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A FINITE-DIFFERENCE SCHEME FOR COMPUTING SUPERCRITICAL FLOWS 

IN ARBITRARY COORDINATE SYSTEMS 

C. M. Albone 

SUMMARY 

In the computation of flows with local Mach numbers slightly in excess of 

unity, difficulty is experienced in obtaining numerical stability, where the 

coordinate system is not aligned with the local velocity vector. A new scheme 

is proposed for overcoming this difficulty. Its effectiveness is checked on a 

test case, where it is found to be stable, while alternative schemes fail. 

* Replaces RAE Technical Report 74090 - ARC 35564. 



CONTENTS 

1 INTRODUCTION 
2 STATEMENT OF THE PROBLEM 
3 LIMITATIONS OF EXISTING METHODS 
4 A NEW SCHEME 
5 A TEST CASE 
6 CONCLUDING REMARKS 
Symbols 
References 
Illustrations 

Page 

3 
4 
5 
7 
9 

12 
13 
14 

Figures 1-8 



1 INTRODUCTION 

The mixed finite-difference scheme introduced by Murman and Cole1 has 

revolutionised the computation of transonic flows. Many researchers have adopted 

it, and methods for computing transonic flow fields of increasing complexity 

continue to appear in the literature. In the scheme, derivatives are approxi- 

mated by central differences at grid points where the flow is subsonic. For 

points at which the flow is supersonic certain derivatives are approximated by 

differences that are backward with respect to the stream direction. The first 

successful applications ~$3 have been to cases in which the coordinate system is 

aligned (at least approximately) with the local velocity vector. However, if 

the departure of a coordinate direction from the local velocity vector is 

considerable at a point where the flow is supersonic, the use of simple backward 

difference approximations may lead to num?.rical instability. The domain of 

dependence of the finite-difference equation at each point must, for stability, 

contain the domain of dependence of the differential equation for that point. 

Attempts to solve problems in which the velocity vector departs signifi- 

cantly from the coordinate directions exposed the limitations of Murman's scheme. 

The problem which prompted the investigation reported here is that of solving 

the three-dimensional transonic small-perturbation equation for flow past a 

swept wing, using a sheared non-orthogonal coordinate system which is swept 

with the wing. The departure of coordinate lines from the direction normal to 

the velocity vector occurs over most of the field and depends upon the angle of 

sweep of the wing. For sufficiently large angles, stability problems are 

encountered with Murman's scheme wherever the flow is supersonic. 

It was discovered during the course of this investigation that Jameson 

of the Courant Institute, New York had encountered similar problems in the 

solution of the exact potential equation with exact boundary conditions, for 

supersonic axisymmetric flow past a body. He had used a coordinate system, 

based upon the body shape, which is generally considered to be most suitable 

for this problem. However, for such a coordinate system, the departure of 

coordinate lines from the local velocity vector can be appreciable especially 

in the far field. Since the velocity is almost everywhere supersonic, problems 

of numerical stability again arise with Murman's scheme. 

Correspondence revealed that solutions to the problem employed at RAE and 

at the Courant Institute were essentially the same. Jameson stressed the 

importance of retaining dissipative terms of the correct type in addition to 
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ensuring an adequate domain of dependence for the difference equations. He 

went further to perform a linear stability analysis of the new scheme. The 

check of the new scheme reported here took the form of a two-dimensional test 

case specifically constructed to simulate as closely as possible the case of the 

transonic swept wing. 

In the following sections of this Report a more precise statement of the 

problem is made, together with a summary of how it has limited existing methods. 

The new scheme is described in detail and this is followed by a description of 

the test case and the conclusions drawn from it. 

