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SUMMARY '

This Report is concerned with the influence on the 1lift of the flap of the
wake of the main aerofoil of a wing with a plain Fowler flap. To decide the
relative importance of the wake, its effect is compared with the influence of
the boundary layer of the flap. It is found that, for the configurations

examined in this Report, the wake effect is of secondary importance in comparison
with that of the boundary layer.

Consideration is given to various methods of approximating the wake effect,
including the conventional 'thin'-wake method. It is shown that, by correctly
positioning the singularities of the 'thin'-wake formulation, a first-order
correction to this theory for wake thickness can be rendered identically zero.

An approximation for a wake which is at a 'small' height above the flap chord is
examined. The indications of the present calculagions are that this approximation
overestimates the magnitude of the correction to the lift of the flap for the
effect of the wake. A better estimate of the wake effect appears to be obtained
if one neglects the distributed sources and vortices of the wake but allows for
the non-zero displacement flux of the wake by a point source at the shroud

trailing edge.

* Replaces RAE Technical Report 72081 - ARC 34169
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1 INTRODUCTION

Whilst a completely satisfactory theoretical solution is not yet available,
the problem of the incompressible, viscid flow around an isolated, twodimensional

aerofoil is well understood. The main features of this problem have been

L

i Spence3 and Spence and Beasleya. A

established in the papers of Preston
start would not yet seem to have been made, however, on a theory for the more
involved case of multiple aerofoils, and, in particular, for the case of aerofoils
with single-slotted flaps with which we will be concerned here. The need for

such a theory is obvious, but there are many difficulties. Not the least of

these is the determination of the first inviscid approximation. Fortunately, we
are now able to achieve this, at least to some numerical approximation, by means

of the Douglas computer programme5 due to A.M.0. Smith.

Another difficulty 1s the evaluation of the effect of the wake of the main
aerofoil on the flow around the flap. In the case of the single aerofoil the
wake lies downstream of the aerofoil. Thus we would expect that, in this case,
the wake vorticity does not exert a significant influence on, for example, the
lift of the aerofoil. The relatively good results obtained with 'the boundary-
layer camber-correction theory'z, which ignores the effect of the wake on the
lift, seem to support this view. The situation is, however, somewhat different
for slotted-flapped aerofoils. Here the wake from the aerofoil passes just
above the flap and consequently may have a significant influence on the flow
around the flap. In turn, this may affect the circulation around the complete
configuration. It might be conjectured that, because of this, the first inviscid
approximation for the velocity distribution around the flap is rather poor. In
consequence, an iterative method of calculation, which is based on the first
inviscid approx1mation3, may not converge. The difficulty of obtaining a
solution is further complicated if the thickness of the wake is not small com—
pared with the chord of the flap as is probably the case if (a) the flap chord
is small compared with the chord of the main aerofoil or (b) the incidence of

the main aerofoil is large.

A method of representing a 'thick' wake is discussed in section 3. It is
shown that, for a wake of finite thickness, the influence of the vorticity, con-
tained within the boundaries of the wake, on the external flow may be simulated
by distributions of sources and vortices along the edges of the wake., In the
conventional 'outer' approximation for thin wakes6 it is assumed that these

distributions may be placed on a suitable mean line such as the rear dividing



streamline. Approximations such as this one appear in many areas in aero-
dynamics and are employed, for example, in linearized, subsonic aerofoil

theory7 and slender-body theorys. From the many applications of these theories
1t appears that their accuracy depends not only on the slenderness ratio of the
aerofoil or body but also on the way the thickness varies along its length.
Consequently, even though a wake may be 'thin' it does not necessarily follow
that the 'thin'-wake approximation will yield accurate results. In section 3,
therefore, consideration is given to the question of the accuracy of the '"thin'-

wake method,

Since the aerofo1l wake passes just above the flap we would expect the
l1ft of the flap to be sensitive to the behaviour of this wake. Therefore we
will be mainly concerned with the lift of the flap. In order to judge the
relative importance of the aerofoil wake we will also examine the effect of the
flap boundary layer and its associated wake. We will not consider the influence
of the aerofoil boundary layer; it may be that, for some cases, this 1s an
important omission; however, in the examples examined in this Report,
approximate calculations have indicated that it is of secondary importance com~

pared with the flap boundary layer.

As with the aerofoil wake it is possible to represent the effect of the
vorticity of the flap boundary layer on the external flow field by distributions
of sources and vortices along the edge of the layer (assuming that such an edge
can be defined). In the ‘'outer' approximation for 'thin' boundary layers the
edge of the layer is supposed to ceoincide with the contour of the flap. We
propose to assume that this approximation will be adeguate for our purposes.
Apart from this approximation, we make a number of other approximations involving
the geometry of the flap and the main aerofoil. Although the accuracy of some of
these approximations is considered in section 2 the main justificaticu for their
use ig that the object of this Report is to perform a comparative assessment of
the various viscous effects as described above. Therefore absoclute accuracy in
the final answers for the various corrections to the lift of the flap is probably
not important. On the other hand, it was hoped that the simplicity of the
present method would allow some physical insight into a rather complicated flow

situation.

In the calculations to be discussed here we have followed Preston2 in
employing, where possible, experimentally derived results for the development of

the wake of the main aerofoil and the boundary layer of the flap. These results

)
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were obtained by Foster, Irwin and Wllliams9 from their extensive experiments
on a twodimensional aerofoil with a single~slotted plain (Fowler) flap (Fig.l).
We adopt Preston's approach in order to remove, as far as possible, any
uncertainties resulting from the use of an approximate theoretical method for
completing the viscous part of the calculation. Throughout this analysis, and
in conformity with the experiments of Foster, et al., the flow is considered

twodimensional and incompressible.

Finally, we note that, in these introductory remarks, we have regarded the
wake of the main gerofeil and the flap boundary layer as separate and distinct
items of the flow field. As the results of Foster, et al. show, this 1s
certainly not a valid concept if the flap gap is sufficiently small compared
with the flap chord. We will, however, examine configurations for which it is

possible to distinguish between the two vorticity layers.

2 INFLUENCE OF FLAP BOUNDARY LAYER ON FLAP LIFT

2.1 Problem formulation

We begin the analysis of this section with the assumption that it is
possible to define an edge to the flap boundary layer and its associated wake.
Additionally, we assume that, for the purpose of examining the flow in the
finite part of the flow field, the flap wake may be truncated at some station a
large but finite distance downstream of the flap. It is convenient to divide
the vorticity contained within this finite region, which we term I, into

three components as follows:

{(a) the vorticity that is there according to the first inviscid (or Kutta)

approximation for the flow around the aerofoil and the flap;

(b} the additional verticity resulting from the existence of a boundary

layer on the flap together with the flap wake;

(c} an image distribution of vorticity that 1s required to ensure that
the flap remains a streamline in the presence of the vorticity (external

to I) of the boundary layer and the wake of the main aerofoil.

In this section we consider the velocities induced in the region external
to I by the second of these components. We do this by subtracting from the
velocities induced by the vorticity in I the velocities induced by the first
and third vorticity components. This result can be written down in the form of
an area integral over I. However, in Appendix A it is shown how this can be

reduced to a line integration around the contour bounding I, namely c, by



means of Green's second formulalo. There is obtained for the stream function
induced by the vorticity component (b) at a point P 1in the region external

to &

aay) 3 (Ay,)
iy, - 5*_[{-3_3 m”(j)_gg_f} a 0
C

Here AwB = the incremental stream function due to the presence of a boundary
layer on the flap, and, by reference to Fig.2, we see that
% = the distance, taken positive in the clockwise direction, around the

contour ¢

r = the vector joining P and the element df on ¢, the vector being
taken positive in the direction away from P
L= the normal vector outward from region I

T = the included angle between the £ direction and the negative T

direction

—

1+

o
I

positive or negative alternatives taken depending as f passes,

respectively, out of or into region I at the element df.

It is interesting to comnsider the physical significance of equation (1).
Examination of the stream functions of potential singularities7 shows that
equation (1) is an expression for the stream function of distributions of
vortices and sources of local strengths B(AwB)/Bn and a(awB)/az respectively.
The role of these distributions is to provide the necessary changes in the normal
and tangential velocities at the edges of the flap boundary layer and the flap

wake that are usually associated with these vorticity lavers.

In the conventional 'outer' approximation for thin boundary layers the
contour c¢ 1is assumed to coincide with the flap surface and either side of the
rear dividing streamline of the flap. That is to say the sources and vortices
are transferred from the edges of the boundary layer or wake to the flap surface
or rear dividing streamline. This approach is particularly attractive for the
case of an isolated aerofoil since the integral of equation (1) may then be
evaluated without difficulty by employing conformal transformation methods (see,
e.g. Ref.3). An even greater simplification avails itself if the flap is of
small thickness/chord ratio and camber. In this case it appears reasonable to
assume that the part of contour ¢ immediately adjacent to the flap may be
transferred to either side of the flap chord. We propose to use this approxima-
tion on the basis that, in most practical applications, (a) the flap boundary

layer is thin compared with the flap chord and (b) both the thickness/chord ratio

™
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and the camber of the flap, examined by Foster, et aZ.g, are small. The same
approximation is employed in the linearized theory of thin aerofoilsll; this
theory fails near the leading edge of a' round-nosed aerofoil. Weber12 has given
a simple technique for correctiné the theory in this region. A similar correc-
tion might be attempted in the present case, but this has not been done for the
reason that we are mainly concerned here with overall, rather than detailed,

effects of the flap boundary layer.

The analysis may be simplified further by making the assumption that the
rear dividing streamline lies on the downstream extension of the flap chord.
This assumption is clearly justified for the case of small:flap angles. For
moderate flap angles it is probably justifiable on the grounds that the rear
dividing streamline approximates to the flap-chord extension near to the flap.
Only on this part of the rear dividing streamline (i.e. the part close to the
flap trailing edge) would we expect the source and vortex strengths to be
significant, an expectation that is confirmed for isolated aerofoils by the

experimental results of Preston, et a1.13’14.

The above assumptions imply that we use the following approximations in

g = [f]dx'

2O = [Tlachsaa

equation (1):

- x? + 22}5 ; :

[g] N [j] can” | (2/x - x;ﬁ :

Here (x,z) 1is the rectangular cartesian coordinate system with the x axis

=
]

=]
|

along the flap chord and x = 0 at the flap leading edge (Fig.l1), and the prime
denotes the coordinates of the‘inducing element. The alternatives [g] and [ﬁ]

are taken depending as the inducing element is adjacent to the upper or lower

surfaces of the flap. Thus, using the fact that

(a(AwB)/az)c = dayp) /ag

we may write in place of equation (1)

2]

_ NI A T [ S W A \
(AwB)z = 57 J. ANF,B In ({ﬁx x')" + 2z } )dx + 5 AqF,B tan — dx
0 0

TN
] B'L , ,
'5[“7?*dx - @)
0
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Here AYF,B and AqF,B are incremental vortex and source strengths defined by
-
3
Mpp © ( (2:]'3)) _(9(‘:‘21'3))
i u L
b (3)
B o d(Aw?)U . d(A¢§)L
F,B dx dx
J

where suffix F,B refers to the singularities that are {(a) associated with the
flap boundary layer and the flap wake and (b) on the flap chord and its down-
stream extension. Suffixes U and L refer toc the upper and lower edges of
the vorticity layer Z. It should also be noted that the large finite upper
limit of the x'-wise integration, implied by the discussion leading to

equation (1), has been replaced by infinity in equation (2).

In general
By # (g,

owing to the requirement that the main aercfoil is a streamline of the real
flow. This implies an additional distribution of vorticity within the main
aerofoil teo nullify the normal component of velocity induced at the aerofoil

contour by the boundary-layer vorticity within I. We can write Instead
Y (T IR (3" J 4)

where suffix A refers to the vorticity within the main aerofoil,

The above -mentioned requirement implies that AwB is i1nvariant around the
contour of the main aerofoil. Therefore, by analogy with equation (1), we may
write

(AwB)A - 5y Inr dt , (5)

aerofoil

where t 1is the direction tangential to the aerofoil contour, taken positive in

the clockwise direction, and v 1is the normal cutward from the aerofocil.

-

-
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Observing that the main aerofoil tested by Foster, et al.g is of small
thickness/chord ratio and camber we may approximate equation (5) by transferring
the surface vortex distribution to the chord of the main aerofoil. Thus we

obtain the resu%t

c
A
W), = 5= f by 5 1 (fe - en? + PH)ae ®)
0

where ) is the chord of the main aerofoil and (&,f) 1is the rectangular,
cartesian coordinate system having its origin at the leading edge of the main

aerofoil, with £ along the chord (Fig.l). Additionally
2(BUg)y  (3(bbg)

ap T ("a_c'_ (—é‘z‘* .

+ -

suffixes + and -, respectively, denoting the upper and lower surfaces of the
main aerofoil, and suffix A,B referring to the singularities, on the chord of

the main aerofeil, that are due to the flap boundary layer and the flap wake.

Since A¢B(E,§) is invariant around the contour of the main aerofeil and

as the main aerofoil is considered to be thin and of small camber we may write

a constant. Therefore, upon combining equations (2), (4), (6) and (7) and by
referring to the geometry of the main aerofoil and the flap shown in Fig.l, we

obtain the result

CA

!
¢ = o Ma.B

0

In (Jg - &'|)dg"

+ E% j. AYF,B 1n ({[(E " Cy + E) cog B ~ g sin B - x']2
0

+ (g - cy ¥ ¥) sin B + g cos B]z}i) dx'

/ o u .
1 f -1 (¢ - e, + £) sin B + g cos B
+ — Aq tan dx'
2m F.B (E -c, + E) cos B - g sin B - x'
0 A
BFTEN
_1 f 1y dx’ (8)
2 ax! :
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where g 1is the flap gap, 7 the flap overlap and £ 1is the angle between the
chord of the main aerofoil and the flap chord (or simply the flap angle) as
illustrated in Fig.l.

The arbitrary constant C may be removed from equation (8) simply by
differentiating both sides of this expression with respect to £. This
differentiation may be carried through the integral signs of the second and third
integrals. We may also do this with the first integral provided that the result-
ing integral is defined according to the Cauchy principal value. Hence we find

that

- L .
0= 3 j. YA BE ="
0

A
B {x'—(E—cA+B,’) cos B+ g sin B}2+{(E—cA+?f) sin B +g cos 8}2

{ (¢ - c, + E - x' cos R)dx'
f A
0

(g + x' sin B)dx'

3
- — Aq .
2 0 FB{ "(E-c +2) cos B+ g sin B} {(E'cA+?f) sin B+ g cos 5}2

ceee (9

Equation (9) is an integral equation in the unknowns and

bYp,B> e
AqF B Hence, 1n order to determine AYF B? which will be required for the

] 3
evaluation of the influence of the flap boundary layer on the flap lift, we
require two other relationships. The first of these expressions may be obtained

by noting that
Wy p = W= duy = vy (10)

where ¢ 1s the stream function of the real flow, A¢w is the increment in

stream function associated with the presence of the wake of the main aerofoil and

suffix I refers to the first inviscid approximation.

Using equation (10) we are able to define the 'displacement fluxes'

r

[
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6U
vy o= - (AwB)U j. {uI(z) + Auw(z) - u(z)}dzﬂ
OGL L s (1)
w{ = (AWB)L .[ fuI(z) + Auw(z) - u(z)}dzJ
0

where § is the thickness of the flap boundary layer or the distance between
the edge of the wake of the flap and the rear dividing streamline of the flap;
and u 1is the x-wise velocity in the boundary layer or the wake of the flap.

This definition differs from the usual definition of displacement fluxz,

8
pE = f {u (z) - u(z)dz ,
0
in recognition of the faect that the aerofoil wake effectively alters the inviseid
flow in the boundary layer. For the present we will suppose that ¢E’L may be
determined either from the experimental results of Foster, et al.  or by

theoretical means.

Upon combining equations (3) and (11} we have
Mg, = qar WU} . (12)
F,B dx' U L

This is the first of the relationships required to complete the solution for
AYF,B' It is evidently an explicit expression for AqF,B' The second relation-
ship is derived by observing that equation (11) may be regarded as a boundary
condition for AwB at 2z = *0, 1In particular, if we consider the boundary con-
dition at z = +0 (i.e. at the edge of the boundary layer and the wake of the
flap upper surface) we obtain, byicombining equations (2), (4), (6) and (11) and

by referring again to the geometry of Fig.l, the result
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[
A
- R (x) = 'f; f 8, .8 1n({(cA -Y+xcosB-£07+ (g+ xsin B>2}é)d€'
0

o0
—_— - ! 1
* 5y .[ AYF,B In (|x - x'|)dx
0

1. -1 z '

+ T lim f AqF,B tan (x_-_;r) dx
z>0

0

Fody,)

L B g

5 .[ o dx' . (13)

0

Here, it will be seen, we have placed z equal to zero in the integrands of

the first two integrals rather than evaluating the integrals with z non-zero

I

and then taking the limit as =z tends to zero. This is permissible since the
respective integrals are evidently continuous functions of z near z = 0.
The same is, however, not the case with the third integral; and here we have

adopted the limiting procedure.

We find it convenient to differentiate both sides of equation (13) with
respect to Xx. As with equation (8) the differentiation is carried through
the integral sign. This is permissible for the first and third integrals and
1s allowed in the case of the second integral provided that the Cauchy

principal value of the integral is understood. Thus we have

Cy n
dy* (c, =2 -E&") cos B+ gaseinf + x
- —.l—J [ -—l_ A-Y A dE'
dx By B e, - T e xcos 8- g% 4 (g + x sin 8)
i dx'
X f AYF,B x - x'
0 »
I 4 ' -
o lim [ AqF,B ) 7 dx . (14) ¥
0 0 (x - x + z

The last integral of this expression is of the type evaluated in Appendix B.
Referring to equations (B-1) and (B-2) we find that, if b4p 5 is analytic in
3

the interval of integration,
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o0

4q
—llmquFB zz de' = —-—g-?--Ii . O<xg=
0 ST x - + 2 .

0

Hence, by combining this expression with equations (12} and (14), we have

dg'

c .
dw* dw* I .[A' (cA -7 - £') cos B + g sin B + x
2 dx dx ) = or A

C

(cA - E + x cos B - E')z + (g + x sin B)
i r x!
+.5_ AYF Bx - x' (15)
0

It is interesting to observe that, for a flap of small thickness/chord
ratio and camber with a 'thin' boundary layer, equation (15) implies that the
boundary layer effectively displaces the flap camber line and the rear dividing

streamline of the flap in the 2z direction by the amount
x — gk

where &% = w*/uI(O).

In early work on isolated aerofoils2 ne attempt was made to satisfy the
equivalent of equation (15) for points in the wake. Instead, it was assumed
that the incremental vortex strength is zero there. Later work4 indicated that
this assumption is incorrect, in general. Since (wf - wﬁ) is not readily
found, either experimentally or theoretically, in the wake of the flap,1t is

natural to try to estimate downstream of the flap. We defer a detailed

A
YF,B
discussion on this aspect of the problem until section 3, wherein we consider

the influence of the wake of the main aerofoil.

Eliminating AqF B from equation (9) by means of equation (12) we find
>
that the resulting equation plus equation (15) represent two simultaneous

integral equations in the unknowns and AYA B The problem of reducing
L

A
Tr,B
these equations to quadratures would seem to be very difficult. In the next
section, therefore, we give consideration to an approximate method of achieving

a solution.
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2.2 Approximate solution of integral equations o

9 . .
The maximum value of B tested by Foster, et al.” was 24°. While this
angle is not 'small' in the accepted sense we will examine the possibility of .
approximating the two integral equations by placing B equal to zero therein.

Thus, upon making this approximation, we obtain, in place of equation (15}, the

expression
c
dyx  dyx A c, - £ +x - g
L. __H) - L Ay A dag'
2\ dx dx 27 A,B (c Y x - £ . g2
0 A
1 dx'
* o f AYF,B x - x' (16)
0

An inspection of the integrand of the first integral of equation (15)
seems to show that the accuracy of this approximation may depend on the nature
of the function AYA B(E'). Therefore we examine the effect of approximating y
]

the integral

[+

(CA - % - E'Y) cos B + g sin B + x

dg'

A
3!
I = - Ay
! 27 0 A,B (cA -7 + x cos B - E')z + (g + x sin B)

for the twe vortex distributions
. = - rt ' i
AYA,B = ; AYA,B 2[(CA £")/g'] .

