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SUMMARY 

Cumpsty and Head's entrainment method for turbulent boundary layers is 

extended to compressible flow using Green's compressibility assumptions. The 

laminar layer is predicted using Thwaites' method in the chordwise plane and the 

Nath method spanwise. The Rott compressibility transformation is used. The 

transition and wake assumptions are consistent with the two-dimensional profile 

drag method of Nash. 

The complete method, suitable for use in making routine design calculations, 

is described briefly. The relationships between calculation time, step length 

and accuracy are considered for a practical infinite wing at transonic cruise 

conditions. 

The global iteration technique adopted earlier by Cumpsty and Head is 

shown to fail in regions of favourable pressure gradient, just downstream of the 

leading edge, as 'correction' terms involving derivatives of integral cross-flow 

thicknesses are no longer small. A much faster step-by-step numerical method 

has been adopted to solve the differential equations of the integral turbulent 

boundary-layer method without convergence problems. 

* Replaces RAE Technical Report 73092 - ARC 35096 

** Now with the DOE, CEDAR Project, PCAO(DBD), Lunar House, Croydon 
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1 INTRODUCTION 

The present Report initiates a series of three papers concerned with 

making predictions of the characteristics of viscous flow about infinite yawed 

wings. 

Part IIIlgives the results of a parametric study for a particular infinite 

wing having a chordwise section (normal to its generators) of RAE (NPL) 3111, 

operating at its design flat rooftop condition. Profile drag, displacement 

effect and rear separation behaviour are each considered and the influence of 

sweep and of Reynolds number presented in chart form. A simple project analysis 

for an idealised variable sweep wing is used to demonstrate the practical use- 

fulness of the calculated results 

Part II2 shows that current turbulent boundary-layer methods encounter 

difficulties when attempting to predict the flow in the region of strong 

favourable pressure gradient just downstream of the swept attachment line. 

This can lead to upcertainties in the prediction of boundary-layer properties, 

at the position of a leading-edge velocity peak (say), that might be large enough 

to lead to serious errors in the subsequent boundary-layer prediction in the 

adverse pressure gradient flow downstream. Further, it is shown that problems 

could arise due to the possibility of reversion to laminar flow, in the favour- 

able pressure gradient region, even under flight conditions. Estimates of the 

uncertainty in drag prediction due to this additional cause are made and it is 

shown that they could reach several per cent of the value of the upper surface 

profile drag. Charts are presented enabling a swept wing with a cylindrical 

leading edge to be designed to investigate further these problems in the wind 

tunnel. 

The basis of the foregoing work, involving some hundreds of boundary-layer 

calculations, is the complete prediction method now to be described in the 

present paper. This method employs some simple numerical techniques to handle 

the input pressure distributions and the aerofoil ordinates neither of which 

are usually smooth. The data do not have to be at special input spacings (e.g. 

at the Weber stations or at equal intervals of x'/c'). The description of 

this numerical work is given in section 2.1. 

The subsequent sections describe the compsessi$le laminar boundary-layer 

calculations which uses the methods of Thwaites 3 chordwise and Nath 4 
spanwise. 

The Rott5 compressibility transformation is applied. 



The assumptions for transition follow closely the ideas of Cooke6 and of 

NashI (see section 2.2.2). 

If the flow is turbulent at the attachment line, an extension of Cumpsty 

and Head's 8 treatment for incompressible flow is used up to M 
a.1. 

= 2. 

The turbulent boundary layer (see section 2.3) is then predicted by means 

of the entrainment method 9,lO extended to compressible flow using the mean 

velocity profile and skin-friction assumptions due to Green 11,12 
. Finally, the 

turbulent wake is calculated, and values of profile drag found also, by a 

treatment similar to that of Cooke'. However, the chordwise solution in the 

wake is modified to be compatible with the work of Nash 13,34 in two-dimensions 

as the latter has been used frequently, in this country, to predict the profile 

drag of aerofoils. 

The numerical solution of the turbulent boundary layer equations uses a 

simple, fast, step-by-step procedure instead of the original global iteration 

scheme proposed by Cumpsty an&Head'. This latter method is shown to diverge 

uncontrollably in favourable pressure gradients immediately downstream of the 

leading edge attachment line. 

Further numerical results (see section 3), of interest to the practical 

user of the method, are given for a severe design case having strong rear 

loading and a mild shock wave present at the flight conditions: 

A = 3o", M, cos A = 0.76, Re = 40 x IO6 . 

These conditions would be typical of an advanced transonic transport 

aircraft. 

It is concluded that, whilst the physical assumptions of the present 

method leave something to be desired, it remains the only available user- 

oriented method for design application in compressible flow across the complete 

chord of the wing. The turbulence energy method 14 as programmed cannot be used 

close to the swept attachment line. This latter method predicts a variation of 

rear separation position, with angle of yaw, that is different from the present 

method but, when expressed in terms of the local boundary-layer thickness, 

these differences are very small. 

As far as predicting exchange rates, between quantities of practical 

importance, is concerned it is more important to gain experience with the 
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present crude method than to await the nominally better methods of the future. 

The comparative success of the simple entrainment method 15 in two-dimensional 

flow lends strong support to this philosophy. 

2 THE CALCULATION METHOD 

2.1 Numerical treatment of input ordinates and of the properties of the 
potential flow 

2.1.1 Calculatian of surface distance * 

The aerofoil section shape z/c'(x'/c') normal to the generators of the 

wing is assumed to have the form 

2' cc&F 

close to the leading edge and extra detail 

, (1) 

is obtained by linear interpolation 

between ordinates supplied at reasonably closely spaced intervals (e.g. as 

required for the manufacture of a wind tunnel model). 

Surface distance (s'/c'), from the attachment line in this chordwise 

plane, is then calculated from Pythagoras' theorem assuming the surface to be 

made up of linear segments between the successive ordinates 2(X > * 

2.1.2 The treatment of the external velocity distribution close to the 
leading edge 

(a) The choice of step length for laminar boundary layer calculations 
if there is a sharp leading edge velocity peak 

The laminar calculation (see section 2.2 later) is usually carried out on 

intervals of As' = 0.01~'. 

schemat,,a~dU~~U~~~~(sl~c~)) 

However if there are rapid changes in velocity 

gradient close to the leading edge, as for example shown 
. . . 

l ,  where there is a sharp peak in velocity close to the 

attachment line, a shorter step size is selected by the program such that there 

are 20 equal steps in s'/c' across the (rounded) distance t2s;w where 

s; 
is the distance from attachment line to velocity maximum. 