2 STATEMENT OF THE PROBLEM 

Consider solving the hyperbolic equation 

A@XX 
+ 2m B2 

X2 
+m =o, zz -AC>0 , (1) 

where @ is the velocity potential and x and z are fixed Cartesian 

coordinates. Fig.1 shows a situation where the velocity vector is in the 

x-direction. The values of Cp at the points labelled 0, 1, 2, . . . . 6 are those 

which would normally be used in a finite difference approximation to 

equation (1) when a central-difference approximation is adopted for Q 
22 but 

backward-difference approximations are adopted for @a and (Pxz . The dotted 

lines (in Fig.]) are characteristics, which in this case are Mach lines, 

enclosing the domain of dependence of the differential equation at the point P . 

The Mach angle, u , equals sin -I il/Mlocal) . The domain of dependence of the 

difference equation at P covers the whole region x < x 
P 

, and so includes, 

as required, the domain of dependence of the differential equation. In Fig.2, 

the velocity vector is not in the x-direction, and so the Mach lines enclose 

a region which extends outside of x< x 
P ’ 

the domain of dependence of the 

from the region PQR are not 

and the numerical solution will 

difference equation. Disturbances reaching P 

taken into account by the difference equation, 

become unstable. 

more precisely, consider Fig.3, 

with iT in the direction of the 

1) is similar in the X , Z 

system and again values of 0 at the points 0, I, 2, . . . . 6 are those 

normally used in a scheme employing a central-difference approximation for 

cp 
BZ and backward-difference approximations for 0 

zx and @i7z . Here, as in 

Fig.2, the domain of dependence of the difference equation does not include that 

To identify the cause of this difficulty 

where we have non-orthogonal axes X and Z , 

velocity vector, The form taken by equation ( 
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of the differential equation for values of u sufficiently near r/2 , despite 

the fact that the velocity vector is in the Z-direction. Thus it is the limiting 

direction of the characteristics as the local Mach number tends to unity that 

is relevant, and so, unless one of the coordinate lines is normal to the velocity 

vector, the domain of dependence of the difference equation will fail to 

include that of the differential equation at some Mach number. 

There is no doubt, however, that some flow-field calculations do converge 

satisfactorily for flows with locally supersonic regions when none of the 

coordinate axes lies normal to the velocity vector. This can be explained. 

The problem regarding the domain of dependence occurs with the first appearance 

of supersonic flow. It vanishes, however, when the local Mach number rises 

sufficiently for both Mach lines to fall within the domain of dependence of the 

difference equations (see Figs.2 and 3). The problem is thus confined to near- 

sonic flows. The range of local Mach numbers over which the problem occurs is 

related to B , the angle between the z-direction and the normal to the velocity 

vector, and is given by 

l<M local <secB . 

With B = 15', the problem is restricted to fields in which the local super- 

sonic Mach numbers are less than 1.035, and, for 6 = 25' , this bounding Mach 

number is 1.10. For larger angles, the local Mach number range increases more 

rapidly and, for S = 45' , the problem can occur for values of local Mach 

number up to 1.414. Thus, if B is fairly small everywhere, and the flow 

accelerates rapidly through the low supersonic range, any numerical instab- 

ilities will be slight, and highly localized, and they may be sufficiently 

damped for the computation to converge successfully. The main aim here is to 

ensure that the domain of dependence of the difference equation includes that 

of the corresponding differential equation, even when B is not small. 

3 LIMITATIONS OF EXISTING METHODS 

A method of solving the exact potential equation in two dimensions, 

(a2 - Oz)Qxx - 2@x@s@xs + (a2 - @z)mzz = 0 , 

with exact boundary conditions for the flow past an aerofoil has been given by 

Garabedian and Korn3. In this method, the coordinate lines can depart signifi- 

cantly from the direction of the velocity vector and its normal. Numerically 

stable solutions have, however, been obtained for cases where supersonic flow is 
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confined to a region where the departure is small, close to the aerofoil surface 
and away from the leading and trailing edges. Attempts to compute flow fields 
with supersonic regions which extend far from the aerofoil or towards the 
trailing edge have encountered stability problems. The method of Garabedian 
and Korn cannot be used to obtain solutions to equation (2) at free stream Mach 
numbers of unity or above. In practice, it is also not possible to obtain 

4 solutions for certain important classes of aerofoils at off-design conditions , 
even if the free stream Mach number is well below unity. 

