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SUMMARY

In this report a numerical procedure is described for calculating
the inviscid hypersonic flow about the lower surface of a conical wing of
general cross-section, The method is based on thin-shock-layer theory
and the cross-section of the wing may be either described by a polynomial
(up to fourth degree) or given as tabulated data. The actual numerical
scheme is an improvement on that used by earlier workers and the computation
time is much shorter. This reduction in computation time has been
exploited to produce a complete iterative procedure for the calculation
of the pressure distribution and shock shape on a given wing at given
flight conditions. (In earlier work graphical interpolation was used.)

The report includes a complete set of tabulated non~-dimensional
pressures and shock shapes for flat wings with detached shocks for reduced
aspect ratios from 0.1 to 1.99, and some sample results for wings with

caret and bi-convex cross-sectionse.

*Replaces A.R.C.34 617
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Introduction

It has been shown by Messiterl, Squire2'3, Hillier4 and others
that thin shocklayer theory gives pressure distributions and shock
shapes on delta wings with simple cross-sections which are in very
close agreement with experiments. The use of this theory involves
the solution of a complex integral equation for the cross flow
velocity (w) with boundary conditions at the centre line and at the
leading edge. Once this cross flow velocity is found the pressure
distribution and shock shape follow by direct integration. Most of
the calculated results for the detached shock case have been obtained
by Squire and Hillier for wings with simple cross-sections (flat
wings, diamond cross-section wings, and some circular arc sections).
They converted the integral equation into differential equation
and marched out from the centre line using the first derivative of
w at the centre line as a parameter (al). This method was very lengthy

but by obtaining results for a number of values of a,, they could

1’
use graphical interpolations from these results to obtain results
for a particular wing at given flight conditions. However, the
direct application of this numerical scheme to iterate to find the
actual solutions corresponding to given flight conditions would
require a very large computer time. Also this method can only be used
for the simple sections mentioned above.

In the present report a direct method of solution of the integral
equation is described which produces a considerable reduction in
computer time and therefore it is possible to combine this method

with a direct iterative scheme for the calculation of pressure distribut-

ion and shock shape on a given wing at given flight conditioms.



Derivation of Equations

For steady flow of an ideal, inviscid gas the continuity, momentum

and entropy equations can be written as

Continuity
(P9 +350V) « 3 (5%) -
Momentum
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These equations must be solved subject to Rankine-Hugoniot jump

conditions at the shock. These are:

Continuity: - — -
[:P ‘ (‘i "qu:] =0
Momentum: - — -, = 5 2
[P "'f’(cl.'“s)lzo
Energy: - T3 xr E =0
2RTAY [:.‘L-(q ng) +r--1)‘.-=
Tangential velocity:- —_

where the square brackets denote the change in the enclosed quantity



across the shock discontinuity and ?Xs denotes a unit vector normal
to the shock surface and directed away from the body. The body boundary

conditions require the streamlines to become tangential to the surface i.e.

qe-ﬁ's:o on Yy =Y, (3

In thin-shock layer theory for conical wings the co-ordinate system is

first stretched to

x X

— (4)
14/'):6 tan <

> 1
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Where the barred symbols refer to physical co-ordinate system and
unbarred quantities refer to transformed (or stretched) co-ordinates.

In this transformed co-ordinate system the wing semi-span and thickness

become

= b/xei/zfar\o{

t, = h/:ce‘carw( (

\"2
R

respectively.

For a shock which differs only slightly from a plane shock Messiter
suggested an expansion of flow properties in terms of € which is the
inverse of the density ratio across a basic shock, lying in the plane
of the leading edges of the wing. In the limit € — O the expressions
tend to basic Newtonian solutions. The basic density ratio across

the shock is given by

(6)



where a is the incidence of the plane of the leading edges. The

suggested expansions for flow properties are

- o 2
e = PiPa = g silac(14ep(y.2) + O(E)
= L f ul
L . Cosx + € Sind tank u(y,z) +0¢e”)
U,,
— 2 (7)
V. . € sink V(y,z) + 0O(€)
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Substitution of these quantities into the equations of motion lead

to a consistent system of equations and boundary conditions which are

oy S )

with shock boundary conditions

_ -z dyg - dy 2
vo =(d = s ) -1 - (%,
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where ]js Cz) is the equation for the shock, and VS s Ws and
Ps denote components of velocities and pressure immediately down-
stream of the shock. The equation (8) have two sets of real char-

acteristics given by Z = const. and % = const. where

_y) OF _z) 38 .
(v j)_h_g——t-(w z)?_z_._o (10)

Since the operator (V—j)%—y— + (W—Z) %Z- is the

total derivative along a streamline to this approximation, the § =

D

const.

characteristic coincides with the projected streamlines in the conical

plane. Equations (8) also show W to be constant along a streamline
and therefore it is a function of g only.
Messiter fixed the constant on } characteristics by putting

3" = Z on the shock. He also showed that solution of equations (8)

depend on one parameter W ( ?) and by considering body boundary condit-~

ions he showed that
11)
W(?) =Zb (

for the detached shock case.



The solution of equation (8) leads after much algebra to

Zy
( él_j ) = - W(Zb) - 1_"-‘ + ds 2 02)
dz body W(zy)-2, [wesy-s]

This is the fundamental equation for the determination of W(E).

The pressure on the body and the shock shape are given by

2 z
P(z,§) =-1 - wtz) + 2 A+t —j WCs)oLs:J
(o]

z 3
+22Z W(Z) + [—1 P chcz)J [wch—z] ds
twesr-sp | dz [wesy-s]™

P = P(z.§) - 2t, o)

z

ys(z) = Ag + Y, ‘J W(es) ds (15)

[=]

Messiter also showed that the appropriate boundary conditions for

W(F)are W(0)=0 and W(JIL) = 1 + . The first condition
corresponds to zero cross-flow on the centre line., The second condition
was chosen to give a singularity in the shock curvature at the leading
edge since a similar singularity occurs in certain two-dimensional blunt
body flows. By equation (9) there is a similar singularity in the span-
wise derivative of WCZ) at the edge and this leads to some difficulty

in the numerical solution of equation (12).
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Numerical Solution of the Integral Equation

The analysis up to this section was similar to that of Messiter and
Squire. Squire solved the integral equation by differentiating once
again and then using Runge-Kutta procedure for integration of the
resultant differential equation. This procedure takes a long time
for computation of V¢C:E) for a single value of the parameter a;.
Againthe step size for Runge-Kutta type of integration must be extreme-
ly small ( o.001) so that large storage was required. The
Runge-Kutta procedure was used up to a certain point (i.e. W(t) > 1+075t)
and for the remaining part manual graphical extrapolation was used.

By a suitable choice of a; it was thus possible to get a set of results
for a range of O and C where C is thickness ratio of the wings with
diamond cross-sections. These results were then used to produce

a set of charts which could be used to find the pressure distributions
and shock shapes for any given wing wita diamond cross-section at

given flight conditions. A similar method was used for caret wings,
and for wings with biconvex cross-sections. In general this method
cannot be used for general cross-sections.

In the present evaluation of the integral equation (12}, a
different approach was used*. This approach is as follows.

Let us assume that the solution has been obtained up to the

th th .
i station. Then at the i station

2,
ds (16l
ol 1-0 +
— — Z
( ——-——ys) - W(Zb)i WCZp).m 2. [WC.S)—SJ
dz “t bli Tby .
[

" This method was originally suggested by Dr. R. Hillier, but he

only applied the method to the case w(t)>t,



Simflarly at i + 1th station
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If we take the step length to be sufficiently small the integrals

can be evaluated using the trapezoidal rule and the equation

1o

- 2Z
\N‘CZb)( . "i*‘l

(11)

L

nd
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become

d d - -
(Lje‘ (o—é—‘f‘)i = Wz, ~WI(Zy;

-zbhl

l

+1 i+1
1:0 1-0
WI(Z,); =2y, WwWCZy), .,
+ &3 1-0 10
N (CTER A TR o
AF 1-0 1-0

2 {ch)iﬂ '"}w}l + {WCEJL— }i}a

where

(at)

Equation (20) was solved by a marching process for a given starting
parameter a;, until w(tl) > 1 + 075t and then a
parabolic type of extrapolation was used to find the value of 2
which satisfies W()= 1 + Q . The whole process was iterated
to get correct value of ay (i.e. correct W(f) function) for
given boundary conditions of cross-sectional profile, Mach number
and incidence.