These distributions will be recognized as the constant-load distribution and the
flat-plate loading of thin aerofoil theory. The integration is routine in the

case of the first distribution and there is obtained

~

I(l) _ _ 1| cos B 1n {} - X co8 3}2 + {g + x sin 3}2

| 2n 2 (¥ - ¢

A " X cos 8}2 + {g + x sin 8}2

vl
a, 2 - c¢c, - x cos B
s -1{% = x cos BY _ -1 A
sin B |:tan (-—-—-—-—-—-——--———g ——-e B) tan ( e ¥ % sin B ):| , (17

™
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where the raised suffix (1) refers to the first distribution. The approximate
(1)
1

in equation (17), reads:

version of I for small g8, which is obtained by placing B equal to zero

v 2 2
I(]) = - __]_ 1n {& = x}" + ¢ , (B = 0)
1 47 yy 2 2
{2 - c, = x}" + g

The integration required to obtain Ifz) is rather more difficult;
instead we note that Ifz) is the velocity induced in the negative 2z direction
at the flap chord by the distribution Ayif% on the slit representing the chord
of the main aerofoil. Therefore we seek a complex velocity function

VED) = v(E,8) - v (5,0)

(where v_ and v, are velocity components in the £ and ¢ directions) that

g

(a) is regular in the region external to the aerofoil slit, (b) vanishes

infinitely far from the slit, and {¢) yields the correct tangential velocity at

the slit
v @t = s/ = 2l -t .

The required complex velocity is found by inspection to be given by

£+ ig - c, J
V(g,g) = 1(1 B e »
the positive branch of the square root being understood. Upon resolving this

expression into real and imaginary parts we obtain

:

{(62 st -t c2;2}§ G RN
v.(E,z) = ¢+ A A A ;
E, - 2 2 »
287 + 7))
)

N e L

v (E,L) = -1 - A A A
g ? 2 2
2087 + )
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Here the + and -~ alternatives are taken depending as { 1s positive or
negative. Resolving these velocity components into the negative z direction
and substituting the values of £ and [ appropriate to the flap chord into

the resulting expression we obtain finally

z
(2) {(gi * ;]%‘ 3 CAgF)z * ci;é}i * (E'f" * ﬁ]:?: - cpby
: = 1 - 5 2 cos B
2(Ep + 5p)
1
2 2 2 2.2,) 2 2
{ep *+ g — cp8p)” + CACF}Z - (Ep * &g = o)

sin B s (18)

2055 + )

N
where £_=¢, - & + x cos B; = —g~-x sin B

F - Ca ‘g

and use has been made of the fact that, for the flap configurations under con-

sideration, ¢_ 1is negative.

F
The results calculated for Il are plotted against x/cA in Fig.3 for

the two vortex distributions, the values of B 00(100)30D and the two con-
figurations g/c = 0.06, £/c = 0; g/c = 0.02, R/C = 0. These con-
figurations are typical of conflguratlons that have been tested by Foster, et al.,
their model also had a flap chord to main aerofoil chord ratio of approximately

0.5.

We observe that, for B less than 300, the differences between the
approximate values (B = 0) and the exact values are small, being on an average
less than 5% in the interval of x/cA between 0 and 0.8, We conclude, there-
fore, that the approximation leading to equation (16) would seem to be

acceptable, at least according to the evidence of the present calculations.

The question naturally arises whether a similar approximation may be
applied to the integral equation (9). The approximate equivalent of this

expression for small B may be written as follows:

oo

Cy
1 _dgt 1 f A '
= Ay - Ay dx
2% .f ABE - £" * 2 F,B Y12 2
0 -8 i 0 {x' - (£ - cy ¥ l)} + g
: j’ A : y——p 4%’
4
27 0 F,B {X' - (E - CA + 9‘)} + g

cees (19)

[
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Two integrals are involved in this approximation; the first represents
the downwash induced at the chord of the main aereofoil by the vortices on the
x axis, and the second is the source term. We will examine the implications
of the approximation to the source term later; in the meantime we examine the

accuracy of the approximation to the vortex term by considering the integral

=]

1
T [ Mg B
0

(g - Cy + E - x' cos B)dx'

{x' '(E-CA+??:) cos B+g sin B}2+{(E-c +?LJ) s8in B+ g cos 8}2

A

and the vortex distributions

O {1 ; 0<x<ep

F,B o 3 cp XL

, 2 2[(cF - x')/x']i ; OQxScF

YF,B - ]
0 cF'< X

where cp is the chord of the flap. These distributions are similar to those
used previously except that they are placed on the flap chord instead of the
chord of the main aerofoil, Note that we have not included the possible effect
of the vortices of the wake of the flap. However, on the evidence of work by
Spence and Beasleya, who gave a method for determining the strength of these

vortices, this omission would not seem to be of particular consequence.

For the first distribution we obtain

{CF -(E-cA+r§') cos B +g sin B}2+ {(E—cAﬁf) sin B +g cos 6}2

I51) = -1 |cos B,

am 2 {(E-CA;}:) cos B- g sin B}2+ {(E;-—cA+?i) sin B+ g cos 3}2

e, - (E-¢, + E) cos B + g sin B

=1 F A

(¢ - c, * E) sin B + g cos B

- sin B | tan

-1 (¢ - cy * E) cos B - g sin B

+ tan o
(£ - cy + £) sin B + g cos B
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whilst for the second distribution, by employing the technique used to determine

Ifz), we find that

2 2 2 2 2,1 2 2 }
(2) T R N SR e Y
I = 1 - cos R
2 2(x2 + z2)
A A
2 2 2 2 2,4 2 2 _ !
{(xA +z, chA) + CFZA} (xA t oz, chA) ]
+ 5 5 sin B . (20)
2(xA + zA)
Here X, = £ - c, * E) cos B - g sin B;
u .
2y = (g - Cy + &) sin B + g cos B
and the plus and minus alternatives are taken depending on whether N is
greater than or less than zero, respectively.
Results for Iél) and 152) are shown in Fig.4 where they are plotted
against E/CA, for cF/cA = 0.5 and for the two gap and overlap cases con=-

sidered previously. Evidently, the approximate results (8 = 0) are in good

. o , .
agreement with the exact results for B less than 30 except in a narrow region

adjacent to the trailing edge of the main aerofoil. Here the error rises to as

much as 50% for @ = 30°. The reason for this can be found by expanding I§2)

in powers of 8. If this straightforward, though lengthy, process is carried

out it is found that, if g/cA is small and cF/cA is of order unity, the

error in the approximate result is O(Bz,gB/CA) except where

0 - ¢, +2) < 0(g) .

A

In this region the error becomes O0(B): clearly, for a 8 of 300, this 1is

considerable. On the other hand, as this error cccurs only over a region of

(2)
2

width 0(g) the error in the mean value of I along the chord of the main

aerofoil (i.e. the incidence induced at the main aerofoil by the vortex distri-

bution AY(Z)) is O(Bz,gB/c ). The same error is found for the effective
F,B A )

F,B

therefore, that, for small g/cA, less than 0.1 say, and small B (less than

change in the camber induced by Ay at the main aerofoil, We assert,

30%) the small-angle approximation for I, will be suitable in the determina-

2
tion of AYA B and AYF 5
] ]

e

(«
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Equations (16) and (19) are much simpler than the original integral
equations (9) and (15). Even so, simultaneous, analytical inversions of the
simplified equations would appear not to be possible at present. However, we

have already imposed the condition that g/c, 1is small, which is conventionally

. . v A
the case, and we note that, in practice, 2/(:A

that we may place both g and I3 equal to zero in equatioms (16) and (19). We

9
18 small®, Therefore we assume

then find that, with

= - %
Fo= -9 \
N - “
rar 1 e 1 y _dx’
2dx 27 AYA,B(E ) Ch + X - E * 2% AYF,B(x ) x - x'
0 0
cy - } - (21)
- L ny 481 [ ' dx'
0 = % [ M) Tt o | AYF,B(x ) £ c) - %
3] o J
Using the transformations
= - t - t o
x = £ cy 3 X E cA {22)
in equations (21) we obtain the expressions
[+] , -
ldr _ I ny 46, w
2 dE = 2,", f AY,B(E ) E _ E' ] CA gg <
0
, >, (23)
= 1 ' e’
0 = a .[ ﬂY,B(E ) £ - £' 0géE <CA ,
0 -
AYA,B(E) ; 0<E<e,;

where Ay _(§) =
B
’ byp glE = ¢ 5 ¢ <8<
>

Equations (23) may be written in the more concise form

I dF 1 ry 48" »
EHEH(E“CA)-zanY’B(E)E_Ea ; 0<E<e= (24)
0
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with H(§ - cA) the Heaviside unit step function defined by

0 ; £ <ZcA
H(E - cA) = .
1 I3 2=cA

We observe that the combined effect of this approximation and the small-
angle approximation is to remove the source integral from equation (9). This
1s equivalent to the assumption that the effect of the sources, of the x axis,
on vg(E,O) is negligible. Whilst it is difficult to justify this assumption

/formally, except for very small g/cA, E/c and £, calculations of the

velocity fields of the source distributionsAfor the boundary layers measured by
Foster, et aZ.9 indicate that it 1s well-founded. Typically, one finds that
the sources contribute 0.001 to the mean value of VC(E,O)/V°° along the chord
of the main aerofoil, V_ being the speed of the uniform flow at infinity.

As may be inferred from equation (24) this means that the error in AY,B/Voo

obtained by neglecting the source integral is of the order of 0.001.

The model of the sources and vortices that is implied by equation (24) is

shown 1n Fig.5.

To assess the likely effect of the approximation for small g/cA on the

vortex 1ntegrals we examine Ifz) (equation (18)) and I§2> (equation (20)),
these being the relevant integrals evaluated for the 'flat-plate' loading.

§2) against x/e¢, and 152)

A
both cases, }:/cA equal to zero and B zero (corresponding to the small-angle

Fig.6 shows plots of 1 against g/cA, with, in

approximation). For all the cases conmsidered c¢_/c¢, 1is taken as 0.5. It will

(2) (2 T A
be seen that the effect on Il and I2 of increasing g/cA from 0.01 to
0.06 is very small except in the immediate neighbourhood of the flap gap. 1In
this region the differences between the various curves for 152) are large,

although the differences are not as serious in the case of Ifz). The reason

for these large errors in the small-gap approximation for Iéz) can be found

by normalizing all lengths in equation (20) by ¢, and then expanding this

A

expression formally in powers of g/c Upon doing this it is readily found

A
that
2

1 2
) } /
ORI _(x ;F/CA) | +_;_{ | . 2<cF cy) - 12}(5)
2 ’8=0 (I = Xegle,) (= xefedt xPINC

4

+0[(g/cA) , 8le, +0

u
where X = E/cA -1 + R/cA.
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Thus we fiqﬁ that the error in the small-gap approximation for (Iéz))8=0 is
Ol(g/cA)Z] ‘except in a region close to the flap gap where the approximation
evidently fails. This is, however, a localized failure of the approximation
and, for small flap gaps, it is unlikely that it will seriously affect the
validity of the method as a means of determining the correction to the lift of
the flap. We also cbserve that the failure of the present approximation to
repregent the gap flow must be considered in relation to the use here of the

'thin'-aerofoil solution which also fails at the leading edge of the flap.

A similar difficulty is found with the approximation for small overlap.

(

In this case, however, (122))B=0 is found to be in error by terms of order
'E/cA in the range of validity of the approximation. The present method is
therefore restricted, it seems, to rather small E/cA. On the other hand,
Foster, et al.g found from both inviscid calculations and experiment that the
flap lift is relatively insensitive to changes in EICA. It seems possible,
therefore, that the small overlap approximation is quite accurate even for

values of E/c which may not be considered small.

A

It is convenient to rewrite equation (24) as

CE =]

1dF - = L —de' .1 48"
FEHEE - ) = g | v @) e e f oY 6" T
0 Cg
eess (25)

here c¢_ = + .
wher E cA cF

The second integral of equation (25) represents the contribution of the wake of
the flap; we propose examining the wake vortex effect, in connection with a -
study of the wake of the main aerofoil, in section 3. For the time being

therefore we will suppose that
M’B(E) = 0 ; g <ESe . (26)

The second integral of equation (25) then vanishes and the resulting integral

. . . 1
equation may be inverted to give the result 3 '
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} }

(CE B ‘5) fE( £t ) dF ag" B
E - ) G - o) e \

24|

Ay B(E) =

where B is an arbitrary constant, Hence it appears that the solution for

AY,B is not unique. Nevertheless, uniqueness can be assured, firstly, by
inferring from equation (3) that AYF,B is a finite quantity, referring, as it
does, to velocities induced in the flow field by the flap boundary layer.
Secondly, we observe that, according to WeberlS, provided that dF/df is
analytic in the interval cA=< £ = Cps the integral term in the above expression
is identically zero for £ = c¢_,. Physical considerations suggest that dF/d§

E
satisfies this proviso; hence the two conditions demand that B 1is zero.

()

2.3 Effect of flap boundary layer on flap lift

Therefore we have

} B

; }
g’ dF v dg'
f (°E - E.) v HE' - ) gr= - (27)
0

|-

AY,B(E) =

The 1lift on the flap may be written as the line iIntegral

LF = cos (B + a) f pdx , (28)
flap

where suffix flap refers to integration around the contour of the flap in the

anti-clockwise direction and o 1is the incidence of the main aerofoil.

According to Prandtl's boundary-layer theory]1 the rise in static pressure
across a boundary layer on an essentially uncurved surface is of second order in
6/(:F compared with pVi. Consequently, for a sufficiently 'thin' boundary
layer this pressure rise can be neglected in comparison with the change in static
pressure at the edge of the boundary layer due to the vorticity of the boundary
layer, which change is pViO(G/cF). Near to the trailing edge of the flap the
flow is curved, and a significant variation in the static pressure across the
boundary layer might be expected there. However, measurements made by Foster16
indicate that, for the configurations to be examined here (section 5), this
change 1n static pressure is, in fact, slight compared with the boundary-layer

effect mentioned above. Consequently, we may write in place of equation (28)

®

13

.
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ch -
cos (B + a) f (PL = Pu)dx s,

L, =
- 0 *
°F 2 2 2 2
cwemaeo [0 (@) () ()0 o
0 U U - L L

from Bernoulli's equation.

In the '"thin'-aerofeil theory, on which the present method is based, it is
2
U,L

in comparison with (aw/az)ﬁ L and to
]
replace (am/az)u L by (3y/3z) (x,x0). Weberl2 shows that these approximations
]

usual to neglect the terms (3y/dx)
fail near the leading edge of an isolated 'thin' aerofoil and she gives a factor
for correcting the 'thin'-aerofoil result. A similar factor, which took into
account the proximity of the main aerofoil, could perhaps be devised for the
present case. This is, however, a localized effect which should not significantly
affect the correction to the flap lift due to either the flap boundary layer or
the wake of the main aerofoil. Hence, using these approximations in equation (29)

and noting that
b= Yt A¢w APy

we obtain an expression which, after expansion, becomes

C
.[F o0\ 2%, 3 (8v,)
L, = ip cos (B + o) (E—) (x,+0) + 2 TR (x,+0) (T (x,+0)
0
3 Ay, )
+ “EEE' (x,+0))

3 (8by) 2 (o) 2 (Avy) Y 2 (8 V2
+ 2 (%,40) —5— (x,40) + (-—5—2“—' (x,+0) +(—_az_) (x,+0)

2
3y P alay) 3 (ay, )
- (51) (*,70) = 2 3= (x,-0) (—TZB— (x,70) + —— (x,—O))
a(awB) / 3 (ay, ) 3 (ayg) 2 a(Aww) 2
-2 7 (/X,"O) BETRE (x,-0) ‘(——a"z——) (x,-0) _(__a_z_) (x,-0) } dx
Vs

eees (30)
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Thus, ignoring the squares and products of the correction terms, which we
anticipate are small compared with the first-order correction terms, we obtain

for the correction to the flap lift due to the flap boundary layer
CF
[ 3Py 3(A¢B) BWI B(AwB)
ALF,B = p cos (B +a) 'r'e (x,+0) 57 (x,+0)-3;— (x,-0) 57 (x,-0)}dx
0
(31)

To evaluate this expression we need to know AwB; this we find by
employing equations (2), (4) and (6) and by referring to the geometry of Fig.l.
Thus we have

c
A
AwB(x,z) = -g; j' AYA,B 1n ({(cA -%+xcos B+ zsing - E')z
0]

+ (g+ xsin B - z cos B)z}£) dag!

I _ 2 2,3
* s j. AYF,B In ({(x x')" + z } ) dx’
0
1 -1 z )
+ 77 f AqF,B tan (x - x') dx
0

Differentiating this expression with respect to 2z, and noting that the

differentiation may be carried through the integral signs, we find that

[t

‘.
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sin B (cA - E + xcos B+ zsinpg - £")

c
A
a(AwB) 1 - cos B (g + xsin B - z cos B) '
Taz BT ] g 7 7 | %
0 ’ (cA ~ L +xcos B+zsinB-E")
+ (g + x gin B - z cos B)
+ L Ay Z dx'
2n F,B 2 2
0 (x - x")" + 2
1 f x - x'
+ — Aq dx' .
2m d F,B (x - x')2 + z2

Hence, by referring to equations (B-1) and (B-2), we obtain the expression

c
3(ay.,) A sin B (c -T+x cos B-£') -cos B (g+ x sin B)
—E 50y = o | sy, A ' — ag
z i 0 (cA - L+ xcosB-E")" 4+ (g+ x sin B)
B 1 x'
r —5= ‘2"[ qFBx—x s D<o | (32)
0

As before, we might attempt to approximate this expression for small
B, g/cA and %/CA- We note that, as B and g/cA tend to zero, the first
term on the right-hand side vanishes. On the other hand, for a B of greater
than 200, the error obtained in the flap lift by neglecting this term could be
significant. Therefore, whilst placing g and 7 equal to zero, as before,

we retain terms of order B:; so that we have

C
A
(AY,) c, = &' Ay
B UNPPSE  W, s s JTE
dz 2m A,B 1We 2
0 (¢, +x - ¢&")
1 dx'
* 2 _/’ bp p i = - (33)
0

Combining equation (33) with equation (31) we are then in a position to

obtain the correction of the flap boundary layer to the flap lift coefficient
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SLp g
L 2 ?
F,B émecO

AC

where <o is the basic chord of the configuration. Since AYA B
H]

are known from equation (27) and AqF g can be determined from equation (12)
3

and AYF B
b ]

it follows that, provided (3¢_/5z)(x,*0) are known, AC may be evaluated.
P I

Le,p
In fact, to the order of our approximation (awllaz)(x,iﬂ) are the speeds of
the flows at the upper and lower surfaces of the flap according to the first
inviscid approximation. These speeds can be obtained from the Douglas numerical
methods; and this has been done for the configurations to be studied here by

Fosterlﬁ.

3 INFLUENCE OF WAKE OF MAIN AEROFOIL

In this section we consider the influence of the wake of the main aerofoil
on the lift of the flap. The aim is to provide information that will help us to
answer two questions. Firstly, how large is this effect in comparison with that
due to the flap boundary layer? Secondly, is the conventional 'outer' approxima-
tion6 for a 'thin' wake adequate as a means of representing this type of wake?
Clearly, the answer to the first question will decide how much emphasis needs to
be placed on the second question; since, if the wake effect is small compared
with other viscous effects, an approximate representation of the wake of the

main aercfoil may be acceptable.

The method employed in this section to satisfy the boundary conditions of
the flap and the main aerofoil is essentially the same as used in section 2.2
for the flap boundary layer. Consequently, inasmuch as the same approximations
are used in the study of the wake as were used in dealing with the flap boundary
layer, the answer to the first question should not be significantly affected by

the fact that we use an approximate method.

With the vorticity distribution within the wake presumed known (in this
case from the experimental results of Foster, et a1.9) we are able to derive the
velocity field induced by the wake in the region external to the wake. This
expression, which 1s derived without any restrictions being placed on wake
thickness, is then approximated for 'small' wake thickness. As well, and con-
sistent with the small-pap approximation given previously, use i1s made of the
fact that the wake of the main aerofoil is close to the flap upper surface. 1In
section 3.2 a first-order correction for non-zero wake thickness is derived

with the intention of providing an answer to the second question. Finally, the

‘-

s

)
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results obtained for the induced velocities, including the contributions from
the images of the wake vorticity within the main aerofoil and the flap, are used

to determine the correction to the flap lift,

The stream function induced by the vorticity within the region occupied by
the wake of the main aerofoil, which region we call T, at a point P external

to ' 1is derived in Appendix A, namely

= L [y +\ 3(ay)
@vdr = 7 ”—%— ln x + (-) 2L T} D (34)
. ,

where Ay = Aww + AwB.

The meaning of the notation employed in equation (34) is the same as for
equation (1), except that we have distinguished the contour bounding the wake

of the main aerofoil with the title k (Fig.7).