The numerical solution of the transonic small-perturbation equation, 

C K- (y + m, 4, + 4ZZ = 0 ' 
k 

(3) 

first given by Murman and Cole', does not suffer from this limitation although 
it has the shortcoming of being a near sonic thin aerofoil approximation. It is 
solved by use of a Cartesian coordinate system (x,Z> with axes normal and parallel 
to the undisturbed stream direction (x). Since $z does not appear in the 
coefficients of equation (3), the characteristics of the equation are symmetric 
with respect to the x-direction throughout the field, and so the domain of 
dependence of the difference equation always contains that of the differential 
equation. 

Attempts to compute the flow past swept wings have brought out more serious 
consequences of the numerical difficulty. Ballhaus and Bailey' have developed 
a method for solving the three-dimensional transonic small-perturbation equation 

1 - Mt +$ ++ = 0 9 
YY z= 

(4) 

using a coordinate system which, for economy of grid points, is swept with the 
wing. Fig.4 shows how, with such a swept system (X,Y) the domain of dependence 
of the difference equation, for some supersonic Mach numbers, does not contain 
that of the differential equation. In general, numerical instability results, 
The severity of the numerical instability depends upon the sweep of the wing, 
the fineness of the finite-difference grid, and the local Mach number. Ballhaus 
and Bailey have presented results for a 24' swept, untapered wing. They delay 
the switching of X derivatives from central to backward differences until the 
local Mach number is such that u < -IT/~ - B , where B is the sweep angle and 
P is the Mach angle. Under this condition, the domain of dependence, of the 
differential equation, using Murman's scheme, becomes sufficiently small to be 
contained within that of the difference equation. For this case, their scheme 
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is equivalent to switching from central to backward differences when the local 

Mach number normal to the leading edge becomes sonic, which, for a 24' swept 

wing, corresponds to a real local Mach number of 1.095. In other words, a 

slightly supersonic part of the flow is treated as if it were subsonic. Despite 

their success in computing the flow past this wing, serious stability problems 

must be expected for wings with significantly greater sweep. Bailey' has 

suggested a scheme in which the swept coordinate system (X,Y,Z) defines the 

grid points, which it does with considerable efficiency, but in which the 

differential equation is solved in a Cartesian system, (x,y,z). The problem 

associated with swept coordinate systems is thus avoided, but the scheme involves 

considerable interpolation. 

4 A NEW SCHEME 

Consider the problem of calculating the flow about an aerofoil by solving 

numerically the exact two-dimensional potential equation 

(5) 

where a2 + (%$-)(@f + Qt) = constant , and Cp is the full velocity potential. 

Let x be the direction of the undisturbed stream and z be normal to 

x . This coordinate system is unsuitable for the solution of the potential 

equation by use of Murman's scheme, since the direction of the velocity vector 

may depart greatly from the x-direction. 

In order to determine what form a new scheme should take for this 

equation, it is convenient to consider the equation in a new coordinate system. 

Firstly, a transformation is made from the x, z system to some coordinate 

system for which Murman's scheme will be numerically stable. This means 

finding a coordinate system in which the taking of backward differences in 

a single coordinate direction will for locally supersonic flow, give a domain 

of dependence for the difference equations that includes that for the differen- 

tial equation, and will introduce dissipative terms of the appropriate type. 

An orthogonal system, (s,n> such that s is aligned with the local velocity 

vector, is a natural choice, since it satisfies both these requirements. The 

transformation is thus a function of the direction of the local velocity vector. 

Under this transformation, equation (5) reduces to the canonical form 

2 c j a - iif @ + a*@ = 0 . 
ss nn (6) 
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Murman's scheme for this equation would involve the use of central- 
difference approximations everywhere, except for locally supersonic flow, where 
backward-difference approximations would be used for derivatives in the 
s-direction. 