Equation (20) was solved subject to boundary conditions

WCo)=0 and W(LNL) = 1+ A . Near the

(20)
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origin (i.e. Zb = f =0 ) a fifth power series solution

was assumed for WC}) i.e.
2 3 4 s 3
W(F) = & F + A F +a,f +aF +agf +0(F) Qv

This is similar to Squire's treatment for analytic cross-section

case. Here 32, a3, ah and a5 are related to the cross-sectional

shape of the body by the following expression

- a,-1 2 Llog Ay
(%) =»f[—_i__2——l—3 a,
Az Jbooly a,(a,-1 (a;-1)

2 a.4 4
-— a‘z - a’zas + 1 ZS
1

(1*“1) 3 a a ’~ (a4-aa "az) ZOL
+ "_—("ai'3a113+q1“4)' a, - 32
a1

2
+ [-a3-—f‘_3_sCa:+zai+z) +_a_5_4<3a:+4q1+3)
a, 3a,

1
_ 2a, %y (a + lQi"'!) + alo‘B <3a2+ 2a +Io)
a1 q,

1

(f 3 Q + loa, + '5')t] (23
3 Cl

In the case of an analytic cross~section in the form of a polynomial

up to fourth degree it is easy to calculate the slope ( )

Z bodj

[
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to equate coefficients of powers of Z to calculate 3y, 845 8, ag, in
terms of a;. (This is the parameter which is to be determined by the
iterative procedure mentioned above.) This procedure was used by Squire

and Hillier for delta wings with diamond and circular arc cross-sections.

But the real problem in the general case arises as follows; first,
if the given profile was a polynomial of more than fourth degree and
secondly, if the profile was given in the form of a table at finite number
of discrete points. To overcome this problem, we approximate the cross-
sectional shape by a five point Lagrangian formula then by differentiating
this formula with respect to Z , an expression for (g_g_)b“!ycan be

oy

obtained at any Z . This expression for ( ___) can be expressed as a

A2 Lod
third degree polynomial in Z as follows. J
3 2
(g‘_-s = KaZ + K Z + K, Z 4K,
dz‘ Bool\‘ 5
where Z.ZKZ
J-1JK:1)1.=1 J L
- JtkFlgl
Ki— 3( {r
21 . -
i _jf-i (Z‘ ZJ)
JER
5
2 R
Jei, k=
Kz= QZ 7 FLLL X
ted
jUx (Z( ZJ)
J#t
2 671"'2:."’23*24*25_21)

K3= -3 Z 3‘ 5
=1 _rr (ZL_ZJ)
321,
JFL
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These coefficients were used to calculate Ayy Bqy 8y, ag at the origin

for any given a;.

After the initial polynomial expansion for W(t) (t being
the running variable) has been found the direct solution of the equat-
ion can be underteken, The actual step by step procedure 1s best
understood by noting that wczb)in the same function of zb as
WCfJia that of f . So if a molutien has been obtained up to
2 particular value of the independent variable (say t, ) then
W CZp) z‘h » WCF) ‘mdf are known for all values of Z and
¥ less than, or equal to t. .
New suppose at tf; \NthJ < tj,iﬁ this case we can identify
1 with F and since 7, = WEE) < V2 W(CZ, )18 known,

Therefore equation (20) can be written as

- (el
¥ .t = (32 (559
+ W(Zb)q, i WCZb)‘*i

1-0 10

- T

WEZe), — 2y, W(Z,),

i+t Zbiﬁ,

a9 _ ‘3.-0Q
T[{W(Zh)u 1 z"; 13 ' {WCZb) i th.} ]

Flwmry )
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In this equation W( § )i+1 and W(Zg); , are unknowns.
But if we know W(§);, , vhich is equal to (2, )j,q> and as
W(f)id( fhi ’ W(Zy) ;44 Wwill be less than Zb;.“.
and can be interpolated from previous values. The method of bisections
was used to evaluate the correct value of w(f_) ivq froma
first approximation (which was the linear extrapolated value from
the previous step), so that equation (24) was satisfied. OUnce the
correct value of \NC?)“‘1 was obtained, the solution was carried
for the next step.
On the other hand, if WC(C1 f) > t];_ _ then 1 is identified with
Zb and since in this case 3: 4 Z,, it can be interpolated from
already computed solutions at previous t values. Re-arranging the

equation (28) we get a cubic equation in W(Zb)i+1 i.e.
w(z > wW(z * z RHS
i ¥ ¢ b)iﬂ{‘ 22,07

2
. -22Z RHS
+ W(Zb)ul[. Zhint 1 -2% ;0 ¢ )]

2
Z -2 - 23 =
+[(2Hs) b, " Zei " S j o) (25)
where
RHS = (d‘is)_ _(olﬁis) - w(Cz). - 19
ie1 “L30 i oL wW(z4); -2,

- % [ {wczb> zb‘-}"]

¢13)

M —“[{ CEJ,M Sl {W(jﬁ’; -fi}‘]
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Equation (25) was solved by Newton-Raphson method for VV(:ZB);+1

So, to summarise, if W(t)>1 equation (25) was solved
whereas if WwW(t) < 1 equation (24) was solved.

Solving the above equations step by step, cross-flow velocity
distributionsof one of the following two cases (i.e. case A or B)

are obtained.

——

wet)

If the cross-flow velocity distribution was as in the case A the

whole set of calculations were repeated with a new value of a; equal
to half of a; . and conversely if the distribution was as in the
case B , the new value of a; was taken as twice the value of a;

\

This process was repeated till we get both cases A and B

The correct value of a, and the corresponding WC§) distribution

lies in between these two cases. After obtaining this upper and



lower bounds of the cross-flow velocity distribution, the iterative

process was continued with new a, parameter such that

(ay, - a, ) [ wtcnr]
new le [wtn) - o - EOMEGA ]

This process was repeated till we get the WC f) distribution
such that EOMEGRA gr Wt(JdL) is within one percent of
the correct value of Q given or 1 + Q given respectively. After
obtaining the correct cross-flow velocity distribution, the non-

dimensional pressure coefficient, cp, shock shape, CL’ C etc.,

D’

were calculated.

A different approach, namely

a, + a
a = ie 1w was also tried

new 2

but it was found that the first procedure converges slightly faster
than this second procedure.

There are two main difficulties in the integration procedure.
One concerns the outer boundary condition given by W(CL)= 1+ Q.
This boundary condition was chosen by Messiter to coincide with the
singularity in the shock curvature. Squire (2) has found that

¥z,

near the point where W(HL) = 1+ 1, wi(t) o Cﬂ-t)
e cerean So the solution of the equation was stopped
when W(t) > 1+075¢t and then remaining portion of the curve
was obtained by a parabolic type of extrapolation with the vertex
of the parabola having co-ordinates (Q extrapolated, 1 + Q extrapolated)

consistent with the W(4)values calculated so far.
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The other difficulty arises when w(t)= t since at wit) =t
the equation becomes indeterminate, A trap was therefore included
such that when W(%t) curve crosses the line w(t)=1t , as found
during the solution of equation (24) the value for that step was
obtained by 6 point Nevil type of extrapolation from previous solutions.

This is best explained in fig. 2 curve (a).