The downwash induced by the wake at P is obtained by differentiating

equation (34) with respect to x. To do this we will need the following results:

r = {(x-x')2+ (z—z')z}é ;

dz
_ ~1fz-2z2"\ _ -1 k . 1
T = tan (X_—-?(-T) tan (_dx (x',z ))

for r entering T at the element d&; and

dz
_ a -1{z - 2' -1 K ;v 0
T = 7 tan (W) + tan (_dx (x',z ))

for r leaving I at df. Here 2, = zk(x) is the equation defining
contour k. Therefore, recalling that the plus or minus alternatives of
equation (34) are taken depending as f passes out of or into region I at

the element df, respectively, we find that

B(Aww)r 1 ‘[{B(Aw) x - x' 3 (AY) z - z' }
—L ) = 5 . T
a L I Ot 1 ML D LY CEPL

.o (35)
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It will be seen that the differentiation has been performed under the integral
sign, an operation that is permitted for a point P external to T. Similarly

we find that

B(AwW)T _ 1 3 (AyY) z - z' 3 (AY) x - x|
TR AR 2 /T 7 3| 4%
i (x-x")"+(z-2") (x-x")"+(z-z")
(36)
for the x-wise velocity induced at P by the vorticity within T,
3.1 Approximation for thin wakes
It 1s convenient to rewrite equation (35) as
3(A¢W)P
- (x,2) = wl(x,z) = (wi)+ + (wi)_ + <wi)2 . (37)
Here, with AB the leading edge of the wake (Fig.7),
1 3 (AYp) dR x - x' '
(w.) = - jl( ,) dx
i+ 2% 2 dn  dx b x - x,)Z + (z - z')2
d(ay) 1
l f + z - 2z
- : dx' (38a)
o Aw B - xn? s (2 -2
1 A(AY) do x - x! .
w.,)_ = -3 [ ( ,) dx
i 2T = on dx | (x - x')2 + (z - z')2
d(Ay) '
1 - -
- 5 [ "L e 5 dx' (38b)
B (x = x")" + (z-2")
_ 1 2 (AY) x - x'
(wl)E h 27 f( an ) ' 2 ,Zd’tl
BA (x=-zx"""+ (z-12")
l d(Alp),Q, z - zl
T I D) 7 - (38¢c)
(x - x")" + (z-2")

Cw

LA
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The suffixes +, - and & refer respectively to the upper edge, the lower

edge and the leading edge of the wake of the main aerofoil.

The leading edge of the wake, BA, 1is defined, more or less arbitrarily,
as the straight line, drawn normal to the bisector of the shroud trailing-edge
angle. Shrouds are usually cusped in shapeg; we would expect, therefore, that
both the real flow and the flow of the first inviscid approximation would be
sensibly normal to BA at the leading edge of the wake. This implies that
(3(aAp)/3n), is very small compared with V_. Consequently we assume that we
may neglect the first term on the right-hand side of equation (38c) and thus
cbtain instead

), = -= i) 2 -2 . (39)

i’g T ET) 2 Y
BA (x-x")" + (z-2")

In the 'thin'-wake approximation x' and 2z' are replaced in

equations (38a) and (38b) by X and 2 the x and 2z ordinates of the

rear dividing streamline of the main aerofoil. In equation (39) x' and 2z'

are replaced by X and Z

edge. With these approximations we have, using equations (37), (38a), (38b)

the x and z ordinates of the shroud trailing

and (39), and performing the routine integration in the approximated version of

equation (39),

|
—— g
)
=
~~
=a
N’
(a9
e

w.(x,z2) = -
1 2% iT (x - XW)Z + (z - ZW)
F dy* z -z
1[ u W
+ = (x.) d
2 ; dx *w (x - xw)z ' G- g W
T
1 27 2y
+ 5= X (x ) s (40)
S L
where
= [(aay) do) _(3(ay) do (41)
Yo T \Ton & an dx

+
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1s 'the wake vortex strength' per unit x-wise length, and
pE =AY - Ay (423

is "the displacement flux' of the wake,

The physical significance of the terms in equation (40) may be described
as follows: the first term on the right-hand side is the upwash induced by the
vortices required in the simulation of the wake of the main aerofoil. These
vortices exist as a consequence of the reduced momentum of the air in the wake
being turned through an anglea. In early work on viscid aerofoil theory]’z’3
this effect was disregarded on the basis of a conjecture by G.I, Taylor that the
circulation around any simply closed circuit cutting the wake in two places at
right angles is zero. Subsequently, Spence and Beasleya, using an analysis
derived from the jet-flap theory, showed that, in general, this conjecture is
not correct. However, they indicated that, for an isolated aerofoil, the effect
is of secondary importance to the boundary-layer displacement effect. In the
case of the slotted flap the vortex effect may be of rather more significance in
view of (a) the proximity of the wake of the main aerofoil to the flap upper
surface and (b) the relatively large turning angle involved in the flow above

the flap.

The second term on the right-hand side of equation (40) is due to the source
distribution representing the growth of displacement flux along the wake of the
main aerofoil. As with the wake vortices this may be a particularly significant
effect owing not only to the closeness of the aerofoil wake to the flap but also
to the adverse pressure gradient induced by the flap at the wake. This may

result in a relatively rapid growth in the displacement flux of the wake.

Finally, the last term in equation (40) arises from an isolated source that
is situated at the shroud trailing edge. The presence of this singularity is a
direct result of our neglect of the boundary layer of the main aerofoil. The
source provides the step in displacement flux at the shroud trailing edge that
is necessary to yield a non-zero displacement flux in the wake of the main
aerofoil. With the inclusion of the boundary layer of the main aerofoil the
point source is replaced by a distribution of sources along the edge of the
boundary layer. Consideration of the continuity of Ay around the edge of the
boundary layer shows that the integrated strength of these sources is equal to

the strength of the point source. We may therefore regard the point source as

o

iy
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an approximation to the distributed sources of the boundary layer of the main
aerofoil. Also associated with the existence of a boundary layer on the main
aerofoil is an additional &istribution of vortices on the chord of the main
aerofoil. These are required to cater for the effective change in the camber
of the main aerofoil that is caused by the aerofoil boundary layer (see
section 2.1 in connexion with the flap boundary layer). We propose to neglect
this effect on the basis of the observation that this correction to the camber
is small compared with the corresponding change in the effective camber of the
flap, at least for the configurations studied here. Should it be considered
necessary the present analysis can be modified fairly easily to include this
effect simply by amending equation (27) to allow for the correction to the

effective camber of the main aerofoil.

Whilst neglecting the additional vortices due to the boundary layer of
the main aerofoil we retain the point source so as to ensure the correct value
of the displacement flux in the wake. In fact, as we shall see, it appears
that, in the cases considered, this effect is of secondary importance compared
with the effect of distributed vortices and sources of tﬂe wake in the determina-

tion of the correction to the flap lift.

A similar analysis applied to

2 (8 1

v — (x,2)

ui(x,z) = 5

gives the result

u (x,2) = 5= f Y ) — 5 dx,
2y (x-xw) + (z-zw)
T odyk x -
1 W "
Yon f d 2 7.9y
Xy

I .
+ 57 wﬁ(xf) 5 7 (43)

In section 2 we employed the assumption that the flap gap is small com-

pared with the flap chord. This implies that =z_ is small compared with ¢

W F
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except far downstream where the wake is remote and consequently has little
effect on the flow around either the flap or the main aerofoil. Therefore,
supposing that all lengths in equation (40) are normalized with respect to Cps
we replace 2y by €, a small parameter, and we then take the limit as €
tends to zero. In consequence, we obtain, for points on the flap chord and 1ts

downstream extension, the result

o0

o1 .
wi(x.O) =" 37 :1-‘118 f YW(XW)
xr

X -

d
(x_xw)2+62 *u

o

dyk

1 W £

- — 1lim .[ d

2w g=+0 de {x - xw)2 + Ez i
Xr

Zp

1
5w () 7

(x-znc,]:,)2 t oz

In the case of the first integral the limit may be taken through the integral
sign provided that the integral is interpreted according to the Cauchy
principal value. The second integral may be evaluated by employing

equations (B-1) and (B-2). Thus we have finally

r d dy* z
wl(x,O) = 2—; f YW(XW) x—w-x—‘f——}; - }H(x - xT) ESEH ~ -21-1; wﬁ(xT) T

*r

5 -
(x - xT)2 + zp

coes (44)

It will be seen that, in this approximation, the vortices are effectively
transferred to the flap chord and its downstream extension. We note, as well,
that the upwash induced by the distributed sources depends only on the
local strength of the sources. This result, which is a consequence of the
assumption that the distributed sources lie iust above the flap chord, seems
likely to be an accurate approximation only if wa varies slowly with x;
hence 1t may be a questionable approximation close to the singular points of the
fixst inviscid approximation such as the shroud trailing edge and the trailing
edge of the flap. Finally, it should be remarked that we have refrained from
approximating the point source term for small =z, (i.e. for 'small' flap gap);

T

the reason for this is that this approximation evidently fails for x = X

i

-)
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On applying the same approximation to u, (equation (43)) we obtain, for

points on the flap chord, the expression

1 W W
ui(x,O) = = jH(x - XT)YW(X) * o f E;w_ (3&4) x_——§

|
5

7 (45)
x - xT) +zp

]
* 3y i(xg)

Consistent with the 'thin'-wake approximation and with the assumption that

the wake lies just above the flap chord is the approximation

(46)

Therefore we may write in place of equation (41) the approximate result

_ (3w _[atay)
o - () -(e2)

By using approximation (46) it is shown in Appendix C that, for a 'thin’

wake that is close to the flap chord,

Yy = K68 . (48)
Here KW = the weighted mean curvature of the streamlines of the wake, as

defined in Appendix C, the centre of curvature being taken below the
wake;

Gﬁ = the wake displacement thickness;

BW = the wake momentum thickness; and

g - Llf2e) , (20

V=3 {(az)+ * (Bz)_] ’

that is the mean of the x-wise velocities at the upper and lower edges of the

wake,

. 4
Equation (48) is due essentially to Spence and Beasley , who, however,
used the approximation U= V_ and employed a different method in their

derivation of the relationship.
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To ensure that the flap remains a streamline in the presence of the wake
of the main aerofoil we will need a distribution of vorticity within the flap.
With the assumption of section 2 that the flap is of small thickness-chord
ratio and camber this distribution is replaced by a distribution of vortices
on the flap chord. Likewise, the boundary condition that the main aerofoil is
a streamline is maintained by a distribution of vortices on the aerofoil chord.
Consistent with the analysis leading to equation (24) we assume that, for small
flap gaps, overlaps and flap angles, these two distributions may be combined
into one distribution that is placed on the £ axis. This distribution is
defined by

AYA’W(E) ; 0<E< Cy

AY,W(E) = .
AYF’W(g) : Cy <KEsc

Thus by employing equation (44) for the upwash induced by the wake of the

main aerofoil at the flap chord and noting that, for small flap angles and

overlaps,

X = £ - Cy (49)

we find, by using the fact that

that the flap remains a streamline under the action of the wake provided that

[+=]

1 ey vy 1 Zp
T Yw(xw) T —F dH(E - ¢c)) T x) - 5 ¢ﬁ(xT) 5 5
W (8 - ¢,)" + 2z
€A A T
°E
- 1 ' dg'
- 21.[ f AY’w(E ) g — EI 2 CA ""<-- E ""<--. CE . (50)
0

To satisfy the condition that the boundary of the main aerofoil is a
streamline of the real flow we require information on the velocity induced in
the 7 direction at the chord of the main aerofoil by the wake. For small

flap angles this velocity is approximately equal to wi(x,zT) in the interval
o~

fa%

.
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0g¢ <ch. According to the analysis of section 2,2 the error in this (small
angle) approximation is likely to be small for flap angles less than 30°
except possibly in a narrow region adjacent to the trailing edge of the main

aerofoil.

With vci(g,c) the velocity induced by the wake of the main aerofoil in
the r direction we find, by reference to the 'thin'-wake approximation,

equation (40), that

=]

1 T

Vi (8,00 = vy (oag) = = o0 [ yC

7 4%y

0 (x - "w)2 vy -z
t dy* Z,. - z X < X
1 f W T %y T
+ 5= (x,) d ’ . (51)
2 | a W x4 (g -2 x“ {s <c,

T

Again for small flap angles we would expect that lzT - zwl is small

compared with ¢ Therefore, supposing all lengths in equation (51) are scaled

F.
Cpr We replace 2, <z, by € and take the limit as ¢
tends to zero. Referring to equations (B-1!) and (B-2) we find that

with respect to

Lt dxy,
vci(E,O) = 57 f Yw(xw) —x'w—_'—x s £<e, ,»(52)
X
T

the Cauchy principal value of the integral being taken. This expression implies
that only the wake vortices contribute directly to the velocity normal to the
chord of the main aerofoil at the aercfoil chord. This normal velocity 1is
nullified by the vortex distribution AY,W(E), thus ensuring that the boundary
of the main aerofoil is a streamline of the real flow. Hence we have, upon

employing equation (49) and noting that £ = c¢

T A’
C.
- (x)—dg-‘i’--——'— EA R . 0< (53)
o YW W Ew_g ™ Y,WE E - g7 \E<CA .
c 0

A
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where sﬁi), a Weber coefficient, is defined in Ref.15, and Eu and Ev are

pivotal points defined by
um
e = T .
u(Eu) N

Strictly, Weber's method is only applicable if G(£) 1is continuous and
differentiable. As is evident in equation (95) this condition is not satisfied
in our case, there being a finite discontinuity in dG/df at E = Cyo This
type of discontinuity is met in the linearized theory of aerofoils with plain
flapsla, and it evidently results 1n a logarithmic type of singularity in
AY,B at the point of discontinuity. Since this is a weak singularity it seems
unlikely that the failure to represent the discontinuity will cause serious
errors in the lift of the flap. To check the validity of this assertion we

have performed some calculations for the distribution
F(§) = £ -¢, (99)

which gives a finite discontinuity in dG/df at & = Cye

el

-y . . . . . i8
The Becond integral of equation (94) is readily evaluated in this case

and it is found that the corresponding vortex strength is given by

¢ 8,1 sin (6 + x)/2
AY,B(E) T o 2 * T ln sin (8 - x)/2 ’ (100)
with
ZCA
cos ¥ = — - 1 .
E

The approximate summation equivalent of equation (100) is derived from

equation (98) as follows:

}

) ¢ 7 A\ /% " Ev | N-1 (4) ) ) ) _
AY,B(E\)) = ( e )( E +-EE—- uzl SUV{(EU cA)l-I(E;11 c,) ~(ep CA)E]J/CE}.

cees (101)

Results, calculated by employing the 'exact' equation (100) and the
approximate equation (101) for x = /3 and with N = 32, are exhibited in

Table 1 for various values of v. Generally, the agreement between the two sets
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Here the first term on the right-hand side of equation (56) is the inversion of
the first term on the right-hand side of equation (55); the second is the
inversion of the last term in equation (55); and the third is the inversion of

the second term on the left-hand side of equation (54).

In the absence of a detailed viscous solution for the flow around the
flap in the presence of the wake we assume that the combined flow of the first
inviscid approximation and the wake flow satisfies the Kutta condition of
smooth flow at the trailing edge of the flap. Since the first inviscid
approximation satisfies the Kutta condition this implies that

Ay,w(cE) = 0 . (57)

Weber15 has considered the implications of this condition for equations
similar to equation (54). It appears that, if the left-hand side of
equation (54) is discontinuous at a finite number of positions and an analytic
function between, in the interval 0 < E < Cps condition (57) is satisfied.
This requirement is satisfied by the second term on the left-hand side of
equation (54)}. In the case of the first term, however, there is a logarithmic
singularity at &£ = ¢

resulting from the discontinuity in vy at the flap

E W
trailing edge. This discontinuity is due to the inclusion of the vortices of
the flap wake with the vortices of the wake of the main aerofoil downstream of
the flap trailing edge. We may overcome this difficulty by fairing the two

distributions of Yy upstream and downstream of £ = ¢, smoothly into one

E

another. Alternatively we could relax condition (57) and permit finite values

of Ay W(cE), which the logarithmic singularity implies. Regardless of which
]

method is chosen, the fact that is smooth and continuous elsewhere,

Y
W
ensures that Ay w(CE) < =, Hence the arbitrary constant B in equation (56)
b

is required to be zero.

Spence]7 has considered integrals like the first one on the right-hand

side of equation (56); he shows that
_ 3 fE b o
af%E "¢ f £ ()dgw dt!
2 E c, - ¢ W T E T - €
m 0 E W
°E

@ 4

&y dEw
[(Es) wew % =
)
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For the sake of completeness, the analysis leading to this result is given in

Appendix D.

Hence, using equation (58) and recalling that B = 0, we have in place

of equation (56)

Ay () =

W H(E - CA)YW(X)

1
(L)zﬁ y
tw "%/ V¥ W By~ 8

o g

} CE } N
1% & £ \ s
2 [l et
0
z de
+ L) T & 0<E<e (59)

: }
T WOT v 2 21 g -¢% °
(g c, )+ zp

3.2 Effect of wake thickness

In this section we derive a first-order correction to the results given
in section 3.1 for the effect of non-zero wake thickness as well as the influence
of the non-zero distance of the wake from the flap chord. As previously we
suppose that the flap angle, B, is small (say less than 300) and consequently
we assume that BA is normal to the flap chord (see Fig.5). Hence, by using
this approximation together with equations (37), (38a and b) and (39), we may
write for the upwash induced by the wake of the main aerofoil at a line

parallel to, and a distance e below, the flap chord.
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(a(mp) dz ) x - x' ax’
+

w. (x,-¢€) 7
i an  dx (x - x')2 + (e + zl)

(a(mp) ds ) x - x' dx’

am dx') (x - x')2 + (e + 2")
- -
T
r o) e+ g
'"2'1'f Ty T dx!
" Fox-x" 4 (e +z2h)
*g
Z
B
d(ay) '
L & etz dz' (60)
2m dz (x - )2 s (e + z,)Z
z, *T

where suffixes A and B refer to the points A and B.

It is reasonable to expect that, if the wake width and the flap gap are

small compared with the flap chord, zl and z' will be small in comparison

with Cpe Likewise, on segment AB, z' - Zoy will be small compared with ¢

Therefore, supposing the dimensions in equation (60) are referred to the flap

P

'
+

we have, to first order in these

chord and expanding the first four integrals in powers of 2z or z' and the

last integral in powers of z' - Zps

quantities
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wl(x,~€) = - —

o(ap) do '\ _ [a(ay) dg x - x' dx’
an  dx' . oan dx' _ 2

Xp
Toldey) . d@ay)
] + = £ t
+.§-1r-f{ dx' dx'} y 9
X7
A
Zp

(x - x")% + ¢

aew, €+ 3
dz'

T dz?!

(x - xT)2 + (e + ZT)

! f {(B(AW) dg ) v o (B(AQ) da ) .} e{x - x") dx!
+ - —_— T Z —_— z- X
m sn  dx . + an dx a {(x _ x')2 + 52}2

A
) d(AI,D)_'_ ' d(&‘b)_ 1 l 232 dx!
* ax' %+ T T ax' A 5 2 7 2.2) ¥
(x - x' + £ kx*xU +E}
X
T
z
B d(ay) 2(e + 2z )2
"5 f ' _ZT)( T Z T3 z)dz"
T z z (x-xT) +(€+zT) {(x—xT) +{e+ ZT) }

(61)

Here it will be observed we have not approximated the last integral of

equation (60) for small =z as might be thought necessary for consistency

T’
with the approximations to the first four integrals. The reason for this is
that we wish to recover the approximation of section 3.1, wherein the point

source at the leading edge of the wake was placed at the shroud trailing edge

rather than on the flap chord.

It 1s convenient to express the right-hand side of equation (61) as
w, (x,~e} = w(l)(x -e) + Aw, (x,-€)
i » 1 L] i 3 3

where wil)(x,-e) 15 a first approximation to wi(x,-e) for 'small' wake width
and flap gap represented by the first three integrals of equation (61), and
Awl(x,*e) is a first-order correction term for non-zero wake width and flap

gap given by the last three integrals of the same equation.
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Considering firstly W by employing equations (4!) and (42) it is

readily found that

W) o m g [ e
%o (x-x')" +
E + z
T
o7 W (xp)

-z + (e + oz

9
£
= o .[ T 3 5 dx’
(x-x")" + ¢
X7

(62)

The corresponding upwash at the flap chord is obtained by taking the limit of

the right-hand side of equation (62) as & tends to zero.

Note that we

approach the flap chord from below the flap to ensure that, in the limit, the

wake lies above the flap chord.

(1)

(x,0) = =

Using equations (B-1) and (B-2) we find that

dw* z '

xT) ax

T
= - xT)Z + z;

i ¢ﬁ(XT)

Evidently, this expression is in exact agreement with the approximation for

wi(x,O)

that was derived in section 3.1, namely equation’ (44).

