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P. R. Ashill 

SUMMARY 

This Report is concerned with the influence on the lift of the flap of the 

wake of the main aerofoil of a wing with a plain Fouler flap. To decide the 

relative importance of the wake, its effect is compared with the influence of 
the boundary layer of the flap. It is found that, for the configurations 
examined in this Report, the wake effect is of secondary importance in comparison 
with that of the boundary layer.' 

Consideration is given to various methods of approximating the wake effect, 
Including the conventional 'thin'-wake method. It is shown that, by correctly 
positioning the singularities of the 'thin'-wake formulation, a first-order 

correction to this theory for wake thickness can be rendered identically zero. 
An approximation for a wake which is at a 'small' height above the flap chord is 
examined. The indications of the present calculagions are that this approximation 
overestimates the magnitude of the correction to the lift of the flap for the 
effect of the wake. A better estimate of the wake effect appears to be obtained 
if one neglects the distributed sources and vortices of the wake but allows for 

the non-zero displacement flux of the wake by a point source at the shroud 

trailing edge. 

* Replaces RAE Technical Report 72081 - ARC 34169 
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I INTRODUCTION 

Whilst a completely satisfactory theoretical solution is not yet available, 
the problem of the incompressible, viscid flow around an isolated, twodimensional 

aerofoil is well understood. The main features of this problem have been 
' 1.2 established in the papers of Preston , Spence 3 and Spence and Beasley4. A 

start would not yet seem to have been made, however, on a theory for the more 
involved case of multiple aerofoils, and, in particular, for the case of aerofoils 
with single-slotted flaps with which we will be concerned here. The need for 
such a theory is obvious, but there are many difficulties. Not the least of 
these is the determination of the first inviscid approximation. Fortunately, we 
are now able to achieve this, at least to some numerical approximation, by means 
of the Douglas computer programma' due to A.M.O. Smith. 

I 

F 

Another difficulty 1s the evaluation of the effect of the wake of the main 
aerofoil on the flow around the flap. In the case of the single aerofoil the 

wake lies downstream of the aerofoil. t Thus we would expect that, in this case, 
the wake vorticity does not exert a significant influence on, for example, the 
lift of the aerofoil. The relatively good results obtained with 'the boundary- 

,2 layer camber-correction theory , which ignores the effect of the wake on the 
lift,, seem to support this view. The situation is, however, somewhat different 
for slotted-flapped aerofoils. Here the wake from the aerofoil passes just 

above the flap and consequently may have a significant influence on the flow 
around the flap. In turn, this may affect the circulation around the complete 
configuration. It might be conjectured that, because of this, the first invucid 
approximation for the velocity distribution around the flap is rather poor. In 
consequence, an iterative method of calculation, which is based on the first 
inviscid approxunation3, may not converge. The difficulty of obtaining a 

solution is further complicated if the thickness of the wake is not small com- 
pared with the chord of the flap as is probably the case if (a) the flap chord 
is small compared with the chord of the main aerofoil or (b) the incidence of 
the main aerofoil is large. 

A method of representing a 'thick' wake is discussed in section 3. It is 

shown that, for a wake of finite thickness, the influence of the vorticity, con- 

tained within the boundaries of the wake, on the external flow may be simulated 
by distributions of sources and vortices along the edges of the wake. In the 
conventional 'outer' approximation for thin wakes6 it is assumed that these 

distributions may be placed on a suitable mean line such as the rear dividing 
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streamline. Approximations such as this one appear in many areas in aero- 
dynamics and are employed, for example, in linearised, subsonic aerofoil 
theory' and slender-body theory*. From the many applications of these theories 
It appears that their accuracy depends not only on the slenderness ratio of the 
aerofoll or body but also on the way the thickness varies along its length. 
Consequently, even though a wake may be 'thin' it does not necessarily follow 
that the 'thin'-wake approximation will yield accurate results. In section 3, 
therefore, consideration is given to the question of the accuracy of the 'thin'- 
wake method. 

Since the aerofoll wake passes just above the flap we would expect the 
lift of the flap to be sensitive to the behaviour of this wake. Therefore we 
will be mainly concerned with the lift of the flap. In order to judge the 

relative importance of the aerofoil wake we will also examine the effect of the 
flap boundary layer and its associated wake. We will not consider the influence 

of the aerofoll boundary layer; it may be that, for some cases, this 1s an 
important omission; however, in the examples examined in this Report, 
approximate calculations have indicated that it is of secondary importance corn- 

pared with the flap boundary layer. 

t 

As with the aerofoll wake it is possible to represent the effect of the 
vortlcity of the flap boundary layer on the external flow field by distributions 
of sources and vortices along the edge of the layer (assuming that such an edge 
can be defined). In the 'outer' approximation for 'thin' boundary layers the 
edge of the layer is supposed to coincide with the contour of the flap. We 

propose to assume that this approximation will be adequate for OUT purposes. 
Apart from this approximation, we make a number of other approximations involving 
the geometry of the flap and the main aerofoil. Although the accuracy of some of 

these approximations is considered in section 2 the main justification for their 
use is that the object of this Report is to perform a comparative assessment of 
the various viscous effects ss described above. Therefore absolute accuracy in 
the final answers for the various corrections to the lift of the flap is probably 
not ulportant. On the other hand, it was hoped that the simplicity of the 
present method would allow some physlcal insight into a rather complicated flow 

f 
situation. 

In the calculations to be discussed here we have followed Preston‘ in 

employing, where possible, experimentally derived results for the development of 

the wake of the main aerofoil and the boundary layer of the flap. These results 
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9 
c. were obtained by Foster, Irwin and Williams from their extensive experiments 

on a twodimensional aerofoil with a single-slotted plain (Fowler) flap (Fig.1). 

We adopt Preston's approach in order to remove, as far as possible, any 

uncertainties resulting from the use of an approximate theoretical method for 

completing the viscous part of the calculation. Throughout this analysis, and 

in conformity with the experiments of Foster, et al., the flow is consldered 

twodimensional and incompressible. 

Finally, we note that, in these introductory remarks, we have regarded the 

wake of the main aerofoil and the flap boundary layer as separate and distinct 

items of the flow field. As the results of Foster, et at. show, this 1s 

certainly not a valid concept if the flap gap is sufficiently small compared 

with the flap chord. We "111, however, examine configurations for which it is 

possible to distinguish between the two vorticity layers. 

2 INFLUENCE OF FLAP BOUNDARY LAYER ON FLAP LIFT 

.A 2.1 Problem formulation 

We begin the analysis of this section with the assumption that it is 

possible to define an edge to the flap boundary layer and its associated wake. 
1 

Addltionally, we assume that, for the purpose of examining the flow in the 

finite part of the flow field, the flap wake may be truncated at some station a 

large but finite distance downstream of the flap. It is convenient to divide 

the vorticity contained within this finite region, which we term .Z, into 

three components as follows: 

(a) the vorticity that is there according to the first invlscid (or Kutta) 

approximation for the flow around the aerofoil and the flap; 

(b) the addltional vorticlty resulting from the existence of a boundary 

layer on the flap together with the flap wake; 

(4 an image distribution of vorticity that 1s required to ensure that 

the flap remains a streamline in the presence of the vorticity (external 

to Z) of the boundary layer and the wake of the main aerofoil. 

In this sectlon we consider the velocities induced in the region external 

F to C by the second of these components. We do this by subtracting from the 

velocities Induced by the vorticlty in E the velocities induced by the first 

and third vorticity components. This result can be written down in the form of 

an area integral over X. However, in Appendix A it is shown how this can be 

reduced to a line integration around the contour bounding 1, namely c, by 
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10 means of Green's second formula . There is obtained for the stream function 
Induced by the vorticity component 6) at a point P in the region external 
to I: 

(A$,), = & 
+ a(A*,) 

l*r+ - a& 0 
(1) 

Here A+, = the incremental stream function due to the presence of a boundary 
layer on the flap, and, by reference to Fig.2, we see that 

II = the distance, taken positive in the clockwise direction, around the 
contour c 

; = the vector joining P and the element dll on c, the vector being 
taken positive in the direction away from P 

c = the normal vector outward from region C 
T = the included angle between the 9, direction and the negative r 

direction 

(') = positive or negative alternatives taken depending as 5 passes, 
respectively, out of or into region E at the element dll. 

It is interesting to consider the physical significance of equation (I). 
Examination of the stream functions of potential singularities7 shows that 
equation (I) is an expression for the stream function of distributions of 
vortices and sources of local strengths a (a*,) ian and a(AJl,)/a9. respectively. 
The role of these distributions is to provide the necessary changes in the normal 
and tangential velocities at the edges of the flap boundary layer and the flap 
wake that are usually associated with these vorticity layers. 

L 

In the conventional 'outer' approxunation for thin boundary layers the 
contour c is assumed to colnclde with the flap surface and either side of the 
rear dividing streamline of the flap. That is to say the sources and vortices 
are transferred from the edges of the boundary layer or wake to the flap surface 
or rear dividing streamllne. This approach is particularly attractive for the 

i 
case of an rsolated aerofoil since the integral of equation (I) may then be 
evaluated without difficulty by employing conformal transformation methods (see, 
e.g. Ref.3). An even greater simplification avails itself if the flap is of 2 

small thickness/chord ratio and camber. In this case it appears reasonable to 

assume that the part of contour c immediately adjacent to the flap may be 
transferred to either side of the flap chord. We propose to use this approxima- 
tlon on the basis that, in most practical applications, (a) the flap boundary 
layer is thin compared with the flap chord and (b) both the thickness/chord ratio 
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5 9 and the camber of the flap, examined by Foster, et at. , are mall. The same 
approximation is employed in the linearised theory of thin aerofoils 
theory fails near the leading edge of a'round-nosed aerofoil. webe,::; lLhlS has given 
a simple technique for correcting the theory in this iegion. A similar correc- 
tion might be attempt+ed in the present case, but this has not been done for the 
reason that we are mainly concerned here with overall, rather than detailed, 
effects of the flap boundary layer. 