(b) Determination of velocity gradient close to the attachment line 

From experience, the authors found that most measured pressure distribu- 

tions are lacking in detail and (usually) are not smooth near to the attachment 

line. 

Figs.2a, 2b and 2c show possible situations in terms of the distributions 

of associated values of Ul/UI (s'/c'). The first three values are inspected 
cm 
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by the program and, if truly 'scattered', as in Fig.2a, the first point (a) is 

reset as shown. If the mean slopes from the origin to the points (a), (b) and 

(c) vary monotonically as in Figs.2b or 2c, then, if the magnitudes of these 

slopes differ by more than 20% between successive values, point (a) is again 

adjusted as indicated in the figures. 

The value of velocity gradient d(Ul/Ul )/d(s'/c') required to start 

the turbulent calculation is then calculated from the mean slope using the 

smoothed first point (a). 

(c) Velocity gradients at any general position along the chord 

Quadratic curves are fitted through three successive (IJ,/Ul , s'/c') 

points at a time and the slopes at the middle points are evaluate: and stored, 

Linear interpolation, on these stored values, to intermediate positions ensures 

continuity of velocity gradient everywhere across the chord. 

2.2 Laminar attachment line flow 
-. 

2.2.1 The laminar boundary-layer calculation method 

(a) The principle of independence in compressible flow 

Nath' showed how the independence principle can be applied together with 

the assumption of a universal spanwise velocity profile to solve approximately 

the laminar boundary-layer equations in their integral momentum form for 

compressible flow. He used the compressibility transformation due to 
16 Stewartson . In the present work a similar approach is employed which adopts 

the Pohlhausen quartic velocity profiles for the chordwise flow and the zero 

pressure gradient member* of that family for the spanwise flow. The 

compressibility transformation due to Rott5 is used and so the results reduce 

to those of Nash7 in two-dimensional conditions. 

Provided the condition (see Nath4) that 

1 ( 
2 

Y - '>M, 
L = - 

1 + {1 + l<Y - l$\ cot2 A 
Q1 ) (2) 

is satisfied, then the chordwise and the spanwise solutions can be satisfactorily 

uncoupled. For A=30", even with an advanced practical aerofoil section 

(cruising at M, cos A = 0.8, say) this seems to be an adequate assumption, 

since then L = 0.038. 
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However, if the sweep were to rise to 60°, the value of L rises to 0.3 

and so it is possible that the independence principle leads to significant 

errors for sweep angles greater than about 45'. 

(b) The chordwise solution 

In incompressible flow, Thwaites' solution3 for the chordwise momentum 

growth takes the form, 

S’ 

8 2 

( ) 

o.45vi 
= 

X. 1 u; 
i 

“Ti ds’ l 

i S !  

1 

(3) 

Assuming a recovery factor of r = 0.85, a laminar Prandtl number Pr 1 = 0.72 

and a viscosity/temperature index n = 0.76, we find, by applying the Rott 

transformation with partial stagnation line conditions as reference*, that 

equation (3) becomes: 

IJo0 cos A c’ 
where R c, = 

V 
, and 1-1 a Tn along the boundary layer, whilst across m 

the layer u 0~ T. 

From the assumed Pohlhausen profiles, relationships between parameters in 

the related incompressible flow can be found. For example, 

hi = -(-k$gi = &&!$&J 

and by analytical inversion, 

, 

, 

(5) 

if 0 < hi < 0.09 , (64 

* This choice in fact leads to the answer being independent of the reference 
state in the Rott transformation. 
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and 

'i = 70h. , if - 1 1.4<Ai<0 . 

Hence the chordwise velocity profile is found: 

U' 

7 

= 217 - 2n3 + q4 + A$1 - d3/6 , 

where '-I = ax . 

Equation (4) is integrated numerically assuming a 

integrand with respect to s'/c' and using three 

(6b) 

(7) 

(8) 

quadratic variation of the 

neighbouring values at a time. 

(c) The spanwise solution 

In incompressible flow the momentum integral equation is, following 

Nath's notation broadly: 

where 

and 

d 0.225~. 
~ ("x'l)i = 8 Q,l 1 

x. 1 
1 

6 0 /a 
S = x_y.= w x 

eX 
8x/6 

I 

X 

016 6 
Q=$ =+j$$. 

X x x x 

The Rott transformation does not affect the spanwise velocities (v) so that 

Q = Qi, S = Si, but we find that, 

5+r 

e 

5+r 

(9) 

(10) 

(12) 

(13) 



and 

T 
H 

X. 
= (l+Hx)+l . 

1 W 
(14) 

Hence, the compressible form of equation (9) becomes, 

Equation (15) can be integrated for S (or Q) as dependent variables, once 

ex - IS known, provided that some assumption about the spanwise velocity profile 

shape is made (thereby providing another relation between S, Q and the known 

chordwise profiles), This spanwise profile, as mentioned earlier, is assumed 

to be given by the flat plate member of the Pohlhousen family, namely, 

-.. V' V' 

T = UoosinA = 2kn - 2k3n3 + k4n4 I 

where the length scale, 

6 
k=$, 

Y 

(16) 

(17) 

is to be calculated. 

'Mixed' profile integrals, such as 63 
XY' 

involving both velocity 

components can be evaluated as functions of A. and k. This leads to the 

required relationships for S(Ai,k) and Q(A;:k):- 

= 
exy; (Gi+&k(-+k3)+k3(%+&k4(~+&), (18) 

s S;=r= 
X. 37 Ai A? 1 

315- m- 35% 

and 

Q Z Q; = w$ = g 
X .  

1 

(19) 
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Now, as A,(s'> is known from the chordwise solution, we can write 

equation (15) as, 

(20) 

where A(s') and B(s') are known functions. 