Therefore, in

correcting the results of section 3.1 for non-zero wake width and distance of

the wake from the flap chord, we meed only examine Awi(x,-e), which is given

. L f (x')( ‘ - 2¢ )dx
iz XT (x - x')2 + 82 {(x - x')2 + 22}2

2
2{e + zT)

| ‘[ d(ap),

—F— (Z “Z )dz

(x-xT)2 + (e’sz)2

{(x-xT)2+ (E+ZT)2}2

eaee (63)
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where
3(AyY) de 3(Ap) da ]
Po= (“511—3;) zf,‘(“a"rm) &
+ -_—

d(ap), d(av) _
- _________zl_ Z'

Q = dx' + dx' -

| (6

Equation (63) may be recast into a more suitable form by carxrying out the

1ntegration of the first two integrals by parts. Thus the first integral

becomes
ot
(x-x")" +¢ } (x - x")" + edx

xT T

i [ dp £ ,
-— : dx' . (65)
2r  dx (x - x + e
*r

The evaluation of the right-hand side of equation (65) is complicated by
the problem of determining the upper limit of the first term. This involves
the determination of the limit of P(x) as x tends to infinity. This is

considered in Appendix E where it is argued that

lim (P(x)) = O
X-¥o0

Thus, combining this result with equation (65), we find that

1 f elx — x") 1 €
- P(x") dx' = - — P(x))
i % {(x - x')2 + 52}2 2n T (x - xT)2 + €2
1 dP £ '
-5 f e — 5 dx'. (66)
(x - x")" + ¢
xr

The second integral of equation (63) may be integrated by parts to give

the result

{a

o

th



45

o =]

2
1 1 2e 1 x' - x
= Q(X')( - )dX' = = [Q(x') ]
2n / (-x)2ve? {(x-x)2vel}? 2m ' -2+ cZ)x
T

T

vens (67)

As with equation (65) we are faced with the problem in equation (67) of
evaluating the upper limit of the first term. However, arguments are given in

Appendix E in favour of the result

lim (Q(x)) = 0 .
r)-m

Therefore we have in place of equation (67)

r 2 X - X

1 [ 1 2% i T

L Q(x')( - )dx' = 5= Qxg)

2n . (x-x')24 2 {(x-x')2+52}2 27 T 2
T

vean (68)

The final result for Awi(x,—s) is obtained by combining equations (63),
(66) and (68). The corresponding expression for Awi(x,O) is then found by
taking the limit of Awi(x,-a) as t© tends to zero. Referring to

equations (B-1) and (B-2) we find that

P, 1 d dx' . 1 1
tey (60) =~ R gt gy f s A e
X
T
g 2
d (Ay) x-x)" -z
1 [ . *7 T
T f T (21 -2pdz RENEY T R (69)
z { w2y
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Here 1t is possible to identify two types of terms. The first two on the

right-hand side may be identified as first-order corrections for non-zeroc wake

[t3

thickness and flap gap. The last two, on the other hand, which are due to a
point vortex on the flap chord at x = Xp and a doublet at the shroud trailing
edge, exist as a consequence of the neglect of the boundary layer of the main
aerofoil. 1In a more complete representation, which included the boundary layer
of the main aerofoil, these isolated singularities would be replaced by con-
tinuous distributions of sources and vortices on the chord of the main aerofoil.
A similar point has already been made in section 3.1 1n connexion with the first
approximation for wl(x,O). In this approximation the displacement effect of
the boundary layer of the main aerofoil is simulated by a point source at the
shroud trailing edge instead of the more usual source distribution on the aero-
foil chord. Since we are primarily concerned with the thickness effect of the
aerofoil wake we will ignore the last two terms of equation (69), so that we

have
Mu (5,00 = - JH(x - x) o+ o f dq _dx? (70) o
*T

An alternative way of deriving equation (70) 1s to note that, consistent
with the neglect of the thickness effect of the boundary layer of the main

aerofo1rl, it is permissible to assume that =z, = z_ = 0. This implies that
Q (XT) = 0 ,

as may be verified by examining equation (64); thus the vortex at (xT,O) 1s
of zero strength., Additionally, equation (69) shows that this assumption leads

to the doublet at the shroud trailing edge being of zero strength,

An examination of equation (66) shows that the first term on the right-

-

hand side of equation (70) is due to a source distribution placed just above the
flap upper surface., The last term of equation (70) arises from a vortex distri-

bution on the flap chord and its downstream extension. The fact that distri-

I

butions of this type appear in the first approximation for wi(x,O) suggests
that it will be convenient in the second approximation to define effective
vortex and source strengths, Thus, after correcting the first approximation for
Wi(x,O), namely equation (44), by using equation (70), we find that to a second

approximation
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F da* A
| - dx! W 1 T
& —ur _ - Lk
wi(x,O) 2ﬂ"[ wx - x Hx XT) dx 2n wW(xT) 2 2 ° (71)
x - x.) + 2
XT T T
where
dE* dy*
T = - W _ W, dr
Tw Tw Tax dx dx * dx (72)

are the effective vortex and source strengths per unit x-wise length, of the
second approximation. Here, we note, the strength of the isolated source 1s
¢§(XT) and not Eﬁ(xT) as might have been expected. This can be explained

by our use of the small-gap approximation (zT-< cF) to arrive at

equation (69). This approximation evidently fails to include the contribution
of a point source, of strength P(XT), that is situated at the shroud trailing
edge. However, we have previously neglected the effect of the non-zero thick-
ness of the boundary layer of the main aerofoil; consequently, it is con-
sistent to assume that P(XT) is zero. As may be inferred from equation (72)

this implies that we may write wﬁ(xT) in place of ﬁﬁ(xT).

Substituting the effective vortex and source strengths for Y and
dwafdx in equation (54) we are able to define a second approximation to

Ay W(E), Ay W(E), such that

3 dg dy* z
1 - W Wl T
ﬂf*ws —g'%H(E'CA){E"*?‘pﬁ("T) 7 2}
W (E~-c,) + 2
Cy A T
C.
E
- L rom 1 dE'
= 3 [ AY’W(E ) - 0<E<e - (73)
0

By following the analysis between equations (54) and (59) we are able to

write the solution of equation (73) as
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BY J(B) = = H(E - ¢y,

T

The effective vortex and source strength concept may also be used to

determine the second approximation to ul(x,O). Thus instead of equation (45)

i

we have the expression

{"

T dpx 4
- 1 W “w
ui(x,O) = - jH(x - XT)YW * 5 EE; E_:_;;
X7

]{"XT

5 (75)

T

|
+ = R (x.)
2n TWT (x - XT)Z + 2

It is necessary to make two further observations regarding the corrections
given in equations (72). The first concerns the fact that these corrections
allow for the non-zero distance of the lower edge of the aerofoil wake from the
flap chord as well as non-zero wake thickness. It is desirable, therefore, to

distinguish between the two effects.

In the second observation we note that the correction terms of
equation (72), dP/dx and dQ/dx, are not known until AJ has been detcrmined.

Evidently, therefore, equation (74) is implicit in character. On the other

hand, as Awi is a first-order correction for 'small'-wake thickness and flap

gap, it seems reasonable to evaluate P and Q by using the approximation

AY = AL A¢(1) + A

W (76)

B »
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where suff%x (1) refers to the first approximation for 'small'-wake thickness

and flap gap of section 3.1. Additionally, since, in the 'small'-gap approxima-

tion, the wake is assumed to lie just above the flap chord, we may use
equation (46) to write

3(Ayp) de B(AQ))
an  dx 3z ’
a(ag(l))
oy (x,+0) , (77a)
for a 'thin' wake situated just above the flap chord. Similarly,
(a(aw) g&) (acng))
an  dx Sz !
+ +
aap’’Yy M
B 00y vy (770)

Here we have used equation (47) to arrive at equation (77b) via equation (77a)
and, for consistency, we have replaced Yy by

yé]) = kU * 0. (78)

the first approximation to Yy for a "thin' wake and 'small' flap gap (see

equation (48)). Likewise, referring to equation (76), we have

d(ay) _ (N
— = 2D 40y (79a)
d(ap), 3 (A (1) dy*
- v ) - ¥
dx B 9% (x,+0) dx °’ (79%)

where equation (79b) is derived by combining equations (42) and (79a).

Equations (79a and b) may be written in a more suitable form by observing

that, consistent with the approximations of section 2.1, we may write
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aay,) d(ay,)
B . %
o M0 s T
dy*
=-_Y
- dx s (80)

from equation (11). Therefore equations (76) and (80) may be used to give the

expression
a(aym) a(wé'% g
% (x,+0) % (x,+0) - = (81}

Hence egquations (64), (7%a and b) and (B1) may be combined to give the result

ar st av
Ut T R T 0 (e ) i (e e

Therefore, by reference to equations (72), we find that

(1
dy* 3ay, ")
- 4 W d W
YWoT Yy T a;(ax— z+) M1 B el G CRE R
dy*
d U
- a;(a;‘ (2, - z—)) ' e

Using equation (82) it is shown in Appendix C that, for the wake of the

main gerofeil,

] _ |y
= * —_ —_ —
i KWU(GW + ew) 3 3 (z+ +z ) . (83)
dx
Here, 1t will be seen, the first term on the right-hand side 1s the 'thin'-wake
approximation for 'small' flap gaps yél). As in section 3.1, downstream of the

flap trailing edge we include the vortex strength of the flap wake in the
expression for ;W' The vortex strength of the flap wake is calculated by using
equation (48) which 1s valid for a 'thin' wake that either lies close to the

x axis or has a slowly-varying displacement flux (see Appendix C). The flap

wake and the wake of the main aerofoil are in close proximity; hence, as in the

~
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method of section 3.1, 1t is reasonable to combine this vortex strength with
the first term of equation (83). Specifically, for points downstream of the
flap trailing edge, we write
2
*
| -ldww(z
(aerofoil +) 2 , 2 +

+ 2z ) s x = c . (84)

aerofoil

v = Ul&*
Yy |.<WU(5w +0.) -
flap

It is relevant to note that, if the wake of the main aerofoil is 'thin',

so that

+ = W
equation (83) becomes
_ _ avy
= * -
R ol W

Strictly speaking, therefore, the thickness correction to ;W is
dzwﬁ
e alUCRE Rt E

Consequently, if we assume that the rear dividing streamline of the main aero-
foil coincides with the mean line of the wake there is no first—order thickness
correction. It should be remarked here that the rear dividing streamline
represents but one possible line on which the singularities of the 'thin'-wake
theory could be placed. An equally reasonable suggestion is the mean line of
the wake. Indeed, the indications of the present work are that, for the purpose

of representing the vortex effect, the mean line is the optimum.

Using equations (64}, (76) and (77a and b) we may write

(1)
P = yél)z + Eié%———l (x,+0)(z+ -z) .

+ z

Thus it may be inferred from equations (72) that

_ (1)
A P e T R I AEE D (85)
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Equation (85) entails the determination of (B(Aw(l))/az)(x,+0); an
expression which permits this is given in section 3.3 in connexion with the
derivation of the effect of the wake on the flap lift. However, in Appendix F,
by using equation (85), we derive an expression which does not require the
evaluation of this velocity, namely

_ W
o= W (e

N +z) , (86)

where wt‘s' = [(ﬁ - u)dz
W

is a pseudo displacement flux. We prefer to use equation (86), rather than
equation (85), for the following reason: it is usual in 'thin'-wake

analyses »253

to assume that the true displacement flux is equal to the pseudo
displacement flux, which is more easily calculated or deduced from experiment.
This assumption may be justified for a 'thin' wake by comparing equations (85)
and (86). Therefore, in calculations based on the 'thin'-wake method of

section 3.1, we will use the result
pE = w*' . (87)

Consequently the last term on the right-hand side of equation (86) may be
regarded as a correction to the results of section 3.1 for non-zero wake
thickness and non-zero distance of the aerofoil wake from the flap. This
correction is evidently much simpler to evaluate than the correction term of

equation (85).

If the wake is supposed 'thin' equation (86) becomes

E§ = YE' o+ Yé])zw . (88)

Hence the thickness correction to wﬁ' is

]t e)
Ty 2 wl -

T

[N
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This implies that, as with the vortex effect, the thickness correction may be
ignored if, in the 'thin'-wake formulation, the singularities are placed on-the

mean line of the wake.

3.3 Effect of wake on flap lift

The lift acting on the flap is derived in section 2.3 and given in
equation (30). Neglecting the squares and products of the correction terms in

this equation it is possible to infer that

a(Aww) awI a(Aww)

ALF,W = p cos (B+a.) —_— (x +0) —5: (x,+0) “3a (x,-0) —5 (x,-0)| dx .

Since (B(Aww)/az)(x,iO) is small compared with (BwI/Bz)(x,iO) only if
the wake of the main aerofoil is 'thin', in general, this equation may be con-
sidered to be an approximation for a 'thin' wake. Therefore a consistent first
approximation for the increment in the lift of the flap due to a 'thin' wake may

be written as -
NQWW

0 [ 2 v By a0
ALg = P cos (B+a) L (x,+0) 5 (%40} =5 (x,70) ————(x,-0) | dx .
0
... (89)

To evaluate this expression we require to know (B(Awél))laz)(x,iO). This
may be found by noting that the total x-wise velocity in the flow either side of

z = 0, arising from the presence of the wake of the main aerofoil, consists of:
(a) the velocity induced by the vorticity within the aerofoil wake;

(b) the component due to the vortices required on the flap chord to

satigfy the condition that the flap i1s a streamline of the wake flow;

(e) the x—wise velocity induced by the vortices needed on the chord of
the main aerofoil to ensure that the aerofeoil is also a streamline of the

wake flow.

If the distance of the wake from the flap is small compared with the flap
chord, contribution (a) is given by equation (45); contributions (b) and (c)
may be obtained in a similar manner to that used to derive the contributions of
and AYF,B to the x-wise velocity at z = *0 (equation (32)). Thus we

8Ya,B
have for small zW/cF
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n e .
3 (8¢ ) dy*' d
o - - VU ¢ D IS B B ' I
Bz (x,0) = HH(x xT)Y * 2 f d)%s’ x =X,
Xt
T X = %7
tan Y Op) (x - 22 + 72
*T & Zr
c,
+L[ SLnB(c—2+xcosB E'Y -cos B (g+x sin B)
2 d¢!
0 cA - % + x cos B - E') + (g + x sin B)
by
+ g’w , O<x<cp . (30)

Here we have used equation (87) to replace wﬁ by wﬁ' and, consistent with

(D
e

Approximating the second integral of equation (90) in the manner used in

the use of the 'thin'-wake approximation, we have replaced Yu by v

approximating the similar integral in equation (32) (i.e. the integrand is_

expanded to order B, and g and E are placed equal to zerc) we have

@)]

3(aY,; ) { dux’
___a'z_' (x,£0) = - $H(x - XT)Y(I) + l,” fd d}_&‘l
o Xy
Ap
C
] ) = *r B e, — &'
*E;‘P%‘,'&(XT)( T2 . 3_"[ Mg w —2A 5 dE’
e ¢ T 0 (cA+x—E')
Ay
iﬁgg‘w , 0 < x< e (91)

To include the first—-order corrections of section 3.2 for non-zero
(z+ + 2 )/2 we use equation (75) instead of equation (45) to obtain contribu=

tion (a) and replace Ay W by Ay We then have in place of equation (891)
]

W
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a(Ay. ) * .
1
—z— (6£0) = - JHGx - %Yy + z“[“x—z*-ﬁ{x—w
X
T
c
A '
T ¥ 8 YO
' i 1
* 7 W (k) 7. 7" 72 Mau 7 4
(x - x ) 2 (c, +x-¢")
T 0
EF
* 2’ , OQXSCF . (92)
However, to proceed to higher-order approximations for AL including

’
the effect of non-zero wake thickness, it may not be sufficient iéwreplace the
correction terms in equation (90) by their higher-order equivalents. The

reason for this is that the terms neglected in deriving equation (89) may be of
Ehe same order of magnitude as the correction to J(B(Aww)/az)(x,iO) for the
effect of non-zero thickness of the aerofeil wake. Thus, when including the
effect of non-zero wake thickness in (B(Aww)/az)(x,tO) we will retain the
squares and products of the correction terms, containing this velocity correction,

in the expression for AL By reference to equation (30) we see that this

F,W'
implies that we use instead of equation (89) the expression

+

AL, W ) " .

C.

p Ay 3 (awg) Bl
=p cos (B+a) — (x,4+0) + 5 = (x,+0) + —— (x,+0)} ———— (x,+0)

2 oz dz 9z
0
P, ; 3Caw)
e R I e ey )

H

3(A¢ ) 3(ﬂ¢w) .
+ — (x,-0) 57 (x,-C) | dx . (93>
It will be noted here that ALF w DoV contains a term asscciated with the flap

L]

boundary layer as well as the wake of the main aerofoil. For convenience,

however, we have supposed this to be part of the wake correction.

4 CALCULATION PROCEDURE

4,1 Determination of Ay B and Ay W
] ]

The vortex strengths Ay B and Ay w ares respectively, given by
» L]

equations (27) and (59). Dealing with the first of these we find it is con-

venient to rewrite equation (27) as
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o} FE }

L=t [ L) e (94)
i g cg ~ £ dg' gt -
0
where
F(cg)
a6 _ By -
qE ag B~ ey < (93)
Integrating equation (95) we obtain, with G(0) = 0,

F(cE)E
G(E) = F(OH(E - ¢) - —— . (96)

E

Here we have used the fact that the displacement flux, ¢%*, wvanishes at the
attachment point of the flap, which point is assumed to be at £ = Ch (a
reasonable assumption for 'small' flap gaps and overlaps). In consequence,

F = wi - ¢ﬁ also vanishes at this point.

The first integral in equation (94) is standard in aerofoil theory and is
evaluated without difficulty with the aid of the trigonometric substitution
)
cos 8' = 2E 1 . (97)
The second integral is evaluated numerically by means of the method that has
been extensively applied by Weber” to integrals of this type for functions
G(¢) satisfying the requirement

-

G(0) = G(CE) = 0

Hence, noting from equation (96) that our function G(Z) does indeed satisfy

this requirement, we obtain the result

n

3
Fle ) fc., & N-1
E E v 1 (4)
Ay g(g,) & ( E ) o b S 6e) (98)
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where sﬁi), a Weber coefficient, is defined in Ref.15, and Eu and Ev are

pivotal points defined by
um
e = T .
u(Eu) N

Strictly, Weber's method is only applicable if G(£) 1is continuous and
differentiable. As is evident in equation (95) this condition is not satisfied
in our case, there being a finite discontinuity in dG/df at E = Cyo This
type of discontinuity is met in the linearized theory of aerofoils with plain
flapsla, and it evidently results 1n a logarithmic type of singularity in
AY,B at the point of discontinuity. Since this is a weak singularity it seems
unlikely that the failure to represent the discontinuity will cause serious
errors in the lift of the flap. To check the validity of this assertion we

have performed some calculations for the distribution
F(§) = £ -¢, (99)

which gives a finite discontinuity in dG/df at & = Cye

el

-y . . . . . i8
The Becond integral of equation (94) is readily evaluated in this case

and it is found that the corresponding vortex strength is given by

¢ 8,1 sin (6 + x)/2
AY,B(E) T o 2 * T ln sin (8 - x)/2 ’ (100)
with
ZCA
cos ¥ = — - 1 .
E

The approximate summation equivalent of equation (100) is derived from

equation (98) as follows:

}

) ¢ 7 A\ /% " Ev | N-1 (4) ) ) ) _
AY,B(E\)) = ( e )( E +-EE—- uzl SUV{(EU cA)l-I(E;11 c,) ~(ep CA)E]J/CE}.

cees (101)

Results, calculated by employing the 'exact' equation (100) and the
approximate equation (101) for x = /3 and with N = 32, are exhibited in

Table 1 for various values of v. Generally, the agreement between the two sets
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of results is seen to be good, with the possible exception of the point v = 11
at which the error in the approximate result is nearly 77. This error is,
however, considerably greater than the mean error, of less than 1%, of the
other values. The reason for the comparatively large error at the point v = 11
appears to be that this particular point 1s close to the discontinuity in

dG/dg at © = /3. Here the approximation can be expected to fail.
Nevertheless, in view of the apparent accuracy of the approximate solution
elsewhere, we feel confident to use it, at least for a value of N no less
than 32.