The analysis may be simplified further by making the assumption that the 
rear dividing streamline lies onthe downstream extension of the flap chord. 
This assumption is clearly justified for the case of small'flap angles. FIX 
moderate flap angles it is probably ju'stifiable on the grounds that the rear 
dividing streamline approximates to the flap-chord extension near to the flap. 
Only on this part of the rear dividing streamline (i.e. the part dlose to the 
flap trailing edge) would we expect the source and vortex strengths to be 
significant, an expectation that is confirmed for isolated aerofoils by the 

t experimental results of Preston, et ~2. 13.14 . 

The above assumptions imply that we use the following approximations in 
equation (1): 

A 

d9. = _ [I +dx' ; r = ((x,- x'j2 + 2 t ; 2 1 

a( )/an = [I 1 a( )/a21 ; T = [i] + [-‘I tan-1 (z/(x - x’)) . 

Here (x,2) is the rectangular Cartesian coordinate system with the x axis 
along the flap chord and x = 0 at the flap leading edge (Fig.]), and the prime 
denotes the coordinates of the<inducing ele&nt. The alternatives [f] and r] 
are taken depending as the induc$ng element is adjacent to the upper or lower 
surfaces of the flap. Thus, using the fact that 

( a NJ,) /ae) c = d(A'+B)c/dL , 

we may write in place of equation (I) 
5 

m 

W,), = &I 
I 

AM~,~ 

0 

In ({.(--.x1;' + z2t*)dx' + & [ Aq;,g ian-' (5) dx' 

0 

1 - dW& 
-- 

2 I dx' dx' . (2) 

0 
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Here AyF B and Aq 
, 

F B are incremental vortex and source strengths defined by 
, 

AY~,~ = ( a(;>))u - r’;2))L 

: 

, 
d (W,) ,, d(AJIB)L 

AqF B = - dxr + dx, 

(3) 

where suffix F,B refers to the singularities that are (a) associated with the 

flap boundary layer and the flap wake and (b) on the flap chord and its down- 

stream extension. Suffixes U and L refer to the upper and lower edges of 

the vorticlty layer Z. It should also be noted that the large finite upper 

linnt of the xl-wise integration, implied by the discussion leading to 

equation (I), has been replaced by infinity in equation (2). 

In general 

owing to the requirement that the main aerofoil is a streamlrne of the real 

flow. This implies an additional distribution of vorticity within the main 

aerofoil to nullify the normal component of velocity induced at the aerofoil 

contour by the boundary-layer vorticity within Z. We can write instead 

AJIB = (A+,), + (UJ,), , (4) 

where suffix A refers to the vorticity within the main aerofoil. 

The above-mentioned requirement implies that A$, is Invariant around the 

contour of the main aerofoil. Therefore, by analogy with equation (I), we may 

write 

(W,), = & 
i 

a (AllB) 

av lnrdt , (5) i 
aerofoil 

I 

where t is the direction tangential to the aerofoil contour, taken positive in 

the clockwise direction, and v is the normal outward from the aerofoil. 
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Observing that the main aerofoil tested by Foster, et az. 9 is of small 
thickness/chord ratio and camber we may approximate equation (5) by transferring 
the surface vortex distribution to the chord of the main aerofoil. Thus we 
obtain the resutt . 

'A 

(A$B)A = & I AY~,~ In ({(E - E')' + ?+)d5 , ‘3) 

0 

where "A is the chord of the main aerofoil and (5,5) is the rectangular, 
Cartesian coordinate system having its origin at the leading edge of the main 
aerofoil, with 5 along the chord (Fig.1). Additionally 

suffixes + and -, respectively, denoting the upper and lower surfaces of the 
: 

main aerofoil, and suffix A,B referring to the singularities, on the chord of 
the main aerofoil, that are due to the flap boundary layer and the flap wake. 

Since AJl,(C,,r;) is invariant around the contour of the main aerofoil and 
as the main aerofoil is considered to be thin and of small camber we may write ' 

W,(W) = C , (7) 

a constant. Therefore, upon combining equations (2). (4), (6) and (7) and by 
referring to the geometry of the main aerofoil and the flap shown in Fig.], we 
obtain the result 

.CA 

5 

c = I 
1;; I bA B ln 

0 ’ 

F,B In 
0 

([(E - CA + 1) ~08 6 - g sin 6 - x’l 2 

+ [(E; - CA + 2) sin B + g CDS @121’) dx’ 

m 

1 + z hF,B tan 
I 

-I (5 - =A + ?) sin 6 + g Cm 6 

0 (t; - 'A + 1) co~ 6 - g sin 6 - X' 
dx' 

1 m d(AeB)L 
-- 

2 I dx' 
dx' , 

0 
(8) 
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where g is the flap gap, 1 the flap overlap and 6 is the angle between the 

chord of the main aerofoil and the flap chord (or simply the flap angle) as 
illustrated in Fig.1. 

The arbitrary constant C may be removed from equation (8) simply by 
differentiating both sides of this expression with respect to 5. This 
differentiation may be carried through the integral signs of the second and third 

integrals. We may also 
ing integral is defined 
that 

do this with the first integral provided that the result- 
according to the Cauchy principal value. Hence we find 

m 

I 

J 

(5 - CA + ; - x’ cos 6)dx’ 

+ T;; AYF,B 
0 

(x'-(~-cA+~) ~0s 6tg sin 612+{(tecA+') sin 6+g 'OS 'I2 
' 

m 
I 

-?;; J 
(g + x' sin 6)dx' 

0 
"F,B (x1 _ ts _ 

. . . . (9) 

Equation (9) is an integral equation in the unknowns AyA B, AyF B and 
3 

"F B' HellC2, in order to determne Ay F,B' which will be req:ired for the 

evaluation of the influence of the flap boundary layer on the flap lift, we 
require two other relationships. The first of these expressions may be obtained 
by noting that 

(A*B4J L = ('4 - AJIw - ~4,)" L , (10) , 

where $ is the stream function of the real flow, AJ, 
w is the increment in 

stream function associated with the presence of the wake of the main aerofoil and 
suffix I refers to the first inviscid approximation. 

Using equation (IO) we are able to define the 'displacement fluxes' 
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“G = - (UJ,), = i 
(u,(z) + As(z) - u(z))dz 

0 
&L 

** = 
L (A$,), = I {u,(z) + AU&Z) - u(z)ldz 

0 

(11) 

where 6 is the thickness of the flap boundary layer or the distance between 
the edge of the wake of the flap and the rear dividing streamline of the flap; 
and u is the x-wise velocity in the boundary layer or the wake of the flap. 
Thus definition differs from the usual definition of displacement flux*, 

in recognition of the fact that the aerofoil wake effectively alters the inviscid 
flow in the boundary layer. For the present we will suppose that $* 

9 U,L 
may be 

determined either from the experimental results of Foster, et ~2. or by 
theoretical means. 

Upon combining equations (3) and (11) we have 

This is the first of the relationships required to complete the solution for 

AYF,B' It is evidently an explicit expression for AqF B. The second relation- 
ship is derived by observing that equation (11) may be iegarded as a boundary 
condition for AQB at z = ?rO. In particular, if we consider the boundary con- 
dition at s = +0 (i.e. at the edge of the boundary layer and the wake of the 
flap upper surface) we obtain, by'combining equations (2). (4), (6) and (11) and 
by referring again to the geometry of Fig.], the result 
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{(cA - ;i + X COS 6 - cl)* + (g + x sin 8)*11)d5' 

m 

In (Ix - x'l)dx' 
0 

m 

+ L lim 
J 

AqF R tan -1 
27l ztoo ' 

1 m d(A$,), -- 
2 i dx' dx' . 

0 
(13) 

Here, it will be seen, we have placed z equal to zero in the integrands of 
the first two integrals rather than evaluating the integrals with z non-zero 
and then taking the limit as z tends to zero. This is permissible since the 
respective integrals are evidently continuous functions of z near z = 0. 
The same is, however, not the case with the third integral; and here we have 
adopted the limiting procedure. 

We find it convenient to differentiate both sides of equation (13) with 
respect to X. As with equation (8) the differentiation is carried through 
the integral sign. This is permissible for the first and third integrals and 
IS allowed in the case of the second integral provided that the Cauchy 
principal value of the integral is understood. Thus we have 

d+; 
=A 

1 CC A - 1 - 5') cos I3 + g sin 8 + x 
-- = 

dx I;; J AYA,B - Ii + x cos 6 - E')* + (g + x sin t3)* 
dc' 

0 CC A 
m 

i 

+ -i;; J 

dx' 
AYF,B x - x' 

0 
m 

- & lim I "F,B 
z dx' . 

zto . 0 (x - XI)* + z* 
(14) 

The last integral of this expression is of the type evaluated in Appendix B. 

Referring to equations(B-1) and (B-2) we find that, if AqF B is analytic in 
the interval of integration, 
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m 

& lim AqF B 
J 

z 
' (x - x'j2 + z2 

dx' = a4F,B o<x<- . 
ZtO 2 ' 

0 

~anca, by combining this expression with equations (12) and (141, wa ham 

(15) 

It is interesting to observe that, for a flap of small thickness/chord 
ratio and camber with a 'thin' boundary layer, equation (15) implies that the 

boundary layer effectively displaces the flap camber line and the rear dividing . 
streamline of the flap in the a direction by the amount 

where 6* = $*/u,(O). 