If w(t)as extrapolated above falls below the W)=t 1line as in
the case of case (B) fig. 2, this indicates that WwW(1) is increasing
rapidly and the \As/(t)value is influenced by the square root singularity
at the leading edge. So \Al(f) value was re-calculated using a parabolic
type of extrapolation (stipulating similar type of singularity as that

at the leading edge).
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4, Result

Using the above programme, the pressure p*, pressure coefficient
cp and shock shapes were calculated on flat delta wings. Sample
calculations are also given for a caret wing and for a circular arc
cross-section wing when the cross-section was given in the analytic form
as well as in the form of a table ( EE(’ gi ) at 51 points., For flat
wing the functions, p* in the pressure coefficient and the non dimensional
shock shape are functions of .Z/Ul.and 1. . These functions have been
calculated for the range 0.1 5; nen iE; 1.99 and are tabulated in tables
Ia and Ib and plotted in Figs. For these calculations the programme was
modified to read (L directly, together with number of steps into which
wing span has to be divided, which determines step length, and the starting
value of a,. The number of steps used when L £ 1.0 was 200 and L > 10
was 400. The accuracy of the result was tested by doubling the number
of steps in the same case and it was found that there is no variation
of results up to four figures. A typical solution for flat delta wing

takes about 5 to 8 seconds on Cambridge University IBM 370/165 computer

with FORTRAN Gl compiler.

An interesting result shows up if we plot the correct a, parameter
against ML for the flat delta wing, fig. (4). In the region between
L =0.5 and 0.51 a; jumps from a, > 1.0 to a, £ 1.0, This
can be explained by the sketches of the flow field (fig. 3). If al<; 1.0
we get \Nﬂ;)(‘t znd the flow field 1s as shown 1n fig. (3a) and 1f \/\/ft)( 1 the
flow field will look like fig. 3(b) and so at certsin  the flow field will

jump from (a) to (b) or vice versz, depending on whether{l is increased



or decreased.

Table II gives p*, cp and shock shapes for a caret wing.

Table III compares results for circular arc (biconvex) cross-
section when the cross-section was given in the analytic form with
that when the cross section was given in the form of a table at
51 points. Both the results compare very well. The results of
calculations were compared with experimental results of Squire (ref. 5)
in fig. 5, which shows a good agreement.

Although the programme converged successfully from any starting
value of a; for a variety of shapes, such as flat wings, caret
wings, biconcave wings and thin biconvex wings and also a wavy
type of cross-section(sketch a), some difficulties were experienced
on more extreme shapes. In particular it was very difficult to get
converged solutions for the shape shown in sketch (b) and for very
thick biconvex wings. The difficulties appeared to be caused by
the fact that if the initial value of a; was too far from the correct

value then the computed cross-flow, vv(:fj, was completely unrealistic

and the iterative procedure did not converge. To overcome

these difficulties it was necessary to do a preliminary series of
computations using the basic programme (i.e. without iteration)
for a range of values of a; -
By plotting these results, it was usually possible to find values

of a, which appeared to be in the correct range. The iterative

procedure could then be used to complete the solution. However,

it should be pointed out that on caret wings a, is usually small

1

particularly near design, whereas for thick wings a, can be large.

1

On complicated shapes such as that shown in sketch (b) it was found

that possible values of a, lay in a very narrow range and that with

1



values of a; outside this range the computed curves of W EJ
were completely unrealistic. Thus it may require a few preliminary

runs to find appropriate range of a; -
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TABLE Ia

z P* d\srﬁbuLioﬂs on fla.t d,ct‘;—a U:’nss fdr N =
ol ” ‘

0.1 c.2 0.3 0.k 0.5 0.6 0.7 e.6 n.9 0.51
0.00 0.1001 0.0257 0.1095 0.1733  0.2275 0.3224 .3389 0.3512 0.3629 Lol
0.05 0.1085 0.0255 0.1094 0.i1734  0.2270 0.3226 0.3373 0.3516 0.36% 0.311
0.10 0.1096 0.0248 0.1091 0.1735  0.2283 0.3234 0. 340k 0.3530 0.3711 0.3148
0.15 0.1114 0.0237 0.1087 0.1736  0.2271 0.3249 0.3423 0.3553 0.3739 0.3159
0.20 0.1139 0.0221 0.1080 0.1738 0.2282 0.3271 0.3451 0.3506 0.3779 0.3180
0.25 0,171 0.0200 0.1072 0.17480  0,2302 0.3299 0.3486 0,3629 0.3031 0.3203
0.30 0.1213 0.0173 0.1060 0.7 0.2327 0.3332 0.3530 0.3602 0.387, 0.3233
0.35 0.1265 0.0142 0.1045 0.1747 0.2358 0.3376 0.3502 G 37T 0.3275 0.3263
0.40 0.1328 0.0099 0.1026 0.1750 0.2391 0. 3421 0.3612 0,3023 04070 0.3306
0.L45 0.1403 0.0048 0.1000 0.1749 0.2426 0.3477 0.3716 0.3913 0.4180 0.3330
o.so' 0.1495 =~ 0,0012 0.0966 0.1748 0.2L66 0.3538 0.3796 0.h017 0.43072 C.34C0
0:55 0.1603 = 0.0091 0.0923 0.1739 0.2508 0.3608 0.38%0 0.1137 0.459 0. 3456
.60 0.1735 - 0.0185 0.0867 0.1725 0.2554 0.3689 0.3997 o.hah 0.4632 c.3;18
0.65 0.1898 - 0,0309 0,079 0.1700 0.2600 0.3776 0.k113 0.4431 0.4832 0.357
0.70 0.2102 - 0,046k 0.0691 0.1656 0.2639 0.3670 0.4255 0.h611 0.5064 0.3657
0.75 0.2361 - 0.0669 0.0540 0.1589 0.2669 0,394 0.4h09 0. k817 0.5334 0,37
0.80 0,2702 - 0,0952 0.0330 0.1461 0.2672 0.k111 0.4585 0., 5054 0.5651 0.3833
0.85 0.3172 - 0.1363 0.000k 0.1256 0, 2606 0.424k 0.4782 0.5329 0. 6026 9.3735
0.0 0.3877 - 0.2008 0.0501 0.0048 0.2305 0,437 0. 50Ck 0. 5616 0.6h7h 0.4Ch3
0.95 0.5140 - 0,3267 0.1852 - 0.0135 0.1663 0.5564 0. 5261 0.6002 0.69M 0.1163
1.00 1.558% - 1.1435 1.3181 - 1.2360  _ 1,102 -0 .C4WO - 0.7799 - 0.7263 - 0.6288 - 0.0756

J-nL:J val Of F*Y e —‘1 je-:f- Y iz =

0.2181 = 0.0650 0.0396 0.1293 0.2160 0.34€2 0.3766 0.5083 0.4480 0.328h




PTABLE IT

¥ ,Cp , and lLon-dimensional Shock shane for Caret-iling.
Mach Tumber = 3.97 3 Inciderce = 23.& degrees ;

b=0,1918, h=-0,10023, S =0.62039, C = - 0.745537

1ot O e S S S0 e 0 B 6 B4 P D S 0 B0 G G R B T I B G5 S5 U G0 U8 P AL A D S48 U BN P S N Sup DU B e N B0 G FID BN W S MR N A I R T T 0 00 G P B R R AR S G G S S A G PO AR MR SR Ve G SR e 04 b M4 b e

Z/n. P* Co Shock Shape
"""""""""""""" .o o.&h1 o.etus  o.2ess
0.05 0.6C75 0.2749 0.2868
0.10 0.6116 0.2755 0,2865
0.15 0.6163 0.2763 0.2859
0.20 0.6214 0.2771 0,2352
0.25 0, 6275 0,2781 0.2842
0.30 0.6345 0,279 0.2628
0.35 0.64k27 0.2805 0.2812
0.k40 0.6517 0.2820 0.279%
0.45 0.6632 0.2838 0.2769
0,50 0.6753 0.2857 0.271
0.55 0.6897 0.,2880 0.2707
0.60 0.7079 0.2909 0,26€9
0.65 0. 7281 0.2¢h2 Q,2623
0.70 0.7536 0.2983 0.2570
0.75 0.7846 0,3032 0.2508
0.80 0.&227 0.3093 0.,243h
0.85 0.E716 0.3171 0.2347
0.9 0. 9365 €. 3275 0.2240
0.95 1.C210 0.3410 0.2106
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TABLLE TIII

Comparision of I* distributions and Cp distribu'ions on a
Biconvex wing when the profile is given in the analytic

form &s well as in the form of a table at 51 descrete points.