Two integrals appear in the expression for AY,W’ namely equation (59).
The first of these integrals is basically similar to the first integral in
equation (29) of Ref.18 for the strength of the vortices on the chord of an
aerofoil with a jet—augmented flap. The only difference between the two

integrals is that e of equation (59) is replaced by the jet vortex strength

Yy =" KJVchCJ/Z
in Ref.18. Here CJ = J/ipVicE is the jet-momentum coefficient.
T TN e e e e s . - -~
In Appendix G the analogy between the jet sheet of a blown flap and the ™~
wake (first suggested by Spence and Beasleyé) is used to evaluate the first
integral of equation (59) approximately. It is shown that
S }
n g ; v~ g WE,— &
E
3
Y 2X -
_ _E _2X n
_ZVM(E) u{BO(1+X + Z an
n=1
+ B 4D --3)5——+°20Dxn (102)
oV +X n ? .
n=1 =
}
I = (1 - &/e) .

where X =

s (1= Elet

The coefficients Bn and Dn are solutions of M 1linear, algebraic

equationsls, which are quoted in Appendix G. There it is shown that, for small
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2 . . . .
= *
CD D/iprcO, which implies small GW/CE and GW/CE, these equations may be
written as
M-1 ¢ o A
Loy = "o 5O
n=0 E
} 3 m = 0,1,2,-.-M"| . (103)
M=-1 c. C
! bman -7 32'?? fm(“)
n=0 E )

Here the functions bmn and fm(x), which are defined in Appendix G, are
independent of CD. Consequently, for small CD, Bn and Dn are linearly
dependent on CD'

Solutions of equations (103) for M = 3 are given in Table 2 for a value
of cF/cE typical of that tested by Foster, et al.g, namely 0.31 (x = 1.18 rad).
The indication of calculations performed by Spencel7 for various M are that,
with M = 3, the coefficients Bn and Dn (n < 3) should be estimated with
adequate accuracy. Furthermore, he shows that these coefficientsconverge
rapidly in the case of a large value of M. Therefore, noting that X is
significantly less than unity over the major part of the flap chord, we conclude
that the terms Dan and Ban (n > 2) in equation (102) are likely to give

only a small contribution to the flap lift and may reascnably be ignored.

The second integral of equation (59) may be evaluated by following the
method used in obtaining equation (98) from equation (27). Hence we find that

this integral, which we will term I may be written as

3,

1 L(CE) (CE B Ev)i p N
= - —
3 cp EU g o

1
8 4

| O - teepe regh o 08

-1

where L(E) is an integral of the equation

& - -(ﬂﬁ (x) + = U (x,) T )H(s—lc)
dt dE T WT - CA)z . zi A

I

satisfying the condition L(0) = 0. This integral,is found to be given by

LfE e
Le) = - {w;;'(x) - YET (8 + T YA () tan ‘(—z;—-‘i)} HE - ¢,) , (105)

where we have replaced wﬁ by wﬁ' in accordance with equation (87).
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Consequently, employing the truncated version of equation (102) and
replacing the second integral of equation {(59) by the right-hand side of

equation (104), we are able to rewrite equation (59) as

by g6 = - HE, - e vy

g 2 2Xv 2
+ 2Vm K) o BO “i-T'}—('; + B]Xv + BZX\)

L{c) fec_, - & -
e (EE v) 'él" Z SIE:){L(E ) = Llegdg Jeg} . (106)

A similar process is used to derive E?'W(Ev) from equation (74). By
]

comparing equations (59), (74) and (106) we find that we may write

BY &) = - HE, - ey

= 3
L(CE) CE = Ev I N-1 (&) = _
’ ( & t e Zl Sup 118 = Lledg e} (10)

where

- -1 £ - CA
L(g) = w*(x) - w*(x ) + = U*;:,'(XT) tan — |t B - ) (108)
T

and it is shown in Appendix G, with the aid of the previously-mentioned jet-

flap analogy, that ﬁn and En are solutions of the linear equations

i*
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M-1 c

z bmnDn = T Eg _;-)' fm()'()

n=0 E

_ P, m=0,1,2,...M1 . (109)

M-1 c

): bman - -3 —2]2 fm(“)
n=0 cE

-’

Here, with the aid of equations (G-19) and (87), we have that

dw* dlp* t dlp* t
__...lj. .l_ v * _!__ W
{dx ¥ 2 dx (GW * BW) * 2 dx (z+ ¥ z_) Xx=C V°"C0(B *ta) .
~°F

Noting from equations (103) and (109) that

_ D C, _ B Cp

=
o

we observe that it 1s possible to derive ﬁn and En from the solutions for
b and B .
n n

4.2 Evaluation of corrections to speeds at edges of flap boundary layer

The correction to the speed of the flow at the edges of the flap boundary
layer due to the flap boundary layer is given by equation (33). The first

integral in this equation may be written in a more suitable form by using the

trigonometric substitution (97); thus, referring to this integral as 14, we
have
<, '
8 f A "¢ \
= —_ 1)
14 - 2,” AYA,B(E ) (c . x - E')z dg »
0 A

(E ) (cos ¥ — cos ') 31n 8

de' , (110)

fl
o BN
%_____'
[>

(cos 6 - cos B' )

where cos 6 = 2(cA + x)/cE - 1.

Consistent with equation (98) we disregard the possibility of a logarithmic
singularity in Ay g at 8 = x. Thus, with the exception of a simple pole at
]
£' = Cy that exists when x = 0, the integrand of I4 is bounded. The

singularity may be dealt with separately by rewriting equation (110) as
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- [l : '
3 {(cos ¥ -~ cos B8') sin & 4o

w
B [
I, = — Ay (¢
4 Zm X »B7A {cos § - cos 6')2

(cos ¥ ~ cos 6') sin &' 48"

m
+ [ {AY B(F,') - Ay B(CA)} , (111

J (cos 8 - cos 8')
X

where the first integral, which contains the singularity, may be evaluated

explicitely and the second integral has a bounded integrand.

Evaluating the second integral of equation (1!1) by means of the

trapezium rule we have, subject to two assumptions to be given shortly,

B A T X
14 T 7 AY,B(gm) In ( X ) * cy *t X -1

N~1 (cos x — cos 8“) sin eu
L {ev gle) - oy e}
H=m+]

b =

{(cos § - cos Bu)z -

AY,B(EN_I) sin SN_] (cos x + 1)

2(cos B + 1)2

+ (112)

Here m 1s the integral part of (1 + Ny/m) and we have made use of the two

assumptions, firstly that, for sufficiently large N,

. _ . . ] .
AY,B(EN_l) sin GN_] l%m (AY,B(E )y sin 8') ,
8 'y
and, secondly,
by gleg) = by g€ -

(L]

The error 1in IA resulting from the use of the first of these assumptions

is readily found to be 0{(ﬂ/N)3] for distributions which behave like

-

tan (8/2) near 6 = w, For N = 32 this error is evidently negligible. The
second assumption can be justified by the observation that, in all the cases

examined in this Report, Ay B(E) varies slowly near £ = Cpe
?

We have not attempted to assess the accuracy of the approximate integra-

tion scheme used in evaluating Ia; however, the contribution of Ih to the
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correction to the flap lift is found to be small - no more, in fact, than 10%
of the total correction due to the flap boundary layer. We consider therefore
that the present integration scheme with N = 32 1is adequate for our purposes.

' The second integral in equation (33) requiring evaluation is given by

] dx'
Is = 5 ‘[ AqF,B x-x' (113)
0

It is convenient to rewrite equation (113) by employing transformations
(22) and dividing the integration into two parts from 0 to c¢_ and from
g 4 p
e to «©, as follows:

°E

-l - dg’ 1 ~ de!
Is = % [ AqF,BH(g cp) £ - tf T 2n f bap g T =T - (114)
E

0

The first of the integrals in equation (114),

B
_ o ey
I, = 3 AqF,BH(E c,) o (115)
0 .
may be written in the form
c c
E E
E(c ) ' [ E(c.) '
= E dg RE _d y - E 1 dg
e = 21:[ g - 'm dg'(E(‘E) o 5>_e;—‘g" (118
0 0
where
£
E() = [ bqp pH(E - c,0de
0
o E H YHE - ) (117)

from equatlons (12) and (22). Here we have supposed, as before, that ¢* and

¢*, vanish, at the 1ead1ng edge of the flap, which point is assumed to be at

£ = CA'
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The second of the integrals in equation (116) may be evaluated numerically
by the method Weber12 has used for determining the velocity distributions of
aerofoil thickness distributions in a potential flow. Hence, evaluating the
first integral in equation (116) explicitely and integrating the second integral

numerically by Weber's method we have the result

E(c) £ N-1 E(c.)
T, = o —" ln( e )+ ) s(l){E(E ) - —— ¢ } ., (118)
T g g T Sy g u=1 W H ¢ M

(D

where Suv is defined in Ref.l12.

The accuracy of Weber's method for smooth and continuous distributions of
E(£) 1is undoubted, at least, for values of N > 16. However, we note from
equation (117) that, in the present case, E(£) has a discontinuous first slope
at § = Cpo in general. It is appropriate, therefore, to comsider the accuracy

of a distribution of this type, such as
BE(E) = (& - cH(E - ¢) . (119)

Substituting E(E) from equation (119) into equation (116) and performing

the routine integration we find that, for this distribution,

E-c¢,

m" . {120)
E

Results for 16 that have been computed by using the exact result (120)
and the approximate expression (118), with N = 32, are shown in Table 3 for

x = m/3. It will be noticed that the agreement between the two sets of results
is satisfactory for v either less than 6 or greater than 12; but in the
neighbourhood of the discontinuity in dE/df at 6 = n/3 the agreement is not
good, the error being as much as 127 for v = 11. An improvement in accuracy

in this region might be obtained by removing the discontinuity in the form of a
distribution similar to that given in equation (119). This has not been done,
however, since it was found that, in each of the cases to be examined in
section 5, the slope of E({) at & = Cy * is very small compared with
E(CE)/CE. This suggests that the present test of the accuracy of equation (118)
is rather severe. Additionally, it is found that the contribution to the lift

of the flap associated with I, 1is small compared with that associated with

6

Ay B It was decided, therefore, to retain approximation (118) with N = 32.
’

L]

i*
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In the absence of either experimental results or a reliable theory for the
behaviour of AqF B downstream of-the flap trailing edge we have assumed that
]

it has the form
AqF,B = - (E(CE) - E(wa H((l + A)cE - E)/ACE : E >-cE . (zn

where X 1s an arbitrary parameter.

The model of the displacement flux implied by equation (121) is
illustrated in Fi1g.8, where it is compared with a plausible suggestion for the
actual distribution. It will be seen that our model correctly represents the
total change in displacement flux between the trailing edge of the flap and

infinity.

In section 5 it is shown that the effect, on the 1ift of the flap, of
varying A 1is insignificant. The implication of this is that the flap 1laift is
insensitive to detailed changes in the shape of the distribution of displacement
flux in the wake; and thus it is considered that the approximation (121) is

acceptable for our purposes.

Substituting AqF B from equation {121) into the second iﬁtegral of
>
equation (114), performing the integration and combining the resulting expression

with equations (116) and (118) we have

E(c.) £ N-1 E{c_)
_ 1 E v ] (D _ E
IS T 21 ¢ In (CE - Ev>+ 2c z Suu {E (Eu) c gu}

E E n=] E

ACE cE - Ev

E{c.) - E(=) (1 + Me, - &
! E E v
+ 37 ln( ) . (122)
This completes the description of the methods used to evaluate the
integrals of equation (33). It only remains to note that we may write in place

of equation (33)

3 (8yg) Mg g
——— = ———m
= {x,%0) I4 x o + 15 . (123)

with I4 given by equation (112), 15 given by equation (122) and AYF B
?

{= Ay B for N LES CE) obtainable from equation (98).
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A similar procedure is used to determine the correction to the speeds at
the edges of the flap boundary layer due to the wake of the main aerofoil.

Noting that in our approximation

a(ay,.) 3 (ay, )
(___w__) AL AR
U,

.

oz 9z
L

we find that these speeds are given by equation (92), which includes a first-
order correction for wake thickness as well as non-zero displacement of the wake

from the flap chord. In the last-named expression there are two integrals

similar to those considered previously. The first,
fam .,
I, = —l'.[ W _dx (124)
*r

(in which we have replaced X, by x' for convenience), may be approximated

(»

in the same manner as for the integral I that is to say we first rewrite

5;
equaéion (124), with the aid of equations (22), as

c

E - @ =
diyp* dy*
__1_[ Woerr et 1 Ty de!
L c ) @i ot - (125
0 g
Here we have used the fact that Ep = e, The first of these integrals is

evaluated by using the method employed in the evaluation of the integral 16

(equation (115)). 1In the reduction of the second integral we follow the method

used in the evaluation of the second integral of I That is to say we assume

5
that
dyk {¥k () - x() ] i
W _ _!WUE W - . ®
= C e A N A L

I

This equation may be written in a more suitable form by using a result given in
Appendix E, namely that P vanishes far downstream. Consequently, as may be

inferred from equations (72),

Eﬁ(m) = YEe) . (127)
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As with the approximation to AqF B for points downstream of the flap
trailing edge we find that the variation in flap lift due to changes in the

parameter A 1in equation (126) is negligible (see section 5).

Using equation (127) to eliminate aﬁ(m) from equation (126) and
substituting the right-hand side of the resulting expression for dﬁﬁ/dg in the

last integral of equation (125) we obtain finally

Yx(c.) (5 ) N- VA (e ) }
R R A v 1 oD W E

I, & — In \ + VEEDHE - ) - —— ¢
7 27 Cp Cg EU 2cE uzl { A c U

Pr(c ) - p*(=) (1 + Ne, - &
L WE W ln( E \’) . (128)
\Y)

27 ACE

The second integral in equation (92),

C

f A -
1]
AyA W —3 dg' (129)
0 c +x-£0

differs from I4 (equation (110)) only in having in its integrand Z;A W
¥

instead of AYA B Therefore, using the approximation that was employed 1in

evaluating I,, we obtain

4
c, +x
_ BT A X _
IB T 2% AY,W(Em) {1n( X >+ N + x ]}
. N-1 { L __ } {cos y - cos Bu) sin eu
+51 ) tay &) - ay ()
N p=mt1 WTH 0w (cos 8 - cos Bu)

AY (£ Y} sin 6 (cos y + 1)
+ W N 1 N-1 . (130)

2 (cos & + 1)2

Thus, by referring to equations (92), (124) and (129), we are able to
write for the corrections to the speeds at the edges of the flap boundary layer

due to the wake of the main aercfoil
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3 (8u,) ) . -
5o (x,30) = - {H(x - xT)Yw R PR w*'(xT) 7 7
, (x—xT) *+ zg
Ay,
+ Iai__gﬁ , (131)

with I7 and 18 given by equations (128) and (130), and E;f u given by
]

equation (107). The corresponding expression for a 'thin' wake at a 'small'

(1)

distance from the flap chord is obtained simply by replacing ;W by Yy o

T* %1 Av
¢W by ww and AYF,W by AYF,W'

4.3 Calculation of corrections to flap lift

\
The correction to the 1lift of thé\ﬁlap due to the flap boundary layer is
given by equation (31). To evaluate the integral in this expression we first
employ transformations (22) and the trigonometric substitution (97). Hence we

find that

ACLF : = ALF,B/%pviCO = cos (B + o) J(8) sin 6 do , {(132)
where
¢ P 3(ay.) Y 3(Ay.)
3@) = —%—(a D (x,40) —== (x,40) = == (x,70) — (x,-O)) ., (133)
con

(B(AwB)laz)(x,iO) being obtained from equation (123).

Performing the integration of equation (132) approximately with the aid of

the trapezium rule and noting that, for sufficiently large N,
J(em_l) = J(x)

we obtain the result

m—2
m .
AC, = cos (B + a) Z J(e ) sin 8 * oy J(Bm_l) sin 0 __,
F,B RS
_7(m - 1) .
+ (x -—__TT—__) J(em_]) sin emhl . {(134)

Here, it may be recalled, m is the entire or integral part of (1 + Ny/w).

b

i
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To test the accuracy of equation (134) we have considered the hypothetical

case having

2, 2,
3;—(1(,1'0) = 35 (x,-0) = Vm = 1

(135)

Hence, combining equations (123), (132), (133) and (135), we have in this case

X

g
ACL = cos (B + o) Er-'[ AYF,B sin 6 d6 . (136)
F,B 0 0

In particular, for the F(£) distribution of equation (99) we may use

equation (100) to eliminate AYF B from equation (136) to yield
]

X
c .
_ E X 8,1 sin (6 + x)/2 .
ACLF = cos (B + a) E?'.[ {“ tan > + - 1n sin (6 = ) /2 sin 6 d9
’B 0 0 L]

Spence18 has evaluated the integral of this equation explicitely in his

work on blown flaps. We find that it is possible to infer from his

equation (11) that

c 2
AC = cos (B + a) £ ér . (137)

F,B 0

Using equations (123), (132), (133) and (135) we may write for the

approximate equivalent to equation (136)

c m—2
. T .
AC = cos (B + a) = Z Ay,B(gu) sin 9Ll + 3N AY,B(Em-l) sin Bm_]
F,B 01" u=l

=i

. + (X “EggﬁlJ%)Ay,B(Em_l) sin 6 __, | . (138)

To compare the approximate result with the exact result (137) it is only

necessary to substitute the Ay B given by equation (100) intc equation (138)
]
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and to perform the summation. However, in the computer programme, which has

been written to evaluate acp equation (138) employs the approximation (101)
F,B
for Ay g We have previously shown, however, that the errors in approximation
]
(101) are small except possibly close to £ = Cye Hence the results ocbtained
by this procedure should enable us to judge the accuracy of equation (134)

compared with equation (132). In fact, with x = ©/3, we obtain the following

results for ACL c cos (B + a):

/e
0 E

Approximate, Eqn.(138) with

Exact, Eqn.(137) Eqn.(101); N = 32

0.349 0.340

The error in the approximate result is evidently small, and this test

appears to justify the use of approximation (134) with N = 32.

The increment in the lift of the flap due to the wake of the main aerofoil,
including second-order correction terms to allow for the non-zero thickness of
the wake, is given by equation (93). Rewriting this expression in coefficient

form and employing transformations (22) and (97) we find that

LF W F
ACL = '-—5—— = cos (B + a) j. K(B8) sin & d&6 , (139)
F,W Ve
’ © 0 0

where

c oY 3 (Ay_) 3 (Ay,) a(ay,.)

_ _E [} 1 W B W

K(g) = - V2 {az (x,+0) + 5~ 55 (x,+0) + — (x,+0)} Y (x,+0)

0 =

' AN i a(AwW) 3 (Avy) a(AwW)
- {Eﬁg‘ (x,-0) + PR (x,-0) + 57 (x,-0) TR (x,-0)

Using the approximation that was employed to derive equation (134) from

equation (132) we have in place of equation (139)

»

tw
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m-2
- n . m
ACL = cos (B + a) N z K(eu) sin Gu * N K(em_l) sin Bm_]
F,W p=1 )
_n(m - 1) .
+ (X 5 )K(em_l) sin Bm_] . {140)

The accuracy of this approximation has already been considered in relation to

equation (132).

Comparing equations (90) and (93) we see that, for a sufficiently 'thin'

wake, we may replace equation (140) by the expression

ACE;TW = cos (B + a) % ?g? K(l)(eu) sin 0+ é% K(I)(em_l) sin 6 __,
. (X - %) ke _)sine |,
where
kD (o) :32(—:-31 (x,+0) Eg# (x,40) - —:lpl (x,-0) EE;“(’—])-)— <x,-o>) :
Ve

4.4 Evaluation of corrections to overall lift

Whilst our main interest is in the lift of the flap we have alsoc estimated
the corrections to the overall 1lift arising from the flap boundary layer and the
wake of the main aerofoil. Empleying the lift-circulation theoremlI for
viscous flows we have for the increment in 1lift due to the various viscous

effects
AL = prAP . (141)

Here Al is the increment in circulation, due to the viscous effects, around
a simply-closed contour which surrounds the main aerofeoil, the flap and their
associated boundary layers, and cuts the wake at right angles far downstream

of the flap.
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It will be recalled that we have regarded the wakes of the flap and the
main aerofoil as one for the purpose of representing the vortex effect of the

wakes downstream of the flap trailing edge. Hence we write

AT = AT + + AT 142
,B AF,WS & Wy (142)
where
°E
= 1
AI‘,B [ L\.Y,BdE (143)
0
15 the increment in circulation due to the flap boundary layer; AT WS is the
]

increment due to the sources representing the displacement effect of the wake
of the main aerofoil; and AFW,V 1s the increment due to the vortices of the
wakes of both the flap and the main aerofoil. Note that we have not included
an increment due to the sources of the wake of the flap. In our approximation
this is zero owing to the fact that these sources are assumed to be on the line
Z = 0. Hence they induce zero downwash at the chords of the flap and the main

aerofo1l and consequently do not influence T.

The increment in lift ceoefficient caused by the flap boundary layer may

be written, by reference to equations (l141), (142) and (143), as

8
O
n
[\%1 73
[=>
)
L_____‘
x]
=3
<
2]
[
™

Employing transformations (22) and (97) we may rewrite this expression as

follows:

°g [ 4Y 3
AC = — —2— g5in 6 d6 . (144)
L c v
s B 0 oo

This integral may be evaluated by using the trapezium rule viz:

AC . _ET Z o B gin g 4 o2 cin 8 . (145)
L B 4 N =1 V. w2 v N-1
, =

L)

*)
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Here, as in the derivation of equation (112), we have assumed that

AY’B(EN_]) sin BN_] = lim (AY,B(E) sin 8) ,
o+
which results in an error of 0((w/N)3) for a Ay B that behaves like
]

tan (6/2) near 8 = w, as noted before.