Integrating, by means of the Trapezium Rule, gives, 

PI s'+As' = [*I s;+AsI 
0.225 As' 

(- ~*Sl,1 + T+[BQ&I+~~I + bQ1,1)) l (21) 

Equations (18) and (21) both give values of S at the end of the step 

(i.e. at s' + As') once k and hence Q are guessed. Three values disposed 

about the upstream value (at s') are used and quadratic interpolation is used 
to find the value of k that-makes both values of S equal, 

AS’ = O.Olc’ is used in the present program except, as described 
earlier in section 2.1.2(a), near to a sharp leading-edge velocity peak. 

(d) Laminar separation 

When Ai + 0.09 and hence cfx,+ 0, from the chordwise solution, 
separation is reached. The calculation is continued with Xi = 0.09, cf = 0, 

across the entire chord. X’ 

(e) Leading-edge attachment line conditions 

The values of Q = 1.44, hi=- 0.075 are assumed, compatible with the 
results of Rott and Crabtree 17 for the yawed circular cylinder. 

2.2.2 Transition assumptions 

Cooke6 showed that the spanwise and the chordwise components of momentum 

defect in the boundary layer must remain unchanged across the transition front 
on an infinite yawed wing. As, in the present method, we change from a chord- 

wise/spanwise solution in the laminar layer to a solution in terms of local 
streamwise and cross-flow quantities in the turbulent flow, the quantities in 
these different coordinate systems must be related. Using a notation 

compatible with Nath we have, 
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2 = 'cue C '11 'OS 2+ - (13,~ + c321) sin 4 cos 4 + 822 sin2 $ 1 , (22) 

and 

pvue ellxy ' 

* e22) sin 9 cos 0 + e2* 2 cos Q - e,2 sin2 + 1 . (23) 

An iterative solution for the initial turbulent conditions is achieved 

by assuming, in addition to the above, that the streamwise velocity profile at 

the start of the turbulent flow has a local equilibrium form given by G(x) - 
18 

compatible with the assumptions in two-dimensions used previously by Nash et a2 . 

The numerical calculation commences with a flat plate value of G = 6.5, and 

the approximation that CIll = ox in equation (22). 

The velocity profile and skin-friction assumptions of Nash' are then used 

to find an improved estimate for G, as follows: 

Cf = f(Fr,Fc,J&,G) , 

0.228Mz + 
1 

H = 
+ 0.135Mz 

(1-q) ' 
(24) 

from the use, by Nash, of an improved correlation of experimental data 19 instead 

of the usual assumptions , given later as equation (26). 

Thus we have, 

?T = Hdp cos (I 

ell ds' T COSB ' 
w1 

(25) 

using local streamwise components*and hence, 

G = 6.1JG -1.7 , (26) 

from Ref.18. 
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Equation (22) x tan 4 + equation (23) then yields an equation from 
which a better approximation to 8, can be obtained, namely: 

0ll(l + tan2 9) - 6 X - 0 tan tan 8, = Xy, 24 

F(1 + tan2 
, 

I$) tan 0 w,(n) 

where w,(n) = 6*2/E tan f3 as described later, in section 2.3.1(d). 

The turbulent profile properties are then evaluated and an improved 

estimate of 9 11 is obtained using equation (22) in the form 

91 = ex+ 
1 

(e 12 + e2,) tan 4, - 022 tan2 0 
I  

l 

(27) 

(28) 

This method of solution was not convergent unless an under-relaxation 
factor of 0.5 was introduced. 

The present physical assumptions and the numerical treatment are capable 

of improvement although, 1 as mentioned in Part III of this series of papers, 
qualitatively correct behaviour of the surface cross-flow angle is achieved in 

adverse pressure gradient conditions. 

2.3 The turbulent boundary layer 

2.3.1 The entrainment integral method in compressible flow 

(a) The basic equations 

The present method uses three simultaneous first order differential 
equations describing the development of streamwise momentum thickness cell), 
cross-flow thickness (for example e12) and, using the entrainment equation, 
the development of A. These equations are derived, for compressible flow on 

10 an infinite yawed wing, by Smith , and are summarized here and on Figs.6, 7 
and 8 as: 

dell - = -$-+ell~l-(H+2-~~)~~]-Xle22-e12~~tan(~~] 
ds 

. 

de12 + - tan Q . ds (29) 
. 
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de12 cfl - = 
ds 

+ ell(l + H) ~~ de22 +tan$r . (30) 

dA 
ds = F(H1) - A 

For their solution, assumptions for entrainment rate (F), streamwise 

skin-friction (cf1) and both the streamwise and the cross-flow velocity 
profiles are needed. These are broadly similar to the assumptions used by 

Cumpsty and Head9 with the addition of compressibility effects along the lines, 

proposed for two-dimensional flow, by Green 
11 13 and by Nash . 

(b) Streamwise velocity profiles 

In the local external streamwise direction the shape factors are related 
as follows:- 

Head15 

For Me < 0.3, the original relationship for incompressible flow due to 

is approximated analytically as suggested by Thompson 
20 . Separation is 

assumed to occur when Hl = 3.5; we therefore take, in the range 

3.5 <H1 < 5.3, 

; = exp(- 0.1511 - 0.777 loge (Hl - 3.3)) + 1.1 , (32) 

and for Hl > 5.3, 

ii = exp(0.143057 - 0.326375 loge (H1 - 3.3)) + 0.6798 . (33) 

If Me >0.3, the relationship used is that, proposed for compressible 
12 flow, by Green . Separation is now assumed to occur at H1 = 3.74; we 

therefore take, for Hl > 3.74, 

ij = 1 + l.l2(Hl - 2 - /-)"*g15 , (34) 
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where i is taken as the best analogue in compressible flow to H in 

incompressible flow, and assuming a recovery factor of r = 0.89, these are 

related by 

H = 
Twi Tr 
FH+~-' , (35) 

e e 

= (1 + 0.2M$ + 0.178M; . (36) 

Green assumes that the total temperature is constant across the boundary 

layer and hence that T = Toe. 
W 

(c) Skin-friction relationships 

12 
A simple relationship is used as proposed by Green , based on a general- 

isation of the form given by Spalding and Chi 
21 for zero pressure gradient, but 

in the present work the analytical forms for the Spalding and Chi functions 

F,, F C 
are those given originally by Nash et crZ7. 