In early work on isolated aerofoils2 no attempt was made to satisfy the 

equivalent of equation (15) for points in the wake. Instead, it was assumed 

that the incremental vortex strength is zero there. Later work4 indicated that 

this assumption is incorrect, in general. Since ($J; - I$) is not readily 

found, either experimentally or theoretically, in the wake of the flap,it is 

natural to try to estimate AyF B downstream of the flap. We defer a detalled 

discussion on this aspect of th: problem until section 3, wherein we consider 
the influence of the wake of the main aerofoil. 

Eliminating AqF B from equation (9) by means of equation (12) we find 

that the resulting equition plus equation (15) represent two simultaneous 
integral equations in the unknowns AyF g and AyA B. The problem of reducing 

these equations to quadratures would s&n to be va; difficult. In the next 

section, therefore, we give consideration to an approximate method of achieving 

a solution. 
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2.2 Approximate solution of Integral equations 

The ~~XIIIRIUI value of B tested by Foster, et al.' was 24'. While this 

angle is not 'small' in the accepted sense we will examine the possibility of 
approximating the two integral equations by placing 6 equal to zero therein. 

Thus, upon making this approximation, we obtain, in place of equation (15), the 
expression 

m 

I 

J 

dx' 
+?;; AYF,Bx-x' ' 

0 
(16) 

An inspection of the integrand of the first integral of equation (15) 
seems to show that the accuracy of this approximation may depend on the nature 
of the function AY~,~(E'). Therefore we examine the effect of approximating 
the integral 

'A 
1 CC - ? - 5') ~0s 6 + g sin E + x 

II = rr J AYA,B 
A 

d.5' 
0 CC A 

- ;i + x co* 6 - cr)2 + (g + x sin Ej2 

for the two vortex distributions 

AYA,B 
(1) = I ; 

These distributions will be recognized as the constant-load distribution and the 
flat-plate loading of thin aerofoil theory. The integration is routine in the 
case of the first distribution and there is obtained 

1(l) = - 1 cos l* 

( [ 

{‘;I’ - x ~0s @}2 + {g + x sin 612 ’ 
I 2n 2 (2 - CA - x cos 612 + Ig + x sin 612 

I 
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where the raised suffix (I) refers to the first distribution. The approximate 
version of I (1) 

I for small 8, which is obtained by placing 6 equal to zero 
in equation (17), reads: 

1:‘) = -&ln[{;y2+2g:g2] , (B=O) : 

The integration required to obtain (2) I, is rather more difficult; 
instead we note that I(2) 

1 is the velocity induced in the negative z direction 
(2) at the flap chord by the distribution AyA B on the slit representing the chord 

of the main aerofoil. Therefore we seek a'complex velocity function 

V(S,S) = vE(S,5) - ivc(C,C.) 

(where v 
5 

and v 
5 

are velocity components in the 6, and 5 directions) that 
(a) is regular in the region external to the aerofoil slit, (b) vanishes 
infinitely far from the slit, and (c) yields the correct tangential velocity at 
the slit 

The required complex velocity is found by inspection to be given by 

V(S,S) = 1 ( 
5 + i< - 1 

1 - ( 5 + is cA 1, , 

the positive branch of the square root being understood. Upon resolving this 
expression into real and imaginary parts we obtain 

vp,5) = + 
( 
I( E2 + c2 - Q02 + c;c2t* - ts2 + c2 - c*S) 

2K2 + c2) i 

1 
; 

+ (62 + 52 - 
1 

vc(C,5) = - 1 - 

[ i 

{CC2 + c2 - c*02 + c;;c2p c*s) 

2K2 + c2) )I* 



Here the + and - alternatives are taken dependlng as 5 is positive or 

negative. Resolving these velocity components into the negative z directIon 

and substituting the values of 5 and 5 appropriate to the flap chord into 

the resulting expression we obtain finally 

(18) 

where 5, = CA - ? + x cos 8; r,F = - g-x sin B 

and use has been made of the fact that, for the flap configurations under con- 

slderation, 5F is negative. 

The results calculated for I, are plotted against X/CA in Fig.3 for 

the two vortex distributions, the values of 6 o"(loo)300 and the two con- 

figurations g/c, = 0.06, l/c, = 0; dCA = 0.02, 2/c, = 0. These con- 

figurations are typical of configurations that have been tested by Foster, et aZ?; 

their model also had a flap chord to main aerofoil chord ratlo of approximately 

0.5. 

We observe that, for 8 less than 30°, the differences between the 

approximate values (8 = 0) and the exact values are small, being on an average 

less than 5% in the interval of X/CA between 0 and 0.8. We conclude, there- 

fore, that the approximation leading to equation (16) would seem to be 

acceptable, at least according to the evidence of the present calculations. 

The question naturally arises whether a similar approximation may be 

applied to the integral equation (9). The approximate equivalent of this 

expression for small B may be written as follows: 

CA 

I 

m 

o=& dE' 1 
i 

5 - CA +X-xl 

AYA,B 5 - 5' + 'z;; 
0 0 

AYF,B ix' _ (5 _ CA + 312 + g2 dx’ 

m 

I 
-- 

2rr AqF,B I 
g 

0 
(x' - (5 - CA + ';i$ + g2 dx' . 

. . . . (19) 
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i Two integrals are involved in this approximation; the first represents 
the downwash induced at the chord of the main aerofoil by the vortices on the 
x axis, and the second is the source term. We will examine the implications 
of the approximation to the source term later; in the meantime we examine the 
accuracy of the approximation to the vortex term by considering the integral 

m 

I2 = & 
J 

(5 - CA + 2 - x' cos B)dx' 
AyF B 

0 
9 {x*-(c-CA+Z) cos b+g sin B}'+((E-cA+;) sin B+g 03s Bt2 

and the vortex distributions 

(1) 1 ; 
"F,B = o 

; 

Ayc2) = 
2[(CF 

1 
- x')/x'] ; 04X<CF 

F,B 
0 ; CF<X<rn ’ 

where cF is the chord of the flap. These distributions are similar to those 
used previously except that they are placed on the flap chord instead of the 

chord of the main aerofoil. Note that we have not included the possible effect 

of the vortices of the wake of the flap. However, on the evidence of work by 

Spence and Beasley4, who gave a method for determining the strength of these 
vortices, this omission would not seem to be of particular consequence. 

For the first distribution we obtain 

(I) = 1 cos I* 

i i 

iCF -(~-~$;i) cos 0 +g sin 6t2+ ((S-CA+% sin 6 +g Cos @I2 
I2 -TiY 2 {(s-CA+;) cos 6 - g sin 6 t2 + ((E-c,+3 sin 6 + g CoS 6 t2 

1 
L 

- (5 - CA + 1) cos f3 + g sin B 
- sin B 

(5 - CA + ;i) sin B + g Cm B 
I 

(5 - =A + 2) cos B - g sin 6 

(5 - ‘A + ?) sin 6 + g CoS B 



whilst for the second distribution, by employing the technique used to determine 
I(2) 

I ' we find that 

Here "A = (6 - c A + %) cos 5 - g sin 6; 

ZA = (5 - CA + 1) sin 6 + g cos 6 

and the plus and minus alternatives are taken depending on whether zA is 
greater than or less than zero, respectively. 

Results for (1) 
I2 

and Ii2) are shown in Fig.4 where they are plotted 
against S/cA, for cF/cA = 0.5 and for the two gap and overlap cases con- 
sidered previously. Evidently, the approximate results (5 = 0) are in good 
agreement with the exact results for 5 less than 30' except in a narrow region 
adjacent to the trailing edge of the main aerofoil. Here the error rises to as 
much as 50% for 5 = 30'. The reason for this can be found by expanding Iw 2 
in powers of 5. If this straightforward, though lengthy, process is carrled 
out it is found that, if g/c A is small and c /c FA is of order unity, the 

error in the approximate result is O(B2,gS/c,) except where 

ots - CA + ‘;i, 4 O(g) . 

In this region the error becomes O(5): clearly, for a 5 of 30°, this is 
conskderable. On the other hand, as this error occurs only over a region of 
width O(g) the error in the mean value of (2) 

I2 
along the chord of the main 

aerofoil (i.e. the incidence induced at the main aerofoil by the vortex distri- 
bution Ayi21) is O(B2,g5/cA). The same error is found for the effective 
change in t;e camber induced by AyF B (2) at the main aerofoil. We assert, 
therefore, that, for small g/c A, l&as than 0.1 say, and small 5 (less than 
30') the small-angle approximation for I2 will be suitable in the determina- 

tion of AyA B and AyF B. 
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i 

Equations (16) and (19) are much simpler than the original integral 

equations (9) and (15). Even so, simultaneous, analytical inversions of the 

simplified equations would appear not to be possible at present. However, we 

have already imposed the condition that g/CA is small, wtiich is conventionally 

the case, and we note that, in practice, 1s smal19. Therefore we assume 

that we may place both g and 2 equal to zero in equations (16) and (19). We 

then find that, with 

1 dF -- 
2 dx 

F = $;-$I* u ’ 

CA 

J 
m 

I 
FT AvA,,(5’) dS’ r- + & AY~,~(x’) x -“xi, 

0 
CA+X-5 J 

0 

I dS’ I 
T;; AYA,B(S’) F, - 5’ + I;; AYF,B 

0 ci 

Using the transformations 

3 (23) 

x = 6-c A ; x’ = 5’-CA 

in equations (21) we obtain the expressions 

m 
I dF I -- = 
2 d.5 x I 

A.v,,(S’) 5 “‘;v ; 
0 

I 

Av,,,(E) ; 0 s 5 < CA; 
where Ay,B(S) = 

“F B , 
(5 - CA) ; CA 4 5 s m. 

v-2) 

Equations (23) may be written in the more concise form 

oscs- , (24) 
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with H(E - cA) the Heaviside umt step function defined by 

0 ; 
H(S - cA) = 

5 < CA 

1 ; 5 2 CA 

We observe that the combned effect of this approximation and the small- 
angle approximation is to remove the source integral from equation (9). This 
1s equivalent to the assumpt=on that the effect of the sources, of the x axis, 
Oil v<(C,O) is negligible. Whilst it is diffxult to justify this assumption 

'formally, except for very small g/CA, Z/c, and 6, calculations of the 
velocity fields of the source distributions for the boundary layers measured by 
Foster, et aZ. 9 indicate that it 1s well-founded. Typically, one finds that 
the sources contrlbute 0.001 to the mean value of v,(5,o)lv~ along the chord 
of the main aerofoil, V_ being the speed of the uniform flow at infinity. 
As may be Inferred from equation (24) this means that the error in Ay ,IPm 
obtamed by neglecting the source integral is of the order of 0.001. 