It is here proposed that each derivative in the s, n system is resolved 
into its components in the x, z system, and that the individual components 
be differenced in the same way as the terms in the s, n system from which they 
originated. Thus, the difference scheme which should be employed for each 
term of equation (5) is dictated by the difference scheme used for the terms in 
the s, n system, from which it arose by transformation. To illustrate this, 
suppose that 8 (- tan-1 (Qz/Qx)) is the angle between the s and x 
directions. Resolution of the terms in the canonical equation gives 

4 = cos 8 4 + sine@ 8 X z ' 

4 =: 4 cos2 e + 2@ sin 8 COB 8 + 0 sin2 8 5s xz zz , 

4 4 sin 2e 24xz sin 8 2 c - cos 8 + Q cos 8 . nn zz 

(8) 

(9) 

All terms on the right-hand side of equation (8) should be approximated by 
backward differences when the flow is locally supersonic, whereas those on the 
right-hand side of equation (9) should always be approximated by central 
differences. Hence, equation 

k' - (P2 ~0s~ e 4 + 9 xx 

where each term is split into a part to be approximated by central differences 

(6) may be rewritten in the following form: 

a2 sin2 e# xx +2(a2-43 xz sin 8 case@ 

2a2 sin e cose(Pxz + ia2 - Q2 S 1 
sin2eQz, 

2 +a cos2e4 =o, zz (10) 

throughout, and a part (underlined) to be approximated by backward differences 
in locally supersonic flow. The part of each term which has its difference 
scheme switched at sonic conditions has 

k2 sl 
- aJ2 as a factor, which means that 

a smooth change from central to backward differences takes place. This would 

not have been possible with Murman's scheme applied to equation (5) in the x3 Y 
system. The fact that part of the term Oxx is represented by a central- 
difference approximation everywhere ensures that the domain of dependence of 
the difference equation contains that of the differential equation. If e=o, 
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the x and z axes are aligned with, and normal to the velocity vector, and 
the new scheme reduces to that of Murman. 

A question which should be asked of the new scheme is whether it will be 
stable in a supersonic region. Experience indicates that the exclusive use of 
central differences in a supersonic region leads to numerical instability. 
With the new scheme, however, there will always be part of the term 4; which 
will be approximated by backward differences in the supersonic region. In fact, 
the amount of dissipation introduced by the new difference scheme in the x, z 
system is precisely the same as that used in the s, n system. In the 
discussion with Jameson, it was learned that he had studied the stability of the 
new scheme under an iterative method of solution by performing a linear analysis 
of a 'time-dependent' equation obtained by considering iterations as successive 
levels in artificial time. The results of his studies appear in the concluding 
section. We did not attempt a linear stability analysis, but decided, before 
using the new scheme in the three-dimensional problem, to set up a simplified 
test case. Of course, no single test case can show that the scheme is stable 
in general. Our aim was to provide some evidence that the scheme would be 
stable for the transonic swept-wing problem, by considering a very similar 
problem in two dimensions. A description of the test case follows in the next 
section. 

5 A TEST CASE 

A solution of the transonic small-perturbation equation in two dimensions 
is considered. The equation is written in the form (3) adopted by Murman, 

K- xx +f$& = 0 , (11) 

where the undisturbed stream is in the x direction, Z is a scaled coordinate 
normal to x , I$ is a scaled disturbance potential and K is a transonic 
similarity parameter. We choose to solve this equation, not in the orthogonal 
system, but in a sheared, non-orthogonal system, X, Z defined by 

x = x-h(z) ; 2 = s . (12) 

The coordinate lines X = const have a slope that depends on the form of the 
function h(z) , and the use here of Murman's finite difference scheme would be 
expected to lead to numerical instability, just as with a sheared coordinate 
system for a swept wing. In the X, Z system equation (II) becomes 
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2h'$ xz + 9,, - h"9x = 0 . (13) 