Summarizing these expressions, we have: 

where 

and 

( 0.9 
cf] = cf - 0.5 , 

0 (i/i, - 0.4) ) 

Ho = (I - 6.8$+-l , 

0.012 

(loglo(FrRel;) - 0.64) - o*ooog4 $ ' 

F = 1 + 0.066 x M 2 
C e - 0.008 x M; Y 

(37) 

(38) 

(39) 

(40) 

F = 1 - 0.134 x M: + 0.027 x M3 . (41) r e 

The subscript '0', used by Green, refers to nominal flat plate zero 

pressure gradient conditions and his expressions can be shown to agree well 

with the full two-parameter skin-friction law proposed for incompressible flow 

by Thompson 22 as well as being supported by the skin-friction data that were 
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(d) Cross-flow assumptions 

Here the simple treatment first used by Cumpsty and Head' and by Smith 10 

is retained. That is, the cross-flow velocities within the layer are related 

to the surface angle f3 using the simple expression, due to Mager 23 

V -= 
U 

(1 - 11) 2+tanf3 , 
S e 

with power law streamwise velocity profiles, 

U n 
r=rl , 

e 

where H-l n I - 
2 9 

(42) 

(43) 

employed to achieve simple analytical expressions, for the cross-flow integral 

parameters and their derivatives with respect to surface distance (s), in 

terms of the basic dependent variables of the problem. Compressibility effects 

are introduced, 11 as suggested by Green , by introducing the transformation, 

where 

Hence, for example, we have, 

where H 1 = A/e,,, 

P dz dn=---t, 
'e 6 

6 = J $dz . 
e 

0 

ii-1 1 n = - = 
2 

H1 -2 ' 

A = &J- 
( ) n+l , 

51 = x 
[ - (2n + l;(n + 1) 1 ' 

(45) 

(46) 

(47) 

(48) 

(49) 
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0 12 = Z tanBw4(n) , 

e22 = Z tan2Bwl(n) , 1 
e21 = d talQw3(n) , 

9 = ;f tanBw2(n) . 

The functions wi(n) are defined as follows: 

w,(n) 1 4 6 4 1 = - 
(2n + 1) + (2n + 2) - (2n + 3) + (2n + 4) - (2n + 5) ' 

w,(n) 2 4 2 = - 
(2n + 2) + (2 n + 4) - (2n + 6) ' 

(50) 

w,(n) = - 
1 

+ (2 

2. 1 (51) 
-" 

(2n + 1) n + 2) (2n + 3) ' 
,. 

w,(n) 1 4 
1 

4 
2 

= - (2n + 1) + (2n + 2) - (2n + 3) - (2n + 4) + (2 n+6) ' 

(e) The entrainment function 

The simple analytical approximation, proposed originally by Thompson 20 

to fit Head's curve for incompressible flow, has been assumed to hold for all 

conditions of compressible flow. That is, 

F = 0.0299(H1 - 3) -0.617 . (52) 

2.3.2 The numerical solution 

After rewriting the cross-flow equation (30) as a differential equation 
for tan 8, Cumpsty and Head' solved the equations (29), (30) and (31) 
numerically by means of a global iteration technique. They preferred this 
method, because of its physical clarity, to a step-by-step method. The latter 

method also appeared to them to be less stable near separation. The present 
authors began therefore by programming this global iteration method. However, 
it was found to converge very slowly near to separation, as Fig.3 shows, and 
was eventually discarded because, in the region of favourable pressure 
gradient just downstream of the swept attachment line, it becomes oscillatory 

and divergent even with strong artificial damping incorporated (see Figs.4 

and 5). 

i 



This global iteration method solves the complete boundary-layer develop- 

ment using the streamwise momentum equation (29) and entrainment equation (31) 

with a fixed cross-flow development B(s) obtained from the previous separate 

solution of the cross-flow equation. The solution of the latter is then updated 

using, as fixed data, the developments of 6ll(s), A(s) from the solution of 

the other two equations. The damping used by the present authors was applied as 

follows: 

[%I = FljP + plj-:’ - p) ’ 

fj(S) +f.(s - As) 
J 

, 

(53) 

(54) 

where f represents any of the dependent variables concerned and [df/ds] 

stands for the derivative at the middle of the current step As, and j is 

the global iteration count. The initial (axisymmetric) approximation, 

corresponding to the curve for j = 0 in Figs.4 and 5, assumes that B = 0 

everywhere. 

The equations were therefore rewritten, using the profile relationships 

of 2.3.1(d), explicitly in terms of the three variables Bll/c', A/c' and tan 0. 

These equations were solved by matrix inversion, iterating until the mid-step 

derivatives gave successive calculated values that differed by less than 1%. 

No convergence problems were encountered over a range of step lengths (As) 

between 1 and 20 local boundary-layer thicknesses (z). This is shown, in 

Figs.20 and 21, for the practical test case considered in detail later in 

section 3. The calculation time for Cumpsty and Head's test case at A = 35' 

was reduced from 22 minutes on KDF 9 to less than 1 minute (including 

considerable print-out). 

The reasons for the difficulties encountered by the global iteration 

procedure are readily explained by reference to Figs.Ga to gb inclusive. In 

these figures the terms in each of the basic equations (29), (30) and (31) are 

plotted out for the complete boundary-layer development on the highly swept 

wing of Cumpsty and Head 24,25 . In each case the figures are divided into, 

(a> adverse pressure gradient, and 

(b) (leading edge) favourable pressure gradient regions. 
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Figs.6a, 6b show that the 'correction term' (i.e. all the quantities 
involving the cross-flow 6) used in the global iteration method for solving 
the streamwise momentum integral equation (29) includes a derivative of the 

cross-flow properties. This quantity, namely tan $ (dBl2/ds), is no longer 

small, compared with the derivative (dell/ds) being calculated, once separa- 
tion is approached (see Fig.Gb) and becomes much larger than dOll/ds close to 
the attachment line where (see Fig.6a) the rate of growth of 9 11 along an 

external streamline is very small. Similar comments are appropriate to the 
corrections applied to the other equations and account for the difficulties 

with the global iteration method. 