The model of the sources and vortices that is implied by equation (24) is 
shown in Fig.5. 

To assess the likely effect of the approxunation for small PICA on the 

vortex Integrals we examine I:2) (equation (18)) and Ii2) (equation (20)), 

these being the relevant integrals evaluated for the 'flat-plate' loading. 
Fig.6 shows plots of l I(2) against x/cA and (2) 

I2 against s/cA, with, in 
both cases, ‘;ilc, equal to zero and 6 zero (corresponding to the small-angle 
approxmation). For all the cases considered cF/cA is taken as 0.5. It will 
be seen that the effect on (2) I, and I (2) 

2 of increasing g/CA from 0.01 to 
0.06 is very small except in the immediate neighbourhood of the flap gap. In 
this region the differences between the various curves for (2) 12 are large, 
although the differences are not as serious in the case of Ii2). The reason 
for these large errors m the small-gap approximation for 112) can be found 
by normalising all lengths in equation (20) by cA and then expanding this 
expression formally in powers of g/c A' Upon doing this it is readily found 
that 

where X = c/c, - I + 2/c,. 
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t 

Thus we find that the error in the small-gap approximation for 

o[ (s@ ‘- 
(I2 (2))B,o is 

except in a region close to the flap gap where the approximation 
evidently fails. This is, however, a localized failure of the approximation 
and, for small flap gaps, it is unlikely that it will seriously affect the 

validity of the method as a means of determining the correction to the lift of 
the flap. We also observe that the failure of the present approximation to 
represent the gap flow must be considered in relation to the use here of the 
'thin'-aerofoil solution which also fails at the leading edge of the flap. 

A similar difficulty is found with the approximation for small overlap. 
In this case, however, is found to be in error by terms of order 

'It/c, 
(I:2))s=o 

in the range of validity of the approximation. The present method is 

therefore restricted, it seems, to rather small l/c A' On the other hand, 
Foster, et aZ. 9 found from both inviscid calculations and experiment that the 
flap lift is relatively insensitive to changes in l/c,. It seams possible, 
therefore, that the small overlap approximation is quite accurate even for 
values of 1/c, which may not be considered small. 

It is convenient to rewrite equation (24) as 

. . . . (25) 

where CE = CA + $. 

The second integral of equation (25) represents the contribution of the wake of 
the flap; we propose examining the wake vortex effect, in connection with a ' 
study of the wake of the main aerofoil, in section 3. For the time being 

therefore we will suppose that 

AY,$) = 0 ; c,<c<m . (26) 

The second integral of equation (25) then vanishes and the resulting integral 

equation may be inverted to give the result 
15 
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Au,,(S) = 

where B is an arbitrary constant. Hence it appears that the solution for 
AY 

,B 
is not unique. Nevertheless, uniqueness can be assured, firstly, by 

inferring from equation (3) that AyF B is a finite quantity, referring, as it 
does, to velocities induced in the fl& field by the flap boundary layer. 

15 Secondly, we observe that, according to Weber , provided that dF/dS is 
analytic in the interval CA G 5 G CE, the integral term in the above expression 
is identically zero for 5 = cB. Physical considerations suggest that dF/dS 
satisfies this proviso; hence the two conditions demand that B is zero. 
Therefore we have 

v-7) 

2.3 Effect of flap boundary layer on flap lift 

The lift on the flap may be written as the line integral 

LF = cos (8 + a) 
J 

pdx , U-8) 

flap 

where suffix flap refers to integration around the contour of the flap in the 
anti-clockwise direction and a is the incidence of the main aerofoil. 

According to Prandtl's boundary-layer theory 11 the rise in static pressure 
across a boundary layer on an essentially uncurved surface is of second order in 

6/CF compared with pV2. Consequently, for a sufficiently 'thin' boundary 
layer this pressure rise can be neglected in comparison with the change in static 
pressure at the edge of the boundary layer due to the vorticity of the boundary 
layer, which change is pVzO(G/cF). Near to the trailing edge of the flap the 
flow is curved, ?nd a significant variation in the static pressure across the 

boundary layer might be expected there. However, measurements made by Foster I6 

indicate that, for the configurations to be examined here (section 5), this 
change in static pressure is, in fact, slight compared with the boundary-layer 
effect mentmned above. Consequently, we may write in place of equation (28) 
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from Bernoulli’s equation. 

In the ‘thin’-aerofoil theory, on which the present method is based, it is 
usual to neglect the terms (a+/ad~ L in comparison with (a$/az)t L and to 
replace (aq/az), L by (a*/az)(x,+A). wsbsr12 shows that these approximations 
fail near the leaiing edge of an isolated ‘thin’ aerofoil and she gives a fact’or 
for correcting the ‘thin’-aerofoil result. A similar factor, which took into 
account the proximity of the main aerofoil, could perhaps be devised for the 
present case. This is, however, a localized effect which should not significantly 
affect the correction to the flap lift due to either the flap boundary layer or 
the wake of the main aerofoil. Hence, using these approximations in equation (29) 
and noting that 

we obtain an expression which, after expansion, becomes 

LF = 1P cos (6 + co (x,+0) + 2 (x,+0) 

+2 
a (W,) a (A$$ 

as (x,+0) az (x,+0) + ( a(;$ (x,+0) + ( a(;y)Z (x,+0) 

w, 2 

( > 

a$ 
k-0) - 2 T k-0) 

a(A*,) . a (A$w) 
-- 

a2 az k-0) + az k-0) 
> 

a (NJ,) 
i 

-2 a2 
a (A$,) 

(x,-O) as 
/ 

(x,-o) -( “;zB),’ (x,-O) -( “;:‘f (x,-O)) dx . 

. . . . (30) 
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Thus, ignoring the squares and products of the correction terms, which we 
anticipate are small compared with the first-order correction terms, we obtain 
for the correction to the flap lift due to the flap boundary layer 

ALF B = P co.3 (6 +a) a*I a (WB) 
T (x,+0) az 

a% (x,+0) - - 
a (A$,) 

I az (x3-0) az 

To evaluate this expression we need to know A$,; this we find 
employing equations (Z), (4) and (6) and by referring to the geometry 
Thus we have 

(x,-O) dx . 
I 

. . . . (31) 

by 
of Fig.1. 

AJl,h,d = AY,,~ ln ({(‘A - ’ + x ~0s 6 + z sin 6 - E')' 

0 

02 
+’ 

2n J "F B 
0 ' 

ln ({(x - ~8)' + s'}') dx' 

co 
I 

+I;; AqF,B tan 
0 

1 m dWB)L 
-- 

2 J dx' dx' . 

0 

Differentiating this expression with respect to z, and noting that the 
differentiation may be carried through the integral signs, we find that 



. 

27 27 

'A 
sin 6 (CA sin 6 (CA - 2 + x ~08 B + z sin B - E') - 2 + x ~08 B + z sin B - E') 

a U.11,) a U.11,) 1 1 -cosB(g+xsinB-zcos6) 
a.7 a.7 (x,d = (x,d = 5 5 I AYA,B 

0 CC CC A A 
- ;i + x ~0s B + z sin B - C'j2 - ;i + x ~0s f3 + z sin B - C'j2 

\ + (g + x sin f? - 2 cos 8j2 + (g + x sin f? - 2 cos 8j2 I 
m 

1 
+ T;; AYF,B J 

z dx' 
0 

(x - x')2 + z2 

co 
1 

+z J 
AqF B x - ';I dx' . 

0 
' (x - x') + z2 

Hence, by referring to equations (B-l) and (B-2), we obtain the expression 

a (NJ,) =A 

a2 (x,iO) = 1 
T;; AYA,B J 

sin B (cA-2+x co8 8-5')-cos B (g+x sin 6) 

- ;i + x cos B - E'j2 + (g + x sin 8j2 
dE' 

0 (C A 

dx' 
"F,B x - x1 ' o<x<m . (32) 

0 

As before, we might attempt to approximate this expression for small 

6, PICA and l/c,. We note that, as B and g/c, tend to zero, the first 
term on the right-hand side vanishes. On the other hand, for a t? of greater 

than 20'. the error obtained in the flap lift by neglecting this term could be 
significant. Therefore, whilst placing g and z equal to zero, as before, 

we retain terms of order 6; so that we have 

awJB) CA 
(x,+0) = & I AYA,B 

CA - 5' AYF B 
a2 2 dE'2 -y'- 

0 'CA + x - 5') 

m 
1 

+TG (33) 

Combining equation (33) with equation (31) we are then in a position to 

obtain the correction of the flap boundary layer to the flap lift coefficient 
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AL 
ACL 

F,B 
= F;B , 

lPV,CO 

where cO is the basic chord of the configuration. Smce AyA B and Ay 
F,B 

are known from equation (27) and AqF B can be determined from'equation (12) 
it follows that, provided (a$I/az)(x:?O) are known, ACL may be evaluated. 