A computer program7 written earlier to solve equation (II), subject to the 
usual linearised aerofoil boundary conditions, was modified in order to solve 
equation (13). Murman's difference scheme for equation (13) involves the use 
of backward-difference approximations for each term containing an X-derivative" 
wherever the flow is supersonic. The new scheme employs backward-difference 
approximations for the underlined term only in equation (13). Both schemes 
were programmed for the test case. Here, hyperbolae are chosen for the lines 
x= constant, because it is then unnecessary to change the treatment of aerofoil 

boundary conditions used for equation (11). Also, hyperbolae have finite sweep 
at infinity. The grid shown in Fig.5 is such that the sweep of the hyperbolae 
is 40' at a distance of about 30% chord above the aerofoil and reaches 451' at 
infinity. 

A 12% thick circular-arc section at zero lift was chosen for the test. 
This section has a critical Mach number of 0.75. The reformulated program was 
initially tested by considering a sub-critical case and checking that results 
from the original program agreed with those obtained by use of the non-orthogonal 

system. 

The calculation of a supercritical flow was made for a free stream Mach 
number of 0.85. The flow past the circular-arc section was first computed with 
the orthogonal coordinate system, then with the non-orthogonal coordinate system 
using the new scheme, and finally with the non-orthogonal coordinate system 
using Murman's scheme. Fig.6 shows the pressure distribution obtained using the 
orthogonal coordinate system with 40 points in the X-direction and 80 points in 
the Z-direction. The embedded supersonic region extends to a distance of 74% 
chord above the aerofoil. The lines X = constant in the non-orthogonal grid 
of Fig.5 are thus swept back at about 44' to the normal to the stream direction 
at the extremity of the supersonic region, where the local Mach number is near 
unity. The computation was then repeated, using the non-orthogonal system, and 
with the new finite-difference scheme. It was stable and converged satisfactorily 
with a 40 x 80 grid. The resulting pressure distribution is included in Fig.6, 
to provide a comparison with that obtained (using the same number of grid 
points) with the orthogonal system. The shock-wave location differs by about 6% 
of the chord, but, away from the shock, the agreement is good. This discrepancy 
may be accounted for by the fact that with the non-orthogonal system, finite- 
difference approximations are carried out across the shock wave, whereas this 
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does not occur (except at isolated points) with the orthogonal system. To 

in(Testigate the effects of grid refinement the calculation was repeated with 

an 80 x 160 grid. Convergence was again achieved satisfactorily. A comparison 

of the result with that using the orthogonal system is shown in Fig.7. 

The calculation was repeated with the sweep of the hyperbolae near the tip 

of the shock wave increased to 60'. Again, the computation remained stable with 

a 40 x 80 grid, and convergence was achieved satisfactorily. The shock wave was 

now spread over several grid intervals even at the aerofoil surface. 

The effectiveness of Murman's scheme was tested by applying it to the 

earlier case, for which the sweep of the hyperbolae near the tip of the shock 

wave was 44'. It failed to converge, even on a coarse 20 x 40 grid. The 

coordinate system was modified so that the sweep of the hyperbolae near the tip 

of the shock wave was about 15'. For this case, it converged on the 20 x 40 

grid, but became unstable when the grid was refined to 40 x 80. This failure 

to converge was thought to be possibly due to the lack of diagonal-dominance of 

the tri-diagonal matrices formed by the coefficients of the difference 

equations, rather than an inadequate domain of dependence. In order to remedy 

this, the term xx in equation (13) was evaluated in terms of 4 

calculated at the previous iteration. With this modification, the computation 

converged successfully. The angle of sweep of the coordinate lines was then 

increased to 24' at the tip of the shock wave, and again, a converged solution 

was obtained, although the first signs of instability were just noticeable with 

the 40 x 80 grid near the extremity of the supersonic region. When the angle of 

sweep was increased to 29', the calculation with a 40 x 80 grid became unstable. 