The pressure distribution used in the foregoing calculations is labelled 
'B' in Fig.9 and the angle of sweep A = 62.5' has been assumed. Surface and 
external streamline shapes for both interpretations 'A' and 'B' of this 
experimental arrangement are shown in Fig.10. 

Further discussions of this experiment and the various theoretical 
predictions that have been made are given in Refs.26 and 27, and need not be 

repeated here, as we are at present concerned primarily with the relative 
orders of the terms in the equations once having found the best interpretation 
of the pressure data (and isobar sweep) to give reasonable agreement with the 
observed rear separation. 

Interest in separating out the various terms of the equations was also 
occasioned by the hope that some terms would prove to be very small and hence 
that a worthwhile simplification could be introduced into the equations. 
However, this turns out to be a dangerous idea as the only small terms are 
those (as Figs.6a to 8b show) where local Mach number enters as Mz and hence 

are small for a lowspeed flow but would not be expected to remain small at 

transonic speeds. 

2.3.3 Turbulent attachment line flow 

(a) Calculation of compressible attachment line flow 

The introduction of compressibility means that the turbulent attachment 
line properties are now functions of C* and the Mach number, Ma 1 of the 
flow along the attachment line. Following the first method of pcekction 

explained in Cumpsty and Head's paper 8 the cross-flow equation (30) is 
differentiated with respect to surface distance normal to the attachment line 
and solved simultaneously with the streamwise momentum equation and entrainment 
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equations to yield solutions for the three principal dependent variables 

Rell9 
ell(af3/as'), and n. The equations and the assumptions for entrainment, 

skin-friction and for velocity profile shape in compressible flow have already 
been given for the general infinite yawed wing case in section 2.3.1. The 
attachment line assumptions are entirely consistent with the general method but 
the associated set of equations was solved separately once for all in the 

r=w, 

O<Mal G2 , (56) . . 

7 x lo4 G c* < IO7 , (57) 

for which fully turbulent flow was assumed. On the attachment line equations 

(29), (30) and (31) become, 

d&s 
ds' = F(H$ - A -&- tan A 

de12 Cf* K 
x7- = T-%ran 

and 

where 

de22 
dsr= 0 , 

R 8 11 tan A K=c*F. 
11 

, (58) 

(59) 

(60) 

(61) 

These are formally identical to the equations of Ref.8 for incompressible 
flow. However, cf,, F and the velocity profile relationships will introduce 
implicitly a dependence on M a.1.' Equation (60) is of no use as it stands and 

it is necessary to differentiate the cross-flow momentum equation with respect 
to s', giving, 

de21 3K 
2 

d O22 -- 
?P- tan A 

-- 
d(s')2 

(62) 
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Introducing the velocity profile assumptions of section 2.3.1(b) we find 

that, 
2 

d e22 
d(s')2 

(63) 

on the attachment line and the equations (58), (59) and (62) become three 
simultaneous non-linear algebraic equations for the dependent variables Rel 1' 
n and Z, where Z = 0 , 1 (dB/ds'). 

That is, 

F(H1) = Hl -& = w,(n) - 6 z 
%l 

, 

Cfl ReH 
--- = -w4(n)- 2 C* s z , 

. . %l 

(64) 

(65) 

and 

Solution is effected by solving the quadratic equation (66) for Z, 
assuming values of n and of Rw The negative root is taken as the pressure 

gradient normal to the external streamlines must give rise to an initially 
negative sign for dB/ds'. Substitution of Z into the remaining equations 
(64) and (65) then yields two simultaneous equations for Rell and n. A 

double iteration process converges rapidly to give the results which have been 
analytically approximated by the expressions given in the Appendix, and are used 

in the design program in that form. This procedure results in considerable 

economy of computing time compared with a solution of the full equations every 
time a boundary-layer calculation is needed. Figs.11, 12 and 13 summarise the 

present results for Ma 1 = 0, 1 and 2 in the range 7 x lo4 < c* < 5 x 105. 
l .  

The shape factor i? is presented in Fig.13 instead of n (as used in the 

Appendix) as comparison with Cumpsty and Head's measurements can be made in 
a more familiar way. The general level of agreement with experiment for their 
incompressible flow is, as Ref.8 showed earlier, not especially good even 
for momentum thickness (see Fig.11). However, it must be remembered that even 
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. 

. 

the latest differential methods of turbulent boundary-layer prediction, such as 

that of Bradshaw 14 , give only a modest level of agreement with these measure- 

Very recently, Crabbe 
28 

ments. has shown how turbulent structure and hence 

entrainment rate depends on lateral stretching so that it may now be possible 

to improve the integral method although the greatest improvement would be 

possible through the use of better skin-friction and velocity profile assumptions 

at these low Reynolds numbers. 

(b) Initial values, for the turbulent calculation, just downstream of 
the attachment line 

Each dependent variable 

of surface distance normal to 

can be represented by a Taylor series in terms 

the attachment line. That is, for example, 

(W 
a.1. 

+ . . . (67) 

with A/c' or i represented similarly; whilst for the cross-flow angle (6) 

we have, 

dB 
s! [ 1 Yl 74 

C 

= (I+-$ a.1. + 
..a . 

%l [1 -1 
C a.1. 

(68) 

For simplicity, and in view of the modest level of accuracy of the 

attachment line predictions themselves, the first non-zero term in each expan- 

sion has been used alone to represent the entire series. Typical results, for 

a range of starting distances (sf/c'), are shown in Figs.14 to 16, for the case 

of a yawed circular cylinder of radius R in incompressible flow. In this 

simple case c' = 2R. Convergent behaviour is shown for 

s! 
0.0005 <$-G 0.05 radians . (69) 

Fig.17 confirms this convergence as far as predictions for Roll up to rear 

separation are concerned. A value of 0.001 has been used in all subsequent 
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routine calculations (as in Ref.]) for design purposes and this ensures adequate 

accuracy as in practice the effective radius (a') of the cylinders is between 

1% and 5% of ct. Hence we normally take sf/c' = 0.00001 to 0.00005 as the 

starting values. 

