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A simultaneous solution of the non-linear stability equations for the
flat plate boundary layer with space ampllflcatlon has been obtained for a single
non-dimensional frequency parameter, at a series of Reynolds numbers, and using a
limited number of amplitudes of the fundamental perturbation. The distortion of
the fundamental by the generation of second harmonic is normally included in the
solution, but some results are obtained excluding this effect. The terms
representing the growth of boundary layer thickness are included. The results
are compared with published work on non-linear effects in plane Poiseuille flow.

SUMMARY
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1. Introduction

When a steady laminar flow is perturbed by & simple harmonic disturbance
of finite amplitude the second-order processes of mean flow distortion and
generation of harmonics can be observed, at least in some types of flow, before
there are any strong indications of the random processes of turbulence. In order
to account for these second-order effects it is necessary to include in the
equations for the motion the terms thet are non-linear in the perturbation and are
treated as negligible in first-order stabiiity theory. During the last twenty
years a considerable amount of work has been done to explere the second-order
effects in various flows, both for two-dimensional and three-dimensional
perturbations. Papers by Stewartson and Stuart (1974) on the plane Poiseuville
case, and by DiPrima et al (1971) on two~dimensional flows in general, are the
latest developments of two-dimensional non-linear stability theory. These papers
give references to much of the earlier work.

Stuart (1960b) has pointed out that non-linear effects in Bénard cells

{having constant Rayleigh number), cylindrical Couette flow (having constant Taylor
number), and strictly parallel flows (having constant Reynolds number), are simpler
to analyse than non-lineer effects in boundary and free shear layers which have

continuously changing Reynolds number. He has also pointed out elsewhere, however,
~ that if we are interested in the process of transition to turbulence there are
advantages in studying cases of changing Reynolds number, where the whole
transition process is presented as a single continuous development. It is therefore
desirable to obtain solutions of second-order perturbation equations for flows with
changing Reynolds number, and to find out by compering theory with experiment how
far the early stages of non-linear behaviour can be followed in the transition
region, The present paper is concerned with the transition region in the Blasius
boundary layer, and develops the non-linear theory for the special experimental
case of purely real frequency and complex wave mumber, In this case the main
difficulty does not arise from changing Reynolds number because the undistorted
flow is of similarity type and, as will be shown below, the distortion of the mean
flow (within certain limits) does not invalidate the use of the similarity principle.
An accurate solution for this case requires the evaluation of a mean flow for which
no accurate explicit expression is possible, and also the determination of an
eigenvalue which occurs in the equation in powers up to the fourth., Numerical
methods of solution are therefore essential,

In the Blesius boundary layer the departures from parallel mean flow are
not great, and the non-linear effects are expected to be similar to those in plane
Poiseuille flow. Work on Poiseuille flow has been directed mainly to explaining
the occurrence of turbulence at Reynolds numbers R less than the critical Reynolds
number Rc given by first-order theory. The second-order changes of the rate of

amplification in both space and time have therefore been examined - for the
"suberiticel" region in which R - Rc is negative and for the "supercritical”

region in which R - Rc is positive. Consistent results for the space amplification

case in Poiseuille flow have been given by Watson (1962) and by Stewartson and
Stuart (1971),

Interest also attaches to the second-order changes in the distribution
of the perturbation and its harmonics, Lin (1958) concluded that "for disturbances
in a parallel flow, all the harmonic components of the oscillation simultaneously
become important around the critical layer before the amplitude of the fundamental
component is large enough to cause any significant distortion of the mean flow,"

The/



-3 -

The second=-order results obtained for the Blasius boundary layer will be
compared with those obtained for plane Poiseuille flow. Qur analysis follows the
method described by Barry and Ross (1970) and retains in the differential equations
the main terms representing the growth of thickness of the layer. A detailed
account of the numerical methods used in this work has already been published by
Ross and Corner (1972).

e The Equations and the Iteration Procedure

We use a Cartesian coordinate system having the origin in the leading edge
of the flat plate, the y-axis coincident with the leading edge, and the z=axis normal
to the surface of the plate. Uo represents the free-stream velocity, & the

displacement thickness of the unperturbed boundary layer, and V the kinematic
viscosity of the fluid. The units of length, velocity and time are taken to be
51, Uo and 61/U0. The equations are then non-dimensional with Reynolds number

R = anz/v' Also R? = K®X where K is the Blasius constant ~ 1.7208.

The non-dimensional dependent variables include the vectors:

(i, O,w} : total velocity,
(u, 0, W) mean velocity,

(u, 0, w) perturbation velocity,

The first equation governing the total flow in the boundary layer is the
continuity equation,

which is satisfied by the introduction of a stream function V. The remaining
equation is the vorticity equation which may be written in the form

a vy 1
+ Jly, V) = - ¥y, eeel)
R

gt
where 9¢2y§ is the total vorticity, and J(y, V°y) represents the operator
oy 2 V¥ a2 vy

] -— —_ ———

oz ax ax 92

Clearly, (1) is separable in time, and following the now well established
procedure used for Poiseuille flow, the function YV is expanded in a purely real
Fourier series:

Wxzt) = gy (nz) ¢+ gGx2de P o fxaetH

oY . .
+ Z [wn(x,z)e-lnﬂt + ?n(x,z)e*'lnﬁtz], eee(2)
n=2

where ~ indicates a complex conjugate. This expansion involves the mean flow
stream function 15, and ﬁ) +o0 as 2z +og the expansion is valid, however,

it/
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if - *o is bounded at all times t within the range to £ t < to + 2r/B. To

satisfy the equations of fluid flow, Y itself must, of course, be uniformly
contimuous in t, and at all real points (x,z} in the region 0 < z < o,

0 < x < X, where the positive value X can be assumed to lie outside the region
of interest of this representation.