Equation of the cross=sectional profile :=

- -2

Y Z

eme = 0,0k7856 (1 = memm )
- 2-2
X b X

Mach-lumber = 3.97 ; Incidence = 23.5 ; Aspect-ratio = 2/3
Omege = C.53709 ; C = 0,L409627

Iterated value of omega in the ecalculations is,

Case I Analytic cross-section = 0,5333587
Case II Tabular cross-section = 0.5337565
A P*  distribution Cp distribution
J. e,
Case I Case II CAse I Case II
T o0 oamigon ooierst 015261 0.415381
0.05 0.116998 0.117773 0.415099 G.415223
0.10 0,113987 0.114793 0.h414617 0. 414746
0.15 0. 108964 0,109857 0.413814 0.413956
0.20 €.101867 0.102897 0.412678 0.412843
0.25 0,092665 0.093889 0.4112C5 0.411401
0.30 0.081219 0.0826L8 0.409373 0. 409502
0.35 0,067383 0,068312 C,Lo7159 0. hoThCL
040 0.051077 C.052853 0, 40k550 0. hoklsl
0.45 €.031861 €,033777 G 40175 C. 01785
0.50 0,009E0k 0.012035 0. 397945 0.398302
0.55 - 0.016041 - 0,01331N 0.39380) i 0.33416F
0.60 - 0.045689 - 0.CL3045 0.38%63 0.3€04¢7
0.65 - 0,08022 ~ 0,077k C. 373538 €.39300
0.70 = 0.12¢895 = 0,118473 0.3(7029 0.377416
0.75 - 0,167089 - 0,1657°1 0.369317 C,362656
0.8 - 0.228076 - 0,224650 0.35%877 0. 360408
0.85 - 0.303636 - (.300503 0.347785 0.130286
0.9 - 0,hof206 - C k05774 0. 331C51 0.331408
0.95 - 0.583507 - 0.5839%5 C. 302997 0. 3v27h

1.00 - 1.460570 - 1453090 C. 162641 0.163830
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APPENDIX

Computer Programme (FORTRAN)
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40

S0

60

70

80

90

100

110

l L]

COFP(4),CaFP(3),COFP(2),COFP(L)

CALCULATION OF PRESSURE DISTRIBUTION ON DELTA WING OF GENERAL
CROSS-SeCTIUN AT HYPERSONIC SPEEDS

REAL MALH, INCRT

DIMENSION ZBAR(105),YBAR(105),Z(105),Y(105),DERFU(L),STOREE(2)

DIMENSIGN AK(4),STUKEA{2) ,WAPZYI(2),AKZ(2),CUFP(4)

UIMENSIGNY PSTARLI(21),PSTARD(21)

DIMENSION WwWT(405),SUMWT(405),EITA{405),DERL(405)

UOUBLE PRECISION ZBAR,YBARsZsY,WT,EITA,SUMKT,DERLAK,DERFD

DOUBLE PRECISIUN RHS,EUMEGA,APPWIl,APPWIZ,CC,CCD,8B2,8B1,8B0

UOUBLE PRECISION WZYI1,WZYI WWZBI1,WIBI,DABS,DSQRTLEFG

DOUBLE PRECISION A24yA3yA4,A5,B81,82,B3,4,85,DELTA

DUUBLE PRECISION WAPZYI,AKZyAINCKT,AA,AB,AC,0OMX,0UMX1,PSTARL,PSTARD
DUOUBLE PRECISION PRESUR,SHOCKS,UYBYDZ,RHS1,CL,CD,CLBYCD

COMMON  WT EITA SUMWT,II,INCRTT,TT,2BP42YIP

EXTERNAL FCTZB HFCTZIYI4SINT,F

CONTINUE

READ (5420+END=1000)ANALTC

FURMAT(F15.7)

IF ONE IS INTERESTED IN CALCULATION OF COEFFICIENT OF LIFT
COEFFICIENT OF DRAG,CL/CD THEN GIVE FOR NOCLCD AVALUE OTHER
THAN 2 AND INCLUDE CORRECT EXPRESSION FOR DY/DX

ReAD {(5,30) NOUCLCD
READ (5,30)INSC
FORMAT (13)

ABOVE NSC REPRESENTS NUMBER uUF POINTS UP-TO WHICH POWER SIRIES

SOLuUTION IS USED FOR w(T) NEAK ORIGIN
IF (ANAL{C.EWQ.1.) GO TO 40
GU TU 6V
READ (5,20)
WRITE (6,50}
FORMAT (*1¢,¢
=, F15.7)

COFP(4),CUOFP(3),COFP(2),COFP(L)
COrP(4),COFP(3),CO0FP{2),CCFP (1)
CUEFFICIENTSy A=',F15.7y ¢ B=*,F15.7, ' C=*,F15.7,

REPRESENT COUEFFICIENTS A,B,CyD
RESPECTIVELY OF ThE EQUATION OF THE CROUSS SECTIONAL PROFILE
YBAR= A%[BAR%*®4 + B¥IBAR¥¥3 + (*IZBAR**2 + D*IBAR + F

GO TOU 100

READ (5,3U) NP

WRITc (6,70) NP

FORMAT ('L'y' NUMBER OF PUOINTS IN CROSS-SECTIONAL PROFILE=',14)

READ (5,80) (ZBAR{I),1=14NP}

READ (5,20) (YBAK(I),I=1,NP)

FURMAT (4D15.0)

WRITE (6,90 (ZBAR{L) 4 1=14NP)

WRITE (6,90) (YBAR([),I=14NP)
FORMAT {(4F20.7)

READ (5,20) MACH,ALPHA,GAMA
WRITE (64110) MACH,ALPHA,GAMA

FORMAT(* MACH NUMBER=',F10.4, * GAMA=',r10.4)

INCIDENCE='"yF1l0.4, °

KEAD (5,20) XBAR,HSPAN,HMOR

WRITE (69120)XBAR,8SPAN,HMOR
120 FORMAT (' XBAR=',F15.6,' SEMI-SPAN=',F15.6,"
1 F15.6)

140
150

160
1

170
180
190

200

210

ALPL1=({ALPHA/18U}*3,141593

MAXIMUM ORDINATE=?,

EPS={({GAMA-1.C)/{GAMA+1.0))+2/((GAMA+] . 0)*({MACH*SIN(ALPL))*%2))

SQEPS=SQRTI(EPS)
WRITE (6,130} EPS,SQEPS

FORMAT {'EPSYLON=',E16.7,'SQURE ROOT EPSYLUN=',E16.7)

