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SUMMARY 

In this report a numerical procedure is described for calculating 

the inviscid hypersonic flow about the lower surface of a conical wing of 

general cross-section. The method is based on thin-shock-layer theory 

and the cross-section of the wing may be either described by a polynomial 

(up to fourth degree) or given as tabulated data. The actual numerical 

scheme is an improvement on that used by earlier workers and the computation 

time is much shorter. This reduction in computation time has been 

exploited to produce a complete iterative procedure for the calculation 

of the pressure distribution and shock shape on a given wing at given 

flight conditions. (In earlier work graphical interpolation was used.) 

The report includes a complete set of tabulated non-dimensional 

pressures and shock shapes for flat wings with detached shocks for reduced 

aspect ratios from 0.1 to 1.99, and some sample results for wings with 

caret and bi-convex cross-sections. 

*Replaces A.R.C .34 617 



Introduction 

It has been shown by Piessiterl, Squire 2.3 , Hillier4 and others 

that thin shocklayer theory gives pressure distributions and shock 

shapes on delta wings with simple cross-sections which are in very 

close agreement with experiments. The use of this theory involves 

the solution of a complex integral equation for the cross flow 

velocity (w) with boundary conditions at the centre line and at the 

leading edge. Once this cross flow velocity is found the pressure 

distribution and shock shape follow by direct integration. Most of 

the calculated results for the detached shock case have been obtained 

by Squire and Hillier for wings with simple cross-sections (flat 

wings, diamond cross-section wings, and some circular arc sections). 

They converted the integral equation into differential equation 

and marched out from the centre line using the first derivative of 

w at the centre line as a parameter (a ) . 1 This method was very lengthy 

but by obtaining results for a number of values of a 1' they could 

use graphical interpolations from these results to obtain results 

for a particular wing at given flight conditions. However, the 

direct application of this numerical scheme to iterate to find the 

actual solutions corresponding to given flight conditions would 

require a very large computer time. Also this method can only be used 

for the simple sections mentioned above. 

In the present report a direct method of solution of the integral 

equation is described which produces a considerable reduction in 

computer time and therefore it is possible to combine this method 

with a direct iterative scheme for the calculation of pressure distribut- 

ion and shock shape on a given wing at given flight conditions. 
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2. Derivation of Equations 

For steady flow of an ideal, inviscid gas the continuity, momentum 

and entropy equations can be written as 

Continuity 

Momentum 

Entropy 

These equations must be solved subject to Rankine-Hugoniot jump 

conditions at the shock. These are: 

Continuity:- 

c 
jq$;;,, 

1 
=o 

Momentum:- 

r 
F 

Energy:- 
C 
;(T-<f+&gf =o 

I 
Tangential velocity:- 

=b 

where the square brackets denote the change in the enclosed quantity 
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across the shock discontinuity and 3s denotesa unit vector normal 

to the shock surface and directed away from the body. The body boundary 

conditions require the streamlines to become tangential to the surface i.e. 

(3) 

In thin-shock layer theory for conical wings the co-ordinate system is 

first stretched to 

(4) 

Where the barred symbols refer to physical co-ordinate system and 

unbarred quantities refer to transformed (or stretched) co-ordinates. 

In this transformed co-ordinate system the wing semi-span and thickness 

become 

t, 
= h/ icEtan& 

respectively. 

For a shock which differs only slightly from a plane shock Messiter 

suggested an expansion of flow properties in terms of C which is the 

inverse of the density ratio across a basic shock, lying in the plane 

of the leading edges of the wing. In the limit E 4 0 the expressions 

tend to basic Newtonian solutions. The basic density ratio across 

the shock is given by 

I. 
f’ft Sin’4 

( 6) 
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where a is the incidence of the plane of the leading edges. The 

suggested expansions for flow properties are 

Substitution of these quantities into the equations of motion lead 

to a consistent system of equations and boundary conditions which are 

cv-y)$ +(,-t)bL = -3 
az %Y 

with shock boundary conditions 

(7) 

(8) 
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where Ys 0) is the equation for the shock, and V', Ws and 

h denote components of velocities and pressure immediately down- 

stream of the shock. The equation (8) 

acteristics given by 2 = const. and 5 

Since the operator ( V-Y)aF -I- (W-Z, 

have two sets of real char- 

= const. where 

is the 

total derivative along a streamline to this approximation, the $ = const. 

characteristic coincides with the projected streamlines in the conical 

plane. Equations (8) also show Wto be constant along a streamline 

and therefore it is a function of f only. 

Messiter fixed the constant on !f 
characteristics by putting 

f = 2 on the shock. He also showed that solution of equations (8) 

depend on one parameter WC F) and by considering body boundary condit- 

ions he showed that 

WC?9 ==b (11) 

for the detached shock case. 
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The solution of equation (8) leads after much algebra to 

This is the fundamental equation for the determination of ~(1). 

The pressure on the body and the shock shape are given by 

(14) 

Messiter also showed that the appropriate boundary conditions for 

WCf)are W(0) = 0 and WC-n> I= i+n. The first condition 

corresponds to zero cross-flow on the centre line. The second condition 

was chosen to give a singularity in the shock curvature at the leading 

edge since a similar singularity occurs in certain two-dimensional blunt 

body flows. Ey equation (9) there is a similar singularity in the span- 

wise derivative of WCZ) at the edge and this leads to some difficulty 

in the numerical solution of equation (12). 
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3. Numerical Solution of the Integral Equation 

The analysis up to this section was similar to chat of Messitor and 

Squire. Squire solved the integral equation by differentiating once 

again and then using Runge-Kutta procedure for integration of the 

resultant differential equation. This procedure takes a long time 

for computation of W(f) for a single value of the parameter a 1' 

Againthe step size for Runge-Kutta type of integration must be extreme- 

ly small ( 0.001) so that large storage was required. The 

Runge-Kutta procedure was used up to a certain point (i.e. wet) 7 1. + 0*7st) 

and for the remaining part manual graphical extrapolation was used. 

By a suitable choice of al it was thus possible to get a set of results 

for a range of c? and C where C is thickness ratio of the wings with 

diamond cross-sections. These results were then used to produce 

a set of charts which could be used to find the pressure distributions 

and shock shapes for any given wing wit;1 diamond cross-section at 

given flight conditions. A similar method was used for caret wings, 

and for wings with biconvex cross-sections. In general this method 

cannot be used for general cross-sections. 