Substitution of (2} in (1), and separation in powers of o Pt

infinite series of equations,

1
J (*o’vz*o> - ;V‘“’o = =d (E -v2*1> -d (%; V’?z)

] Z: [.r (“\Fn,‘”*n) +J (“fn"”'"*'n)] oea(38)

1
-igvy, + J (ﬁo,v2¢1> +J (\y,_ ,v2v0> - Ev“h

==-J (-;1 :Va'h) -J (4‘2"72??’1)
- Z I:J (’E:n,v%n“) +J (wn“ ,v*‘"{:n)] ..o(30)
n=

1
~2iF0%%; + J (#O,VQ'&:;) +J (‘4‘2 ,V’\bo) - ;V"&a

-3 (m ,m) -3 (wa N’E) -3 (ﬁ .v2¢a>
Z I:J (i?n,vﬂq;mz) + J (vmz,v’?n)] eo(3e)
n=

1
J (%-"’%)‘; vy,

n-1

SN

m=1

z \:J (vm,v%mm +d (*mm,v’wm):‘ .o e(3d)

m="1

gives an

+

-nigv?y_ + J (io,vavn>
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together with the cgmplex conjugate equations of (3b) (3¢) and (3d). The
terms which are non—llnear in the perturbation appear on the right-hand
side of these equatlons. In first-order stability theory it is assumed
that all the terms yhlch are non-linear in the perturbation are negligible.
When this assumption is made, the right-hand side in each of equations (3)
becomes zero, and (3¢) and (3d) become variants of (3b).

The case %n which we are interested occurs when a periodic
disturbance ¥,, initially of very small amplitude, is present in the
otherwise undisturbed mean flow in the boundary layer: a situation
conforming initially to linearised stability theory. In consequence of
boundary layer amplification, however, 1, may increase in the amplifying
region to such an extent that the non-linear terms in (3) become significant,
distorting the mean flow given by (3a), producing higher harmonics of
given by (3c) and (3d), and changing the function ¥, given by (3b). We
wish to follow the early stages of this process.

It is ev1dent from (3d) that the third and fourth harmonics cannct
be excited until the second harmonic has been generated and, in general,
that the (2n-1)th and 2nth cannot be excited until at least the nth has been
generated. The flrst non=linear effects will therefore appear when the
non-linear terms 1nVolv1ng only ¥, Jjust become significant in (3a) and
(3c)e  The next stage, requiring further amplification of ,, will involve
terms containing Y, and ¥, in (3b) and (3d). It will be noted that
(3b) will still be linear and homogeneous in ¥, at this second stage.
Before deciding on the number of non-linear terms which should be included
in the equations for a second approximation to the solution, two simplifying
assumptions must be introduced.

First, the Prandtl boundary layer assumption must be applied to
the mean flow stream function *o’ and to do s0 we write

%o au Yo 3%y
0 v4‘bo = = _ - -.'(q)
3z dz az* az.®

When these substitutions are made in (3a), the left-hand side reduces to

a%y
I e

the partial differential with resgect to 2 of the terms in the Blasius
equation. The replacement of V¥ ﬁ; in (3b), (3¢) and (3d) retains all

the terms containing W which are of the same order as the viscous term in
the equation concerned, The perturbation equations then take account of
the growth of boundary layer thickness (Barry & Ross, 1970).

The/
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The second assumption concerns the functions ¢n(x,z) for

n » 1, and expresses the experimental fact that a disturbance which is
perlodlc in time forms a wave travelling downstream within the boundary
lsyer with a complex wave number o = @, + 1ai. ¢ (x,2) may
therefore be expressed in the form ¢ (x,2) e*™*, It is known from the

work of Schubauer and Skramstad (1947) and J. A. Ross, et al (1970) that
a is a function of R, and that ¢i(x z) 1is a functiom of R and z.
The dependence of ¢, on R may arise in two ways:

(i) from the presence of R~ as a coefficient of the viscous
terms in the equations - and this influence is certainly
present,

(ii) from a non-separability of x and 2z within ¢n which is
independent of (i).

It is not possible to say a priori whether one of these is dominant or both
are significant. The evidence from the work of Jordimson (1970), Barry

and Ross (1970) and J. A. Ross et al indicates that, in the linearized case,
(i) is dominant and that the neglect of (ii) does not lead to predictions
which are errcneous within the limits of accuracy of obeervation. We shall
therefore assume that the same conditions hold for the non=linear

equations. Having found the solution of the equations based on this
assumption, we may seek evidence of the existence of significant effecis

of (ii) in some suitable experiment. We therefore assume

X

_ ina T ~ ~ingx
L Cn¢n{z) e s V= Cn¢n(ZJ e ) eesl(5)

where C  is a real amplitude factor, and ¢, (z) is normalized so that
[{¢, (z)|] = 1. The position at which ¢ (z) reaches its norm is
symbolized by Z s and the normaligzation is carried out by making the resl
and imaginary parts of ¢5(Sn) respectively 1 and Q. With this
nermalization, C, < 0,05 will amply cover the early stages of the non-~
linear processes.