TALP=TAN(ALPL)}
SNALPH=SIN(ALP1)
IF (ANALTC.EWQ.1.)
DO 140 1=1,NP
Z(1)=ZBAR{I)/{SQEPS*TALP*XBAR)
Y{I)=YBAR(I)/(EPS%#TALP*XBAR)
CONTINUE
UMEGA=bSPAN/ (SQEPS*TALP%XBAR)
CONIC=HMOR/(XBAR*BSPAN*SQEPS)
TOUO=HMOR/ ( XBAR*¥EPS*TALP)
READ (5430)NNXU
INCRT=UMEGA/NNXU
READ (5,20)G0EAL
TLIMIT=0MEGA/ INCRT
WRITE{64160) INCRT,COEALYNSC,OMEGA,ILIMIT,CONIC
FORMAT (' INCRIMENT DT=',F12.6,' COEFFICIENT Al=?
4 OMEGA:'yFIZ-éy' ILIMIT.:'IK()"
IL=1+ILIMIT
DO 190 IM=1,IL
T=(IM=-1)*INCRT
IF (IMJELLIL)T=0MEGA
IF (ANALTC.EQ.1l.) GO TO 170
CALL LGR {(Z,Y,T,NP,AK,DERFD)
GO TG 180
CALL ANSLOUP (TyAK,DERFD,COFP,SQEPS,TALP,XBAR)
DERL{IM)=DERFD(1)
CONTINUE
KKKKK=0
KKKK=1
KKKI=1
KKIK=]
COEA2=0.0
CALL SCLOCK

60 T4 150

READ (5,2C) ACONTY

IF (ACONTY.EC.2.) GU TU 200
READ (5,20)
KKKK=2
KKKT=2
KKIK=2

1F12.64"

PARAMETER C=',F1i2.6)

STOREA(L),STUOREE(1),STOREA(2),STGREE(2)

UELTA=(COEAL1*ALOG{COEAL)+1.0-COEAL)/(1.0-CUOEAL)%%2

IF (COEA2.EQ.COEAL)
COEA2=CUtAL

CALL RCLOUCK (ITIME)
IF (ITIME.GT.1000) GU TQ 730

GG TO0 710

WRITE (6,210)COEALl ,DELTA
FORMAT (' VALUE OF Al =',E20.7,"' DELTA=',E18.7)
Il=1

WT(1)=0.0

NSC=",1¢

‘

ty



SUMNT(1)=0.0 EB2=-2 JETT+RHS
. BBL=T7%%241.0~2.%TT#RHS

p BBU=(TT®%2)%RHS- TT-{ INCRT/2)
p SALCULATION OF COEFFICIENTS OF POWER SIRIES SOLUTION NEAR ORIGIN APPWIL=2 . %Wl {II~1)-WT(II~2)
: 1F (APPWI1.GE.(1.0+40.75%TT)) GU TO 630
T=U.0 JK=1
IF (WNALTC.EG.1.) GO TU 220 APPWI2=1.0+0OMEGA
CALL LGR (ZyY,ToNP,AK,DERFD) 320 JK=JK+1
<0 Tu 230 IF (JK.G1.20) GO TU 430
22) CALL ANSLOP (T,AK,DERFD,COFP,SQEPS,+TALP,XBAR) CC=APPWI1**3+BB2%APPWI 1 *%2+BB1%APPWI1+BB0
239  CUNTINUE CCD=3%APPWIL%*2+2.%Bu2%APPWI1+BB1
249  Al1=CUEAL IF (UABS(APPWI2-APPWI1).LE.0.000001) GG TU 520
A2=+AK(1)}/7{{AL+1.C)/(ALx(AL-1)%%2)=((2%ALOG(AL)})/(Al-1.0)%%3)) APPWI2=APPWI1
A3=({AK([2)%AL*%2)+A1*¥3+(A2%%2/A1) APPWIl=aPPWI2-{CC/CCD)
AG=A2KR (AL %¥L-ALl*A3+A2%%2) /(ALX(1+A1))+(AL*%3)%(AK(3)})/(1+Al) IF (APPWI1.GE.{1.0+TT)) GO TU 330
il 2¥A2EX3Y/(ALRRL) 4+ 3%A2%A3) /AL IF (APPWIL.LE.WT{II-1)) GO Tu 430
AS5=37 [ (AL#%4)% (AK(4)+A3}+ (AL¥*¥242%A1+2.0) % (AI*K2+2%A23A4)/A1-(A3 G0 TO 320 s
14A2#%3 2) % {3RALX#2+8%A1+10.0)/A1*%2+ (A2%%4 )% {3#AL¥*2+10%A1+15)/ (3% 330 IF (WT{II-1).GT.{1.0+0.5%({TT-INCRT))) GU TO 630
2a1%%3) )/ {3XALEX2+4%A1+3) IF (ABS((TT-UMEGA)/OMEGA).LE.C.05) GO TC 630
ol=1.0/A1 EOMEGA=T
Br==A2/(A1%%3) WRITE (6,340) COEA1l,EOMEGA
b3=2%(A2%%2)/(A1%%5)-A3/ (Al%%4) 340 FORMAT(' COEFFICIENT Al=',F15.7y' CURVE KISES STEEPLY,CASEB,E iMES
Be=—SR{A24%3)/ (AL=%T) +5%A2%A3/ (A1 %%6)~A4/ (AL%*%5) 1A=TI=',F16.7)
Eo=14% [ A2%%6) /[AL*%9) =21 % (A2¥%2)%A3/ (AL*XB)+3¥(A3%%2)/ (AL%%T) KKKK=KKKK+1 .
L +0%A2%A4/ (ALERT)=AS/(ALX¥%6) "GO0 TG 650
250 IF (11.GE.NSC) GO TU 270 350 wIBI=WT(II-1)
I1=11+1 IK=11-1
T={(1[-1)*%INCRT CALL NEVIL (6,WZB1,0.0,INCRT,IK,WT,1ER)
WT{T L) =ALSTHAZRTRB 2+ A 3K THK I+ ALRT R4+ ASKT#%S EITALLII)=TT
SUMWT{IT)=SUMKRTLETI=1)+INCRT*¥((WTLIIY+wT(II~1)1)/2) WIYIl=wT(II-1)
EITA(TE)=BL%T+B2% (T¥#2) 4B (T#43)+Box(T#¥4) +bo% (TH%>) AINCRT= (WT{II~-1)-wWT(II-2))/2.
C JK=0
c IF QNE IS INTERESTED IN THE PRINT QUT OF ALL THE wiT) PRINI RHST=DERL(II=1J=DFERLI(II)+WIBI+1.0/ (WZBI-WT{LlI-1))=0.5%INCrT*
C QUT, ReMOVE THE C FRUM FIRST COLUMN In THE FOGLLCWING TwO CARDS 1 (1.0/(WT(ILI=1)-T)%%2)
o WRITEL (6,260)TyWT(II)ySUMWT(IT) £ ITACIT),UERL(ITY IF ({WT{II-1)-WT(II-2)).LT.0.0) AINCRT=CABS{AINCRT)
C 260 FURMAT (F10.6,4E15.6) 360 JK=JK+1
o KZ=1
c AKZ(LY=WT(II-1)
GO TG 250 WAPZY I (1)=(05%INCRT)I®{{ 1.0/ (WTLII=1)=TT)%%2)¢({1.0/(WT(1I-1)-T %=
270 I1=11+1 1 2))-DER1(II-1)+DERL(II)
T =(I1-2)*INCRT ippP=2
TT  =(II-1}%INCRT KI1Q=1
IF (wT{II-1).GT.(1.0+0.75%T}) GO TO 630 370 WZIYIl=WZYI1+AINCRT
IF (I1.GT.(1+ILIMIT)) GU TU 660 IF (WZYI1.EQ.TT) GO TU 420
IF (WTLTII-1).LT.T) GU TO 350 IF (WiZYI1.GT.TT) GO TO 490
IF (WT{II-1).EQ.TIGO TO 430 WwZBI1=w2YIl
JJ=0 : CALL NEVIL (6,WWZBI1,0.0,INCRTIKyWT,IER)
283 JJ=JJ+1 RhS=KHS1-WWZBI1=1.0/(WWZBIL1-WZYI1)})4+0.5%{WZYlL1=WT(I1-1))%({1.0/
IF (JJ.GT.{11-1)) GO 10 430 1 (WwWZBI1-WZYIL)%%2+41.0/(WZBI-WT(Il=1))*%2)
Ir {(wf{Ju).£Q.TT) GO TO 290 WAPZYI(IPP)={G.5%INCRT)/((WZYI1~TT)%%2)=RHS
IF {(wT{JJ).GT.TT) GO TO 300 380 1PP=2
ol TC 28L IF (WAPZYI{1)%¥WAPZYI(2).LT.0.0) GO TO 390
'290 BITA(IL)=(JJ-1)%*INCRT WAPZYLI(1)=WAPZYI(2)
60 0 310 AKZ{L)=wZYIl
300 EITALIIN={JQJ=2 )% INCRTHINCKRT*(TT=WT(JJ=1 )Y/ (WT{II}=WT(JJ=1)) IF (KIQ.EQ.2) GO TO 400
310 xnS=DeRI(II)=DERI{(II-1)=WT(II-1)=-1.0/(WTLII=1)=-T)~(0.5%INCRT) 60 TG 370
1 ¥{1.0/{wT(II=1)-T)%%2)40.5%(EITA(II)-EITA(II-1)})*((1.0/(TT 390 KZ=KZ+1
2 —EITALLI))I*%2)4(1.0/(T-EITACII=-1))%%2)) AK2(KZ)=WZIYIl