2.3.4 Behaviour near to separation 

This has been discussed rigorously by Myring 29 for the present integral 

equations and cross-flow profile assumptions. He found that the equations 

formed a hyperbolic set whose outer characteristic lags on the surface stream- 

line and hence becomes parallel to the generators of an infinite yawed wing 

downstream of the true separation line. 

The present authors have attempted no such detailed numerical analysis 

although they realised that these properties were likely from the earlier 

analyses of Mager 23 and Raetz3'. No problems in using the present step-by-step 

procedure have been encountered and indeed calculations have been taken past the 

predicted line of rear separation with the idea of giving a rough estimate of the 

initial rapid increase in profile drag and in displacement thickness when small 

regions of separated flow could be present (see Part III * for typical results). 

Separation occurs (strictly) when the predicted surface streamlines become 

parallel to the generators of the infinite wing; that is, when, 

or equivalently, 

B+4 = 9o” , 

cf = 
0 . 

X’ 

The turbulent boundary-layer predictions are continued beyond separation 

if this occurs for x1/c' = 0.9, by setting 

0.999 tan$ = - tan+ ' 

if the calculated value of tan i3 is greater than that quantity. 

cfl 
is limited to not less than 10 

-6 
, and H1, E and hence F are 

constrained at their separation values. 

(70) 

2.3.5 Displacement thickness 

The full expression for displacement effect as given originally by 

Lighthil131 is used, which as Cooke32 showed becomes for infinite yawed wings: 
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(71) 

2.3.6 Possible laminar reversion 

The inner region pressure gradient parameter (Aes) evaluated on the 

basis of the component of pressure gradient taken in the direction of the local 

surface shear vector rw is, 

V 

A Rs = 
-- 
,‘; p* $r cos (9 + 8) l 

W 
T 

(72) 

It is assumed, following Patel's 33 
work in two-dimensions, that the simple 

fully turbulent inner region relationships will break down if the magnitude of 

this quantity exceeds about 0.01. In favourable pressure gradients this is an 

indication of onset of reversion to laminar flow and, as described in Ref.2, 

can occur even in flight conditions just downstream of typical swept attachment 

line flows which are themselves likely to be fully turbulent especially with 

contamination from the fuselage boundary layer. 

2.4 The turbulent wake and prediction of profile drag 

The coefficient of profile drag (as in the results of Ref.1) is found by 

using the expression derived by Cooke': 

cD = 2e;l 
( 

cos3 A + e2] sin A 
) 

, 
a, co 

(73) 

where the independence principle is invoked to allow separate solution for the 

chordwise momentum integral equation (relating 6;lt.e. to Oilm> and the 

spanwise momentum integral equation (relating 

The spanwise solution is the same as used by Cooke, namely, 

u 2 
e;lm = f 

i I 

T 2.5 

t.e. 
x ";It e x f 0 

, 
. . t.e. 

(74) 

whilst the chordwise solution is taken to be compatible with the expression 

commonly used in the method for predicting profile drag in two-dimensions. 

This is an empirical modification of the compressible Squire/Young formula 

proposed by Nash and reported in Ref.34. That is 
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where X = 0.285)1(1 + Hi...) $ + 2.4286 , 

H’ = -Y 
e'i I 

and 61' = 6'; - tan tjl6$ , 

(75) 

(76) 

(77) 

The dashed quantities are evaluated for chordwise velocities and are 

related (as shown by Cooke) to the usual streamwise and cross-flow integrals at 

the trailing edge by the following expressions (which are rewritten versions of 

equations used already in section 2.3.1) 

e:l = ell - tan 9 (e2, + 012) + tan 2 0 922 ' (78) 

and 

51 = cell - e22) sin 0 cos 0 + e21 ~0s~ (p - e12 sin 2+ l (79) 

3 RESULTS OF COMPUTATIONS FOR PRACTICAL TEST CASES 

The boundary-layer calculations were made using measured lower surface 

pressures on the RAE(NPL) 9510 section at M, cos A = 0.76. This section is 

heavily rear-loaded as the distribution of external velocity shown here in 

Fig.18, reveals. The weak shock present at the position of maximum velocity 

has been slightly smoothed to avoid difficulties with numerical differentiation 

of the test data. The original measurements 35 were made on a two-dimensional 

section in the 36in x 14in transonic wind tunnel at RAE Teddington at a chord 

Reynolds number of about 3.6 x 106. The present calculations were made, 

however, for assumed flight conditions of A = 30°, R = 40 x lo6 and hence C 
for M, = 0.878, which are typical of an advanced modern transonic transport 

aircraft. The surface streamlines and the external potential-flow streamlines, 

predicted for this condition, are shown in Fig.19. 

The flow is fully turbulent across the entire chord and the developments 

of Re and of S are as shown respectively in Figs.20 and 21. As mentioned 
11 
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earlier (in section 2.3.2) the numerical results agree over a 2O:l range of 

step lengths. 

The severity and the usefulness of this test case is especially clearly 

shown in Fig.21 where the rapid variations in cross-flow angle 6, including 

the effects of two changes in sign of the transverse pressure gradient, are 

apparent. The sensitivity of predictions to cross-flow profile assumptions in 

this case should be conclusive proof that improvements to these assumptions were 

required or not. 

Fig.22 shows the effect of step length upon the relative times 

(proportional to the number of iterations of the stepwise solution of the 

differential equations) taken for the basic turbulent calculation. In the 

parametric study of Ref.], the step lengths As = 10s or 0.025~' were used. 

No practical advantages result from increasing the step size further. 

The lower curves show that a large proportion of the total calculation 

time is spent on that part of the boundary-layer development close to the 

leading edge. About 40% of the calculation time is spent in reaching 0.01~' 

and about 55% in reaching 0.1~'. 