F,B 
In fact, to the order of our approximation (a$,/az) (x,+0) are the speeds of 

the flows at the upper and lower surfaces of the flap according to the first 
inviscld approximation. These speeds can be obtained from the Douglas numerical 
method'; and this has been done for the configurations to be studied here by 

16 Foster . 

3 INFLUENCE OF WAKE OF MAIN AEROFOIL 

In this section we consider the influence of the wake of the main aerofoil 
on the lift of the flap. The aim is to provide information that will help us to 
answer two ques t1ons. Firstly, how large is this effect in comparison with that 
due to the flap boundary layer? Secondly, is the conventional 'outer' approxima- 
tion6 for a ' thin' wake adequate as a means of representing this type of wake? I 

Clearly, the answer to the first question will decide how much emphasis needs to 
be placed on the second question; since, if the wake effect is small compared 
with other viscous effects, an approximate representation of the wake of the 
mam aerofoil may be acceptable. 

The method employed in this section to satisfy the boundary conditions of 
the flap and the main aerofoil is essentially the same as used in section 2.2 
for the flap boundary layer. Consequently, inasmuch as the same approximations 

are used in the study of the wake as were used in dealing with the flap boundary 
layer, the answer to the first question should not be significantly affected by 
the fact that we use an approximate method. 

With the vorticity distribution within the wake presumed known (in thu 
case from the experimental results of Foster, et ~2.') we are able to derive the 
velocity field Induced by the wake in the region external to the wake. This 
expression, which 1s derived without any restrictions being placed on wake 
thickness, is then approxmated for 'small' wake thickness. 

i 
As well, and con- 

sistent with the small-gap approximation given previously, use is made of the 
fact that the wake of the main aerofoil is close to the flap upper surface. In 

section 3.2 a first-order correction for non-zero wake thickness is derived 

with the intention of providing an answer to the second question. Finally, the 
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i 
results obtained for the induced velocities, including the contributions from 
the images of the wake vorticity within the main aerofoil and the flap, are used 
to determine the correction to the flap lift. 

The stream function induced by the vorticity within the region occupied by 
the wake of the main aerofoil, which region we call r, at a point P external 
to r is derived in Appendix A, namely 

(A’+& = & w an In r + (I) 9 T} dll , , (34) 

where A$ = “$I~ + A%. 

The meaning of the notation employed in equation (34) is the same as for 
equation (I), except that we have distinguished the contour bounding the wake 
of the main aerofoil with the title k (Fig.7). 

The downwash induced by the wake at P is obtained by differentiating 
equation (34) with respect to x. To do this we will need the following results: 

r = ((x - x’)2 + (2 - ztj2t* ; 

for 5 entering r at the element da; and 

for ;E leaving r at da. Here zk = z,(x) is the equation defining 
contour k. Therefore, recalling that the plus or minus alternatives of 
equation (34) are taken depending as s passes out of or into region r at 
the element d.t, respectively, we find that 

x - x1 +u = -2’ 
(x-x’)2+ (z-z’) 2 aa. (x-x~~2+(,-.~~2 

da. . 
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It ~111 be seen that the differentiation has been performed under the integral 

sign, an operation that is permitted for a point P external to r. Similarly 

we find that 

a (A’+,) r 
a2 

a(A*) z-z’ a(A*) x - x’ - -- 
an (x -xl)2 + (2 -2’) 2 aa. (x -x’)2+ (2 - 2’) 

. . . . (36) 

for the x-wise velocity induced at P by the vorticity within r. 

3. I Approximation for thin wakes 

It 1s convenient to rewrite equation (35) as 

a (A$) r 

ax (x,2) = wl(x.d = (Wi)+ + (wi)_ + (wi)a. . (37) 

Here, with AB the leading edge of the wake (Fig.71, 

hi)+ = - k J (w is)+ (x _ ,,;2-+yz _ 4 dx’ 
A- 

l d(W)+ z _ zt 
-- 

2n J dx’ 2dx’ ; 

A- (x - x’j2 + (2 - 2’) 

(Wi)- = - k ,(Y%)- (x _ p,;2-;;z _ z,)2 dx’ 
mB 

1 
I 

d (A$)- z - 2’ 
-IG dx’ 2dx’ ; 

-B (x - x’j2 + (2 - 2’) 

dJ. 

1 d(W) n. z - 2’ -- 
2n d9. 2dn. . 

BA (x - x’)2 + (7. - 2’) 

(33) 

(38d 

i 

(384 



31 

The suffixes +, - and fi refer respectively to the upper edge, the lower 
edge and the leading edge of the wake of the main aerofoil. 

The leading edge of the wake, BA, is defined, more or less arbitrarily, 

as the straight line, drawn normal to the bisector of the shroud trailing-edge 
angle. Shrouds are usually cusped in shape'; we would expect, therefore, that 

both the real flow and the flow of the first inviscid approximation would be 
sensibly normal to BA at the leading edge of the wake. This implies that 

(a(A$)/an), is very small compared with V,. Consequently we assume that we 
may neglect the first term on the right-hand side of equation (38~) and thus 
obtain instead 

(Wijn. = - & 
I 

d(UdQ z - 2’ 
da 2dP. . 

BA (x - x')2 + (2 - 2') 
(39) 

In the 'thin'-wake approximation x' and z' are replaced in 

equations (38~~) and (38b) by % and s, the x and z ordinates of the 
rear dividing streamline of the main aerofoil. In equation (39) x' and z' 

are replaced by xT and zT, the x and z ordinates of the shroud trailing 

edge. With these approxnnations we have, using equations (37). (38a), (38b) 

and (39), and performing the routine integration in the approximated version of 
equation (39), 

m 

Wi(X,Z) = - & 

.I 

X- 

ww) 

“w 

XT 
(x - Q2 + (2 - zw) 

2 d% 

1 - dJI; 
+T;; d'Fr i 

z-z 
- '"w' 

W 
2 d"W 

XT 
(x - xJ2 + (2 - ZJ 

where 

(40) 

(41) 
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1s 'the wake vortex strength' per unit x-wise length, and 

(42) 

is 'the displacement flux' of the wake. 

The physlcal significance of the terms in equation (40) may be described 

as follows: the first term on the right-hand side is the upwash induced by the 

vortices required in the simulation of the wake of the main aerofoil. These 

vortices exist as a consequence of the reduced momentum of the air in the wake 

being turned through an angle4. In early work on viscid aerofoil theory 1,2,3 

this effect was disregarded on the basis of a conjecture by G.I. Taylor that the 

circulation around any simply closed circuit cutting the wake in two places at 

right angles is zero. Subsequently, Spence and Beasley4, using an analysis 

derived from the jet-flap theory, showed that, in general, this conjecture is 

not correct. However, they indicated that, for an isolated aerofoil, the effect 

is of secondary importance to the boundary-layer displacement effect. In the 

case of the slotted flap the vortex effect may be of rather more significance in 

view of (a) the proximity of the wake of the main aerofoil to the flap upper 

surface and (b) the relatively large turning angle involved in the flow above 

the flap. 

The second term on the right-hand side of equation (40) is due to the source 

distribution representing the growth of displacement flux along the wake of the 

main aerofoil. As with the wake vortices this may be a particularly significant 

effect owing not only to the closeness of the aerofoil wake to the flap but also 

to the adverse pressure gradient induced by the flap at the wake. This may 

result in a relatively rapid growth in the displacement flux of the wake. 

Finally, the last term in equation (40) arises from an isolated source that 

is situated at the shroud trailing edge. The presence of this singularity is a 

direct result of our neglect of the boundary layer of the main aerofoil. The 

source provides the step in displacement flux at the shroud trailing edge that 

is necessary to yield a non-zero displacement flux in the wake of the main 

aerofoil. With the inclusion of the boundary layer of the main aerofoil the 

point source is replaced by a distributmn of sources along the edge of the 

boundary layer. Consideration of the continuity of A$ around the edge of the 

boundary layer shows that the integrated strength of these sources is equal to 

the strength of the point source. We may therefore regard the point source as 
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an approximation to the distributed sources of the boundary layer of the main 
aerofoil. Also associated with the existence of a boundary layer on the main 

% 
aerofoil is an additional distribution of vortices on the chord of the main 
aerofoil. These are required to cater for the effective change in the camber 
of the main aerofoil that is caused by the aerofoil boundary layer (see 
section 2.1 in connexion with the flap boundary layer). We propose to neglect 
this effect on the basis of the observation that this correction to the camber 
is small compared with the corresponding change in the effective camber of the 

flap, at least for the configurations studied here. Should it be considered 
necessary the present analysis can be modified fairly easily to include this 
effect simply by amending equation (27) to allow for the correction to the 
effective camber of the main aerofoil. 

Whilst neglecting the additional vortices due to the boundary layer of 
the main aerofoil we retain the point source so as to ensure the correct value 
of the displacement flux in the wake. In fact, as we shall sea, it appears 
that, in the cases considered, this effect is of secondary importance compared I 
with the effect of distributed vortices and sources of the wake in the determina- 
tion of the correction to the flap lift. 