n ¥ - d “ .



IO

TF(DABS{AKZ(2)-AKZ(1)}.LE.0.000001) GO TO 410
KZ=1

KIQ=2

AINCRT=AINCRT/2.

W2ZYI1=AKZ (1)

GO TO 370

400

410 WIYI1I=WZYI1-{AINCRT/2.)
420 WT(II)=wZYI1
GO TO 530
430 JK=0
EFG=TT
IK=11-1
CALL NEVIL (69EFGy0.0y INCRT,IK,WT,IER)
WT(IT)=EFG

SUMWT U T} =SUMWT({II~-1)+INCRT*(WT{I])+wY(I1l-1))/2.0
IF {TT.GT.WwT{II)) GO TO 450

JKK=0
440 JKK=JKK+1
IF (WT({JXK}.GT.TT) GO TU 460
If (WT{JKK).EQ.TT) GO TO 470
GU TO 440
450 EITA(II)=TT
GO 10 530
460 EITALII)={JKK=2)%INCRI+INCRT*(TT-WT(JKK=1))/(WT{JKK)~-WT{JIKK=1))
IF (WT(IT).LTJ{TT+INCRT)) GO TO 480
GO TO 530
470 EITA(II)=(JKK=]1)*INCRT
IF (WTLIT).LTLUTT+INCRT}) GO TU 480
GO TO 530
“e0 II=11+1
T={11-2)%{NCRT
TT=(11-1)%[NCRT
IF (WT{II-1}.GT.(1.0+40.75%T)) GO TQ 630
IF {11.6T.(1+ILIMIT)) 6O TO 660
450 JK=0 )
EFG=TT
IK=11~1
CALL NEVIL (643EFGy0.0,INCRY,IK, WY, 1ER)
wI(I11)=EFG
SUMWT (LTI ) =SUMWT{ITI=1)+INCRT®(WT{II)I+WT(II=-1))/2.0
IF (EFG.GT.TT) GO TU 510
WTLII)=(SQRI(2.0)*WT(II=-1)-WT(I1-2))/({SORT(2.0)-1.0}
SUMWT(II)=SUMWT(TI=1)+INCRT*{WT(I1)+wWT(I1I=-1))/2.0
WRITE (6,500) TF,wT(11)
500 FORMAT (' PARABULIC EXTRAPOLATION IN INTERVAL AT wT=T,=',F12.6,
1E15.6)
EUMEGA=TY
WRITE (6,640) COEALl,EOMEGA
KKKK=KKKK+]
GO TO 650
510 JXK=0
GO TU 440
520 COMTINUE
WT(I1)Y=APPwWI1
520 SUMWT(II)=SUMWT(II=1)+INCRT*IWT(II}+WT(II=-1))/2
I+ Lot IS !DGTEFNSTED IN ALL THi CALLULATED SLOPES AT  EACH UF
PUINTS FOR  REFcKANCE REMUVE THE C  FROM FIRST COLUMN
In THE FOLLOWING  CARDS

sEaleoXeNeleEslelalalsleNaleliglaXelalaNalaNalaNolalaNakaNalalalalaNoalasNoaNela N alaNeNa el

IF (WT(II).EQ.TT) GO TO 590
IF (WT({I1).GT.TT) GO TO 570

IYIP=TT
IRP=wT{II])
GO TO 580
570 18P=TT
ZYI1P=EITA(II])
CALL QG6 {(LYIP,2BP,SINT,SLOPE)
GO TU 600
580 CALL Q66 (ZBP,ZYIP,SINT,SLOPE)
SLOPE=-SLUPE
EFG=ZBP
CALL NLVIL (64EFGy0.0,INCRT,11,WT,IER)
DYBYDZ=~EFG-1.0/(EFG-2LP)+SLOPE
GO TO 610
590 WRITE (64595) TI4JKsTTyWT{I1),SUMWT(II)},EITA(I]l),DERLI(LI)
595 FURMAI(14,17,F12.7,3E15.7,E30.7)
GU TO 270
600 DYBYDZ=~-WT{(II)-1.0/(WT{I])-TT)+SLOPE
610 CONTINUE
WRITE (64615) JTI19JKyTT WT(I1)ySUMWT(II),EITA(II},DYBYDZ,DERL1(I1),
1 SLOPE
615 FORMAT (14,17,F12.7,6E15.7)
IF ONE IS INTERESTED IN THE PRINT OQUT OF ALL THE W(T) PRINT
QUT, REMOVE THE C FKROM FIRST COLUMN IN THE FOLLOWING YWO CARDS
WRITE (64620) T13JKyTToWT({II),SUMWNT(IT),EITA{II),DERI{II)
620 FURMAT (14,17yFl2e7y4E15.T7)
GO T0 270
630 KKKK=KKKK+]

AA=2%{WT(II=-1)-WT(II-2))-INCRT
AB=WT(11-2)%{WT(11-2)-2.0+42%(11-2)%INCRT)
1 2.0+2%(11-3)%INCRT) -2%INCRT

AC=(TT=3) % INCRT*WT(II-1)*(WT(]I-1)-2.0)