Finally, in Figs.23 and 24, some results are shown, appropriate to the 

wing study of Ref.1, in which a rather less advanced aerofoil was used (RAE 

(NPL) 3111). Calculation time (see Fig.23) increases roughly in proportion to 

the total path length (s) of the turbulent boundary layer along an external 

streamline, for a given leading-edge condition and a given value of streamwise 

chord Reynolds number (Rc). The corresponding dependency upon angle of sweep 

(A> is shown also in Fig.23. The sudden fall in computing time associated 

with establishing turbulent attachment line flow is explained by Fig.24 where 

the turbulent boundary-layer thickness at or near to the start of the calcula- 

tion (that is at x1/c' = 0.0155) is seen to increase suddenly once the flow 

becomes fully turbulent at the attachment line. This, of course, is a result 

of the abrupt transition assumed to occur when C* = 10 5 , whereas, in practice, 

a gradual change of boundary-layer conditions would occur at the swept attachment 

line and hence at the beginning of the calculated region as A (and hence C*> 

increased. 

The above results should give the user some idea of the performance of the 

complete program in a form that is likely to be independent of the particular 

computer available to him. The typical time for a boundary-layer calculation 

for one wing surface on the KDF 9 computer is 30 seconds, including allowance 

for extensive print-out. 
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4 DISCUSSION 

At various points in the above description of the method shortcomings 
have been recorded. In particular, the assumptions for transition are crude 
and as yet no reliable data exist from which they may be improved. Even the 
cdmpressible laminary boundary-layer predictions have not been compared with 
the nominally exact numerical results that are now possible 36 although, except 
near to separation, this uncertainty is likely to lead to only very small errors. 

The cross-flow assumptions in the turbulent boundary-layer calculation 
are incapable of accounting for inflections in the cross-flow velocity profile. 
The entrainment function is also (now) rather outdated by improvements in two- 
dimensional methods (for example, the lag-entrainment method37). 

However, as pointed out by Thompson et al. 38 it is not necessary in design 
work to describe the details of the physical processes accurately. What is 
important is their influence on the overall answer for profile drag, displace- 
ment effect on lift curve slope, for example, and especially it is less 
important to predict quantitative levels than to predict exchange rates between 
these quantities. 

Consequently, improving the turbulent boundary layer assumptions alone may 
or may not make sufficient difference to the predicted variations of CD(LRc), 
(say), to affect the designer, In this connection, it should be remembered 

that the best available differential method for three-dimensional flow 14 is 
about twenty times slower than current integral methods on a given computer, 
and also runs into problems at or near to the swept attachment line (see Ref.2). 
Also it is not, as yet, programmed for use in compressible three-dimensional 
conditions. 

5 CONCLUSIONS 

The description , given in section 2, of the complete calculation method 

suggests that: 

(i> The use of the independence principle for compressible laminar flow 
is unlikely to lead to errors of practical importance for A =G 45', unless 
separation is present. 

(ii) Comparison should be made, for a fairly severe test case, however, 
between this simple method and the exact numerical procedures now available. 
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(iii) The present assumptions for transition are crude and require 

further examination. 

(iv> The numerical method preferred by Cumpsty and Head for solving 

the integral form of the turbulent boundary-layer equations is not satisfactory 

near to separation'or near to the swept leading-edge attachment line. 

(VI Further investigation of the flow at and near to the swept 

attachment line is required. 

The numerical test cases described in section 3 and the overall discussion, 

in section 4, show that: 

(vi> In practical flight conditions the present numerical method is 

both satisfactorily fast, convergent and convenient to use. 

(vii) Two strong reversals of transverse pressure gradient are possible 

and might be inadequately described by the present simple velocity profile 

assumptions. 

(viii) However, the success of simple turbulent integral methods in 

two-dimensional flow, together with the presence of (probably) large errors due 

to lack of knowledge of transition and the difficulties encountered close to the 

swept attachment line by even the most sophisticated modern calculation methods 

reinforces the present author's opinion 38 that it is important to use the 

simple method for design purposes now in order to find out if difficulties 

occur to an extent that really would worry the designer in practice rather 

than reject a readily available and tested method on purely theoretical grounds. 
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Appendix 

ANALYTICAL APPROXIMATIONS TO PREDICTIONS FOR 
COMPRESSIBLE TURBULENT ATTACHMENT LINE FLOW 

Rell = + Oi2(Ma,i.)il/(l + 0.2Mi)}1'74/tan A/R> X 

- 2.304 + 0.0231Ma 1 + O.O282(Ma 1 )2 . . . . 

+ 0.581 
[ 

- 0.016705Ma 1 - O.O06615(Ma 1 )2 . . . . 1 log, c* 

+ 0.001203Ma 1 - O.O00178(Ma 1 . " . . q (log, c*)'} l 

. . . (A-l) 

9 df3 1127 = - i 0.038617 + 1.125 X 10m4Ma x . 1 . + 1.25 lo-5(Ma.I.)2 

-4 - 7.42 x 10 -3 log z -I- 4.886 x 10 e 
(log, d2 

- 1.0909 10 (log, d3 1 -5 x , (A-2) 

where 
2 

z 1 + 0.05M a l + 0*18(Ma l > l 

.  .  .  .  

n = exp I 1.587 - 0.34(Ma 1 > + 0.21067(Ma.l*) 
2 

. e 

- 0.3388-O.O4429(Ma 1 ) + 0.03161(Ma.l. 
II l a 

log, c* 
+ 0.0076 

c 
- O.O012803(Ma l ) + 0.0009283(Ma.l.)2 I 

(loge C*)2 . (A-4) 
. . 

Note also that, from equation (47); 

1+2n , Hl = 7 
(A-5) 

and 
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ij = 1 + 1.12 ($ - 2 - J~y*g15 l 
(34) 

The percentage differences of the above formulae, (A-l) to (A-4), from 

the exact solutions of the equations are: 

M a.1. 

0.01 

1.0 

2.0 

< 1% except near 

c* = 3 x IO6 

< 2% except 

C” = 5 x 

< 3% except 

near 

IO5 

near 

c* = 5 x lo5 

n 

< 0.3% 

< 0.3% 

< 0.4% 

Rell 
< 0.9% 

< 0.3% 

< 0.9% 

i 

. 
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. 