A similar analysis applied to 

a (NW) r 
Ui(X,d = az (x,2) 

gives the result 

In section 2 we edployed the assumption that the flap gap is small com- 

pared with the flap chord. This implies that zW is small compared with cF 
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except far downstream where the wake is remote and consequently has little 
effect on the flow around either the flap or the main aerofoil. Therefore, 

supposing that all lengths in equation (40) are normalised with respect to cF, 
we replace zw by E, a small parameter, and we then take the limit as E 
tends to zero. In consequence, we obtain, for points on the flap chord and its 
downstream extension, the result 

m 

- & lim 
X- 

Wi(X,O) = 
"w 

WO J 
yW %i) (x - "W'Z + E 

2 d% 

XT 

- & lim 
- 4;; 

E+o I 
E 

d'tr (x - xJ2 + E 2 d'tr 
XT 

In the case of the first integral the limit may be taken through the integral 

sign provided that the integral is interpreted according to the Cauchy 
principal value. The second integral may be evaluated by employing 

equations (B-l) and (B-2). Thus we have finally 

co 

Wl(X,O) = & 
J 

d”W 
d+* 

yw(%) 

=T 

?.I-" 
- iH(x - x,) -$ - +n Jl$(x,) 

xr 
(x - XT)2 + z; . 

. . . . (44) 

It will be seen that, in this approximation, the vortices are effectively 
transferred to the flap chord and its downstream extension. We note, as well, 
that the upwash induced by the distributed sources depends only on the 

local strength of the sources. This result, which is a consequence of the 
assumption that the distributed sources lie just above the flap chord, seems 
likely to be an accurate approximation only if JI;*J varies slowly with x; i 
hence it may be a questionable approximation close to the singular points of the 
first inviscid approximation such as the shroud trailing edge and the trailing 

edge of the flap. Finally, it should be remarked that we have refrained from 
approximating the point source term for small ZT (i.e. for 'small' flap gap); 
the reason for this is that this approximation evidently fails for x = x T' 
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On applying the same approximatmn to u. 1 (equation (43)) we obtain, for 
points on the flap chord, the expression 

(45) 

Consistent with the 'thin'-wake approximation and with the assumption that 

the wake lies just above the flap chord is the approximation 

a(* = a0 
an dx az' 

Therefore we may write in place of equation (41) the approximate result 

Yw = (y)+ -(*)- . 

(46) 

(47) 

By using approximation (46) it is-shown in Appendix C that, for a 'thin' 
wake that is close to the flap chord, 

Yw 
= K,ij@$ + 9,) * (48) 

Here K W = the weighted mean curvature of the streamlines of the wake, as 
defined in Appendix C, the centre of curvature being taken below the 

wake; 
6; = the wake displacement thickness; 
SW = the wake momentum thickness; and 

that is the mean of the x-wise velocities at the upper and lower edges of the 

wake. 

Equation (48) is due essentially to Spence and Beasley4, who, however, 

used the approximation i = V_ and employed a different method in their 

derivation of the relationship. 
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To ensure that the flap remains a streamline in the presence of the wake 
of the main aerofoil we will need a distribution of vorticity within the flap. 
With the assumption of section 2 that the flap is of small thickness-chord 
ratio and camber this distribution is replaced by a distribution of vortices 
on the flap chord. Likewise, the boundary condition that the main aerofoil is 
a streamline is maintained by a distribution of vortices on the aerofoil chord. 
Consistent with the analysis leading to equation (24) we assume that, for small 

flap gaps, overlaps and flap angles, these two distributions may be combined 
into one distribution that is placed on the 5 axis. This distribution is 
defined by 

AY~,~K) ; OGC<C* 
Av,,k) = bF ,(C) ; , CA <5Gc, 

Thus by employing equation (44) for the upwash induced by the wake of the 
main aerofoil at the flap chord and noting that, for small flap angles and 
overlaps, 

x = 6-c A' (49) 

we find, by using the fact that 

5, = CA , 

that the flap remains a streamline under the action of the wake provided that 

, 

To satisfy the condition that the boundary of the main aerofoil is a 
streamline of the real flow we require information on the velocity induced in 

the 5 direction at the chord of the main aerofoil by the wake. For small 
flap angles this velo$ty is approximately equal to wi(x,zT) in the interval 
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0 4 5 < c*. According to the analysis of section 2.2 the error in this (small 
angle) approximation is likely to be small for flap angles less than 30' 

except possibly in a narrow region adjacent to the trailing edge of the main 
aerofoil. 

With vgi(S,<) the velocity induced by the wake of the main aerofoil in 
the 5 direction we find, by reference to the 'thin'-wake approximation, 
equation (40), that 

m 

I 

X- 

VciK,O) = Wi(X,ZT) = - & YW(xW) 
‘tr 

(x - "W'Z + (2, - 2,) 2 d"W 
0 

1 
+T;; 

- d"; 

I d"w (%J 
=T - zw . (51) 

yr 
(x -q2 + (2, - zw) 

Again for small flap angles we would expect that IzT - zWl is small 
compared with CF. Therefore, supposing all lengths in equation (51) are scaled 
with respect to CF' we replace zT - z w by E and take the limit as E 
tends to zero. Referring to equations (B-I) and (B-2) we find that 

m 

J 
~W(xW) 

d"W 
"w-x * 5 < cA , (52) 

XT 

the Cauchy principal value of the integral being taken. This expression implies 
that only the wake vortices contribute directly to the velocity normal to the 
chord of the main aerofoil at the aerofoil chord. This normal velocity 16 
nullified by the vortex distribution Ay ,,K), thus ensuring that the boundary 
of the main aerofoil is a streamline of the real flow. Hence we have, upon 

employing equation (49) and noting that 5, = CA' 

m 

I dcW 
=E 

1 
5 yw(xw)5w-5 = 'i;; J 

hw(S') dg' 5-C' ' 0 =G 5 < CA .(53) 

CA 0 
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where s (4) 
uv ' 

a Weber coefficient, is defined in Ref.15, and 6 IJ and 5, are 
pivotal points defined by 

Strictly, Weber's method is only applicable if G(S) is continuous and 
differentiable. As is evident in equation (95) this condition is not satisfied 
in our case, there being a finite discontinuity in dG/dS at 5 = CA. This 
type of discontinuity is met in the linearised theory of aerofoils with plain 

18 flaps , and it evidently results III a logarithmic type of singularity in 

A-i ,B 
at the point of discontinuity. Since this is a weak singularity it seems 

unlikely that the failure to represent the discontinuity will cause serious 
errors in the lift of the flap. To check the validity of this assertion we 

have performed some calculations for the distribution 

F(C) = 5 - cA (99) 

which gives a finite discontinuity in dG/dS at 5 = cA. 

--"The>econd-inigG1 of equation (94) is readily evaluated in this case 
18 

and it is found that the corresponding vortex strength is given by 

Av,,(S) = $ tan; +; In 
I 

sin (8 + x)/Z 
sin (e-x)/2 ' 

with 

(100) 

2cA CO6 x =--, . 
CE 

The approximate summation equivalent of equation (100) is derived from 
equation (98) as follows: 

Av,,(C,) = i ($, - +(6,, - CA) - k, - CA) $/C, 1. 

. . . . (101) 

Results,calculated by employing the 'exact' equation (100) and the 

approximate equation (101) for X = n/3 and with N = 32, are exhibited in 

Table I for various values of V. Generally, the agreement between the two sets 
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Here the first term on the right-hand side of equation (56) is the inversion of 
the first term on the right-hand side of equation (55); the second is the 
inversion of the last term in equation (55); and the third is the inversion of 

the second term on the left-hand side of equation (54). 

In the absence of a detailed viscous solution for the flow around the 

flap in the presence of the wake we assume that the combined flow of the first 
inviscid approximation and the wake flow satisfies the Kutta condition of 
smooth flow at the trailing edge of the flap. Since the first inviscid 
approximation satisfies the Kutta condition this implies that 

AY,~(c~) = 0 . 

Weber 15 has considered the implications of this condition for equations 
similar to equation (54). It appears that, if the left-hand side of 
equation (54) is discontinuous at a finite number of positions and an analytic 
function between, in the interval 0 < 5 Q cg, condition (57) is satisfied. 

This requirement is satisfied by the second term on the left-hand side of 
equation (54). In the case of the first term, however, there is a logarithmic 
singularity at 5 = cE resulting from the discontinuity in y w at the flap 7 
trailing edge. This discontinuity is due to the inclusion of the vortices of 
the flap wake with the vortices of the wake of the main aerofoil downstream of 
the flap trailing edge. We may overcome this difficulty by fairing the two 
distributions of yW upstream and downstream of E, = CR smoothly into one 

another. Alternatively we could relax condition (57) and permit finite values 

of AY ,wkE), which the logarithmic singularity implies. Regardless of which 

method is chosen, the fact that Yw is smooth and continuous elsewhere, 

ensures that AY,~(cR) <-. Hence the arbitrary constant B in equation (56) 

is required to be zero. 

Spence 17 has considered integrals like the first one on the right-hand 
side of equation (56); he shows that 

(58) 
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For the sake of completeness, the analysis leading to this result is given in 
Appendix D. 