In the present evaluation of the integral equation (12i, a 

different approach 

Let us assume 

i 
th station. Then 

:‘c 
was used . This approach is as follows. 

that the solution has been obtained up to the 

at the ith station 

*bi 

c dy ) 4 .n 

gi- 
- - WC’b)L - :(;I -2 

bi 
+ J cWCS~-S]lL 

b; 
f i 

(161 

This method was originally suggested by Dr. R. Hillier, but he 

only applied the method to the case WC+., >t , 
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Similarly at i + 1 
th 

station 

LO 1-O 
+ 

wcz,). -'b 
1 L w czbli+l - 'bi+i 

‘6; 

If we take the step length to be sufficiently small the intez,rals 

can be evaluated usin:: the trapezoidal rule and the equation 
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become 

+ A5 
I 

1.0 
a E wc ‘bJi+f 

where 

Ml = Z&+, - 2,. L cav 

Equation (20) was solved by a marching process for a given startin:; 

parameter al, until w(t) > 1 + 0.75t and then a 

parabolic type of extrapolation was used to find the value of 9 

which satisfies WC-h)= 1 + R . The whole process was iterated 

to get correct value of al (i.e. correct VJCf) function) for 

given boundary conditions of cross-sectional profile, Nach number 

and incidence. 

Equation (20) was solved subject to boundary conditions 

WC02 = 0 4nd WC-h) = It JL . Near the 
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origin (i.e. Zb = f 50) a fifth power series solution 

was assumed for wCJ:, i.e. 

This is similar to Squire's treatment for analytic cross-section 

case. Here a?, a3, a 
4 and 

as 
are related to the cross-sectional 

shape of the body by the followin:; expression 

C 

a 
e -a -ZZ5( 

3 
a:+24~+2) + 25- 

Ql 3s; 
(3a,2+449 + 3) 

2 ad% -- 
S c al= + lQ1 + 2) 

9, 

+ a: a3 ( 
6 3~: + 8a, + IO) 

4F 

In the case of an analytic cross-section in the form of a polynomial 

up to fourth degree it is easy to calculate the slope ( 
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to equate coefficients of powers of Z to calculate a2, a3, a4, a5, in 

terms of al. (This is the parameter which is to be determined by the 

iterative procedure mentioned above, > This procedure was used by Squire 

and Hillier for delta wings with diamond and circular arc cross-sections, 

But the real problem in the general case arises as follows; first, 

if the given profile was a polynomial of more than fourth degree and 

secondly, if the profile was given in the form of a table at finite number 

of discrete points. To overcome this problem,we approximate the cross- 

sectional shape by a five point Lagrangian formula then by differentiating 

this formula with respect to Z , an expression for cl 
( y> 012 bodY 

can be 

obtained at any 2 . This expression for ( - can be expressed as a 

third degree polynomial in 2 as follows. 
3 2 

s K,Z + K3Z + ‘(tz +I<, 

where 

K,’ - 

( z1 +Za+Z3+Z4fZ5 -q) 

K, = -35 y. 5 
iar 1 r Cziazj) 

i--i. 

5 
Kq = 4x 

Y i 
fit Zi -zj) 

;= 1. 
j#‘ 

i=i 
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‘L’ha,rc coefficients were used to calculate a*, a3, a4, a5 at the origin 

for any given Q1, 

After the, initial polynomial, axpanriwn for WC*) (t being 

thr xuaning variable) has baan found,the direct solution of the equat- 

ien can be! undarteksn, The actual otsp by step procedure ie boot 

understood By naeinp that wqis the ramr function of tb 08 

wCf2 kr, that of $ t So if a ro1uti.m haa been obteimd up to 

ta particular value of the independent variable (say tf 1 then 

wt&# %& 9 WcqI and f are knsm for all VL3lU@N ef %b md 

d 1~88 than, or equal ta tf . 

Nsw Nupp8NQ, at tf; w’tp 4 gf,Ln ttti 8 caaa wt2 can identify 

t with $ and s%nee xb - WCf 1 L ?j , VW&,) ia knawn, 

Th~reQwrs! equation (20) em be written as, 
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In this equation WC f )i+l and W c Lb Ii+ i are unknowns. 

But if we know W<f)i,, which is equal to CZb )i+i, and as 

wCf’i+l 4 fi,i ’ wCZb) i+i will be less than Lb i+~ 

and can be interpolated from previous values. The method of bisections 

was used to evaluate the correct value of WCFI;+l from a 

first approximation (which was the linear extrapolated value from 

the previous step), so that equation (24) was satisfied. Once the 

correct value of wcfli+l 
was obtained, the solution was carried 

for the next step. 

On the other hand, if WC-.*) 
f f 

then % is identified with 

‘b 
and since in this case J L zb it can be interpolated from 

already computed solutions at previous t values. Re-arranging the 

equation (26) we get a cubic equation in WCZbl i+i i.e. 

+ (RHS) c a? 

*b i+l 
=b iti 7 =o (25) 

where 
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Equation (25) was solved by Newton-Raphson method for wczb)i,l 

So, to summarise, i+ Wet) 7 t equation (25) was solved 

whereas if WC&J 4 t equation (24) was solved. 

Solving the above equations step by step, cross-flow velocity 

distributionsof one of the following two cases (i.e. case A or B) 

are obtained. 

If the cross-flow velocity distribution was as in the case A the 

whole set of calculations were repeated with a new value of a 1 equal 

to half of aie and conversely if the distribution was as in the 

case B , the new value of al was taken as twice the value of a 1 . 
W 

This process was repeated till we get both cases A and B . 

The correct value of al and the corresponding Wcf.) distribution 

lies in between these two cases. After obtaining this upper and 
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lower bounds of the cross-flow 

process was continued with new 

% =a + 
new % 

This process was repeated till we get the VUc$?I distribution 

such that EOMEGA 0~ wtC-L> is within one percent of 

the correct value of R given or 1 + R given respectively. After 

obtaining the correct cross-flow velocity distribution, the non- 

dimensional pressure coefficient, c 
P' 

shock shape, CL, CD, etc., 

were calculated. 

A different approach, namely 

velocity distribution, the iterative 

al parameter such that 

ai 
z Qlc + 9iw was also tried 

new c2 

but it was found that the first procedure converges slightly faster 

than this second procedure. 

There are two main difficulties in the integration procedure. 

One concerns the outer boundary condition given by WC-n)= 1+n. 

This boundary condition was chosen by Messiter to coincide with the 

singularity in the shock curvature. Squire (2) has found that 

near the point where W(L) = 1 + IL, w(t) < pi-t) 
42 

+ . . . . . . . . . . . . . . . . . . . So the solution of the equation was stopped 

when WCt) > l+o-'lst a nd then remaining portion of the curve 

was obtained by a parabolic type of extrapolation with the vertex 

of the parabola having co-ordinates (9 extrapolated, 1 + Q extrapolated) 

consistent with the WCt)values calculated so far. 
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The other difficulty arises when w(t)= t since at w(tJ=t 

the equation becomes indeterminate. A trap was therefore included 

such that when WCt)curve crosses the line w(t]=t , as found 

during the solution of equation (24) the value for that step was 

obtained by 6 point Nevil type of extrapolation from previous solutions. 

This is best explained in fig. 2 curve (a). 