1 (WT{I11-2)-2.0) —INCRT

“WT(II-11%{WT(]]-1)~

~{I1-2)*INCRT*WT(1]-2)%

EOMEGA= {-AB+DLSORTIAr R 2-4%AA®AC) )/ (2.0%AA)
WRITL (64,640) CUOEAL,LOMFGA

640 FORMAT (! COEFFICIENT Al='yFl6.7," EXTRAPOLATED OMEGA
=',t20.7)



-
19

650 CUNT INLE
WT(Il)=1l.0rumEGA
SUMWTI(IT)=SUMWT T I=1)+(cUMEGA=(TI-2)%INCRTI*®(WT(II)+WT(II-1})/2
IF (DABS {({EUMEGA=-OMEGA)/UMEGA).LE.G.OL) GO TU 750
STOREA(1)=COkAl
STuReE({1)=cUMcGA
IF (KKKI.0EL2) GU TO 690
IF {(KKIK.cQ.2) GO TG 630
COBAL=COEAL/2.
G 1d 200
660 CUNTINULE
OMX1=wT(I1I-1)
STOREA(2)=COEAL
STUREE(2)=1.0+0MLGA-UMX]
KKIK=z
WRITE (6,67T0)STOREA(Z),0MX]
670 FURMAT (! COEHFICIENT Al=',F15.7, ' EXTRAPOLATED WT(OMEGA
1)=2,215.7)
IF (DARSTILMXLI=11.0+0MCGA))/(1.0+40MEGA)).LELO.OL) GO TO 750
IfF (KKK].GEL2) GU TO 690
1F {KKKK.GEL2) GU TO 680
CCEAL=2%_UEAL
GO0 10 200
680 KKK]=KKK]+]
IF (KKKKK.GT.6) GO TU 700
RKKKK=KKKKK+1
COFAl1=STUREA(2)+(STUREA(L)~STOREA(2))*(STUREE(2))/ (STOKEE(Z)+
1{OMEGA-STUREE(L1)))
GO Tu 20UV
690 [F (KKKKKk ,GT.&6) GU TO 700
KKKKK=KKKKK+]
COEALI=STUREA(2)+(STOREA(L)-STOREA(2))*{STOREE(2))}/ (STOREE(Z2)+
1{OMEGA-STUREE(1)))
Gy Ty 200
700 COcAl=(STOREA(1)+STOQREA(2))/2.
OO T 200
710 WRITe (6,720) CUrAL
720 FORMAT (* A] CONVERGES TO SAME VALUE BUT
1 *'ZF15.7)
LU T T30
73C wRITE (6,740)
740 FURMAT (' ITERATIUN DID NOT CONVERGE, NEXT DATA TAKEN')
GJ TO 10
750 WT{l+ILIMIT)=1.0+0MEGA s
SUMART(1+ILIMIT)I=SUMWT(TI-1)+{(1+ILIMIT=-(I1-1))*%INCRT*{1.0+0OMEGA~-
1 wT{iil=-1})
ISTEP=1LIM]IT/20
JK=1
KK<=]
WRITE (6,760)
160 FORMAT(* wil)
1 CPLL) SHUCK SHAPE
L8P=0U.0
XKB=1,0/{C0EAl-1.0)
PRESUR=={{(3.0%XKB+4.5)%XKB+3,0)%XKB+0.5) + ((((3.0%XKB+6.0)*XKB
1 +5.0)%XKB+2.0)*XKB)*(ALCG(COEAL)) +2.%T000-2.*%0OMEGA*CGNIC

ILLL=1

OMEGA NOT SATISFIED Al=

INTEGRAL O = Z w(S) DS Px
DysuZ(CaL) DY/0Z(BGOY) ")

SHOCKS=DELTA+TOQO
CPPP=2% (SNALPH*¥2 )% (1 .0+ (EPS*(2.*%CONIC*GMEGA+PRESUKR) )
IF {NOCLCD.EQ.2) GU TO 785
IF (ANALTC.EQ.l.}) GO TU 770
AlL=18BP
CALL LGR (Z4+Y,AZL,NP,AK,DERFD)
DYBYUX={HMOR/XBAR)—(EPS*TALP)I*((3.%AK(4)*ZBP+2 . %AK(3))*ZBP+AK(.?))
1  #*Z8P%7g8P
GO TO 780
770 AZBAR=ZBP*SQEPS*TALP
DYBYDX=HMOR=(((3.%COFP(4)*AZBAR) +2.*COFP(3))*AZBAR+COFP(2) ) *AZHAR
1 *AZBAR
780 BT=ATAN(DYBYODX)
BT1l=ALP1+8BT
PSTARL{1)=CPPP*CUS(BTL)
PSTARD(1)=CPPP*SIN(BTL) ,
785 WRITE(6,890)2BPyWT(1 ),SUMWT(1 ),PRESUR,CPPP,SHCCKS
790 JK=JK+ISTEP
ILLL=1LLL+1
IF (UK.GTL(1+ILIMIT)) GO TO 910
ZBP=(JK-1)*INCRT
IF {JK.GE.ILIMIT) ZBP=0OMEGA
ES .
60 TO 80O
800 M=M+]
IF(WT(M).6T.Z28P) GU TO 810
IF (WT(M).EQ.ZBP) GU TO 820
GO TO 800
810 ZYIP=(M=-2)%INCKT+INCRT*{{ ZBP
GU TO 830
820 ZYIP=(M-1)*INCRT
830 IF (ZYIP.GT.ZBP) GU TO 840
IF (ZYIP.LQ.ZBP) 6O TO 790
CALL GG6 ( ZYIP,Z8BP,FCTLB,YINT)
CALL GG6 ( ZYIP,ZBP,SINT,SLOPE)
o0 TU 850
840 CALL QGo6 (ZBPZYIPLFCTZYI,YINT)
CALL QG6 (2BP,ZYIP,SINT,SLOPE)
SLUOPE=~SLUPE
650 PRESUR==1.0-WT{JK}#¥2-2%SUMKT(JIK) +2% ZBPE*WT (JK) +2%DELTA+YINT%
L (lWT(UR)=WT (JK=1))/INCRT)*{=1.0+1.0/{WT{JK)=-ZBP)*%2) +2.%TQUC
2 =2,%CONIC*0OMEGA
CPPP=2%(SNALPH%%2) % (1 .0+ (EPS*(2.¥CONIC*CMEGA+PRESUR}})
DYBYUL=-wT{JK)-1.0/(WT(JK)=-2ZBP)+SLGCPE
SHOCKS=DELLTA+TO0U-SUMKWT ( JK)
IF (NOCLCD.EQ.2) GO TU 840
1+ (ANALTC.EG.1.) GO TO 860
AZL=1BP
CALL LOR (2,Y,AZLyNPyAK,DERFD}
DYBYDX= (HMUOR/XBAR) - (EPS®*TALP)*{ (3. %AK(4)%2ZBP+2 . %AK(3) ) %28P+AK(2))
I *ZBP*Z8P
G TU 870
860 AIZBAR=ZBP*SQEPS%*TALP
DYBYDX=HMOR-({ (3., %COFP(4)*A/BAR) +2.*COFP{3))¥AZBAR+LUFP(2) } *A(BAR
1 *AZBAR
870 UT=ATAN(DYBYDX)
BTl=ALPL+BT
PSTARL{ILLL)=CPPP%COS(BT])

“WTAM=1) )/ (WT{H)=nT(M-1)))



OO0

PSTARDITILLL)=CPPP*SIN(BTL)

1)

890 FURMAT (FLlU.547E15.6)

IF (NUCLCD.EQ.2) GO TC 790
ARITE (6,900)0YBYDX+BT

900 FORMAT(' DYBYDX=',E16.7,' SLOPE IN RADIANS=',E15.6)

L0 TU 790

910 IF (NOCLCD.tG.2) GO TO 10

CL=PSTARLI{1)-PSTARLI(21])
CD=PSTARD(1)-PSTARD(Z21)

DO 920 IMM=2,20,2

CL=CL+4 . U*PSTARL{IMM)}+2.0%PSTARL(1+IMM)
CL=CD+4 . Q*PSTARD{IMM) +2 . U*PSTARD(1+IMM)

920 CONTINUE

CL=CL/60.0

Ch=CD/060.

CLBYCD=CL/CD

WRITE (64,930)CL,CD,CLBYCD

930 rORMAT(* LIFT COEFF. CL="4E15.64' DRAG CUEFF. CD=",E15.7,

LRAG RATIU L/D=',E15.7)
G0 Tu 10

1000 COUNTINUE

RETURN
cND

FUNCTION FCTZB(X)

REAL INCRT
DIMENS IO/ WT(405) , SUMWT (405} ,E1TA(405)

CLUBLE PRECISION WT,SUMWT,EITA

COUBLE PRECISION W5

CUMMON NT,E[TA.SUMWTyII,INCRT,T,TT,ZBP,ZYIP
XINT=INCRT

wS=X )

CALL NEVIL (6, WS 0.0 XINT TT,WT,IER)

FCTZB= (WS—IBP)* %3/ (WS~-X)¥*2

RETURN

END

FUNCTIUN FCTZYI(X)

REAL INCKT
LIMENSIUN WT1405),SUMWT (405),EITA(405)

LGUBLE PRECISION WT,SUMWT,EITA

DUUELE PRECISION WS

COMMON NT.&ITA.SUMWT,II,lNCRTyT,TT.ZBP.ZYIP
XKINT=INCRT

wS=X

CALL NEVIL {69WS 0.0y XINTS 1T, WT, IER)
FCT2ZYI=={WS-ZBP)¥%3/{WS~X}*¥2

RETURN

END

BHO WRITE(6+1890)ZEPyWT{JK) SUMWT(JK) ,PRESUR CPPP,SHLECKS ,DYBYDZyDERL (JK

LIFT/D

10
20
30

40

50

60
70

80.