The result of substituting (4) and (5) in the terms on the left-
hand side of (3d} may be expressed in a concise form as

c/
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C,e G[:ct:n:l s

. ' d a? 1 ,4°
[ (0 - 1np ) (5 - w0) - = (5 - o)
I dz dz? /R \dz®
a
-(w"—+ imuu)}qb ,
n
dz

and U" and W' are second differentials with respect to =z,

where

2

o4 ]

Let us oW suppose that for the second approximation to (3) the sum of
the suffices of ¢ in any one term should not exceed 3, This rule would imply
that the third harmonic is present, but with an amplitude too small to produce
non-linear eff‘ects.‘ The non—-linea.r terms which survive on the right-hand sides
of (3) will then be those involving either ¥, alone or Y, and {,. The
substitution of (4) and (5) in (3) then leads to the following finite set of
equations for the second approximation, where dashes represent differentiation
with respect to =z,

8 ,9U 83U 1 3% i(a ~ 3) - ~ ~— ~
_(U._...ﬁ__-_—.) = (3 g'\@ ax[m<%¢:'-¢;‘¢f+(a3-ua)¢a¢1'>
ax 9z R a2

- ia ($1¢;" - B¢l + (@2 - a°)$1¢;> } ...(6a)

g, e-%* cl}g] . ¢ ¢, oo i(e -)x {iZa <¢a$;" - SE + (ba® - E’)%&Z;)
-G (c»'-:,@ - 5 - (4a® - E?)qbsa)} +.+(6b)
Ca Ji2ax G[qb,:‘ = 2 %X [m(:pm’;‘ - qb;qs;t)} .. (6c)
oy o135 [@] = 0iCy 7% [iza(qb-..c:»;" - 48 + Supatt)

+ ta(gu ol - @iel - 3ad,¢3) ] ... (62)

In (6c) and (64), as in the Orr-Sommerfeld equation, x disappears from
the differential equa.t:.on by removal of a common factor, but this will not be
possible in (6a) and (6b), and & correct interpretation "mist be found for

exp/
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exp i{ec = o)X« In first order stability theory the downstream growth of
the amplitude A for a perturbation of constant ¥ (= f/R) 1is expressed
as an integral of the local rate, -ai(R). Taking dimensicnal values

al =a./8, and X = SfUO/kzu (where -k 1is the Blasius constant 1.7208),
then

al A = (cxj‘_251/l{2) d(y_ b /v) (2., /k") dR,

and the total amplification between RO and R 1is

A R .

— = exp Jr_ [ <2ai/k2> dﬂ . veel7)

A — R —- )
o] (o]

The appearance of the factor exp <—aix> in a stability equation implies

that (7) is applicable. The real exponents in (6a) and (6b) represent

local rates of change of the amplitude factors, C, at positions near R,

but if the equatiocns are to be integrated at R, then the C's must be given
their values at R, with x = 0 in the exponents.

It has already been mentioned in connection with (5) that the
absolute level of the values of the function ¢ has been fixed by making
|I¢hl | = 1, and that the coefficient C; 1s the required variable
amplitude factor. Equations (6c) and (6d) show that unless Cz and Ca
are fixed in relation to C,, the numerical values of ¢z. and ¢a reached
by integration of these equations are not fixed in relation to those of
Py - (And a similar process would be reugired for ¢h of higher order.)

It is evident that the simplest relative normalisation for (6c) and (6d)
is given by writing

C = C1 . --0(8)

When this relation is used with (5) in the general eguation (3d) and the
coefficients of the various terms are examined, we find that in all the
terms on the left-hand side and the first summation on the right the co
coefficient 1is

CE exp [}narx—]exp (;naix—} In the second summation the typical

+ X :
coefficient is Gy em exp [}narx_]exp [}(n + 2m) aix_} where m varies

from 1 to co. The exponent in im x behaves like that in ift, and is
always removable. The exponent in -, X always occurs to the same power

as C,, and merely acts as a warning that Ci; varies in the downstream
direction in accordance with (7). :

In/
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In order to obtain from (6) a valid second approximation to the
perturbed boundary layer flow by numerical methods, it will be necessary to use
four equations, (6a), (6b), (6c) and the complex conjugate of (6b); (6d) need
not be involved, although 1ts evaluation might be of interest as regards the
relative magnltude of ¢3. (6c) shows that the second harmonic is excited by
the first, and the effect of this excitation on the first harmonic should be
examined,

|

The four equations which have to be solved are strongly coupled, and only
by a process of iteration will it be possible to reach a satisfactory solutlon.
The details of the process have been described by Ross and Corner (1972), but an
outline of the method is summarised here, We begin with the first-order solutions
Voo and ¢y of equations (6a) and (6éb); a first-order solution of ¢go 1is then
possible from {6c). Thereafter a second solution Vp; may be obtained from (6a)
using ¢uo in the non=linear terms. The next stage is to recalculate ¢ and its
eigenvalue, including non-linear terms, and this process involves both (6b) and its
complex conjugate. WVo; &nd ¢ must be substituted to obtain ¢, . Thereafter
Yoz and ¢, are directly obtained from (6a) and (6c). The following diagram
illustrates the route which must be followed to obtain convergent second order
valueas of Yo, ¢ and ¢,.