The accuracy of equation (145) may be assessed by considering again the
F(£) distribution of equation (99). Upon replacing Ay B in equation (144)
?
by the vortex distribution corresponding to this F(£) distribution, i.e. from

equation (100), we have, with V_ = I

L 2 7 sin (8 - x)/2

m
c .
AC - £ f X tan-e- + 1 1n |232 (6 +—K)/2‘} sin 8 d&6 .
c m .
.3 0 5

This integration has been performed by Spencels, and it is readily inferred

from his equations (8), (9) and (10) that

[

ac, = C—E (x + sin x) . (146)
»B 0
To determine ACL from equation (1453) we have used the approximate

B
-
summation version of equation (100), namely equation (101), the N in both

sumnmations being 32, Using this procedure, we find that, for x = w/3,

Aty colcE is 1.913 whach, to four significant figures, is in agreement with
B -
>

the exact result. It would appear, therefore, that the approximate formula (145)

is suitable for our purposes.

For the purpose of estimating the correction due to the wakes we propose
to use the 'thin'-wake approximation and, as in section 3.1, we suppose that
the distance of the wake of the main aerofoil from the flap is small compared

with the flap chord. Hence to obtain

C

E
AT us = [ BY wgdt
0
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we refer to egquation (59) for Ay W and note that Ay WS is given by the

3 2
last integral term of that equation. This term has previously been called 13.
Therefore, using the method employed in the derivation of equation (145) from

equation (l144) and replacing Ay WS by I. we have the result
]

3
CETT(NEI

AC = =2I I.(¢ ) sine + 4I_(6 . ) sino | ,  (147)

L,ws cg ¥ u=13“ u 3 "N-1 N-1

where I3 is defined as an approximate sum in equation (104).

The wake vortices are comprised of (a} a distribution of vortices just
above the flap, representing the vortex effect of that part of the wake of the
main aerofoil which is immediately above the flap and (b) a distribution
representing the combined aérofoil-flap wake downstream of the flap trailing
edge, As is evident in equation (59) the former distribution requires an equal
and opposite distribution on the flap chord. Therefore, in practice, the net

contribution of these two distributions to AT can be expected to be very
3

small or negligible. As remarked before, the d?:tribution (b) is analogous to
the distribution of vortices along the jet sheet of a blown flap. According to
Spencel8 the increment in lift coefficient of a blown flap due to these vortices
is given by

[+

= £
ACL = » éﬂ(DOB + Boa) s

where, it should be noted, ACL is based on <o instead of the g that

Spence uses. Therefore if, as previously, we employ the analogy between the
wake vortices and the vortices of the jet sheet of a blown flap we obtain for
the increment in lift coefficient due to the wake vortices

c

E
AC = — 4n(D.B + B.a) ,
L,WV co 0 0

where D0 and BO are coefficients in the linear equations (103). Referring

to the solutions of these equations for M = 3 in Table 2 we find that it is

possible to write

AC = - AnCD(O.SZB + 0.460) .
wWY

4

=
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«Finally, we note that the total increment in 1ift coefficient due to the

various viscous effects is given by .
AC. = AC + AC + AC .
L Ly L s L
5 RESULTS OF CALCULATIONS

The calculations have been performed for a number of Fowler-flap con-
figurations. These configurations were tested by Foster, et aZ.g who used the
RAE 3ft (0.91m) chord twodimensional model. Throughout these tests the Reynolds
number based on ¢y was 3.8 x 106. Each of these configurations have in
common the flap angle B = 24°  and the overlap %/co = 0.042. Three flap
gaps (g/co = 0.020, 0.025 and 0.040) are considered and two values of a,

o o .
-5"and 37, are examined.

Where possible, the calculations have been based on results derived from
velocity surveys conducted above the flap in the boundary layer of the flap and
the wake of the main aerofoil. The object of this is to ensure that we use
nominally correct values for the quantities associated with the viscous part of

the flow field. By so doing we consider we will be better able to judge:

(1) the relative importance of the wake of the main aerofoil as compared

with the boundary layer of the flap; and

(ii) the significance of the thickness effect of the wake of the main

aerofoil.

Throughout the calculations the integer N in the summation formulae of

section 4 was kept constant at 32, this value appearing to give accurate values

for the corrections, as indicated before.

5.1 Effect of flap boundary layer

Foster16 has derived from velocity surveys the distribution of the dis-

placement thickness
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along the flap upper surface, U being the velocity at the edge of the boundary ’
layer. These results are illustrated graphically in Fig.9 for the various

configurations. )

Associated with the displacement thickness 6§ is a pseudo displacement
flux

%

wﬁ' = Uﬁﬁ = [ (U - u(z))dz .
0

This differs from the displacement flux ¢ﬁ (equation (11)) by the amount

6U
.[ (U - uI(z) - Auw(z))dz .
0

. . . , . . 3
This term is invariably assumed to be negligible in the case of isclated wings™;

[

and hence wﬁ 1s assumed to be equal to wﬁ'. In the present case, we assert
that it is consistent with our assumption that the flap boundary layer is

"thain' to neglect this term in comparison with wﬁ. This may be proved by
examining the first-order thickness correction to the approximate equation (15)
for a "thin' boundary layer. The terms neglected by using this equation include

terms like (a(awB)/az which is of the same order as the difference between

z

Ju7y

Y%k and Y%' gshown above. Consequently we replace ¢* by y*' 1in the
U U P U U

calculation of the boundary-layer effect.

No corresponding velocity surveys have so far been made below the flap;
consequently 1t has been necessary to estimate the displacement-thickness
distribution along the flap lower surface. The boundary layer on this surface
was assumed initially to be laminar; it was then calculated by using a computer
programme which is based on Thwaites method]! for laminar layers and which

‘o . . 1 .
embodies the transition criterion of Crabtree 9. The experimental lower-surface

L)

pressure distribution was used as input data. Insofar as the results obtained

by using this programme indicate that transition to a turbulent layer does not

i

take place,our initial assumption of laminar flow appears to be justified. The
results derived for the displacement thickness are shown in Fig.10. Evadently,
the displacement thickness of the lower-surface layer is very much less than
that of the corresponding chordwise position on the upper surface. As with

* * X!
wU we replace wL by wL .
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The results calculated for the correction to the flap lift due to the flap

boundary layer are shown in Table 4 under the column labelled AC We see

Le,s

that there is a significant increase in -AC upon altering g/c0 from

ER:

0.02 to 0.04, as might have been anticipated from the distributions of displace-
ment thickness given in Fig.8. On the other hand, an increase in o from

o . .
-5° to 3° results in only a small change in ACL .

F,B

All the results for ACL were derived with the parameter X of
F,B

equation (121) set equal to 0.04. This was considered to be a reasonable value

from observations of the behaviour of the displacement flux in the wakes of

isolated aerofoiISIB’la. Some calculations have, however, been performed on

the effect of A on ACL ; the results of these calculations are shown in
F,B

Fig.11 for the case g/co = 0.02, a-= -5°. It will be seen that ACL

F,B
varies very slowly with A.

Table 4 also includes the corrections to the overall lift due to the flap

boundary layer, ACL . As with the correction to the flap lift, the largest
B
]

correction is obtained with the largest gap for both values of a.

5.2 Influence of wake of main aercfoil

5.2.1 'Thin'-wake calculations

As noted in section 3.2 we may replace wﬁ by wa' for a sufficiently

"thin' wake. Results for w;'/vmc deduced from velocity surveys performed by

16 . 0
Foster ~ are shown in Fig.l12.

For a "thin' wake the vortex strength Yy = Yél) may be estimated by

using equation (48). However, since this involves the determination of the
curvature of the wake, it is found preferable to use instead an alternative
result. This is derived in Appendix C and given as equation (C-28). Using this

expression and referring to Foster's wake-survey results we have been able to

(1

calculate the results for Yy )/Vm, shown in Fig.13, for the part of the wake

(1)
W
at some point along the flap. The reason for this may be found by examining

immediately above the flap. Note that, without exception, ¥ changes sign

equation (48). We see that, since U, 6% and ew are all positive, the only

quantity in which the change in sign can occur 1s i.e. the curvature of

K
w!
the wake. An examination of the shape of the wake from Foster's results seems
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|-

to suggest that this indeed happens. Shortly after leaving the maia aerofoirl,

the wake attempts to follow the flap upper surface, thus ensuring that Ky is

positive, Almost immediately after this, however, the wake begins to bend

towards the direction of the main stream, and, in consequence, Ku becomes

negative.

(1)

Le w

This method, it will be recalled, is based on the assumption that the wake is

The correction AC is calculated using the method of section 3.1.

not only 'thin' but it is situated at a 'small' distance from the flap. The

results for Acﬁl) so obtained are shown in Table 4. Comparing these results
F,W
with those for ACL we see that, for a = ~50, the effect of the wake on
F,B

the 1ift of the flap 1s small compared with that due to the boundary layer of
the flap. ©Not surprisingly, perhaps, the wake effect increases in magnitude
upon increasing the incidence to 30; it is, nevertheless, smaller, in

magnitude, than the corresponding correction for the flap boundary layer. .

Throughout the calculations of ACil) the parameter A of equation (126)
F,W
was held constant at 0.04. However, as in the case of ACL » the influence *
F,B
of X on ACﬁl) is found to be insignificant.
F,W

Some comments are appropriate on the relative significance of the various

terms in ACél) . We may divide the wvarious contributions into those due to:
F,W
(i) the point source at the shroud trailing edge;

(ii) the distributed sources of the aerofoil wake;

(1ii) the wake vortices including the vortices of the combined wake down-

stream of the flap trailing edge.

In all the cases considered, we find that the largest contribution to
n

Lew

relatively small in magnitude. This may be illustrated by reference to the case

~AC comes from the distributed sources, contributions (i) and (iii) being

I

g/c0 = 0.02, o= -5° for which a breakdown of the various contributions may be

given as follows:

. \ AC
Contribution LF,W
(i) +0.006
(i) ~0.023
(iii) +0.001
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The result of adding the corrections ACL and ACEI) to (FL ) s
F,B F,W ¥/1
the flap-lift coefficient of the first inviscid approximation, is shown in
Table 4, where the corrected coefficient is referred to as Cél). Comparing
F
this coefficient with the flap-lift coefficient derived from experimental
pressure distributionslB, CL , Wwe see that Cél) is, in all cases, lower
F F
than CL . It may be that this is due to our neglect of the thickness of the
F

wake and the non-zero distance of the wake from the flap. We will consider

this aspect in section 5.2.2.

Table 4 also contains results for AC and ACL ; these are used in

WS wv

H 3

conjunction with ACL to ceorrect (CL)I, the corrected result being referred
B .
3

él). Comparing this coefficient with the result for the overall-lift

coefficient derived from experimental pressure distributions we see that the

L

to as C

present method overestimates the correction, generally.

5.2.2 Effect of wake thickness and distance of wake from flap

We recall from section 3.2 that, if the singularities in the 'thin'-wake
formulation are placed on the mean line of the wake, the first-order corrections
to the vortex and source strengths of the wake for non-zéro wake thickness are
both zero. We suppose therefore that these singularities are placed on this

(D
W

line, Consequently, the corrections to wa' and v given in section 3.2

apply exclusively to the effect of non—zero distance of the wake from the flap

chord.’' The results calculated for ACL are shown below for the case
F,W
g/c. = 0,02, They are compared there with the results for AC(I) , &C and
0 L L
CL F,W F,B
F
(1)
o] AC AC AC C
o Lew Lpw Lr .5 Lp
-5 | +0.005 | -0.017 | -0.103 [ 0.543
3| +0.024 | -0.049 | -0.117 | 0.520
In the calculation of ACL we have used the second-order expression
F,W
for AL equation (93). However, almost identical results are obtained if

F,Ww’
one neglects the products and squares of the velocity corrections as is done in
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eV
W
to AC, for the non-zero distance of the aerofvil wake from the flap 1s of
F,W (1)

ACL

the same order as
F,W

correction is to change the sign of AC

We may conclude from the above results, therefore, that the correction

. Indeed, we see that the result of applying this

from negative to positive,
L
F,W
although, 1n the process, the magnitude of this coefficient is noticeably reduced.

Hence it is apparent that the solution for AC, is sensitive to the choice
F,W

of position of the line on which the singularities are placed.

Insofar as ACL and ACEI) are small in magnitude compared with CL

F,W F,W F
the change in ACL due to the non-zero distance of the aerofoil wake is not
F,W
particularly significant. Of more significance, perhaps, is the effect of the

distance correction on the flap pressure distribution insofar as this affects
the development of the boundary layer on the flap upper surface. We have
therefore examined the pressure distributions, corresponding to the two methods,
on the surface of the flap for the case a = -50, g/c0 = 0,02, The two distri-
butions are derived as follows: To the upper and lower surface velocity distri-
bution of the first inviscid approximation we add (BCAw)/Bz)(x,iD). For a
sufficiently 'thin' boundary layer this procedure yields the velocity distri-
bution at the edge of the boundary layer. Consequently we may use Bernoulli's
equation to obtain the static-pressure distribution there. In the case of the
first-order method for a 'thin' wake and 'small' flap gap we neglect the

squares of (B(AW)/BZ (x,¥0)/V_. On the other hand, for the theory further
corrected in a first-order way for wake thickness and distance of the wake from
the flap (which reduces to a correction for the distance of the wake from the
flap if the singularities in the 'thin'-~wake method are supposed to be on the
mean line of the wake) we include the products and squares of the velocity terms
containing (B(Aw)/az)(x,tO) but neglect the term{(a(AwB)/Bz)(x,iO)}z/Vi.
Hence, assuming that the static pressure does not vary across the flap boundary
layer, we arrive at the surface-pressure distribution. These twec approaches

are consistent with the corresponding methods used tc derive the corrections

for the flap lift.

The results of these calculations are shown in Fig.l4, where they are

plotted in coefficient form, viz:

2
¢ = (p = p 2/ 2eV,

[



81

and are compared with the pressure distributions of the first inviscid
approximation and experiment. Evidently, the change in pressure gradient
asscciated with the correction for non-zerc distance of the wake from the flap
and wake thickness is small compared with the pressure gradient of the experi-
mental pressure distribution. Although this remains to be proved quantitatively,
it seems likely, therefore, that the development of the boundary layer on the
flap wi1ll not be materially altered by including the thickness-distance correc-
tion in the wake contribution. Taking this point of view a stage further we
infer from the results given above for g/c0 = 0.02 that the effect of the
wake on the lift of the flap, after correction for wake thickness and distance
of the wake from the flap, is small. It becomes even smaller if one excludes
from the wake correction the contribution of the point source at the shroud

o}

trarling edge (e.g. with g/co = 0.02, o =-5 AC is then equal to

Lew

-0.00]), implying therefore that the effect of the distributed sources and
vortices of the wake on the flap lift 1s, in fact, very small. A quite

adequate approximation for estimating C and also the displacement thickness

Lp

of the flap boundary layer may therefore be obtained by neglecting the distri-

buted sources and vortices of the wake altogether. The flap-lift coefficient

so derived is shown in Table 4 as Cﬁz); and we cobserve that this coefficient
F

is in much better agreement with CL than is Cﬁl). To avoid overcrowding
F F

we have not shown the pressure distribution achieved by this method of
correction; but we find that it lies very close to curve (b).

Fig.l5 shows pressure distributions for the case g/c0 = 0.04, a-= -5°,
Again we see that the difference between the distribution containing a first-
order correction for the wake effect and the distribution with a further
correction for wake thickness and distance from the flap is small. We notice,
however, that the curve obtained by neglecting the distributed sources and
vortices of the wake (but retaining the effect of the flap boundary layer and
the point source) 1s noticeably different from the other two corrected curves
in the region 0.1 <Ix/c0 < 0.3 on the upper surface. However, it is open to
question whether this discrepancy would seriously influence the boundary layer
on the flap upper surface, since the differences between the pressure gradients

of the three cited curves do not seem to be significant.

The agreement between the corrected pressure distributions and the experi-
mental distributions of Figs.14 and !5 cannot be described as good. It is

outside the scope of the present investigation to examine, in detail, the
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reascons for this., We note, however, that the major part of the viscous
correction is due to the flap boundary layer for the present flap configurations.
Future work on this subject might therefore be concerned with possible higher-
order approximations to the wvelocity field of the vorticity layer comprising

the boundary layer of the flap. Since the flow separates from the upper surface
of the flap9 for both the cases exhibited in Figs.l4 and 15, a method that 1s
based on the notion of a "thin' boundary layer, such as the present one, may be
inadequate. To illustrate this we note in Fig.15 that, downstream of the

separation point at x/c, = 0.29, the load on the flap is significantly under-

0
estimated by the present method. In this respect it is appropriate to remark
that work is currently in hand at the RAE on the determination of a suitable

theoretical model for multiple aerofoils having regions of separated flow.

6 CONCLUDING REMARKS

The present investigation shows that the effect of the wake on the lift of
the flap 1s of secondary importance compared with the effect of the flap boundary

layer, at least for tne flap configurations examined.

Consideration has been given in this Report to the question of how the
neglect of tne thickness of the wake in the 'thin'-wake theory might influence
the results for the flap lift and the pressure distribution of the flap. It 1s
shown that, provided (a) the sources and vortices of the wake are placed on the
mean line of the wake, and (b) the displacement flux wa is replaced by the
pseudo displacement flux

vE = [(ﬁ—u)dz ,

.

W

the first-order correction to the 'thin'-wake theory for wake thickness

vanishes.

As a first approximation for flap gaps that are small compared with the
flap chord, it is reasonable to place the singularities of the wake on the
upper surface of the flap, or, if the flap is of small thickness - chord ratio
and camber, on the flap chord. The indications of the present calculations
are that this approximation overestimates the magnitude of the correction to

the lift of the flap for the effect of the wake.

Comparison between pressure distributions calculated by using the various
approximations discussed here and the experimental pressure distributions

suggest that there is scope for improvement in the present theory. Since the

[¢]

~
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boundary layer contributes the major part of the reduction in the 1lift of the
flap, future work should be directed towards examining the accuracy of the 'thin'’

boundary-layer approximation.

Finally, it is appropriate to comment on the type of flow that has been
considered in this Report. The configurations examined here were chosen because
with them it is possible to distinguish between the wake of the main aerofoil and
the boundary layer of the flap upper surface. With this type of flow it is
possible to envisage a calculation procedure by which the viscous or 'inner'
solutions for the wake and the boundary layer can be determined virtually
independently of each other, the effect of the one on the other being regarded
as a change in the 'outer' velocity distribution. Two of the gap cases studied
here, namely g/c0 = 0.02 and 0.025, are close to the gap giving optimum lift
and are thus of practical significance. However, Foster, et al.g remark that,
to establish the optimum gap and to calculate the lift for off-design cases, 1t
will be necessary to examine flows in which the boundary layer and the wake
cannot be separated. For such flows the viscous part of the solution poses some
severe problems; but, in principle, the flow induced 1in the irrotational part
of the flow field by the combined vorticity layer can be determined in much the

same manner as was used in sections 2 and 3.
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»' Appendix A
DERIVATION OF THE FLOW FIELD INDUCED BY AN ARBITRARY VORTICITY DISTRIBUTION

. i

Consider the finite region £, which represents the region bounded by

the contour ¢ defining the edges of the flap boundary layer and the wake of

the flap. This region is illustrated in Fig.Z2.

10 . .
Green's second formula for the scalars u and v 1in the region I

may be written as

3v 3u _ 2 o2 -
[(u 3"V S.I-l.) dg = f(uv v - vWu)ds , {(A-1)
z

where the line integration around c¢ 1is performed in the clockwise sense, R
is the normal vector outward from I, df is an element of length, and dS 1s

an element of area.

. . Firstly, identify u with 1y, the stream function of the (real) flow
around the main aerofoil and the flap. Outside I, ¢ satisfies Poisson's

equation10

2
Vv = n ,

with n the vorticity of the flow within I. Here the sign convention is such

that n is taken positive if the rotation of the vorticity is clockwise. Hence

equation (A-1) may be written as

[(w oy %1‘{1) = f(wvzv - wn)ds . (A-2)
c X

Secondly, we observe that the stream function induced at a point P by
an elementary vortex, which is of strength ndS and situated at a point E

within I, 1is given by7

d(‘P)z = ndS 1n (r)/2n , (A-3)

[

vhere r is the vector, with origin at P, in the direction PE., Therefore,

making the substitution
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v = = 1n (xr)}/2n

for v in equation (A-2), and referring to equation (A-3), we find that the

stream function induced at P by the vorticity in I 1is
\

1 3 3 l 2 _
(;p)E = ﬁf{% lnr—ngx—{(ln r)} dn+§?fxpv (In r)ds . (A-4)
X

c

For points P external to the region I, equation (A-4) may be reduced

further by noting that, in this case,
v? (Inr) = 0 .