Hence, using equation (58) and recalling that B = 0, we have in place 

of equatmn (56) 

b,,(S) = - H(S - cAhw(x) 

+ ; qpT) ZT 

(5' - CAP + 
OGEGC, . (59) 

3.2 Effect of wake thickness 

In this section we derive a first-order correctmn to the results given 
in section 3.1 for the effect of non-zero wake thickness as well as the influence 
of the non-zero distance of the wake from the flap chord. As previously we 

suppose that the flap angle, 8, is small (say less than 30') and consequently 

we assume that BA is normal to the flap chord (see Fig.5). Hence, by using 
this approximation together with equations (37), (38a and b) and (39), we may 

write for the upwash induced by the wake of the main aerofoil at a line 
parallel to, and a distance E below, the flap chord. 
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1 - d(All)+ 
+z J 

E + 2; 

dx' cx - xl)* + (E + z:)* 
dx' 

5 

1 m d(W)- 

J 

E + z' 
-5 dx' 2 dx' 

"T 
(x - x')* + (E + zy 

ZB 
1 d(N), 

+2n I 
E + 2' 

dz' (x - $2 + (E + 2') 
*dz' , 

"A 

(60) 

where suffixes A and B refer to the points A and B. 

It is reasonable to expect that, if the wake width and the flap gap are 
small compared with the flap chord, z: and 

with CF. Likewise, on segment AB, 2' - 
ZT y;: ;Jg,;~t;m;;r~~w~;son 

=F* 
Therefore, supposing the dimensions in equation (60) are referred to the flap 
chord and expanding the first four integrals in powers of z; or 2' and the _ 
last integral in powers of a' - zT, we have, to first order in these 

quantities 



E 
(x - x*)2 + E2 

dx’ 

ZB 
I 

+T;; J d(AJI)Q E + s T 
dz’ 

(x - XT? + cc + 2,) 
2 dz’ 

ZA 

I co d(W)+ d(N)- 
+71 .ii dx”:- dx’ 2: 

I 2c2 

XT 
I( (x - x*)2 + E2 > {(x-x’)2+E2~2 

dx’ 

ZB 
1 

i 

d(A+)a 
(2’ - ZT) 

I 2(E + 2,) 
2 

+271 dz’ 
(X - XT)2 + (E + 2,) 2- ((x- XT)2 + (c+ zT)p2 dz’. > T 

=A 

. . . . (61) 

Here it ~11 be observed we have not appronmted the last integral of 

equation (60) for small ZT, as mght be thought necessary for consistency 

wrth the approximatmns to the first four integrals. The reason for this is 

that we wish to recover the approximation of section 3.1, wherein the point 

source at the leading edge of the wake was placed at the shroud trailing edge 

rather than on the flap chord. 

It IS convenient to express the right-hand side of equation (61) as 

Wi(X,T) = 1 w(l) (X,--E) + Aw$x,-E) , 

where w!‘) (x,-c) IS a first approximation to wi(x,-E) for ‘small’ wake width 

and flaplgap represented by the first three integrals of equation (61) 
k 

, and 

Awl(x,-d is a first-order correction term for non-zero wake width and flap 

gap given by the last three integrals of the same equation. 
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(1) Considering firstly wi ; by employing equations (41) and (42) it is 
readily found that 

Y,(X’) dx' -& c 
&-.&I)2 + E2 

dx' 

% yr 

- $ tJp& 
E+Z T 

(x - XT)2 
2 * (62) 

+ (E + 2,) 

The corresponding upwash at the flap chord is obtained by taking the limit of 
the right-hand side of equation (62) as E tends to zero. Note that we 
approach the flap chord from below the flap to ensure that, in the limit, the 
wake lies above the flap chord. Using equations (B-l) and (B-2) we find that 

Evidently, this expression is in exact agreement with the approximation for 

Wi(X,O) that was derived in section 3.1, namely equation'(44). Therefore, in 
correcting the results of section 3.1 for non-zero wake width and distance of 
the wake from the flap chord, we need only examine Awib,-d, which is given 

by 
m 

AI.+-E) = + 
J 

E(X - x') 

XT 

P(x') ((x _ x,)2 + c2t2 dx' ' 

m 
I 

i ( 
Qb') 

1 2e2 
+T;; (x - x')2 + E2 - > 

dx' 

xr 
((x - x'12 + c2t2 

1 d(AJl)k 2(E + ZTj2 

+?;; dz' 
(x-xT)2 : (c+aT12 - ( tx-x.&2 + k+zTj2 t2 ' 

. . . . (63) 
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where 

(64) 

d(A$)+ d(W)- 
Q = dx, 2; - dx, 2’ 

Equation (63) may be recast into a more suitable form by carrying out the 
integration of the first two integrals by parts. Thus the first integral 
becomes 

m ca 1 
-1 

P(x’) E(X - x’) 
((x - x')2 + E2j2 

dx' = E 
II 

XT 
(x - x'j2 + 1 E2 XT 

(x - x’)2 + E2 

dx' . (65) 

The evaluation of the right-hand side of equation (65) is complicated by 
the problem of determining the upper limit of the first term. This involves 

the determination of the limit of P(x) as x tends to infinity. This is 

considered in Appendix E where it is argued that 

lim (P(x)) = 0 . 
x" 

Thus, combining this result with equation (65), we find that 

m 

I 

J 
P(x’) 

E(X - x’) 

r {(x - x')2 + E212 
dx' = 

XT 
m 

1 dP E -- 
2lI dx' 

J (x - x'j2 + E2 
dx'.(66) 

XT 

The second integral of equation (63) may be integrated by parts to give 

the result 
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co m I x’ - x T;; 
1 ( 

Qb') 
(x' -x)2+ E 1 2 

XT XT 
m 

I 

J 

x’ - x 

‘5 
dx' . 

XT 
(x1-x) 2 + E2 

. . . . (67) 

As with equation (65) we are faced with the problem in equation (67) of 
evaluating the upper limit of the first term. However, arguments are given in 
Appendix E in favour of the result 

lim (Q(x)) = 0 . 
x" 

Therefore we have in place of equation (67) 

m 

I 
& Q(x.& 

XT - x 
5 (XT-x) 2 2 + E 

The final result for Awi(x,-E) is obtained by combining equations 
(66) and (68). The corresponding expression for Awi(x,O) is then found 
taking the limit of Awi(x,-E) as c tends to zero. Referring to 
equations (B-I) and (B-2) we find that 

Awi (x,0) = - iH(x-xT) $ +A 
i 

+&Q(x) 
1 

x T y-x 
XT 

(63)) 

by 

(69) 
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Here It is possible to identify two types of terms. The first two on the 
right-hand side may be identified as first-order corrections for non-zero wake 
thickness and flap gap. The last two, on the other hand, which are due to a 
point vortex on the flap chord at x = xT and a doublet at the shroud trailing 

edge, exist as a consequence of the neglect of the boundary layer of the main 
aerofoil. In a more complete representation, which included the boundary layer 
of the main aerofoil, these isolated singularities would be replaced by con- 
tlnuous distributions of sources and vortices on the chord of the main aerofoil. 
A similar point has already been made in section 3.1 in connexion with the first 
approximation for wl(x,O). In this approximation the displacement effect of 
the boundary layer of the main aerofoil is simulated by a point source at the 
shroud trailing edge instead of the more usual source distribution on the aero- 
foil chord. Since we are primarily concerned with the thickness effect of the 
aerofoil wake we will ignore the last two terms of equation (69), so that we 
have 

m 

Awi(x,O) = - ;H(x - xT) 2 + $ 
J 

dQ dx' 
2x'-x * 

yr 

An alternative way of deriving equation (70) 1s to note that, consistent 

with the neglect of the thickness effect of the boundary layer of the main 
aerofo11, it is permissible to assume that zA = zB = 0. This implies that 

Qb,) = 0 , 

as may be verified by examining equation (64); thus the vortex at (x,,O) 1s 

of zero strength. Additionally, equation (69) shows that this assumption leads 
to the doublet at the shroud trailing edge being of zero strength. 

An examination of equation (66) shows that the first term on the right- 
hand side of equation (70) is due to a source distribution placed just above the 5 
flap upper surface. The last term of equation (70) arises from a vortex distri- 
bution on the flap chord and its downstream extension. The fact that distri- 
butions of this type appear in the first approximation for wi(x,O) suggests 

that it will be convenient in the second approximation to define effective 
vortex and source strengths. Thus, after correcting the first approximation for 

Wi(X,O), namely equation (44), by using equation (70), we find that to a second 
approximation 
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where 

s!- d$$ 
;W=YW+dx'; -= 

d*$ dP 
dx K +‘;r;; (72) 

are the effective vortex and source strengths per unit x-wise length, of the 
second approximation. Here, we note, the strength of the isolated source 1s 

1L;;(x,) and not $xT' as might have been expected. This can be explained 

by our use of the small-gap approximation (z, Q c,) to arrive at 
equation (69). This approximation evidently fails to include the contribution 

of a point source, of strength P (XT) , that is situated at the shroud trailing 
edge. However, we have previously neglected the effect of the non-zero thick- 
ness of the boundary layer of the main aerofoil; consequently, it is con- 
sistent to assume that P(xT) is zero. As may be inferred from equation (72) 

this implies that we may write $i(x,) in place of sI*J(xT). 

Substituting the effective vortex and source strengths for yw and 

d$,$'/dx in equation (54) we are able to define a second approximation to 
A~‘;~(E), G,,(c) 9 such that 

F 

By following the analysis between equations (54) and (59) we are able to 
write the solution of equation (73) as 
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G,,(E) = - H(S - cA)Yw 

The effective vortex and source strength concept may also be used to 

determine the second approximation to ul(x,O). Thus instead of equation (45) 

we have the expression 

u;(x,O) = - JH(x - XT)& + & 
m d;; d"W 

i Xi+% 

XT 

+ & qyXT) 
X-X T 

(x - XT)2 + z; . 
(75) 

It is necessary to make two further observations regarding the corrections 

given in equations (72). The first concerns the fact that these corrections 

allow for the non-zero distance of the lower edge of the aerofoil wake from the 

flap chord as well as non-zero wake thickness. It is desirable, therefore, to 

distinguish between the two effects. 