Equation (6a)

Equetion {6b) 10
Complex conj. . .///2%2
Equation (6c) \\ﬂ¢af///z \\\\9¢31 P2z

The eigenvilue solution of (6b) end its boundary conditions:

P
?j; —

hsald

¢&(0) = ¢'(0) = 0, ¢ ~e T2 o5 3+ , was found by a special finite difference
method developed by Osborne (1967) and described in its detailed operation by
Ross and Corner (1972)., The non-eigenvalue solutions of (6éc) and (6d) and their

-2
boundary conditions: ¢,{(0) = ¢3(C) =0, ¢z > e %% us 2z - w, and

¢ (0) = ¢3(0) = 0, ¢y = e % g5 3 » o, were found by the same finite
difference method,

The solution of (6a) calls for more detailed discussion, since it is
presented as a partial differential equation. The left~hand side may be reduced
to a non-linear ordinary differential function of % by the method of
Jones and Watson (1963), using the 'similarity' substitutions:

1 1
UoS¥o = (2uU)Z £(M); n = (Uo/2vX)% 2
1
with X = x& , 2 = 28 , and & = k(v XMN)Z, the constant k

having the Blasius velue 1.7208 {(to five significant figures). Then introducing
the homologous substitution:

1 1 1
f(n) = 22 x* P(2° kKt ) = 22 x'! F(2z)

(6a) reduces to

Fiv(z) + F'*(z) F(2) + F"(z) FP'(z)

- % ¥* R C2 D(z)
D (2), NS

where/
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where Cf D(z) represents the right-hand side of (6a) with the exponent absorbed
into €2,

The use of the similarity principle implies an x-dependence as well as
a z-dependence in the whole equation, but since the integration is performed at
constant x, and is valid only at one value of x, the implied x~dependence in
the right-hand side may be ignored.* The solutions of (9§ were found by the
Runge-Kutta method, using the boundary conditions F(0) = F'(0) = O,
! (oo = ’ F"(oo) = 0,

It is necessary to enquire, however, under what conditions there will
exist a valid solution of (9). If C, is sufflclently small, & valid solution
will exist, differing inanvreciably from the Blasius profile. The addition of
the dlstortlon term is not unacceptable unless it leads to an unacceptable
distribution U = £'(n). The limitations involved appear to be similar %o
those which apply to the Pohlhausen parameter, which is subject to upper and
lower limits, In the present case we assume that there is an upper limit to C,
for given R and F. The first indications that a limit of this kind existed

was found in the solution of (6a) for R = 500, F = B/R = 0.00008,

C; = 0,056. The calculated values of U were then found to exceed unlty by
et most 27 parts in 10° around 2z = 4.5, The numeriecal solutions were found
for the range 0 < 2z € 6 divided by the net points into 80 equal intervals, and

the boundary conditions were applied at the two ends of the range., Tests were
performed to ensure that the net was sufficiently fine and that the outer limit of
z was sufficiently large. The calculations were performed on the I,C.L.4/70
Computer at the Edinburgh Regional Computer Centre. The time required by the
program was about 10 seconds per cycle of (6a), (6b) and (6¢c)., Recycling was
terminated when results became stable in the seventh significant figure.

All the calculations were performed for ¥ = g/R = 0,00008, and for
various values of R and C,. The components of the cycle had second order
convergence, but the recycling iteration was first order. Application of an
Aitken &%-correction to both the eigenvalue and eigenvector was found to assist
convergence. Table 1 shows the number of cycles of iteration required under
various conditions.

Table 1

Number of Cycles of Iteration Required for
Various Velues of Rand C, at F = 80 x 10 ®

R c, 0.007 | 0,014 10,028 |0,056

500 - - 6 15

800 - - 9 -
1000 - 6 12 -
1250 - 9 - -
1500 - 16 - -
1750 12 - - -

3./
T e . A T T ] T i ko S b i e o ——" —— . T_——— S - — . -

* The x-dependence in the mean flow is very small and is usually neglected in
boundary layer stability theory. It enters here because the growth of boundary
thickness has been included. A treatment similar to ours was used by
Pretsch (1941) in his paper on boundary layers with a pressure gradient,




- 11 =

3. Results‘of the Calculations

In order to give a general view of the results, selected data are
presented in three tables representing respectively the first damping region
(R = 500), the amplifying region (R = 1000), and the second damping region
(R = 1?505. The data given in these tables are all dimensionless, and the unit
of length involved is the Blasius value of &, corresponding to the Reynolds
mumber concerned, The presence of the perturbation affects the displacement
thickness, and the changed value 1s represented non-dimensionally by &F. To
present the complex fluctuating functions in a physically meaningful way they
have been reduced to the form of modulus and argument for @ X - At = 0, The

tables show only the moduli of normalised functions. To obtain the corresponding
non~dimensional r.m,s, values, the tabulated data for the first, secoyd and third
1

harmon%qs of the perturbation should be multiplied respectively by 2501, 2503
and 2503.