If WC*) as extrapolated above falls below the W(t)= t line as in 

the case of case (B) fig. 2, this indicates that WC+) is increasing 

rapidly and the w(f)value is influenced by the square root singularity 

at the leading edge. So u\/(t) value was re-calculated using a parabolic 

type of extrapolation (stipulating similar type of singularity as that 

at the leading edge). 
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4. Result 

Using the above programme, the pressure p , pressure coefficient 

cP 
and shock shapes were calculated on flat delta wings. Sample 

calculations are also given for a caret wing and for a circular arc 

cross-section wing when the cross-section was given in the analytic form 

as well as in the form of a table ( si , at 51 points. For flat 

wing the functions, p in the pressure coefficient and the non dimensional 

shock shape are functions of Z/Land -fL . These functions have been 

calculated for the range 0.1 s J-L s 1.99 and are tabulated in tables 

Ia and Ib and plotted in Figs. For these calculations the programme was 

modified to read -fl, directly, together with number of steps into which 

wing span has to be divided, which determines step length, and the starting 

value of a 
1' 

The number of steps used when -(r. < 1.0 was 200 and 12 >/ 1.0 

was 400. The accuracy of the result was tested by doubling the number 

of steps in the same case and it was found that there is no variation 

of results up to four figures. A typical solution for flat delta wing 

takes about 5 to 8 seconds on Cambridge University IBM 370/165 computer 

with FORTRAN Gl compiler. 

An interesting result shows up if we plot the correct al parameter 

against .fL for the flat delta wing, fig. (4). In the region between 

a= 0.5 and 0.51 al jumps from al > 1.0 to al 4 1.0, This 

can be explained by the sketches of the flow field (fig. 3). If al< 1.0 

we getLL9t)G'knd the flow field 1s as shown In fig- (3a) and of W@K tthe 

flow field will look li.ke fq, 3(b) and so iit. cert;ln the flow field will 

jump from (a> to (b) or vice verse, depending on whetherfiis increased 
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or decreased. 

Table II gives p , c 
P 

and shock shapes for a caret wing. 

Table III compares results for circular arc (biconvex) cross- 

section when the cross-section was given in the analytic form with 

that when the cross section was given in the form of a table at 

51 points. Both the results compare very well. The results of 

calculations were compared with experimental results of Squire (ref. 5) 

in fig. 5, which shows a good agreement. 

Although the programme converged successfully from any starting 

value of al for a variety of shapes, such as flat wings, caret 

wings, biconcave wings and thin biconvex wings and also a wavy 

type of cross-section(sketch a),some difficulties were experienced 

on more extreme shapes. In particular it was very difficult to get 

converged solutions for the shape shown in sketch (b) and for very 

thick biconvex wings. The difficulties appeared to be caused by 

the fact that if the initial value of al was too far from the correct 

value then the computed cross-flow, w-p was completely unrealistic 

and the iterative procedure did not converge. To overcome 
these difficulties it was necessary to do a preliminary series of 
computations using the basic programme (i.e. without iteration) 
for a range of values of al . 

By plotting these results, it was usually possible to find values 

of al which appeared to be in the correct range. The iterative 

procedure could then be used to complete the solution. However, 

it should be pointed out that on caret wings al is usually small 

particularly near design, whereas for thick wings a 1 can be large. 

On complicated shapes such as that shown in sketch (b) it was found 

that possible values of al lay in a very narrow range and that with 
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values of a 1 outside this range the computed curves of WC 51 

were completely unrealistic. Thus it may require a few preliminary 

runs to find appropriate range of al . 

ta) cb) 
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T n ?3 I. E II 

Txi- ,cp, A. and Ken-dhensloml Shock shay for Caret-LYng. 

Xbch ihm3er = 3. 37 ; Incidcxe = 23.c degrees ; 

b = 0.1318 , h t: - O.lCC2j , A = C.62039 , C = - 0.745537 
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TASLE III 

Canmision of 1% distributions and Cp distributions on a 

Biconvex wing when the profile is given in the analytic 

form as well as in the form of a table at 51 descrete pi?.t,s. 

Equation of the cross-sectional profile :- 

-2 
Y 

m-s = 0.047856 ( 1 - v"-- ) 
2-2 

X bX 

Mach-ITumber = 3.97 ; Incidence = 23.8 ; Aspect-rat?0 = 2/z 

bega = c.53Fg6 ; C = 0.409627 

Iterated value of omega in the calculations is, 

Case I Azialytic cross-section = 0.5333581 

Case II Wbular cross-section = a5337565 

-_---------------------------""-----------------------------------------. 

E P distribution Cp distribution 

A "-------c----_---_--_______c____________-------------. 

Case I Case II CAse I Case II 
------_--^--_-------___________________^--------------------------------. 
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APPENDIX 

Canplter Prcpame (FORTRAN) 



CALCULATION OF PRESSbdE OISTRIBUTIDN ON DELTA WING OF GENERAL 
CdDSS-StCTlU\ Al HYPE-RSONIC SPtEliS 

RtAL b’.‘,Lli, 11’dLtiT 
OIKEI~S:CI~~ ZHAK~!D5),YBAK~105)rZ~lO5~rY(IOS~1OEKFU~l~,STD~EE~~~ 
DIMEhS!Ufd AK(4),STGkt-A(Z),hAPZYI(2),AKZl2),CUFP(4) 
uIME&SI(id PSTAKL(Zl),PSTAHD(21) 
DIMEI\SILI~~\ kT(405) ,SUMWT(405) rEITA(405) rUtK1 (405) 
uOuRLt PKtCISIDN Z~~AR,Y~AR,L,Y,~T,EITA,SUI~~‘T,DEK~,AK,DER~D 
DOUBLE PKECISIUN KHS,tbMtGA,APPkI1,APP~I2,CC,CCD,B~2,BBl,BBO 
UUUBL~ Pi(tCISIUN tiZYll,WZYi,kWZHI1,WL~I,DABS,DS&lKT,EFti 
DOURLt PKtCISIO’J AZ,A3,A4,~5,~1,BL,B3,~4,~5,DELTA 
OL)UBLE PKECISIDN WAPZYI,AKZ,AINCKT,AA,AB,AC,OMX,U~Xl,PSTARL,PSTARD 

DUUBLE P&ECISIO:r PRtSUK,SHOCKS,UYBYDZ,RHSl,CL,CD,CLBYCD 
COMMdN HT,EITA,SUMWT,II,I~~CKT,T,TT,ZBP,ZYIP 
tXTEdNAL t-CTZB ,FCTZYI,SINT,F 

IO CO\TI%UE 
READ (5,LO,END=lCJOO)ANALTC 

iD FUAkATIF15.7) 

If O”;E 15 INTtRESTED IN CALCULATION OF LCItFFICIENT OF LIFT 
C:lEFFICIEr~T OF DdAG,CL/CD THEN GIVE FUR YOCLCD AVALUE OTHER 
THAN 2 AND IhlCLUDE CORRECT EXPRESSION FOR DY/DX 