Centraldifferenceapproximations for 4 
Z 

and $I 
X,Z 

in the supersonic region 

were tried but with no success. Thus, no solutions for angles of sweep greater 

than 24' near the tip of the shock wave were obtained with Murman's scheme. 

Finally, an independent test of the new finite-difference scheme was 

carried out by Gilbert8 of the University of Lancaster. Gilbert used a non- 

orthogonal system in which the sweep of the coordinate lines was constant over 

the field. He took the NACA 0012 aerofoil as his test section, and performed 

all his calculations at a free stream Mach number of 0.8, with zero lift. The 

angle of sweep of the coordinate lines was taken as 0, 0.5, 0.75 and 1.0 radians. 

He tested Murman's scheme and the new scheme. Computations with the new scheme 

remained stable for all the angles of sweep. These results are shown in Fig.8, 

where it is seen that the thickness of the shock wave increases with the angle 

of sweep of the coordinate lines. Computations using Murman's scheme failed to 

converge for angles of sweep greater than half a radian. 
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6 CONCLUDING FEMARKS 

The finite-difference scheme proposed in this Report overcomes the problem 

associated with an inadequate domain of dependence. It treats terms in the 

differential equations in a manner consistent with the correct treatment of the 

corresponding terms in the equation expressed in flow-orientated or canonical 

form. This results in the use of central-difference approximations, where the 

flow is supersonic for terms which are usually approximated by backward differ- 

ences. In the test case, the new scheme is numerically stable under conditions 

which cause Murman's scheme to become unstable. 

The conclusion drawn from Jameson's linear stability analysis of the new 

scheme is that it is stable, for an equation with constant coefficients, 

provided that a certain ratio of 'old' and 'new' values is used for central- 

difference approximations. The specific combination of 'old' and 'new' values 

recommended by Jameson was not used in the test case. The relaxation scheme 

employed 'new' values wherever they were available, and no stability problems 

were encountered, despite the use of a very fine grid (80 x 160) and large 

angles of sweep of the coordinate lines. It is possible that the relaxation 

scheme would have become unstable with further grid refinement; however, such 

excessively fine grids are not contemplated for three-dimensional problems. It 

is also possible that the non-linearity of the coefficients of the differential 

equation or the presence of boundary constraints causes instabilities to 

become damped. 

For practical purposes, the differences in the details of the two versions 

of the new scheme appear, so far, to be of little consequence. Jameson has now 

incorporated his version of the scheme in a solution of the full potential 

equation for supersonic flow past aerofoils, and has extended it to a treatment 

of finite yawed wings. At RAF,, the version of the new scheme presented in this 

Report is incorporated into a program for solving the transonic small-perturbation 

equation for subsonic or supersonic flow past finite swept wings of arbitrary 

planform. These programs have been used for many calculations, and so far no 

problems of numerical instability have been encountered. 

An important practical consequence is that the new scheme gives the 

researcher a free hand in his choice of coordinate system. Being free of 

constraints placed upon his coordinate system by considerations of numerical 

stability, he can tailor his system to suit other needs, such as that for the 

efficiency spacing of grid points or the treatment of complex geometries. 
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SYMBOLS 

local speed of sound 

function defining shape of coordinate lines X = const 

transonic similarity parameter 

local Mach number 

Mach number in the undisturbed stream 

coordinate normal to the direction of the velocity vector 

coordinate in the direction of the velocity vector 

coordinate in the undisturbed stream direction 

coordinate in the undisturbed stream direction 

coordinate normal to the undisturbed stream direction 

swept coordinate direction 

angle between the normal to the velocity vector and the swept 
coordinate direction 

ratio of specific heats 

angle between directions of velocity vector and free stream 

Mach angle = sin -’ { l/Mlocal~ 

scaled disturbances potential 

full velocity potential 
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