Therefore we have, in the region external to I,

() = _2_l_f{3w n r - 1113?1‘1’ (In r)} 48 . (a-5)
c

That is to say, the expression for the induced stream function in the region
external to I has been reduced from an area integration, as implied by

equation (A-3), to a line integration.

Equation (A-5) may be written in an alternative form by noting from simple

geometrical and trigonometrical considerations (see Fig.2) that

] 1 3r sin T
—_— = — — = +o—
an (In 1) r o9n - t
. (A-6)
df = rdt/sin 1

Here 1 1is the included angle between the & direction and the negative r
direction. Further, the positive or negative signs are to be taken depending
on whether the vector y passes, respectively, out of or into I at the

element d#. Thus equations (A-5) and (A-6) may be combined to read

(lp)z = E:-T- j{% In r -(t} ¥ SR} de . (A-7)
c

™
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Partial integration of the second term of the integrand of equation (A-7)

allows us to write

- L 3 +\ 3Y _
Wy = o= f{% n r + (_) oL 'r} e . (A-8)
C

It is convenient to write

1

Vo= bt Bug b Ay, (8-9)

where suffix I refers to the first inviscid approximation, AwB is the
incremental stream function due to the existence of a boundary layer on the
flap, and Aww is the additional stream function resulting from the presence
of the wake of the main aerofeil. Associated with each of these components of
the stream function is a certain vorticity distribution which will be presumed

to be known (e.g. from inviscid-flow calculations and boundary-layer calculations).

It follows, therefore, from equation (A-3) that

O T M R (VS M (4-10)

Consequently, upon comparing equations (A-8), (A-9) and (A-10) we have

3 (AY) 3{ay)
(AYgly = 5% {—-EEE- In ¢ + (t) -5EE— {} dg . (1)

[

A similar analysis may be constructed to determine the stream function
induced by the vorticity of the wake of the main aerofoil. Calling the region
enclosed by the wake T and the contour, defining the edges of the wake, k

(Fig.7) we have, by analogy with equation (1), the result

3 (ay ) 3lay,)
ov, = ;_f{_sl m”(-:)__ﬁﬂ_T} @ . @
k

External to the region I and to the main aerofoil the flow AwB is
irrotational. Therefore, neglecting the fact that the wake of the main aerofoil
tends to merge with the wake of the flap downstream of the flap trailing edge,

we have
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Gg), = O

and, in consequence,

3 (ay,) 3 (ay,)
0 = ! { Blnr+(_"_') Br}dz
k

2n on 3%

Hence, combining this expression with equation (A~11) we obtain the result

_ L 3 (AY) +\ 3(AY)
(Aww)r = 37 '[{——3%— In r + (_) —5e ;} e, (34)
k

where Ay = M’W + M’B'
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. Appendix B
' THE EVALUATION OF THE LIMIT OF AN INTEGRAL

We wish to evaluate the limit

[+ ]

l z
I, = — lim f £f(x") dx' (B-1)
9 2“2“*00 (x—x')2+22

for all x. Provided that £(x) 1is analytic in the interval 0 < x <> we

may use Taylor's series to write
F(x') = f(x) + (x' - 2)(@f/dx)(x) + (x' - x)2(d2f/dx2)(x)/2' + ...

Therefore, in place of equation (B-1), we have

] (x' - %)z

R S z y , df
19 o lim | £(x) [ 3 3 dx' + ax (x) [
z+0 0 (x - x") + z o

dx
(x - x')2 + z2

2 r : 2
L L AE (x' =Xz gt
2! 2 2

dx 0

Performing the indicated integration we find that all but the first term vanish

in the limit as z tends to zero, and we are left with

19 = fé:) lim (-;—r- + tan-l (i—)) >
z+0

which becomes, on taking the limit,

r

I, = < f(x)/4 x=0 (B-2)

f(x}/2 , x>0
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Appendix C
THE STRENGTH OF THE VORTICES SIMULATING THE WAKE OF THE MAIN AERQFOIL

The strength of the wake vortices per unit x-wise length is given by

equation (41), viz:

= [ 2Cay) dr ) _{ 3(Ay) db
Ty “( an dx) ( an dx> : (41)
+

For a wake having edges that are substantially parallel to the flap chord

we may use the approximation
(de), = + dx . c-1
Examination of wake-survey data taken by Foster16 indicates that the error in

Yy resulting from the use of this approximation, is negligible. Therefore we

may write in place of equation (41)

_ {aay) 3 (AY)
Yy ‘( an) +( Bn> ’

+
dz dz
s faan\ _faep) % [aep) ¢ -
( 2z ) ( 9z ) ( ax ) dx -f( ox ) dx ' (€~2)
+ - + -

To determine the first two terms on the right~hand side of equatien (C-2)

. . . 1 .
we examine the 2z component of the Navier-Stokes equations I, v1Z.:

2 2
Wé‘f.*.ua_w: —l-a-R+\) .B_E-'-a_i . (C_3)
dz X p oz 2 2
0z X
Using the equation of continuity
3w Jdu
3_2-+-é-3—(_ 0 (CZ{)

we are able to recast equation (C-3) in the form

2 2

3p _ _ .2 3 (w/u) 3w . dw _

y puT ———= + — + —73 . (C-5)
oz ax

-

18
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The requirement that the flow is tangential to a streamline may be

expressed as

dz
w

E§i x9) = 4 (C-6)

where suffix s refers to the streamline. Therefore, combining equations (C-5)

and {(C-6), we have

dz 2 2
e - pu? a(dx (XUJ))+u(M2{+§-—‘%) ,

az ax
2
2 d z, 5 dz dz 82w Zw
- pu 2 (X;Rb) = -3—; __ ( HP) (}C ‘JJ) _2- + . (0-7)
dx Az 3ax

-

1

(=5}

|

ba

Consequently, integrating equation (C-7) across the wake, we have

2 dzz 2 9 dz dz
P, ~P_ = -p [u 28 (x;¥)dz + o fu 32 —= (& ,w)) (x39)dz
w & W
a —
+ u {: j] .['"jz (C-8)
- W
The indications of wake surve.ys]6 are that, in the wake,
0 ju  _ .
V— el o1 . (C-9)

Therefore, by using equation (C-4), we find that the third term on the right-
hand side of equation (C-8) is O(v/V c ) compared with pV2 Therefore, under
the conditions of the experiments of Foster, et al. , in which v, <y /v  was

3.8 % 106, the cited term may be considered to be negligible.

If

1s the thickness of the wake we may infer from equations (C-4) and (C-9) that
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wo o= 0[V 8. /c)] .

Hence, regarding x/cF as being of 0(1), we deduce that the last term of
equation (C-8) is O[v(ﬁw/cF)Z/Vmcol compared with pVi. Therefore, noting
that Gw/cF-< 1, we conclude that the last term, like the previous one con-
sidered, is negligible. Consequently, we may disregard the last two terms of

equation (C-8) to obtain instead

2 d %s 2 3 dzs dzs
Py~ P_="p fu 5 (x39)dz + o [ uT o = () ) o= (uvddz (C-10)
woo W

In other words, for the purpose of deriving the rise in static pressure across

the wake, the flow may be supposed inviscaid.

Examining the orders of magnitude of the two terms on the right-hand side
dzzS
of equation (C-10) we find that the first of these is 0 5 Gw compared
dx

2 dzs ’ 2
with pV_, whilst the second is 0 e in comparison with pV_ . Results
obtained experimentally by Foster = indicate that, typically, sz/dx is of
2

d7z
S 6 reaches a value
2 W

dx

of the order of 0.1 near the flap trailing edge. This implies that, for the

the order of 0.0] 1n the wake above the flap, whilst

region above the flap, the last term in equation (C-10) is very small compared
with the first term on the right-hand side. Further downstream, we would expect
the situation to be somewhat different. However, since it is probably true that
the vortex strengths of the wake of the main aerofoil and of the flap wake reach
their respective maximum values near the trailing edge of the flap, we will
disregard the last term of equation (C-10). Similarly, noting from simple

geometrical considerations that the curvature of each streamline is given by

dzz dz 2 -
K = = 25 (x3%) 1+(§ (x3¢)
dx

{(with the centre of curvature taken below the streamline) it is consistent with

F)
2

the last approximation to replace dzzs/dx2 in equation (C-10) by -«x. There-

fore the rise in static pressure across the wake becomes finally
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P, “p_ = p j.uzxdz . (C-11)
W

Outside the wake, in the irrotational part of the flow field, the total

head is constant. Hence, using Bernoulli's equation,we have in place of

equation (C-11)

2 2 2 2
RO RORCIRTE
+ + - -

1Y)

In consequence of the observation that (dzs/dx)2 <€ ] in the region where
the vortex strength is most significant we may disregard the terms (aw/ax)f
in equation (C-12) compared with (31};/32)3. Therefore equation (C-12) may be

rewritten as

3 3 w [ 2
() -() - -3 [ o
+ W
where U = L{(%g) +(Mé)} s

and
Ky = fudez /f uzdz (C-14)
W W

1s the weighted mean curvature of the streamlines of the wake.
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Defining the wake displacement and momentum thicknesses as

1
6% = f(l-—ﬂ)dz
W U

" ,

(C-15)

2 = 1[3;(1 -li)dz
W —_— —

w VY v/

we may rewrite equation (C-13) in the following manner:

Y Y _ 5 - _
(EE) '(32) - KWU(G§+ O ‘Sw) : (C-16)

+

In the first inviscid approximation the streamline slopes and curvatures
are slightly different from those of the real flow. However, the approximations
leading from equation (C-10) to equation (C-16) would appear to be equally valid
in the case of the Kutta approximation. Therefore noting from equatiocns (C-15)

that, in the first inviscid approximation, provided Kwﬁw is small,

we may use equation (C-16) to write

W\ [ _
(ﬁ _(Ez_) = 7 (e Uy (€17

+ -

Consequently, recalling that
Ay = llb_lp]: ’

we may combine equatiocns (C-2), (C-16) and (C-17) to obtain the result

dz dz
- T - e T - g - 3y + [ 2w - -
Yy = < UGE + 0 = (kU= () U)oy ( = ) - 4-( = ) o - (C-18)
-+

If the wake of the main aerofcil and the boundary layer of the flap are
both 'thin' we would expect that

rgU = ) Vg W
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as a result of the fact that Ky and U are close to their corresponding
inviscid values in this case. Additionally, for a 'thin' wake at a 'small'
distance above the flap chord, the last two terms of equation (C-18) are small
compared with the incremental velocities associated with the 'thin'-wake
approximation. Hence, as a first approximation for a 'thin' wake at a small
distance above a flap with a 'thin' boundary layer, we write

= T * + . 4
Yy kU (E% + 8 (48)
This result 1s similar to an expression derived by Spence and Beasley4 for the
wake of an isolated aerofoil, the only difference being that these authors used
the approximation U = V.. In the region of the trailing edge of the flap,
where YW/Vuo generally attains its greatest magnitude (at least for the part

of the wake above the flap) this seems to be a good approximation.

As we shall see later we may also confidently use equation (48) to

calculate the vortex effect of the (thin) wake of the flap.

With a correction for the effect of wake thickness and the non-zero dis-
tance of the wake from the flap the strength, per unit x-wise length, of the
vortices simulating the wake of the main aerofoil may, by reference to

equation (82), be written as
(N
*
Yo = oy - 4 EEH z |+ 4 B(Aww ) (x,+0)(z. -z )
W W dx\dx "+ dx ax ? + -

dy*
- "a"i;(aru (2, - z-)) : (82)

The last term in this equation 1s rather curious, since it seems to imply

that, even if the wake did not exist, so that vy _ and wa were both zero,

W
there would, nevertheless, be a distribution of vortices above the flap. This
apparent contradiction may be resolved by using equation (C-18) for Yy instead

of equation (48).

The second term on the right-hand side of equation (C-18),
_(Kwﬁ - (KW)IﬁI)dw, may be interpreted as the increase in the jump in x-wise

velocity across the wake resulting from:

[



96 Appendix C

(a) the flow induced at the wake by the vorticity of the flap boundary

layer;

(b) the effect of non—zero wake thickness on the velocities induced at
the edges of the wake by the vorticity, within and exterior to the wake,

associated with the wake.

Contribution (a) is found by noting from equations (11) that the vorticity
of the flap boundary layer induces an increment in stream function at the upper

edge of the flap boundary layer or flap wake
= - Yk

Since the flap is supposed to be of small thickness-cherd ratio and camber and
the flap boundary layer is considered to be 'thin' we may rewrite this

expression as
= - Pk
App (x,0) vE(x) .

We have also assumed the wake to be at g 'small’ distance above the flap chord.

Hence, in the region occupied by the wake,
= = % -
bpg(x,2) b (x) (C-19)

to a good approximation. Therefore, using the fact that, in the region external
to I and to the main aerofoil, the flow induced by the vorticity of the flap

boundary layer is irrotational, we have in this region

2P avy) 2%y
5 + 5 = 0 . (C-20)
92 Ix

Hence, upon combining equations (C-19) and (C-20), we have for the region of the

wake

2 2
)y
822 dx2

Thus, by integrating this equation with respect to 2z across the wake, we find

that
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2
3 Ay ) a(ay,) d yx
B B _ U _ _
( 3z ) - (T) = 5 (Z+ Z_) . {C-21)
+ -

dx

We determine contribution (b) by examining the downwash induced at the wake
by the vorticity resulting from the presence of the wake. For a 'thin' wake and
a sufficiently 'small' flap gap, the downwash, caused by the existence of the

wake, just below the wake may be written as

(a(aww)) 2 (o)

py T (x,+0) .

Therefore, after allowing for the presence of the wake-source distribution (of
linear strength dwﬁ/dx) we find that the downwash induced at the wake itself

by the vorticity identified with the wake is given by

(1))

Aay,) 3 (ay dysk
W - — W 1 ¥ -
( ax ) B ax (x,40) -5 3% - (C-22)

wake

To obtain contribution (b) we have to subtract from this expression the
downwash induced at the wake by the vorticity inm that portion of the wake a
distance of O(GW) either side of the x~wise position under consideration.
This 1s the 'near field' or 'inner' vorticity which determines the value of Yy
in the approximation for a 'thin' wake and a 'thin' flap boundary layer. The
remainder is therefore irrotational in the inner region; and, for sufficiently
small Sw/co, this remainder may be regarded as the Cauchy principal value of
the downwash induced at the wake by the vorticity associated with the wake. We

may write therefore

(1
5 (AY,,) Na (a7 dyk
Wb N S _1_u _
( ax ) - ax (x,+0) 2 dx * (€-23)

wake
with the Cauchy principal value of the right-hand side being understood, and
suffix b referring to contribution (b).

In consequence of the irrotationality of the flow (b) we have for the

region of the wake
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2 2
G
322 sz

(1)
oD e
dx ax ? 2 dx ’

from equation (C-23). Hence, upon integrating this equation across the wake,we

U

have

2u), | [2n), YOS | duk

5z ) \Tw ) * T a;(“—ar— (x,40) -5 2 m 2 o (€028
+ -

Therefore, combining the two contributions (a) and (b) given by
equations (C-21) and (C-24), we may rewrite the second term on the right-hand

side of equation (C~18) as

2 (1)
_ (K T - (¢).U )5 = d vy (z -2z) - 4 Efﬁfﬂ__l (x,+0) - l.ffﬁ.(z -2)
W WIIllw dx2 + - dx 3x ' 2 dx + -
vees (C-25)

It only remains to determine the last two terms of equation (C-18). For

'small' wake thickness and flap gap

Ix

()
(acam) BICTALS

YOUARD av
= e (,%0) - (c-26)
from equation (81). Similarly, referring to equation (42), we find that
3 (oy) B(Awél)) vy g
x ) T T 0 T w Tw (€27

Therefore, combining equaticns (C-18), (82), (C-25), (C-26) and (C—27),Jwe
obtain finally

_ L v
< U(BE + 8 -3 2 (z, +z) . (83)

)
=
il
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A similar analysis could be used to determine the second order vortex
strength of the wake of the flap (including a first-order correction for wake
thickness and distance of the wake from the x axis). We find, in fact, that, if
the suffix W is supposed to refer to the flap wake, an expression that 1s
identical to equation (83) is obtained. However, we have assumed that the flap
wake is 'thin'., Therefore, the term (z+ + z_)/2 in equation (83) may be
supposed identical to the ordinate of the rear dividing streamline of the flap.

3,14

. . . sq 1 . s
Various experimental results for isolated aerofoils indicate that

(dzwﬁ/dxz)(colvm) differs significantly from zero only close to the flap
trailing edge, where the ordinate of the rear dividing streamline is small
compared with ¢y Therefore it seems reasonable to neglect the last term of
equation (83) in the case of the flap wake, implying, therefore, that we may

estimate the vortex strength of the flap wake by using equation (48).

We observe that in equations (48) and (83) we are faced with the difficulty

of having to evaluate Ky to determine the vortex strength. This may be

obviated, however, by using equation (C-16) to eliminate «,, from equations (48)

W
and (83). Thus, for example, we have in place of equation (48)

AR ATAN VA R
Yy < (32) '(az -k -6 ) (C-28)
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Appendix D
MANTPULATION OF THE WAKE VORTEX INTEGRAL

We use here a method given by S}:nem':e]8 for transforming the double integral

R S 3 e
poo- AfEC f — [Y ! de’ ®-1)
10 2 3 c, = &' AN R
c

0 E
into a single integral.

Spence observes that, since £ is in (O,CE) there is no residual at
the singularity of the integrand at ¢' = gw = Cpe Consequently we may inter-
change the order of the integration in equation (D-1) and by using the fact
that

1 _ I P
(E, - EDE - D aw—s(a'-.s ; —aw)

we may rewrite IIO as

o CE %

: _ _L(CE - E)i f Yy f ( £ ')
10 ﬂ2 £ SW - £ CE - £
‘g

The integration with respect to &' may be performed by using the

following identities given by Spence

°E } 1, 0<E<ey
l_.[ g dg! - <
7 g - E7) €% P

0

Therefore we have finally

10

—
m
:IN|__
S
0
=
AR T
v
\._/“_
O!—.\____.

cp - & e mE T -
Cc

E

i }
(Cw )Y &y
By ) WES - E

(=) |

C

i
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AEEendix E
THE LIMIT OF P AND ( INFINITELY FAR DOWNSTREAM

Downstream of the flap trailing edge the wakes of the main aerofoil and the
flap merge; hence it is no longer possible to distinguish the separate effects
of either wake. Since, however, we have supposed the wake of the flap to be
"thin' and since we are concerned here with the thickness effect of the aerofecil
wake we will consider the merged wake to be made up entirely of the wake of the

main aerofoil.

According to the mixing-length theory19 a turbulent, twodimensional wake

4

grows like x far downstream. Therefore we have, for small o and B8,
z, —z_ " ax® , x>, (E-1)

where a is a finite, non—zero constant,

To determine the asymptotic behaviour of z, and z_ separately we
require another relationship between zZ,s Z_ and x. Unfortunately, there
appears to be little theoretical or experimental information available on the
far~downstream behaviour of curved, turbulent wakes. Those results which are
available from é%periments on isolated aerofoilsw’l4 appear to indicate that
the wake tends to become symmetrically disposed with respect to the rear
dividing streamline far downstream. We will assume, therefore, that, in the
present case, the combined wake is symmetrical with regard te the rear dividing
streamline of the main aerofoil for sufficiently large =x. Hence, by considering

the behaviour of this streamline far downstream, we find that
z, tz_ b{a + B)x , X > (E-2)

with b a finite, non-zero constant and o« and B supposed small, as before.