Table 2
Computed Values with R = 500, F = BO x 107¢
¢, 0 0.028 0.056
5 1.000 0,987 0,945 non~dimensional
z (U=0.99) | 2.854 2.801 2,613
a, 0.12298 0,12299 0,12309
N +0.,016734 +0.017069 +0.017970
c, 0.3194 0,3191 0.3182
z 0.5625 0.5568 0.5378
z_ 0.8674 0.8676 0.8679 z for |¢f[ .
z 2443 2,414 2.313 phase reversal of ¢/
5 . 0, 7498 0,7552 0. 7740
1
|¢,|max 2,2740 2,2206 2,101
|¢4|max 9.187 8,656 7, L5
19%¢s | 0y | 0-6998 0.7206 0.7943 near 2.5 z_
Iv*%lmax 4,0l b 3,996 3.899 near 1.5 z_
]v’¢,|max 20,48 19,63 17.74 near z_

The data in Table 2 show the following characteristies of the first

damping region.

(1) as ¢

small, and the amount of energy transferred to the mean flow must increase. In
consequence, the thickness of the boundary layer decreases as shown by both &F,
the non-dimensional displacement thickness, and the value of 2z for U = 0,99,

(i1)/

is increased, changes in a5, the local rate of damping, are
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(ii) The value of @, increases slightly with increasing C, , and since the

frequency is constant, the wavelength and the wave velocity, L decrease,

(iii) As a result of both (i) and (ii), the value of 2z at the critical
point, Zs decreases quite significantly. Associated with the inward movement of

z, there is a similar inward movement of Zs the position of phase reversal in

the downstream component of the perturbation velocity.

’ z
(iv) Since: ¢, is normalised in such a way that f et ldz = 1, the inward
: 0

movement of z, causes the peak value of f¢;[ to rise. It is interesting to

note, however, that as C, increases the peak values of [¢4] and |¢d| decrease.
. . . ] ] 1

The relatively high ratic of ]qbglmax and Iqbslmax to |¢>1[max accounts for the

develcopment of a cascade of harmonics as €, 1increases.

{(v) For all the harmonics the modulus of vorticity has its highest value at
the flat plate. As 2z increases this modulus falls steeply to a minimum and
then rises to a secondary maximum, The table shows the peak value of the
secondary-maxima with a.rough indication of the z-position expressed in terms of z.
The data show the rapid growth of the normalised functions with increasing order
of harmonic and a slight tendency to suppression of higher harmonics as C; increases.

I

! Table 3
| Computed Values with R = 1000, F = 80 x 10°
C, 0 0.014 0.028
&F 1,000 1.004 1.014 non-dimensional
z (U=0.99) 2.854 2.860 2.872
o, 0.23046 0.22883 0.22461
ay -0,006605 -0,006083 | -0.005162
cf 0.3468 0.3494 0.3560
2, 0,6120 0.6189 0.6371
2. 0.6241 0.6389 0.6770 z for f¢;|max
2 2.108 2.123 2.172 vhase reversal of ¢/
. .
led] oy 0.7929 0.7819 0.7543
1
leal o 8,052 7.511 6.196
L P 77.48 66,91 114,87
2
[9%¢ | . 0.7150 0.7104 | 0.7007 | mesr 2 z_
2¢,] .67
]vq¢3|max 12.i 11,71 9.56 near z_
V3¢l o | 157 137.0 95.0 near

The/
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The data in Table 3 show the following characteristics of the arplifying
region,
(i} 4s €, is increased, @, remains negative (elthough diminishingly so),

and the resulting amplification of the perturbation involves the removal of energy
from the mean flow. The thickness of the boundary layer is progressively
increased, as shown by both 6&f and the value of 2z for U = 0,99. The
fractional increase in &Ff for C, = 0,028 is comparable with the fractional
decrease at R = 500 for the same amplitude, tut the total thickness of the layer
appears less sensitive to expanding than to contracting influences,

(ii) The value of @, decreases slightly with increasing ©C;, and the
wavelength and c. increase, For C, = 0.028 the proportional increase in c.

is much larger than the proportional decrease at R =500,

(iii) As a result of both (i} and (ii), the value of z, increases with

increasing ;. The fractional increase is bigger at R = 1000 than the
corresponding decrease at R = 500 for the same amplitude, Associated with
the outwards movement of zc there are similar movements of zn and (more

definitely) Ze

(iv}) The outwards movement of z  csuses the peak value of ¢ to fall
slightly. The peak values of |[¢4| and |¢d| are more markedly reduced as OC,
increases, At small amplitudes there is a large increase in the ratio of
l¢5’max and I¢;lmax to '¢;lmax by comparison with the data for R = 500.

{v) The secondary peaks in the vorticity distributions show a similar
intensification in the higher harmonics at low amplitude, and similar dimirmation
with increasing C,. These vorticity peaks lie somewhat closer to z, than do

those at R = 50O,

Table 4
Computed Values with R = 1750, F = 80 x 107°

c, 0 0.007
&F 1.0000 0.9983 non-dimensional
z {U=0.99) 2.856 2,846
a. 0, 38444, 0.38355
o +0.02631 +0.01718
c, 0, 3625 0. 3643
z, 0.6403 0.6450
2 0.2485 0.2458 z for Iqbi'[max
2z, 1,736 1,735 phese reversal of ¢/
lda: | sax 1.0421 1.0345
l¢°|max 5.619 4,154
lgs| . | 105.6 54,02 end 59.47
[9%¢y | 1.651 1.378 near 1.2 z,
|92 | 42,6 26,3 near 1.1 z_
]v%,]m h 204, 671,7 near 1.2 z_

The/
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The data in Table 4 show the following characteristics of the second
damping region in the initial stage of increasing G, .