RiAD (5,3cI) NUCLCD 
READ (5,l)O)NSC 

30 FCIKMAT (13) 

ABOJf NSC REPRESENTS NUMBtR UF POINTS LP-TO WHICH POWER SIKIES 
SOLUT IOFl IS USED i-13K h(T) NEAK OKIGIl\ 

IF (ANALiC.tU.l.) GO TO 40 
60 TU 60 

40 REAj (5,20) COFP~4),CUFP(3),COFP(2~,COFP(1) 
hRITt (6,501 COtP(4),COFP~3),CDFPlZ~,CCFP~l) 

50 FUK4Al (‘l’,’ CUEI-FICIENTS, A=‘,F15.7, ’ B=‘,Fl5.7, ’ C=‘,F15.7, 
1 ’ 3=‘,l-15.7) 

COFP(i),COFPl3),COFP(L)1COFP(l) REPRESENT COEFFICIENTS A,B,CvD 
RESPtCTIVELY OF ThE EQUATION OF THE CROSS StCTIGNAL PROFILE 
YhAK= A*ZBAR+*4 + B*ZBAR+*3 + C*ZBAR*+2 + D*ZBA& + F 

C 

GO TU 100 
60 K~AO (5,;IU) NP 

hRITc (6,701 NP 
70 FORYAT (‘1’1’ NUMBER DF POINTS IN CROSS-SECTIONAL PROFILti=‘,I4) 

READ (5,fiO) (ZCAR(I),l=l,NP) 
KtAD (5,tiO) (YEAk(I),I=i,~P) 

80 FbqMAT (4D15.0) 
hRITE (6,YO)(ZBA~(l),I=l,NP) 
GiRITE (6,~0)(YBAR(I),I=l,NP) 

90 FDRMAT (4f20.73 

kEAD (5r20) XBAR,YSPAN,HMOK 
WRITE (h,IZO)XBA~tdS~AN,HMOR 

120 I-DRMAT (’ XBAR=‘,F15.6,’ 
1 F15.6) 

SEMI-SPAN=‘,Fl5.6,’ MAXIHUM D&DINATE=‘, 

ALPl=~ALPHA/.IB0)*3.141593 

130 

140 
150 

WKITE (6,130) EPS,SQEPS 
tORMAT (‘EPSYLON=‘,E16.7,‘SQU~E ROOT EPSYLON=‘,E16.7) 
TALP=TAN(ALPl) 
SNALPH=SIN(ALPl) 
IF (ANALTC.EU.l.) 60 TO 150 
DO 140 I=l,NP 
Z(I)=ZbAR(I)/(SQtPS*TALP*XBAK) 
Y(I)=YBAR(I)/(EPS*TALP*XBAR) 
CONT INUt 
[JMEGA=~SPAN/ ( SbEPS*TALF%XBAR 1 
CUNIL=HMUK/(XtiAK*BSPAN*SUEPS) 
TOLlO=HMOK/(XBAK*EPS*TALP) 

READ (5,SU)NNXU 
INCRT=UMEGA/NNXU 
READ (5,20)GOtAl 
ILIMI I=OMEGA/INCRT 

16b 
hKITi(6,160lI~~CKT,COEAl;NSC,OMEGA,ILIMIl,CG~I~ 
I-URMAT ( ’ 

1 
1NCKIMENT DT=‘,F12.6,’ COEFFICItNT Al=‘,F12.6,’ i~Sc=‘,I.i, 

’ OMtGA=‘,FI2.6,’ ILIMIT=‘tI6,’ PARAMETEk C=‘,F12.6) 
IL=l+ILItJaIT 
UO 1YD IM=l,IL 
T=(IM-l)*INCRT 
IF (IM.Ec;. IL 1 T=DMtGA 
IF (ANALTC.EO.l.) GO TO 170 

CALL LGR (Z,Y,T,NP,AK,DERFD) 
GO TU 180 

170 
180 
190 

CALL ANSLUP (T~AK~OERFD~COFP~SO~PS~TALP,XBAR) 
DERl(IM)=DEKfD(l) 

CONT INU~ 
KKKKK=O 
KKKk=l 
KKKI=l 
KK IK=l 
COEA2:O.O 
CALL SCLOCK 

READ (5,2C) ACGNTY 
If (ACONTY.EC.2.) GU TO 200 

KEAD (5970) STDREA(l),STUREE(l),STOREA(2),STOHEE(2) 
KKKK=2 
KKKI-2 
KK IK=2 

200 UELTA=~CDEA1~~LOG~COEAl~+~.O-COEAl~/~l.O-CU~Al~~~2 
IF (COEAL.EO.COEAl) GG TO 710 
COiAZ=CUtAl 
CALL KC-LOCK (ITIME) 
IF (ITIME.GT.lOOO) Gir TO 730 
WdITE (6,210)C.OEAl ,DELTA 

130 READ (5,201 MACH,ALPHA,GAMA 
WAITE (6,110) MACH,ALPHA,GAMA 

210 tORMAT (’ VALUE OF Al =‘,E20.7,’ DELTA=‘,El8.7) 

110 i-il?MAT(’ MACH NUMHER=‘,F10.4, ’ INCIDENCE=‘,F10.4, ' GAMA='rF10.4) II=1 
WT(l)=O.O 



. 
,ALCULATIOti OF COEFFICIENTS OF POWEK SIRIES SLILUTI~X'I NEAK UKIGIN 

s 
T=U.O 

IF Ir,:~ALTC.EQ.l.I GO TO 220 
CALL LGi< IL,Y,T,NP,AK,UERFDI 

017 TU 230 
22.l CALL A’iSLOP IT,AK,UEKiU,CU~P~SQEPS~TALP~X~ARI 
2 3') CdhiTlNClt 
2 4 3 Al=LOtAl 

A2=tbK~1~/I1Al+1.C~/IAl~~Al-il~~~~-I~2*ALOGIAlI~/~Al-l.~~~*3I~ 
A~=(AKI2)~Al~~2I+A1~*3+~A2~~2/AlI 
~4=AL~~Al**4-Al~A~+A~~~2~/IAl~Il+AlII+(Al~~3~*(AKI3II/(l~AlI 

;-(L~~,Z~+~)/(A~+QL)+(~~A~~A~I/A~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

l"~~~:2)*(3~AI~*2+b~AI+lO.Ol/Al~~2+(A2"94~~(3~Al~~2+lO~Al+l~~/(3* 
2A1~~311/~3*A1~~2+4~A1+3~ 

ol=l.O/Al 
b.?=-AZ/(Al**3) 

b3=2*(AL~+2I/lA1~~5I-A~/~Al~*41 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
t5=14~IA2+*4)/iAl*~Y)-21e(AZ**2)~A3/(Al~~b)+3~(A3~~2I/(Al~~7) 

