Conclusions 

9- 

By using a method of analysis applicable to an alinearly elastic material 
the retraction velocity of a nylon rope following a partial relief of tension 
is shown to be less than that calculated from a complete conversion of the strain 
energy given up. On the revised basis of calculation it appears that ropes of 
the sizes used and initially tensioned to about two-thirds of the ultimate 
strength will retract at about 60 m/s when the tension is relaxed to half; y:hen 
relaxed to 2% of the ini',ial tension th e retraction velocity will reach 100 m/s. 

Whilst the analysis has been illustrated using estimates of moduli obLained 
from the slopes of slow-speed extension/recovery curves, doubts have been cast 
regarding the viability of these estimates because they appear to be too high at 
the high tensions, in particular with respect to the fibre. Thus there is a 
clear case for reliable dynamic measurements. 

A comparison has been made of the energy-absorbing capacities and the 
specific strength of the ropes in relation to the fibre and yarns from which they 
are made. As ropes are made larger it appears that, although the extensibility 
is increased, the specific tension and specific energy that can be realised is 
less. 

9. Recommendations 

Although there is a doubt about the use of slow-speed tests to estimate 
dynamic characteristics it is felt that there is a need to determine the slow-speed 
extension/recovery curves on a range of construction of ropes. All the major 
variants should be covered including braid over braid, hollow tubular webbing and 
conventional webbing. In addition, creep tests at tension should be made to 
discover whether corrections are necessary to the apparent modulus. 

The dynamic modulus should be measured by methods of longitudinal resonance 
such as by oscillating a weight on a length of rope or by resonating a diaphrrm 
inserted in a tensioned rope. Direct measurements of the velocity of propagation 
of strain pulses along ropes, together with a study of the distortion of the 
strain pulses, should be made. This should be done first for incremental strain 
pulses at various tensions and later for larger changes of strain. Whilst the 
sonic velocity can be estimated from the dynamic modulus, it may not agree with 
that measured directly and the comparison may throw some light on the phenomena 
of phase and group velocities. 

References/ 
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WPENDIXA 

. 

Analytical Determination of the Retraction Velocity and 
the Energy Balance 

The experiments 10 to determine the dynamic modulus of a rope indicate that the 
modulus is of the form 

dTs/de = a + bTs = c2. ..(Al) 

Exp eriments9 on fibres indicate that c is of the form 

C = c +cT 
0 1 9’ ..(A2) 

From either of these forms it is possible to construct a representative stress/strain 
recovery curve and express T and c as functions of the strain e. The 
relationship (Al) is more pragtical to manipulate. The solution of equation (Al) 
for the condition e = 0 for Ts = 0 is 

log, 1 + = be. 

By rearrangement and substitution from equation (A3) 

T 
S = a/b.(exp.be - 1) 

dT/de = a.exp.be 
I 

C = a3exp.*be. 

In a partial retraction the initial strain energy is partitioned into 

(4 strain energy retained, 
(b) kinetic energy gained, 
(4 work done against resistance to retraction, 
(d) heat exchange. 

Let the initial strain be eo, which is allowed to fall to a value e, then 

i 

e 

1 

e 
Tsde + $v" + Tsv/cE + H (heat) = 

0 
Tsde 

0 0 

The retraction velocity is given by 
e 

I 

0 

V = c.de 

e 

and the effective mean value of the sonic velocity, cE, by 

,jeO 

53 = 

i / 

c.de ['de. 

e e 

It is thus possible to write 

jeTsde + 3 (/'c.deJ + Ts(eo - e) + H = f" Tsde. 

0 e 0 

l d-43) 

..(A4) 

..(A5) 

..(A6) 

..(A7) 

. . (Aa 

..(A9) 

..(A@ 

Substitutions for Ts and c as functions of e can now be made from equations 

(A&) and (-46) respectively and the integrals evaluated. 
2 
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e 
0 1 

a e 

(1 > i 

0 
1 
2 aFexp.$be.de + a/b.(exp.be - l)(e, - e) + H = a/b.(exp.bs - 1). de. 

e e 

..(All) 
The above equation (All) can be written more compactly if x is written for be 

x 0 1 0 X 

3 
(I 

a'/b.exp.$x.dx 
> 

+ a/b=.(exp.x - 1)(x0 - x) + H = 

X 
i 

0 

a/Wexp.x - l>.dx. 

X 

..(AQ) 
On integration of the particular terms 

2a/b'(exp.$xo - exp.*x)3+ a/bs(exp.x - 1)(x, - x) + H = a/bs(exp.xo - exp.x) 

or 
- a/b' (x0 - x) . .(Al3) 

2(exp.&xo - exp.$x)' + (exp.x)(xo - x) + b?-I/a = exp.x 
0 

- exp.x. 

The above equation (A13) can be simplified further to 

e-.x o - Cexp.&(x + x0> + 3exp.x + (x0 - x) exp.x + b'H/a = 0. ..(A14) 

The numerical results for a number of light ropes 
IO show that x will be slightly 

larger than unity so that the use of expansions of the exponent&s will not be 
very helpful. However, it is important to note that, in equating all the terms of 
a particular order in the expansion, all orders below the third vanish by the terms 
cancelling out. The third order term is 

go/6 + x:x/4 + x02/3 + 5x3/12 + bsH/a = 0 ..(Al5) 

which would require a negative value for H, that is, extraction of heat. This is not 
the result obtained by graphical calculation which shows that not all strain energy 
is converted to kinetic energy over the more important range of values. However, it 
is noted that, in equation (Al4), the first three terms can be expressed as a pair of 
factors thus, 

(eq.4=o - jexp.$x)(exp.$xo - exp.$x) + (x0 - x) exp.x + b'H/a = 0. ..(A16) 

In a practical partial retraction a drop in strain level to one half is typical; 
therefore, 

2 -3 exp. L - 1 = 0. 4 >( 4 > +$xo+bsH/a 

If negative values of H are possible they can only arise when exp. 2 has a 
4 

value between 1 and 3 and, then, only in a restricted range near the value 2. 

It should beremembetithat, in equation (A3), the boundary condition is that 

TS 
= 0 when e = 0, instead of the residual strain er. However, equation (A12) 

is unchanged whether x = be or x = b(e - e,). This is because the effective 

origin for equating the energy changes is e 
0’ 

or x 
0. 

_~ - ~~ 
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