(i) The thickness of the boundary layer decreases, as in the first damping
region.

(ii) Cn increases as in the amplifying region.

(iii) 2, moves outwards as in the amplifying region.

(iv) Although z, Seems almost constant, I¢;lmax decreases ag in the amplifying

region. Very large decreases occur with increasing C, in ]¢§|max and ¢ ]

but the small amplitude walues have ratios similar to those at R = 1000,

(v) The secondary peaks in the vorticity distributions show much larger
harmonic development at low amplitude than those at R = 1000. Considering the
small size of the finite amplitude used in Table 4, the decrease in the harmonic
peaks is striking. All the peaks are now found close to Z.

Having shown in Tables 2, 3 and 4 the effects of changing C, in the
three main regions of the field it will now be useful to show the distributions
through the boundary layer of various functions derived from the solutions of (6)
for P = 0.,00008 1in each region. Because of the rapidly varying stability of the
numerical analysis with increasing R and C, , different values of C; are
selected for illustration at different values of R. Graphs are shown in Fig.1 for

= 500, €, = 0,028, in Fig.2 for R = 1000, C;, = 0.014, and in Fig.3 for R = 1750,
C, = 0.007. Each figure contains eight graphs showing the following functions of z:

(a) The normalised functions |¢y | and |¢!!.
(b) The normalised functions [¢,] and [¢i].
(¢) The normalised functions |¢g| and [¢!].

(d) The fractional local distortion of the mean flow, (U - UB)/UB,
and (W - WB)/W , where U and W represent the distorted flow

and UB and WB are the corresponding Blasius wvalues,

(e) The r.m.s. velues of the four largest terms in (6b). For this graph we

write h, = 2501 72¢, |. The four rate-of-change of vorticity terms
are then ph, Ulalh,, - U"|w |, and R 'h!', where w, represents the
normal ve1001ty component of the fundamental perturbation, and

W= 2% [47(ve, )/azt .
(f) The arguments of the first three terms noted in (e).
{(g) The r.m.s. second harmonic vorticity modulus, h, = 2%cf|v2¢2].
(h) The r.m,s. third harmonic vorticity modulus, hs = Z%Cf|72¢5|.

To convert from normallsed to r.m.s. values, the ordinates should be multiplied in
(a) by 2 Ci, in (b) by 2201, end in (c) by 2203.

In/
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In two-dlmen51onal stability theory the perturbation vorticity behaves
like a scalar quantity and is the simplest property which can be used to visualise
the disturbance process. The graphs {e) and (f), showing the only terms of any
importance in (6b), reveal this simplicity. Since the arguments represent the
phase angles when arx - Bt = 0, the phase angles at any (x,z) position rotate in

the clockwise direction with increasing t.

The dotted curves in the (f) graphs show that the phase angle of w,
near the plate has & progressively increasing lag as 2z increases, corresponding
to the diffusion of perturbation vorticity from the source at the plate surface,
and the expected, almost constant phase in the outer part of the layer, It is
known from other results {not shown in the Figures) that the fundamental u
component lags about 90° behind the w component until the phase reversel point
z, is approached.w The phase reversal in the damping region takes place in the
clockwise dlrectlon, and in the amplifying region normally in the counterclockwise
direction.

The continuous curves in the (f) graphs, representing arg(gv3¢ ), show
a phase reversal of the fundamental vorticity in the region of the critical point,
z,. In the outer part of the layer our results predict an almost constant phase
angle. In all cases the wave front is very slightly tilted forwards towards the
outer edge of the layer. Table 6 shows approximate values of this forward tilt in
degrees per unit distance & .

Table 5

Approximate Slope of the Wave Front at the Quter Edge of the Boundary Layer in
! Degrees per Distance &,

0 0.007 0.014 0.028 0.040 0.056

R

500 17.8 - - 20.9 - 32.6
800 - - - 8.5 2.8 -
1000 k.6 - 4.7 5.2 - -
1250 - - 2.9 - - -
1500 - - 2.3 - - -
1750 3.3 2.7 - - - -

L.

Comparison with Other Thecretical Work

In & discussion of the "multiplicity" of the non-linear effects examined
in earlier work, Lin (1958) applied an order of magnitude argument to establish
the special importance of the critical lsyer for the transport of vorticity. He
used & length parameter derived from the ratio of the convection to the viscous
terms in the dimensional Orr-Sommerfeld equation, and concluded that "the non-linear
effect first shows up in the generation of harmonic modes in the critical layer
even before the distortion of the mean flow is noticeable." Here we wish to
comment on this conclusion from a theoretical standpoint.