1 t~*AZ*A4/(Al**7I-A5/(A1986) 
250 IF III.UE.NSC) b0 TD 270 

II=II+l 
I=(II-l)*lNCiXT 
wT(JI)=Al~T+A%*T*92+A~~T*~j+A5*T~~S 
SuMw;(lI~=S~~kTIII-1~+I~~~T~I~kT(II~~WT~II-l~~/2~ 
tlT&(JJ):~l*T+B2+~T*~Z~+~~~~T~~3~+~4~IT~~4~+b5~lT~~~~ 

c 
c IF OirE IS INTERESTtD IN THE PRINT OUT OF ALL THi k(T) PRINJ 
C OUT, KtMUVE THt C FROM I-IKST COLLJPN II\ THE FGLLCkING TWG CARCS 
C hKJTL (6,26UIT,kTIIII,SUMWT(IIII,tITAIII~,UtRl(II~ 
C 260 FURMAT (Fl0.6,4E15.6) 

r  
L 

GO TO i5u 
270 11=11+1 

T =III-2I*INCRT 
TT -(II-lI*IhCKT 
1~ IwT(II-lI.GT.(l.O+0.75aT)) GO TO 630 
IF (II.GT.(l+ILIMIT)I GU TU 660 
IF IwT(II-1l.LT.T) GU TO 350 
1~ (hT(II-l).EO.TIGO TO 430 
JJ=O 

283 JJ=JJ+l 
IF (JJ.Gr.(II-1)) GO 10 430 
1~ (hr(JdI.tO.TT) GO TO 290 
IF I~T(JJ).GT.TTI GO TO 300 
~0 T;; 2bL 

' 290 ~ITA(III=IJJ-i)*INCRT 
60 ro 310 

303 tITA~II~=IJJ-2~~I~CRT+INC~T~ITl-WT(JJ-1~~/(WT(JJ~-WTfJJ-l~~ 
310 ~nS=GtR!(II~-OER1(II-l~-kT(II-lI-l.O/(WTIII-lI-T~-(O.5~I~CRTI 

1 *I1.O/IwT(II-1~-TI**2)+O.5*~EITA(II)-EITA(II-l~~~(~l.O/~TT 
2 -EITA(III)**2~+(1.0/(T-EITA(III-llI**2lI 

bB2=-Z.*TT+?HS 
bE!=rf~~~+1.0-2.~TT~RHS 
bBU=ITT**2)*R11S- l-T-II&CRT/ZI 
A~PWI~=~.*W~I!I-~I-~T(III-~I 
IF (APPWI1.GE.(l.0+0.75*TTII GO TO 630 
JK=l 
APPWI2=1.O+OMEGA 

320 JK=JK+l 
IF (JK.Gl.20) GO TU 430 
CC=APPWIl**3+bB2*APPwIl**2+BBl*APPWIl+bbO 
CCD=3*APPWI1**2+2.*b~2*APPWIl+bBl 

IF (UAbS(APPkI2-APP~111.LE.0.000001~ GCi TO 520 
APPWIZ=APPWIl 
APPWIl=APPWI2-(CC/CCD) 
IF IAPPWIl.GE.(l.O+TT)) GO TO 330 
IF (APPWIl.LE.WT(II-1)) GO TU 430 
GO TIJ 320 

330 IF (WT(II-lI.GT.(l.O+O.;*(TT-1NCKT)Il GO TO 630 
IF IABSIITT-UMEGAI/OME6A).LE.0.05) GO TC 630 
tOME(IA=T 
WRITE (6,340) COEAl,tOMEGA 

340 FORMAT I ’ COEFFICIENT Al=‘,Fl5.7,’ CURVE RIStS STEEPLYtCAStBtElMti 
lA=TI=',Fl6.7) 
. KKhK=KKKK+l . 

GO TO 650 
350 wZbI=wT(II-1) 

IK=I I-l 
CALL NtVIL I6,WZbI,O.O,INCRT,IK,WT,IER~ 
tITA(II)=TT 
hZVIl=nT(II-1) 
AINCKT= (WT(II-1I-kT(II-2))/2. 
JK=O 
KHSl=OERl~II-II-OE~l(II)*WLBI+WZbI~l.O/IWZ~I-WT~II-lI~-O.~~I~C~T~ 

1 Il.O/IWTIII-lI-T)**ZI 
IF IIWT(II-lI-WTIII-2)I.LT.O.O) AINCRT=CAbS(AIhCKTI 

360 JK=JK+l 
KZ=l 
AKZIl)=WTIII-1) 
kAPZYIIl~=IO.5*INCKT~~((l.O/(WT(II-lI-TTI~~2~~(l.O/(kT(II-l~-T 44 

1 2))-DEK1(II-1I+DtR1(I1) 
IPP=2 

KIQ=l 
371.l kZYIl=kZYIl+AINCRT 

IF IkZVIl.tQ.TTI GO TO 420 
IF IhLVIi.GT.TTI GO TO 490 
kk.ZbIl=kLYIl 
CALL NEVIL (6,WhZbIl,O.O,INCRT,IKlkT1IEH) 
~t~S=hWSI-WWZHI1-l.0/(HWZBI1-WZYI1)+O.S+(WZYll-WT(II-lI~~(l.O/ 

1 (WwZBIl-WLYIl~**2+l.O/(WZBI-WT(II-l))c*2I 
aCPZYI(IPP)=(G.5*INCRT)/((WZYI1-TT)**2)-RhS 

380 IPP=2 
IF IkA~ZYI(1I+WAPZYII2).LT.O.O) GO TO 3YO 
kAPZYI(l)=kAPZYI(Z) 

AKZ(lI=wLYIl 
IF (KIO.EQ.21 GO TO 400 
60 TO 370 

390 KZ=KZ+l 
AKZIKZI=WZYIl 



.  4 .  l 

IFTUABSTAKZ(2)-AKZT1)).LE.O.OOOOOlI GO TO 410 
KZ=l 
KIU=2 

400 PINCQT=AINCRT/2. 
WZYIl=AKZT I I 
GO TO 370 

410 wZYIl=WZYIl-1AINCRTI2.1 
4;!0 wT(III=wZYIl 

GO TO 530 
430 JK=O 

EFC=TT 
IK=I I-l 

C 

: 
IF TWTTIII.EO.TTI GO TO 590 
IF TkT(III.GT.TTI GO TO 570 

C ZYIP=TT 
c ZRP=wTTIIl 
C GO TO 5BO 
C 570 ZBP=TT 
C ZYIP=EITA(III 
C CALL QG6 TLYIP,ZBP,SINT,SLUPEI 
C GO TCJ 600 
C 580 CALL QCIh (ZBP,ZYIP,SINT,SLOPEI 
C SLOPE=-SLOPE 

CALL YtVIL (6vEI-G,O.O,INCRT,IK,WT,IEi?I C EFG=ZBP 
wTllII=EFG C CALL NCVIL T6,EFG,O.U,INCRT,II,WT,IERl 
SUMhTIII~=SU~wT~II-1~+INCRT*~WT~II~tWT~II-l~I/2.O C DYBYDZ=-EFG-l.O/TEFL-ZbP)+SLOPt 
IF TTT.GT.WlTIIII GO TO 450 C GO TU 610 
JKK=O C 590 WRITt (6,595) II,JK,TT,WT~III,SUMWT~I1I,EITA~III,DER1~II1 