Hence, combining equations (E-1) and (E-2), we obtain the result
z , z «x* X >0 (E-3)

In order to determine the asymptotic behaviour of P and Q 1t only
remains to examine the velocity corrections 8(Ay)/dz and 3(AY)/3x 1in the far
field. This we do by observing (see Appendix A) that the correction.to the

1rrotational part of the flow field for the effects of viscosity can be obtained
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by placing suitable distributions of sources and vortices along the edges of
the boundary layers and the wakes. Sufficiently far downstream the effect of
these distributions may be represented by a point source and a peint vortex
placed close to the flap., For convenience, we position these singularities at

the leading edge of the flap. Hence we are able to deduce that

2(hy) z x 7
5z "8 T 3K T3
X + 2z X + z
> X > ow o, (E~4)
3 (ay) x _ z
e S T S I
b4 + z X + z

where Kl and K2 are constants that are proportional teo the vortex and

source strengths, respectively. Therefore, noting that

P = (?lﬁil) 2 -(31@31) 2 (64)
dz + oz -
- W
it is possible to infer from equations (E~-3) and (E-4) that
lim (P) = 0
b gt
Similarly, recalling that
(), a(ay)_
¢ THE AT TEm - (64)

and employing the result

s faaw % (aaw
dx - dz dx Ix
+

+

it is readily inferred from equations (E-3) and (E-4) that

lim (Q) = 0 .
P
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Appendix F
DERIVATION OF THE EFFECTIVE DISPLACEMENT FLUX Eﬁ

+
The effective displacement flux, Eﬁ, may be written, by reference to

equation (85), as

- (1
o= ow e, s 2 a0y, - ) (85)
0
= ’(JJ;} + 5 (z+ + z__,)
(n
Y. (1)
+ { WZ + a(mgz ) (x,+0)} (z+ -z) . (F-1)

The first term on the right-hand side of equation (F-1),

vy o= j-{ul(z) - u(z)}dz y
W

may be written as

¢§ = wﬁ' - {ﬁ(z+ -z ) - j-uI(z)dz} s (F-2)
W

where tpﬁ' = f{l-l - u(z)}dz
W

is referred to as the pseude displacement flux.

Suppose firstly that all velocities in equations (F-1) and (F-2) are

normalized with respect to V_ and all lengths with respect to c Thus, as

0"
will be seen later, the last term of equation (F-2) is of the same order as the

last term in equation (F-1). Consequently, if we define

AU = U - ].uI(z)dz (z+ -z) , (F-3)
W

we are able to write in place of equation (F-2)

VE = ' - AU(z, - 2) (F-4)
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where AU is of the same order as the curly-bracketed term in equation (F-1).
Hence the error in Eﬁ resulting from the use of the theory of section 3.1
(for a 'thin' wake and a 'small' flap gap) to determine AU 1is no’greater than
the errors in aﬁ implicit in the use of Yé]) and a(aw('))/az in place of
Yy and 3{AY)/3z in equation (85). 1In the following, therefore,we derive AU

on the basis of these approximations.

The x-wise velocity at the lower edge of the wake

(%),

v (2 +(§—(g%)) :

()
w2y + 28D a0y (F-5)

for a "thin' wake and 'small' flap gap. Similarly, we have for the upper edge
of the wake

(1)
kL] _ 3 (A )
(az) uI(z+)+( 9z ) ’
+ +
(n
= uI(z+) + QSA%E__l (x,+0) + yél) , (F-6)

from equations (77).

To determine the relationship between uI(z+) and uI(z_) we use
Taylor's theorem

duy 1 a2“1 3
w(z) = uw(z)+ 7 (2 -z2) + 53— (z_)(z - z_) + O(uI(z_)(z - z_) ) »

L34

eeee (F=7)

wherein we have assumed that the curvature of the streamlines of the first
inviscid approximation are such that the =z derivatives of uI(z) in the wake
exist and are, at most, of order uI(z_). Hence replacing 2z by z, in
equation (¥-7) and combining the resulting expression with equations (F-5) and

(F-6) we find that

(-

(=

e
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- au
0-2{) ()} o

+
(1)
(1) Y
+ Eﬁé%t:_Ql (x,+0) + w; + O(uI(z_)(z+ - 2_)2) . (F-8)

Equation (F-7) may be used to derive the expression

3du
f'uI(z)dz =u (z)(z, -2z + %‘3;1 (z_)(z, - z_)2 + O(uI(Z_)(Z+ - Z_)B)- (F-9)
W

Therefore we may use equations (F-8) and (F-9) to replace equation (F-3) by the

expression
(n
- Y (1
AU = 12 + B(Agz ) (x,+0) + O(uI(z_)(z+ - z_)z) . (F-10)

The last term of equation (F-10) may be neglected on the basis that it 1s,

at most, of order (z+ - z_) compared with the term

AL YO

+
2 2z

)

(x,+0)

which comprises the contribution of the wake to the first two terms of the last-
named equation. Hence, as asserted before, AU 1is of the same order as the
curly-bracketed term of equation (F-1). Therefore, upon disregarding the last
term of equation (F-10) and combining the modified expression with

equations (F-1) and (F-4), we have finally that
{

Y(1)

o= s (z, +2) - (86)

-+
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THE ANALOGY BETWEEN THE WAKE DOWNSTREAM OF THE FLAP AND
THE JET SHEET OF A BLOWN FLAP

For 'small' wake thickness and 'small' flap gap the linear strength of

the vortex distribution of the combined aerofeoil-flap wake is given by

Yy = KWU(G§ + ew) , (48)

provided it is understood that the suffix W refers to the combined wake.

Spence and Beasley4 remark that ﬁﬁ and ew are close to their

asymptotic values far downstream except near to the trailing edge of the flap.

They therefore suggest the use of the approximation
= CDco/Z s (G—l )

where C_ = D/%pVic

D 0

i

is the drag coefficient of the configuration. Similarly, the indications of
pressure distributions9 are that U is nearly equal to V_ even close to the

flap trailing edge. Therefore, in place of equation (48), we may write

Kmec C . (G=2)

Tw 0D

The strength of the vortex distribution of the jet sheet of a jet flap or

blown flap is given by18

i

- KJvmcEchz . (G-3)

with

[ ]
|

;= dlevie

{

the jet momentum coefficient, which, following conventicn, we base on Cp +

We see that, for the vortex distributions of the two systems to be

identical, equations (G-2) and (G-3) require that

Ko’y = " KJCECJ/Z . ’ (G~4)
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Now, for sufficiently small C and C_, we expect the curvature of the

jet or the wake to be approximately iqual to 2he curvature of the rear dividing
streamline of the flap as predicted by the first inviscid approximation in the
case of no flap blowing. In consequence, for small CD and CJ, we have as
an approximation

It follows, therefore, from equation (G-4) that the two cases are analogous, at

least approximately, provided that

C; = - ZCOCD/CE . (G-5)

17,18 shows that the vortex distribution, needed on the chord of an

Spence
aerofoil with a blown flap to nullify the downwash induced by the vortices of

the jet sheet, is given by

<0

} }
a1 f% "¢ £' de’
AY,J(E) = -.,;(—"g——) (gr-:TE) YIET £

o

=1

2X s n
+ B {DO(I n X)+ nz; DnX }} . {(G-6)

1= (- g/ep?
Here X =

s (1 - /ey

and Bn’ Dn are solutions of the linear equations18

-

fm(x)

=
el
P
f
5
+
r_.nl‘-“
o
g
~——
=]
=]
N

=} =
Il o~1]
o —
Em
=}
+
r_.olb
EU"
e
[w=]
=
1]

£ (M)

-
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The coefficients a and b and the function £ (x) are defined as
mn mn m
follows:
ag = sin ¢m ; a . = (1 + cos ¢m) sin n ¢m’ n>0 ;
b = 4 cos n ¢ + 2n tan EE sin n ¢ ; & (G-8)
mn 2 m 2 m ?
4dn” - |
R S SO S X [qin Im
fm(X) . tan — - — sec —- tan (tan 5/sin 51, J
where ¢m =mr/M, m=0,1,2,...M-1.

Inspection of equations (G-7) and (G-8) reveals that a valid approximation

to equations (G~7) for small

M=1
} b D

m n
n=0

M-1

HZO bman

Equations (G-5),

relationships

with

M-1
) b D

M-1
] b B

n=0

n
-&'—\' [

n

-P*l;,n

(G-6)

C. 1is obtained by neglecting the terms a

] s viz:

-
£ 0

-

m=0,1,2,...M-1 (G-9)

fm(w)

-’

and (G-9) allow us te write down the analogous

2X s n
+B{D0(T_+_x)+ ) anH , (102)
n=]
c. C
. - 0D
T T T W
, m=0,1,2,...M1 (103)
c, C
- - 22w
E

™

(13
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These results may be extended to allow for the non-zero thickness of the
wake of the main aerofoil as well as the non-zero distance of this wake from the

x-ax1s, With this allowance the vortex strength becomes

| v
9 2 (z+ + z_)

= U * -
¥ U8 + o) .
aerofoll
+ flap

2 dx aerofoil

An examination of Spence's18 analysis of the blown flap shows that the
approximation leading to equations (103), namely the neglect of the terms a

of equation (G-7), is equivalent to the assumption that

Ky = (Kw)I >
which is consistent with the assumption of section 3.l that the combined wake 1s
"thin', It is not sufficient, therefore, in the calculation of ;w, to deter-
mine the first term on the right-hand side of equation (84) by the method given
above. To be consistent with this equation we have to allow for the change in
the curvature of the combined wake due to the effect of viscosity. The
appropriate change in the curvature of the wake of the main aerofoil may be

inferred from equation (C-25). Thus using, as before, the approximation

T = EI = V_ (G-10)

for stations downstream of the flap trailing edge, and employing the fact that

Ay 2 ) dyx
]K - (x.) S A | AR S N St i Y A
. .
v Wl aerofoil Ve dx2 Voo fdx X 2 dx aerofoil
cews (G-11)

Since the flap wake is supposed 'thin' (section 2.1), it is probable that
no extra accuracy in the vortex strength of the flap-wake component of the com-

bined wake can be expected by incorporating the viscous correction to
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|(Kw)1| - Therefore we apply the curvature correction only to the aerofoil
flap

constituent of the combined wake, Consequently, we have, by employing
equations (84), (G-10) and (G-11)

Yy = *
Yy (k) Vo (8 * 8y
aeroforl
+ flap
d 2(ays!Y) auk
v _1d __w.___(x,m)..l._.‘i ,5*+9W
de dx X 2 dx asrofoil W serofoil
R
> 3 (z, + z) . (G-12)
dx aerofoll

The effect of the first term on the right-hand side of equation (G-12) on
the vortex distributions of the main aerofoil and the flap having already been
considered we examine the effect of the last two terms. Thus the increment in
circulation, that is identified with these terms, around the combined aerofoil~-

flap wake 1is given by

flafe a(Awé‘)) | ik
ATy = 'f i v A I vl G AR

dx

Cr

i r dzwﬁ

- -2— [ 7 (Z+ + z_)dx » (G-I3)
dx
Cp

where 1t 1s to be understood hereafter that suffix W refers to the wake of the

main aerofeil,

. . . o
Experience with isolated aercfoils 3,14

indicates that the first and
second derivatives of wﬁ and ¢§ decay rapidly downstream of the flap
trailing edge. On intuitive grounds we would expect that the same is true of
Awél). Therefore a reasonable approximation to the integrals of equation (G-13)
can probably be obtained by replacing z, + z_ and Gﬁ + ew
If we do this we find that

by their

respective values at x = Cp

(=
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dy dy
- U, 1 Wl
Ary {‘dx 27 dx }“w * ey
X=C
¥
+ 1 ﬂ’ﬁ( + (G-14
2 ldx 2y z_) ' )
X=CF

Here we have used the fact that the flap is a streamline of the flow induced by

the vorticity of the wake of the main aerofoil, so that

YO

X

)
(x,+0) = 0 .

(1
"W
tend to zero rapidly

Further, we have made use of the property of %, ¢§ and Ay noted above,

(1

namely that the first derivatives of wﬁ, wﬁ and Aww

downstream of the flap trailing edge.

Insofar as the combined wake is downstream of the flap it seems reasonable
to suppose that the lift of the flap will be influenced mainly by the overall
circulation around the combined wake without particular regard to the detailed
distribution of circulation in the wake. Therefore we assume that we can
estimate the change in lift of the flap associated with the last term of

equation (84) by equating AT, to the increment in wake circulation resulting

W

from an increase 1n CD, ACD say. The increment in wake circulation resulting
from an increase in Cp is found by integrating equation (G-2) (with ¢y

replaced with ACp) along the wake. Thus we find that

ATW = ‘[ KmeCOACDdx ‘. : (G-15)

°F

For a sufficiently 'thin' wake and a 'small' flap gap k,, may be assumed

W
equal to the curvature of the rear dividing streamline of the main aerofoil.

Hence we may write from simple geometrical considerations

3
2 P
d z dz 213
W W
K = - ] +{ ~—— »
W 2 dx
dx

* (G-16)
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Therefore, combining equations (G-15) and (G-16), we have

Le ]

dzw
AFW = = VmCOACD e ,
F
= = Ve 00 (B + o) (G-17)

for small g/co, B and o. Therefore, upon combining equations (G-14) and

(G~-17), we find that

R o
N N A rrald il O LU i el KRS T TAC S
F

Consequently we may define an effective or equivalent drag coefficient, which
includes a correction for the non-zerc thickness and non-zerc distance from the

flap of the wake of the main aerofoil, namely

CD = CD + ACD s
dy¥ dy dyx
= - u_ . 1""W 17w
= CD {——dx Ml } (5;} + Gw) Sl ey (Z+ +z ) Vmco(s +0)
x=c
F ///
cees 7(G-19)

from equation (G-18). The corresponding coefficients ﬁn and Bn’ which are
used in place of Bn and Dn in equation (102) when allowance is made for the
thickness and distance effects, are obtained simply by replacing CD by ED

in equations (103) (see equations (109)).

The change in the 1ift of the flap associated with term ACD is found to

be very small for the configurations studied in section 5. Hence the errors 1in

CL resulting from the approximations used i1n obtaining equation (G-18) are
F

considered to be of no significance.

[+



Table 1

COMPARISON BETWEEN EXACT AND APPROXIMATE VALUES OF Ay B'(E) FOR
)]
THE F(£) DISTRIBUTION OF EQUATION (99); x = w/3

AY,B
v
Exact Approximate
equation {(100) |equation (101), N = 32

4 0.300 0.293

8 0.728 0.712

11 1.47 1.57

12 1.04 1.04

16 0.752 0.751
20 0.760 0.757
24 0.960 0.960

28 1.74 1.75

Table 2

SOLUTIONS OF EQUATIONS (103) FOR M = 3; CF/CE = 0.31

n 2DncE/c0CD ZBncE/COCD
0 -1.03 ~0.92
1 -1,46 -1.18
2 -0.65 -0.45




Table 3

COMPARISON BETWEEN EXACT AND APPROXIMATE VALUES OF I

(EQUATION (116)) FOR THE E(f) DISTRIBUTION OF
EQUATION (119); x = w/3

6

Ig
v
Exact Approximate
equation (120) equation (118), N = 32

2 0.513 0.510

4 0.273 0.270

6 0.108 0.101

8 -0.0550 -0.0600
10 -0.33] ~-0.367

11 -0.464 -0.518

12 -0.264 ~0.255

16 =0.110Q -0.110

20 -0.0714 -0.0713
24 -0.0551 -0.0552
28 ~-0.0479 -0.0479

]



Table 4

wake

of main aerofoil.

RESULTS FOR THE CORRECTIONS TO FLAP LIFT AND OVERALL LIFT :
a’ g/co ACLF ACL &CEI) CEE) CEZ) CL ACL ACL cél) Meagured
s B ,B F,W F F F s WS WV L
-5 0.020 -0.103 | -0.293 -0.017 0.522 0.546 0.543 -0.075 -(.063 2.20 2.23
-5 | 0.025 | -0.103 | -0.292 | -0.021 |0.540 | 0.566 | 0.550 | ~-0.063 | -0.057 | 2.20 2.20
-5 | 0.040 | ~0.158 | -0.448 | -0.027 | 0.536 | 0.565 | 0,567 | -0.044 | -0.067 | 2.0l 2.07
+3 | 0.020 | ~-0.117 |-0.343 | -0.049 |0.464 | 0.523 | 0.520 ) -0.184 | -0.125 | 3.04 3.25
+3 0.025 ~-0.100 -0.250 -0.053 } 0.515 0.577 0.519 -0.180 -0.126 3.09 3.16
+3 0.040 | ~-0.216 | -0.605 -0.065 0.448 | 0.517 0.510 -0.128 -0.149 2.70 2.93
NB:- ACLF . increment of lift coefficient of flap due to flap boundary layer
ACLF’w increment of lift coefficient of flap due-to wake of main aerofoil
s
CLF flap lift coefficient
ﬁCL s = 1ncrement of overall-1ift coefficient due to sources of wake of main aerofoil
ACL,WV increment of overall-lift coefficient due to vortices of combined aerofoil-flap wake
CL’ = overall-lift coefficient
suffix (1) refers to first approximation for 'thin' wake and 'small' flap gap
suffix (2) refers to approximation obtained by neglecting distributed sources and vortices of

S11
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SYMBOLS 2

coefficients defined in Appendix G

solutions of linear equations (103)

arbitrary constant
contour bounding region I (Fig.2)
arbitrary constant

chord of main aerofoil

drag coefficient; = D/%pVico

extended chord of wing with high-lift devices deployed
chord of flap

jet-momentum coefficient based on s = J/ipVicE

1lift coefficient; = L/épVico

. . . 2
static-pressure coefficient; = (p - pw)/ipvw
chord of basic wing

function defined in equation (117)
= Pk = Pk

VLTV
function defined in equations (G-8)

flap gap
function defined in equation (96)
Heaviside unit step function

various integrals defined in text

jet momentum flux
function defined in respect of equation (139) in section 4.3
contour bounding region [ (Fig.7)

distance, taken positive in clockwise direction, around contour
c or contour k

flap overlap

lift

function defined in equation (105)
integer

integer

even integer

integer

normal vector outward from regions I or T
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SYMBOLS (continued)

static pressure

field point external to I or T
quantities defined in equations (64)
source strength per unit length

vector joining P and element d%, the vector being taken
positive in direction away from P

Weber coefficientslz’15

distance, taken positive in clockwise direction, around contour
of main aerofoil

velocity components in x and =z directions

¥-wise velocity at edge of flap boundary layer

mean of x-wise velocities at upper and lower edges of wake

velocity components in & and ¢ directions

complex velocity; = v, - ivC

£

free-stream speed

rectangular cartesian coordinate system, x axis along flap chord,
x = 0 at flap leading edge (Fig.l)

- Q- E/cE)%
1+ (1 - g/ey)’
= E/cA -1+ E/CA -

angle between chord of main aerofoil and incident flow

angle between chord of flap and chord of main aerofoil (Fig.l)
vortex strength per unit length

circulation {(section 4.4)

region occupied by wake of main aerofoil (Fig.7)
boundary-layer thickness

wake thickness

displacement thickness

incremental part of

small parameter

vorticity, taken positive when rotation is in clockwise sense

wake momentum thickness

= c:os-I (ZE/CE - 1)
= un/N
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SYMBOLS (continued)

streamline curvature

weighted mean curvature of streamlines of wake, defined in
equation (C-14)

parameter used in equations (121) and (126)

index of inducing point for Weber summation (section 4)
coefficient of viscosity (Appendix C)

normal outward from main aerofoil (section 2.1)
kinematic viscosity (Appendix .C)

rectangular cartesian coordinate system, £ axis along chord of
main aerofoil, £ = 0 at leading edge of main aerofoil (Fig.1l)

density

region bounded by edges of flap boundary layer and flap wake (Fig.
included angle between 2 direction and negative r direction

= cos™ ! -

= COS (2CA/CE 1)

stream function

'displacement fluxes' of flap boundary layer, defined in
equation (i1)

$
pseudo displacement flux of flap boundary layer, = j. (U - u)dz
0

displacement flux of wake, defined in equation (42)

pseudo displacement flux of wake = j.(ﬁ - u)dz
W

refers to main aerofoil, except for =z, which is =z ordinate of
. A
point A (Fig.7)

refers to effect of vorticity identified with flap boundary laver,
except for zy which denotes =z ordinate of point B (Fig.7)
due to flap boundary layer

refers to contour c

refers to flap

refers to first inviscid approximation

refers to velocities induced by wake of main aerofoil

refers to jet of blown flap

refers to contour k

tae

2)
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SYMBOLS (concluded)

2 refers to leading edge of wake of main aerofoil

] refers to streamline of wake

T refers to shroud trailing edge

U, L refer, respectively, to upper and lower edges of region I

W refers to effect of vorticity identified with wake of main aerofoil
or simply to aerofoil wake

oW due to wake of main aerofoil

s WS due to sources of wake of main aerofoil

WV due to vortices of combined aerofoil-flap wake

r refers to region T

u refers to inducing point

v refers to pivotal point

+, - refer, respectively, to upper and lower edges of wake of main
aerofoil

© refers to conditiens at infinity

(H, (2) refer, respectively, to constant load and 'flat-plate' vortex
distributions (section 2.2)

(1) refers to first approximation for 'thin' wake and 'small’
flap gap (sections 3, 4 and 5)

(2) refers to approximation obtained by neglecting distributed sources

and vortices of wake of main aerofoil

- denotes first approximation above corrected for non-zero wake
thickness and distance of wake from flap, except in case of
U which 1s defined above
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Figl Coordinate systems and notation for aerofoil with Fowler flap
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