A, B 

C 

C’ 

c* 

cD 

cf 

cfl 

Cfx' 

C 
P 

c* 
P 

cP 
F 
F c' Fr 

G 

H 

ii 

functions appearing in the spanwise solution for the laminar boundary 
layer 
chord 
chord 

u2 00 

(see section 2.2.1(c)) 
length in line of flight 
length normal to generators (i.e. 'chordwise'chord = c cos A) 

sin 2A 
= 

T 
Y attachment line parameter 

V a.1. dds' 
conventional profile drag coefficient 

T 
W E- 

iP,ut ' 
total skin-friction coefficient 

=C cos 6, component of skin-friction in direction of local external 
velofcity (Ue) 

= Cf cos ($ + B), chordwise component of cf 

P - PC0 =- 
6Pm$ ' 

conventional pressure coefficient 

= Cp sec2 A 

specific heat of fluid at constant pressure 

entrainment coefficient 
functions in the Spalding-Chi skin-friction law 

Boundary layer shape factors based upon the components of velocity 
along and normal to the local external velocity (Ue) direction:- 

03 

(Ue 
- u)2dz 

(Ue - u)dz 
0 

= 6*/elI 

co 

=+---t (I -$jdz, compressible analogue of H, as used by 

0 
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H1 

Hx 
H' 

K 

P 

PO 

P 

Q, Qi 

Rc 

R 
C’ 

Re*, 
r 

S 

S’ 

S’ 
P 

', 'i 

T 

T 
0 

TO 
X 

NOTATION (continued) 

= (6 - 6")D11 = A/e,, 

shape factors appropriate to the chordwise and spanwise coordinates 
and velocity components:- 

= ye 
X’ 

notation of Nath4 - laminar 

= 6f/e;], notation of Cooke 6 - turbulent 

convergence rate of external streamlines ( * = d@ 

yawed wings 
1 

sin 0 r for infinite 

= 6x/6 
Y 

in section 2.2.1(c) 

Mach number, e.g. Me, M, 

exponent in temperature/viscosity law assumed in laminar flow, or exponent 
in power-law expressions for turbulent velocity profiles. (No ambiguity 
in the text.) 

local static pressure 

local total pressure 

relaxation parameter used in section 2.3.2 

defined for laminar flow in section 2.2,1(c) 

Lc 
= - streamwise (i.e. line of flight chord Reynolds number) 

V 
co 

um cos AC’ 
= 

V 
.- = Rc cos2 A 

a, 

'eel1 =- 
V 

e 

recovery factor 

distance along an external streamline started at a small distance 
E from the attachment line 

distance, in chordwise plane, around surface, from the attachment 
line 

surface distance to velocity maximum (see Fig.]) 

used in section 2.2.1(c) 

local static temperature 

local total temperature 

total temperature of partial stagnation line (i.e. attachment line) flow 

= To 
2 

- Au* cos 2 A/c in the Rott5 transformation - see section 
co \ P 

= Tref 

2.2.1(b) 
) 
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NOTATION (continued) 

. 

recovery temperature 

velocity in Ue direction within the boundary layer 
- 

velocity'in chordwise (s') direction 
component of Ue in chordwise direction 

= u, cos A 

‘e 

UT 

local external velocity 

T 
local friction velocity = d 

0 e 

V cross-flow velocity, normal to Ue 
- 

V' spanwise velocity 

'e = v1 = Uo3 sin A 

w ---w,(n) 1 defined in section 2.3.1(d) 

Planform coordinate systems:- 

x’, y’, 2’ rectangular Cartesian coordinates with x' chordwise, y' spanwise, 
2' normal to wing plane 

For local boundary layer expressions we use rectangular coordinates 
with z normal to the surface and either s or s' with the 
appropriate third normal coordinate direction (y or y') 

angle of incidence 
angle between T and U 

W e - - 

ratio of specific heats of fluid 
value of z 
= 0.995 u, 

at which the total velocity within the boundary layer 

'thickness' of laminar boundary layer in chordwise flow (Ref. Nath4) 

'thickness' of laminar boundary layer for spanwise flow 

i= J $ dz 
0 e 

= 6; - 62 tan 4 (see section 2.3.5) 
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NOTATION (continued) 

A 

= /(I - $-)dz , 
0 

=- I z dz 
'e'e 

0 

= /(l-t $dr, chordwise displacement thickness (Cooke6) 

0 

= 6 - Fj* = 
J = dz 

PeUe 
0 

As, As' increments in surface distance for boundary-layer calculations 

*lls 
turbulent inner region parameter defined in section 2.3.6 

E distance (s') from attachment line at which boundary layer calculations 
start 

laminar profile shape factor in section 2.2.1(b) 

A either angle of sweep of wing or laminar profile shape factor 

as appropriate. (No ambiguity in the text.) 

V 

P 
0.’ 

71 

T 
W 

f 

w1 

transformed z-coordinate for 
fluid viscosity 

boundary layer axes only 

Fc =- 
P ' kinematic viscosity 

fluid density 
effective leading-edge radius ._ (i.e. the radius of the circular - . 
cylinder that, in incompressible flow, has the same velocity gradlent 
as at the attachment line of the aerofoil) of the chordwise section 
used to find C* 

6* d 
-Er 

cos 4 
= ?-- ds cos B 

w1 

wall shear stress 

component of wall shear stress in direction of local external velocity 
me) 



NOTATION (continued) 

angle between Ue and s' vectors - 

ex = 

8 = 
XY 

e 
Y = 

e;, = 

,Q’ = 

0 

0 

conventional definitions based on 
' local streamline coordinates 

of Nath4, for chordwise, 
solutions of the laminar 

/ .$ifl ;,“‘)& = !!j ox 

0 e notation of Cooke6 related to that 
} of Ref.4 

6 

I P u’ -- / 
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NOTATION (concluded) 

Subscripts:- 

a.1. attachment line value 
i initial value for turbulent flow, or incompressible value in 

laminar boundary layer transformation. (No ambiguity in text.) 
e value in external potential flow (e.g. Ue) 

W value at surface (e.g. 'cw, p,) 

0 stagnation value (e.g. To) 

T value in turbulent flow immediately after transition 
t.e. value at the trailing edge 
03 value at infinity upstream 
tr value at the transition position, e.g. (x'/c'>,, 

Superscript:- 

1 value using quantities in the x', y', z'coordinate directions, 
e.g. u', v' 
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