It/
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It will be seen that our Equations (6a) and (6b) necessarily
involve the amplitude factor €7 in their non-linear terms, and the
calculated distorted mean flow and fundamental perturbation are directly
dependent on C?. In Equations (6c) and (6d), on the other hand, the
amplitude factors C} and C?} cancel out, and normalised solutions are
. obtained which depend on €, only through wo and ¢,. Thus ¢, and

"¢ may be calculated even if C; = 0, and the higher harmonics must
therefore be regarded as inherent features of the perturbation. This
argument is not weakened by the evidence in Tables 2 to 4 that the peak
values of the normalised functions derived from ¢, and ¢s decrease as
C, 1increases. As R increases, however, the distribution of the r.m.s.
vorticities hs and hy becomes progressively more concentrated near
z2=0 and z = z, (c.f. Figs.1{g), 2(g), 3(g) and 1(h), 2(h)}, 3(h)).

The peak values of the corresponding normalised functions rise steeply as
R increases (Tables 2 to 4).

Lin's argument was concerned with the case when the dimensional
equivalent of (aR)*'® was large, and we regard our results as
consistent with his conclusions - interpreted in the sense that the harmonics
contribute in an essential way to the perturbation processes in the viscous
region. In discussing this question we are not concerned with the e
experimental detectability of the different non-linear effects; this
naturally depends on the value of C;, but depends alsc on the relative
ease of observation of a.¢. and d.c. signals.

It may also be of interest to compare our results in a general
way with those obtained in non-linear studies of plane Poiseuille flow.
In a series of papers initiated by Meksyn and Stuart (1951), and including
notably Stuart (1960a), Watson (1960, 1962}, Reynolds and Potter (1967),
Pekeris and Shkoller (1967) and Stewartson and Stuart (1971), a theory has
been developed to express the effect of the non-linear terms on the rate
of amplification and damping of perturbations, and the formal expressions
have been evaluated numerically. The theory was originally developed for
amplification in time, but Watson (1962) and Stewartson and Stuart have
given the corresponding relation for space amplification.

It will be sufficient here to consider the real part of the
amplification Equation {5.1) of Stewartson and Stuart for our real amplitude
and fixed frequency parameters:

a k
S pp— (1n[AI2> = - a:(C,R) = -a . (O,R) + a3, ees{10)
ox c
123
where |A|2 = &4C3, Cq is the local group velocity, and k_ is a local

constant expressing in magnitude and sign the contribution to a; from the
non-linear terms. In the amplifiing region ai(o,R) is negative, and the
instability is increased when kr is positive and decreased when kr is
negative. In the damping regions ai(O,R) is positive, and the stability
is increased when kr is negative and decreased when kr is positive.

Thus when ai(O,R) and k_  have the same sign of ai(Cl,R) may become

opposite/
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opposite to that of «.(0,R) if |JA|? is sufficiently large. Table 6 shows
PP i

the values of kr/cg obtained from cur values of @ and the values of cg

derived from calculations of aa/aﬁ at constant R.

Table 6
Second Order Changes in oy at F = g/R = 80 = 10°
R A ééaci o < 104 kr/cg (ky + ka)/cg' kg/Cg ' Cg
500 0 +167.34 - - - 0.4022
2.8 +168,20 - 0.1102 - -
5.6 +170.69 - 0.1067 + 0.0255 -0.1322
11.2 +179.73 - 0.0988 - -
800 0 + 6,92 - - ‘ - 0. 4155
2.8 + 10.99 - 0.5198 - -
5.6 + 20.57 - 0.4351 + 0.0693 ~0. 5044
8.l + 30.23 - 0.3303
1000 0 - 66,05 - - - 0.4112
1.4 - 64.59 - 07444 - -
2.8 ~ 60.83 - 0.6651 - 0.2043 -0.4608
5.6 - 51.62 - 0.4600 - -
1250 0 - 80.58 - - - 0. 4058
(" - 81.08 + 0.2576 - -
2.8 - 81.71 + 041433 - 3666 +0.5099
4.2 - 81.23 + 0.03%67 - -
5.6 - 79.31 - 0.0406 - -
1500 0 + 22422 - - - 0. 4028
1okt + 6.62 + 7.956 + 5,930 +2.026
2.8 - 18.97 + 5255 - -
4,2 - 36,30 + 34318 - -
1750 o +263.15 - - - 0.4371
0.7 +232.0h +63.49 +6L,67 -1.182
1.4 +171.79 +46.61 - -
2.8 + 7735 +23.70 - -

At/
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At an early stage in the present work, simultaneous solutions were
obtained for (6a) and (6b) with ¢, treated as negligible. '[his procedure
gives the distorted mean flow and the consequent modification of ¢, and its
eigenvalue, and thus gives the combined effect of the parameters k, and k,
(Stuart, 1960a). Column 5 in Table 6 is found by inserting the resulting
values of o, in (10). Column 6 is found by subtracting column 5 from

column 4. (It should be noted that all the values of k/cg ‘correspond in

their scale to a(® as used by Reynolds and Potter and McIntire and Lin, and
k, + k¢ and k, are not given at double the al® scale.).

Because of the departures from constancy of kr when two values of
C; were used at a given - R, the accuracy of a; uvas tested at R = 800.

The calculations were performed with 80, 120 and 160 net points in the range
0 € z.€ 6, and extrapolated to an infinite number of net points using the
fourth power of interval size. The values of kr/cg then became less

negative, but only by about 2.3%. The variations of kr/cg are therefore

considered to be reliable.