440 JKK=JKK+l c 595 FUKMA1(14,17,F12.7,3El5.7,E30.7I 
IF TWT(J<KI.GT.TTI GO TO 460 C GU TO 270 
IF TWT1JKKI.EO.TTl GO TO 470 C 600 DYBYDZ=-WT(III-l.O/TwTlIII-TTI+SLOPE 

GU TO 440 C 610 CUNT I IJUE 
450 EITA(III=TT c WRITE (6,615) II,JK,TT,~T~IIl,SUM~T~II~rElrA~II~,DY8YDZ,DERl~Il~, 

GO TO 530 C 1 SLUPt 
460 EIlAlII~=~JKK-2~+1NCRl+I~~CRT*~TT-WTIJKK-l~~/~WT~JKK~-WT~JKK-lI~ C 615 FUKMAT TI4,17rF12.7,6E15.7) 

IF (WT(IIl.LT.(TT+INCRTII GO TO 480 C 
GO TO 530 C 

470 EITATIII=(JYK-II*INCRT C 
IF TWTIIII.LT.TTT+INCRTII GO TO 480 C 

GO TO 530 C 
4PU II=II+l C 

T=III-ZI*INCKT C 
TT=T II-lI*I?dCRT C 
IF (WTTII-lI.GT.(1.0+0.75*7)) GO TO 630 C 

IF (II.GT.jl+ILIMITII GO TO 660 c 
qc..O JK=O C 

EFG=TT C IF ONE IS INTERESTED IN THt PRINT OUT OF ALL THE W(T) PRINT 
IK=I I-l C OUT, RtMOVE THE C FKOM FIRST CULUMN IN THE FOLLOkING TWO CARDS 

CALL NEVIL Tb,EFG,O.O,INCRT,IK,WT,ItKI C 
WTT I I I=EFG c WRITE (6,620) II,JK,TT,wT~III,SUMWT(IIII,EITA~III~DER~~III 
SU~I*T~II~=SllMWT~II-1~+INCRT+~WT~II~+WT~II-1~~/2.O C 620 FUKMAT (14,17,F12.7,4tl5.7) 
IF (tFG.GT.TTI tiU TU 510 C 

WTlIIl=~S~K~~2.0~~WT~II-l~-WT~II-2~)/(SORT~2.O~-l.OI C 
SU~hT~II~=~U~~T~II-1~+l~~C~T~~~T~II~+WT~II-l~~/Z.O C 
WRITE (6,SUOI TT,wT(III GO TO 270 

500. FORMAT 1’ PAKAElJLIC EXTRAPOLATION IN INTERVAL AT kT=T,=‘,F12.6, 630 KKKK=KKKK+l 
lE15.6) AA=2*twT~II-lI-WT~II-2))-INCRT 

tl:sMEbA= TT AB=wT~II-2I*(kT~II-2)-L.O+Z*(II-2)*INCKTI -WT(II-lI*TWT(II-ll- 
WKITt (6,640) COtAl,EOMtGA 1 2.0+?*( I I-3I*INCRTI -7*INCRT 

KYKK=KKKY+l AC=~II-3I~~INCRT*WT~Il-lI*~wT~II-lI-2.OI -(II-2I*INCRT*WT(II-2I* 
GO TO 650 1 TWTTII-2)-2.0) -1NLRT 

510 JKK=O EOMtGA= (-/\tr+I,S09T(At’ncL-4+AAsAC))/(Z.O*AA) 
GO TU 440 WRITL (6,640) CUEAl,LUMT(,A 

520 CUNT INlJt 640 FORMAT 1 ’ CtltFFICItNT Al=‘,F16.7,’ EXTRAPOLATED OMEGA 
WT~II)=APPwIl l=‘,t/O.l) 

5:O SlJMWTTlIl=SUMWTTII-lI+INCRT*~hT~III+WT~II-lII/2 
C 
c IF I<‘.! IS ! *TEl STtD IN ALL Ttli. LALCULATtD SLUPtS AT EACH UF 
i PUIIJTS FOR KEFcKANCE KtCIJVE THE C FROM FIRST COLUMN 
c I >. Ttit FC:L LilW Ihf; L A R U \ 



b 

650 cc, 4T IY’lE 
hT( I I )=l.U~tm~~ti~LrGP 
SU~hl~II~=SU~~T~II-1I+~tLIMtGA-~II-Z~~IN~~T~~~wT~II~+~TIII-l~I/Z 

IF (DARS I (E!‘CtGA-OMtGA)/IJMtbA).Lt.O.Ol) GO TO 750 
ST3KtAI 1 )=Cl)ti;l 
STuRtEI 1 )=cuMcGA 
IF (KKKI.;t.Zl GU TO 690 

IF (KKIK.cO.ZI GO TO 690 
CGtAL=CGtA1/2. 

(,;1 Ii) 200 

660 Cc:dT I NLE 
GMXl=hT(II-1) 

STI;R,A(~)=C.~EA~ 
STgRtt(2I=l.U+OKLGA-UMXl 
CKIK=i 
NRITi (6,670)STO~EA(Zl,OMX1 

670 t-O&MAT ( ’ CUti-FICIENT Al=‘,F15.7, ’ EXTKAPOLATtD WTIOMEGA 
1 )=‘,,C15.7) 

if- (!~A~S(IL~MX~-~~.O+CIVCGA)I/I~.O+OMEGA)).LE.O.O~~ GO TO 750 
IF (KKnI.GE.2) GLI TO h90 
IF (KKKK.bE.2) GIJ TO 680 
CGEAL=Z*LUEA~ 

GO 10 ZOO 
680 kKKI=KKKI+l 

IF (KKKKK.GT.6) GO TO 700 
hKKKK=KKKKK+l 

COE,~l=ST~htAI2)+ISTUl~EA(1)-STORtA(2EI2))/ (STOI~EE(Z)+ 
1 (OME!;A-STt,REt ( 1) 1 1 

GO TU 2slJ 
650 IF (KKKKC.GT.6) 6cI TO 70U 

KKKKK=KKC KK+I 
COE4l=STGREA~2~+~STOKtn(l)-STORtA(Zf~*ISTORtE~2I~/ ISTOdEE(Z)+ 

l(lj~lEGA-ST~~EEIlII) 
Gi, ru 200 

700 COtA1=IS:OREA(lI+STOKEAo)/2. 
CO TO 2ciU 

710 kdllt (6,720) CGtAl 
720 FG&MAT I’ Al LONVERGtS TO SAME VALUE BUT OMtGA NOT SATISFIED Al= 

1 ‘,F15.71 
~LJ T., 731) 

730 kHITE (6,740) 
740 FLJRCAT I’ ITEKATIUN DID NOT CONVtRGE, NEXT DATA TAKEN’) 

GO TU 1U 
150 kl( l+ILIMITl=1.O+UMEGA 

S”M~T~1+ILIMIT~=SUM~T~1I-l~+(1+ILIMIT-~II-l~~~INCRT~~l.~+OME’GA- 
1 hT(II-I 1) 

ISTEP=Il IMIT/ZO 
JK=l 
KK<=l 
kRITE (6, 760) 