90
100

110

120

130

140

150

160
170

180

SUBRUUTINE NEVIL (NyXeX1,RINT,M,W,IER)
DIMENSION FU1l8)4W(M)
DOUBLE PRECISION WyX
IER=0

IF (N=2)20,40,40
WRITE (6430)

FORKMAT ({ *NEVIL ERROR.N 2 OR 18?)
TIER=1

GO Tu 180

IF (N-18150,50,20
U={X-X1)/RINT
J=IFIX(U+0.,00001)
I=J0¢N/2.40.1

K=0

IF (M-N)160,60,60

IF (I-M+1)80,80,70
K=M-N

GO TO 100
KK=J=N/2.+1.1

IF (KK)10G,90,90
K=KK

Uu=U-K

DO 110 L=14N

Ll1=K+L

FIL)Y=W({L1)

CONTINUE

tL=1

J=N-1-LL

JJ=Jd+1

U=uu

DO 130 L=1,JJ

L2=L+1
FIL)=((U+1-L)*F(L2)~-(U+l=L=-LL)*F(L))}/LL
CONTINUE

LL=LL+1

IF (J)150,1504140
J=J-1

GO TO 120

X=F(1)

GU TO 180

WRITE (64,170) M
FORMAT ( *NEVIL ERRUR.M N.CONTINUE WITH N=M=',]2)}

N=M

T1ER=2

GO TO 10

CONTINUE

RETURN

END



[aRaNaNe!

AZ(1)=A2(2)
AL(2)=AZ2(3)

AZ{3)=AZ(4)
AZ{4)=AZ{5)
SUSRUUTINE LGR (A4B,0,1P,D,E) RZ(5)=AZ(6)
DIMENSIUN ACIP),BUIP),0(4) E(1)4AZ(6),AY(5) AZ(6)=AZ(1)
DOUBLE PRECISION AWB,DsEsAZyAY,DIM,DIML,ANUM]L ANUMZ, ANUM3 130 CONTINUE
ol1120.0 ECL)={(4.0%D(4)%C+3.,0%D(3))%C+2.0%D(2))#C+D(1)
L(2)1=0.0 Cl2)=2.0%0(2)
Ulsy=C.0 D(3)=3-0*D(3)
D(4)=0.0 D(4)=4.0%D(4)
L0 10 I=1,41P RETURN
K=l £END
IF (C  -A(K}))20,100,10 C
10 CUNTINUE C
20 1F ((K+2).G6T.IP) GO TL 80 ¢ ,
IF (K.LE.3160 TO 60 SUBROUTINE QG6 { XLyXUyFCTT,Y)
UIl=A{K)-C A=0.5%{ XL+XU)
DI2=C  -AlK-1 B=XU-XL
IF (DI2.GT.DI1) GO TO 40 C=.4662348%8
0O 30 L=1,5 Y=.08566225% [FCTT(A+CI+FCTT(A-C))
M=K+L-6 (=.3306047%8
AZIL)=A(M) Y=Y+.1803808%(FCTT(A+CLI+FCTT(A-C})
30 AY(L)=B(M) © C=.1193096%8
GO Tu 120 Y=8%(Y+,2339570% (FCTT(A+C)+FCTT(A=C)))
40 D0 50 L=1,5 RETURN
M=K+L-3 END
AZ(L)Y=A(M) c
G AY(L}=p(M) p
50 70 120 FUNCTION SINT (X)
€0 DU 70 L=1,5 REAL INCRT
‘o ﬁétt;;gft: DIMENSION WT(405),SUMWT(405) ,EITA(405)
oS UUUBLE PRECISION WT,SUMWT,EITA
o o0 0o L8 DOUBLE PRECISION WK
Y L COMMON  WT,EITAySUMWT . 114 INCRT,T,TT,28P,2YIP
M=1pel-5 XINT=INCRT
AZIL)=A(M) WK =X
0 arte) ?;2) CALL NEVIL (6,WK,0.0,XINT,I1,WT,I1ER)
100 IF (K.LE.3) GO Tu 60 3é$5§&-0/((wK—X)**z)
IFL(K+2).GE.IP) GO TO 80 Rel
L0 110 L=1,5
M=K+l -3 :
AZ(L)=A(M) b
110 AY(L)=b{M) SUBRUOUTINE ANSLUP (A,B,C,D,E,F
120 AZ(6)8A§(1)5 ) , DIMENSIUN B(Q),C(l),D(Q; 1DsE4F,G)
00 130 I=1, DUUBLE !
DIM=(AZ(1)-AZ(2))%(AZ{1)=AZ(3) )% (AZ(1)~AZ(4))*(AZ(1)-AZ(5)) t?=§fongC'5‘UV B,C
LIMI=AY(1}/DIM EZ2=E*F%(
ANUMI=AZ{2)+AZ(3)+AZ{4)+AZ(5] B{l)=E1%D(1)
ANUMZ=(AZ(2)%AL3) )~ (AZI2Y*AZ{4) )+ (AZI2)¥AZI5))+(AZ(3)%AZ(4)) BU2)=2.0%EL*D(2) %E2
L+{AZ{3I%AZ{5))+{AZ{4)*AZ{5)) BU3)=3.0%E1%D(3)%L2%¢2
ANUMZ=(AZ(2)¥AZ13)%AZ{4) )+ (AZ{2I*AZ{3I*AZ(5))+{AZ{2)%AZ(4)*AZ(5))+ bl4)}=6.0%EL1*D(4)*E2¥E2%E
1(AZ(3)#AZI4)*AZ(5)) Cl1I=((Bl4)*A+B(3))%Aa+B(2))%A+B(1)
D(1)=D(1)-{ANUM3%DIML) RETURN
DI2)=D{2)+(ANLMZ%*DIML) END

D(3}=D{3)-(ANUM1*D]IM]1)
D(4)=D(4)+DIM}



y=Y/€tan o

FIG.|I Notation
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M= 3.97
o =238
0-5—
o
0-4 _o 2.0 e)
I 03—
a
O
02—
01 —
| | | | \
02 0-4 0-6 0-8 1-0

FIG.5 Spanwise pressure distribution on circular—arc

cross-section delta wing R = 2/




B S N A N S
02 04 06 08 -0

Zlq —=
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method is based on thin-shock-layer theory and the
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beer exploited to produce z complete i1terative procedure
Tor the calculution of the pressurc distribution and shock
shape on o given wing at given flight conditions. (In
earlier work graphical interpolation was used.)

The report includes a complete set of tabulated
non=dimensional pressures and shock shapes for flat wings
wvith detached shocks for reduced aspect ratios from
0.7 to 1.99, and some sample results for wings with caret
and bi-convex cross-sections.

been exploited to produce a complete iterative procedure
for the calculation of the pressure distribution and shock
shape on a given wing at given flight conditions. (In
earlier work graphical interpolation was used.)

The report includes a complete set of tabulated
non-dimensional pressures and shock shapes for flat wings
with detached shocks for reduced aspect ratios from
0.1 to 1.99, and some sample results for wings with caret
and bi-convex cross-sections.
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The report includes a complete set of tabulated
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