For our value of F, branches I and II of the neutral stability
curve lie near R = 815 and R = 1465, The values of oy in Teble 6 show

that when R 1is 500, 800 and 1000, and the linearised equations give
increasing instability as R increases, the non-linear effects make the
boundary layer more stable or less unstable. When R 1is 1500 and 1750, and
the linearised equations give increasing stability as R 1increases, the
non-linear effects act in the opposite direction and make the boundary layer
less stable. The non-linear effects thus tend to mzintain a more constant
periodic oscillation. At R = 1250 the amplitude-dependent changes are
almost negligible. fualitatively similar results have been ohtained for
time~amplified disturbances in plane Poiseuille flow by Pekeris and

Shkoller (1967, 1969} and by McIntire znd Lin (1972) in their Table 1.

If we examine the relative values of kr‘ k, + kg and kp, we find
that ke is the dominant influence in Xk  at the three lowest Reynolds

numbers and that i + ks 1s dominant at the two highest Reynolds numbers.
It therefore appears that the amplitude-dependent increase of damping at low
Reynolds numbers occurs mainly because of gain of energy by the harmonics.
Equations (3) show that the higher harmonics are generated by those of lower
order. The omission of the higher harmonics from our calculations is
therefore likely to lead to an underestimate of the changes in ay at low

Reynolds numbers.

At the two highest Reynolds numbers the situation is different; the
predominant contribution to k_ comes from k; + ks which represents the

mean flow distortion.,  When ay is positive in this region and the

fundamental is losing energy, the energy is mainly transferred in the first
instance to the mean flow, and thus only indirectly to the higher harmonics
which are known to develop in this region. Thus, although as shown in Fig.3(d)
the percentage changes in U and W are small, these changes must be
significant for the breakdown of laminar flow. It has been found be Pekeris
and Shkoller for plane Poiseuille flow that high eigenstztes which are subject
to damping in time, and are a function of the mean flow, contribute to changes

resembling/
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resembling breakdowg. This suggests that a careful study should be made of
the higher elgensta?es in the space-amplification conditions of the Blasius
boundary layer. Some preliminary work has shown that such states exist in the
Blasius layer, and that the Reynclds numbers at which they first appear is
sensitive to the inclusion in the equations of the terms representing the

normal velocity component of the mean flow.

5. Possible Extensions of the Calculations

In addition to finding solutions of (6} for particular sets of values
of R, Fand C, , it|is possible to find curves corresponding to those found in
linearised theory, namely,

(1) the neutr?I stability curve, and
(ii) the growth of amplitude of a perturbation in the downstream direction.

Curves of both kinds have been found by Pekeris and Shkoller {1969) for the
non-linear stability of plane Poiseuille flow with time amplificaticn.

From the point of view of comparison with experiment in boundary
layers, curve (ii) is of particular interest. 1In the small amplitude case
where @ is not a function of C,, the curve is obtained by determining
oy at a series of values of R which are sufficiently closely spaced to
permit accurate intégration of the area under the curve of a, Versus R

using (7). When l%rger amplitude coefficients are used and o; becomes a
function of C,, the integration must take account of the simultaneously changing
values of C, and R, and the intervals AR must be chosen to limit the

(37 ig the amplitude coefficient

ai(J). We then find

errors in the numerical integration. If C,

at Rj’ then the simultaneous solution of (6) gives

C1(3+1) = 01(3) exp (EARjai(J)/kz) and solve (&) for the next interval with

the new value of C' and R, The error in this integration is controlled

j+1°
in terms of the second order differences of a, a5 a function of R.
!

The procedure which must be followed in the case of space amplification
of a wave of fixed frequency ftravelling through z region of changing R is
quite different from that used in the case of time amplification of a wave of
fixed real wave number at constant K. The Orr-Sommerfeld equation, and the
system of equations representing non-linecar stability have a very simple time
dependence, but a very complicated x &nd R dependence.
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Legends for Figures

Distributions for R = 500, C, = 0.028, F = 80 x 1078,

(&} Nor$alised ¢, (z)| and |¢/(2)]; (b) normalised [¢; (2z)]

and [¢3(z)|; (c) normalised l¢g(z)f and |¢d(z)}]; (4d) fractional
change of the mean flow (per cent), downstream component,
------ |normal component, (UB,WB) the Blasius f'low,

Distributions for R = 500, G, = 0.028, F = 80 x 107¢,
(e) r.m.s. values (per cent) of the four largest terms in equation
(év), phy , =====- Ujafhy , veun-. -U“fﬂhl.
x xxxx R*h', h=r.ms, vorticity of the fundamental;
(f) arguments of the first three curves in (e); (g) hs = r.m.s.
vorticity of the second harmonic; (h) hy = r.m.s. vorticity of the
third harmonic,

Distributions for R = 1000, G = 0.014, F = 80 x 10°¢,
(a), (b)|, (c), (@) as in Pig.1,

Distribuﬁions for R = 1000, C, = 0.014, F = 80 x 107,
(e), (£), (&), (h) as in Fig.1.

Distributions for R = 1750, C,

= 0.007, F = 80 x 107°,
(a), (b), (c), (@) as in Fig.1.

Distributions for R = 1750, C, = 0,007, F = 80 x 107¢%,

(e), (), (&), (n) as in Fig.1.
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