160 FORMATI ’ Z k(L) INTEGKAL 0 - 2 k(S) OS P* 
1 CPIZI SHGCK SHAPE OY/UZICALI DY/DZIBOOY)‘I 

Ld?=iJ.o 
XKB=l.O/ICOtiAl-1.0) 

PRESUR=-III3.0*XKR+4.5)*XKB+3.OI*XK6+0.5) + IIII~.O*XKI~+~.O)*XK~ 
1 +5.0)*XKD+Z.O)*XK6)*IALCGICOEAl~l +2.*TUOU-L.*OMEGA*CGNIC 

ILLL=l 

SHOCKS=DtLTA+TOOCl 
CPPP=2~~SNALP~~~2~*~1.O+[EPS*(Z.+CUNIC+CMEGA+~R~SU~~l~ 
IF INUCLCD.EO.2) GU TO 765 
IF (ANALTC.EU.~.I GO TO 770 

AZL=ZBP 
CALL LGR IZ,Y,ALL,NP,AK,DERFD) 
DYBYUX=lt1MOR/XBARI-ItPS*TALP)*II3.~AKI4I+ZBP~Z.+AKI31)oZBP+AKI.!)) 

1 *ZBP*ZdP 
GO TO 780 

770 AZOAR=ZBP+SOEPS*TALP 
DYHYDX=HMOR-III3.*COFPo*AZBAR)+Z.aCOfPI3~~~AZ~AKtCOFPI2~~*AZl~A~ 

1 *AZbAR 
780 dT=ATANIDYBYDXI 

dTl=ALPl+BT 
PSTARL(l)=CPPP*COS(BTlI 
PSTARO(l)=CPPP*SINIBTl) .’ 

785 ~RITtI6,H90ILBP,WTI1 ),SUMWTIl ),PRESUR,CPPP,SHGCKS 
790 JK=JK+ISTEP 

ILLL=ILLL+l 
IF (JK.L,T.Il+ILIMIT)) GO TO 910 

ZBP=LJK-l)*INCRT 
IF IJK.GE.ILIMITI ZBP=OMEGA 

h = 1 . 
‘LO TU 800 

800 M=M+l 
IFlWT(Ml.6T.LHPl GO TO 810 

IF Ih’T(M).EO.ZBP) GO TO 820 
ti0 TO HO0 

Ml0 ZYIP=IM-2)9I~CKT+INCRl~II ZBP -WTIM-lI)/(kTIM)-hTIM-l))) 
GU TO &30 

820 LYIP=(M-I)*IkCRT 
830 IF IZYIP.GT.ZtiP) GU TO 840 

IF (ZYIP.CQ.ZBP) ~0 TO 790 
CALL ClLh ( ZYIP,ZHP,FCTZB,YINT) 
CALL c~G6 I ZYIP,ZBP,SINT,SLOPtI 
b0 TO 850 

840 CALL b]Gb (ZUP,LYIP,~CTZYI,YI~Tl 
CALL i?G6 (Z~P,ZYIP,SI~T,SLOPt) 
SLOPt=-SLOPE 

650 PKtStiK=-l~O-WTIJK)~~2-2~S~M~TIJKI+2~ZBP~hTIJKIt2~OELTA+YIi~I~ 
1 I~~~T~J~~-WT~JK-1~I/I~CRT~~I-l.Otl.O/IWlIJK~-Z~P~~42) t2.aTOUC 
2 -Z,*COhIC*UMtGA 

CPPP=2~fSNALP~~*2)+(l.O~IEPS*I2.*CONICoCMEGAtPRESURl)) 
DYBYDL=-hT(JK)-1.0/(WTIJKI-ZBP)+SLGPE 
SHOC&S=DCLTA+TUOU-SUMhTIJK) 
IF (tiUCLCD.tQ.2) GO TU 8bO 
IF (AYALTC.tti.1.) GO TO 860 

AZL=ZHP 
LALL LGR IZ,Y,AZL,NP,AK,DERFD) 
DYaYDX=(HMOK/XBAR)-(tPS4TALP)*((3.~AK(4)~Z~Pt2.*AK(3))*Z~PtAK(2)) 

1 *ZHP*ZtlP 
bt) Tu 470 

860 AZHAR=ZBP*SQtPS*TALP 
UYHYDX=hMUR-~l(3.*CO~P(4)~A~0AR)tZ.*COfP~3))~AZ~ARtCUFP(~)!~Af~A~ 

1 *AZb&R 
870 bT=ATANIDYBYDXI 

BTl=ALPltBT 
PSTARLIILLL)=CPPP*COS(BTlI 



C 
c 

C 
C 
C 

C 

. . c 

PSTARDlILLLI=CPPP*SIN(BTl~ 
8tiO w3ITt(6,tiJOlZHP,kT(JKl,SUMWT(JK~,PRESUR,CPPP,SHOCKS,DYBYDZ,D~Kl(JK 

1) 
B&IO 

YOO 

910 

320 

333 

FURMAT If-lU.517E15.6) 
IF (vUCLCD.tO.2) GO TC 790 

WKITt (6,YOO)OYBYDX,bT 
f-OKMAT ( ’ UYBYDX=‘,E16.7,’ SLOPE IN RADIANS=‘,E15.6) 
bU TU 790 

IF (NOCLCD.tC.2) GO TO 10 
CL=PSTAKL(lI-PSTAdL(21) 

CD=PSTARD(l)-PSTARD(d1) 
DO 920 IMM=2,20,2 
CL=CL+4.U*PSTARLIIMM)+2.0+PSTARL(l+IMM) 
CC=CD+4.U*PSTAKD(IMM)+2.U*PSTARD(l+IMM) 

CiJNlihlJE 
CL=CL/60.0 
cD=cD/bo. 
CLdYCD=CL /CD 
WRITE (6,Y30)CL,CD,CLBYCD 
kORMAT( ’ LIFT COEFF. CL=‘,E15.6,’ DRAG COtFF. CU=‘,E15.7, ’ LIFT/D 

IKAG KATIU L/O=‘,E15.7) 
GO Tu 10 

1000 CUNTIhUE 
RETURN 

LND 

FUNClION FCTZB(XI 
&tAL INCRT 
DIMENSIGii WT(405),SUMWT(405),tlTAf405I 
CLUBLE PRECISION WT,SUMhT,EITA 
COUbLE PRECISION WS 
CilMMC?N WT,E~TA,SIJ~WT,II,INCKT,T,TT,ZBP,ZYIP 
XI:~T=INCRT 
Irs=x 
CALL ;u~v(L (h,wS,O.O,xINT,II,WT,IER) 
FCTZB=(WS-ZBp)**3/(WS-X)**2 
HETUPN 
END 

FUNCTIldJ fCTZYI(X) 
REAL INCkT 
LtIMENSIUY wT~~U~),SUKWT(~U~I,EITA(~O~) 
DGU@LE PRECISION wT,SUMkT,EITA 
DbUELE PdECISION hS 
C OMMOLl WT,tITA,SUMWT,II,INCRT,T,TT,ZBPtZVIP 

i INT=INCKT 
ws=x 
‘,.;;‘zy;,VIL (6,kS,O.O,XIkT.IIvWTvIERI 

=-(WS-ZBP)**3/(WS-Xi**2 

RETURN 
END 

. 

C 
C 
C 

10 
20 
30 

40 
50 

60 
70 

80. 

SUGHtiUTINt NtVIL IN,XvXl,RINT,H,W,IEH) 
DIMENSIOk F( l&I,W(MI 
OOUOLE PRECISION W,X 
I t-R=0 
IF (N-2)20,40,40 
WRITE (6.30) 
FORMAT ( ‘NEVIL ERK0R.N 2 OR 18’) 
IER=l 

GO TU 180 
IF (N-18)50,50,20 
U=(X-Xl)/RINT 
J=IFIX~LJ+O.OOOO1) 
I=J+N/Z.+O.l 

K=O 
IF (M-N)160,60,60 
IF (I-M+lIB0,80,70 
K=M-N 
LO TO 100 
KK=J-N/2.+1.1 
IF (KK)lOG,90,90 

90 K=KK 
100 UU=U-K 

LJU 110 L=l,N 
Ll=K+L 
F(L)=WlLl) 

110 LUNTINUE 
LL=l 
J=N-l-LL 

120 JJ=J+l 
u=uu 
DO 130 L=l,JJ 
L2=L+l 
F(L)=((U+l-Ll*F(L2I-(u+l-L-LLI*F(L))/LL 

130 CONTINUE 
LL=LL+l 
If- (J)150,150,140 

140 J=J-1 
GO TU 120 

150 X=F(l) 
GU TO 180 

160 WHITE (6,170) M 
170 FORMAT ( ‘NEVIL ERR0R.M N.CONTINUE WITH N=M=‘,IZ) 

N=M 
I ER=2 

GO TO 10 
180 CONTINUE 

HE TURN 
ENO 



2: 
L 

~UBHUIJTIhE LtiK (A,B,C, IP,D,E) 
DIk!tNSIUN A(IP),b(IP),D(r),t(l),AZi6),AY(5) 
OC!UBLE PRtCISION h,B,D,E,AZ,AY,UI~,DIMl,AN~Ml,A~U~2~ANUM3 
Ul l)=O.O 
ul2)=0.0 
1;(5l=c.o 
Di4)=0.0 
rJLI 10 I=l,IP 
K=I 
IF (C -A(K)~20,100,1U 

LO CUNT IIVUE 
20 IF f(K+Z).GT.IP) SD TL 80 

IF (K.Lt.3)GO TO 60 
UI l=A(K )-C 
DIZ=C -A(K-1) 
IF (DIZ.GT.DIl) GO TO 40 
LO 30 L=1,5 
M=K+L-4 
AZIL)=A(M) 

$0 AY(L)=tl(M) 
GO TU 120 

‘tD !I0 50 L=l,5 
M=K+L-3 
AZ(L)=A(M) 

f,G AY(L)=U(M) 
CO TO 120 

60 uu 70 L=1,5 
AZ(L)=AlL) 

70 AY(L)=RfL) 
bJ TU 120 

to 110 90 L=l,S 
pi= IP+L-5 
AZlL)=AfM) 

90 AY(L)=blh) 
GO Tir 12(J 

100 IF (X.LE.3) GO TLI 60 
If((K+Z).GE.IP) GO TO 60 
uo 110 L=1,5 
h=K+L-3 
AZ(L)=A(h) 

110 AY(L)=b(M) 
125 AZ(6)=AZl 1) 

DC1 130 1=1,5 
DI~=~AZ~i)-AZ~2))*lAZ(l)-AZ(3))~(AZ(l)-AZ~4))~(AZ(l)-AZ(5)) 
bIMl=AY( I )/DIM 
AtiUMl=AZ(L)+AZ(3)+AZi4)+AZ(5) 
ANUM~=(AZ(2)4AL(3))~.(AZ(L)*AZo)+(AZ(2)~AZ(5))+(AZ(3)~AZ(4)) 

l+(AZ(3)*AZ(S))+(AZ(4)*AZ(5)) 
AN~M~=(AZ~2)~AZt~)*AZ(4))+(A2o*AZ~3)*AZ(S))+(AZ(2)~AZ~4)~AZ(5))+ 

1(AZl3)*AZl4)*AZl5)) 
G(l)=D(l)-(AhUM3*DIMl) 
0(2)=D(Z)+(Ar~LM2+DIMl) 
0(3)=D(3)-(ANUMl*DIMl) 
D(4)=D14)+DIMl 

AZ(l)=AZ(Z) 
AL(2)=AZ(5) 
AZ(3)=AZ(4) 
AZ/4)=AZ(5) 
AZ(5)=AZ(6) 
AZ(6)=AZ(l) 

130 CONTIhUt 
t(l~=((4.0*D~4)*C+3.0*D~3)~*C+2.0*0(2))*C+D~l~ 

G(Z)=L.O*D(Z) 
0(3)=3.0*D(3) 
D(4)=4.0*D(4) 
Kt TUdN 
tNU 

SUBROUTINE OG6 ( XL,X”:FCTT,Y) 
A=O.5*(XL+XU) 
B=XIJ-XL 
C= .4662348*8 
Y=.OB566225*lFCTT(A+C)+FCTT(A-C)) 
C= .3306047*B 
Y=Y+.lB03808+(FCTT(A+CL+FCTT(A-C)) 

* C=.1193096*B 
Y=B*(Y+.233Y57O*(FCTTlA+C)+FCTTlA-C))) 
KE TURN 
END 

r  

FUNClION SINT (X) 
REAL INCHT 
DIMEI~SIO~ WT(405),SUMWT(405),EITA(405) 
uUUBLE PRtCISION kT,SUMiiT,EITA 
DOUBLE PdtCISIDIU k+K 
COMMON WT~tITA,SUMWT,II,INCRT,T,TT,ZBP,ZYIP 
XINT=INCKT 
WK=X 
CALL NtVIL ~6vWK,0.0,XINT,II,~T,lER~ 
SINT=l.O/((WK-X)4*2) 
KETUKFJ 
END 

SUHKCJUTINE ANSLUP lA,B,C,D,E,F,G) 
DI#EhSIw R(4).C(l),D(4) 
UUUBLE PKECISi& B,C 

t1=1.o/t 
EZ=E*F*G 

B(l)=El*D(l) 
B(Z)=L.b*El*G(2)*E2 

C(l)=((B(4)*A+B(3))*A+B(2))aA+B(l) 
RETURN 
EhD 

* * * , 
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FIG.2. Variation of w(t) Vs t (not to scale) 
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F16.3. Streamline Patterns 



FIG.4 Parameter a Vs C2 for flat delta wing 
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FIG.5 Spanwise pressure distribution on circular- arc 

cross-section delta wing R = 2/3 
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