In the second observation we note that the correction terms of 

equation (72), dP/dx and dQ/dx, are not known until A$ has been determined. 

Evidently, therefore, equation (74) is implicit in character. On the other 

hand, as Aw. is a first-order correction for 
1 

'small'htake thickness and flap 

gap, it seems reasonable to evaluate P and Q by using the approximation 

A* = a*(‘) = A$;~) + A$ > (76) 
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. 

where suffix (I) refers to the first approximation for 'small'-wake thickness 
and flap gap of section 3.1. Additionally, since, in the 'small'-gap approxima- 
tion, the wake is assumed to lie just above the flap chord, we may use 
equation (46) to write 

= a(A;;‘)) 
(x,+0) , 

for a 'thin' wake situated just above the flap chord. Similarly, 

pp)+ = (*)+ , 

= * (x,+0) + $) . 

(77a) 

(77b) 

Here we have used equation (47) to arrive at equation (77b) via equation (77~~) 
and, for consistency, we have replaced yW by 

(78) 

the first approximation to yW for a 'thin' wake and 'small' flap gap (see 

equation (48)). Likewise, referring to equation (76), we have 

d(A$)- = $(A$(')) 
dx ax (x,+0) ; 

d(W)+ 
dx = !?$!?I (x,+0) - 2 , 

(794 

(7%) 

where equation (79b) is derived by combining equations (42) and (79a). 

Equations (79a and b) may be written in a more suitable form by observing 

that, consistent with the approximations of section 2.1, we may.write 
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a (A$,) 
(x,+0) = 

Wg+, 

ax dx ’ 

W* U =-- 
dx ’ (80) 

from equation (I I). Therefore equations (76) and (80) may be used to give the 
expression 

a(A$(l)) a (A$$‘)) d$* u 
ax (x,+0) = ax (x,+0) - - . dx (81) 

Hence equations (64), (79a and b) and (El) may be combined to give the result 

d$; a (A&‘)) 
Q=-=a++ ax (x,+0) (2 

d$;r 
+ - 2-j - z (z+ - 2-j . 

Therefore, by reference to equations (72), we find that 

a (A$$)) 
ax (x,+0) (2, - z-1 

(Z+ (82) 

Using equation (82) it is shown in Appendix C that, for the wake of the 
man aerofoil, 

Yw = 
d2$$ Qq + e,) - ;- 
dx2 (2, +z) . (83) 

Here, It ~111 be seen, the first term on the right-hand side 1s the ‘thin’wake 
approximation for ‘small’ flap gaps y (1) 

w . As in section 3.1, downstream of the 
flap trailing edge we include the vortex strength of the flap wake in the 
expression for 7 W’ The vortex strength of the flap wake is calculated by using 
equation (48) which IS valid for a ‘thin’ wake that either lies close to the 

x axis or has a slowly-varying displacement flux (see Appendix C). The flap 
wake and the wake of the rnau-~ aerofoil are in close proximity; hence, as in the 
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method of section 3.1, it is reasonable to combine this vortex strength with 
Specifically, for points downstream of the the first term of equation (83). 

flap trailing edge, we write 

Yw = I K”“(6~ + e,) 
, d2”$ 

- - - + 
' dx2 

(2, + 2-j , X>CF . (84) 

aerofoil 
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It is relevant to note that, if the wake of the main aerofoil is 'thin', 
so that 

equation (83) becomes 

Strictly speaking, therefore, the thickness correction to yw is 

d2"$ 
- - (A(=+ 

dx2 
+=I _ - 2,) . 

Consequently, if we assume that the rear dividing streamline of the main aero- 
foil coincides with the mean line of the wake there is no first-order thickness 
correction. It should be remarked here that the rear dividing streamline 
represents but one possible line on which the singularities of the 'thin'-wake 
theory could be placed. An equally reasonable suggestion is the mean line of 
the wake. Indeed, the indications of the present work are that, for the purpose 
of representing the vortex effect, the mean line is the optimum. 

Using equations (641, (76) and (77a and b) we may write 

p = ++ + a$!!2 (x,+0)(2+ - 2-j . 

Thus it may be inferred from equations (72) that 

(85) 
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Equation (85) entails the determination of (a(&(') )/adb,+o); an 
expression which permits this is given in section 3.3 in connexion with the 

derivation of the effect of the wake on the flap lift. However, in Appendix F, 

by using equation (85), we derive an expression which does not require the 

evaluation of this velocity, namely 

(1) 
;* = *$’ yw 
w + 2 (2 ++z-j , (86) 

where #I*' = W 6 - u)dz 

w 

is a pseudo displacement flux. We prefer to use equation (86), rather than 

equation (85), for the following reason: it is usual in 'thin'-wake 

analyses 1,2,3 to assume that the true displacement flux is equal to the pseudo 

displacement flux, which is more easily calculated or deduced from experiment. 

This assumption may be justified for a 'thin' wake by comparing equations (85) 

and (86). Therefore, in calculations based on the 'thln'-wake method of 

section 3.1, we ~111 use the result 

Consequently the last term on the right-hand side of equation (86) may be 

regarded as a correction to the results of section 3.1 for non-zero wake 

thickness and non-zero distance of the aerofoll wake from the flap. This 

correction is evidently much simpler to evaluate than the correction term of 

equation (85). 

If the wake is supposed 'thin' equation (86) becomes 

;* = “$’ +Y (1) 
w w zw * 

Hence the thickness correction to I$' is 

(88) 

(I) (Z+ + 2-j _ z 
yw 1 2 1 w * 
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This implies that, as with the vortex effect, . the thickness correction may be 
ignored if, in the 'thin'-wake formulation, the singularities are placed on-the 
mean line of the wake. 

3.3 Effect of wake on flap lift 

The lift acting on the flap is derived in‘section 2.3 and given in 
equation (30). Neglecting the squares and products of the correction terms in 
this equation it is possible to infer that 

ALF W = P cm (f3+a) a*I a (Allw) 
r (x.+0) az 

a*1 (x,+0) -- 
a bJ$ 

, az (x9-0) az 

Since (aw$/ad (x,+0) is small compared with (aQI/az)(x,+O) only if 
the wake of the main aerofoil is 'thin', in 
sidered to be an approximation for a 'thin' 

. . approxxnatlon for the increment in the lift 
be written as 

-'--+-vu- - 

a*I aw(')) 
r (x,+0) a; 

general, this equation may be con- 
wake. Therefore a consistent first 
of the flap due to a 'thin' wake may 

_ 
. . . . (89) 

(1) To evaluate this expression we require to know (a(A$ )/az)(x,+O). This 
may be found by noting that the total x-wise velocity in the flow either side of 
z'= 0, arising from the presence of the wake of the main aerofoil, consists of: 

(a) the velocity induced by the vorticity within the aerofoil wake; 

(b) the component due to the vortices required on the flap chord to 
satisfy the condition that the flap is a streamline of the wake flow; 

(c) the x-wise velocity induced by the vortices needed on~the chord of 
the main aerofoil to ensure that the aerofoil is also a streamline of the 
wake flow. 

If the distance of the wake from the flap is small compared with the flap 
chord, contribution (a) is given by equation (45); contributions (b) and (c) 

may be obtained in a similar manner to that used to derive the contributions of 

AYA,B a-d bF B to the x-wise velocity at z = 20 (equation (32)). Thus we 
have for small '%/cF 
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a (A$$‘)) m d$;' dxW 
- a2 (x,tO) = - lH(x - yr)y$') + & 

i d"W "-74 
XT 

+ & *;’ (XT) X- 3 
(x - x,$ + s; 

CA 
1 

+I;; J AYA,W 
sin 6 (CA -;i+, cos B-~‘)-cos~(~+~ sin 6) 

dS' 
0 ('A 

- 1 + x cos B - E;*)* + (g + x sin 6)' 

O<X4CF . (90) 

Here we have used equation (87) to replace I$ by JIG' and, consistent with 
(1) the use of the 'thin'uake approximation, we have replaced yW by yW , 

Approximating the second integral of equation (90) in the manner used in 

approximating the similar integral in equation (32) (i.e. the in_tegrsLis- 

expanded to order 6, and g and 2 are placed equal to zero) we have 

a(Av;‘)) - d$*' 
w d"w 

a2 (x,&O) = - iH(x - xT)y;') + & 
J d”WYZ$ 

XT 

X- “T 
=A 

% 

(x - x$* + z; 
+I;; J AYA,W 

CA - 5' 

o 
cc*+ x- 5') 

2 d5' 

O<X4CF . (91) 

To include the first-order corrections of section 3.2 for non-zero 

(2, + z )/2 we use equation (75) instead of equation (45) to obtain contribu- 

tion (a) and replace Ay ,w by F,w. We then have in place of equation (91) 
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a (A$,) 
(x,20) = - iH(x - XT)YW + & 

-d@ dxW 
a2 J d”W-$ 

XT 
CA 

+ & *$'(q 
X- yr 8 

(x - XT)2 + z; +?;; J GA W 
CA - 5' 

+ x - E'12 
dS' 

o ' cc* 

O<X<CF . (92) 

However, to proceed to higher-order approximations for ALF W, including 
the effect of non-zero wake thickness, it may not be sufficient ti replace the 
correction terms in equation (90) by their higher-order equivalents. The 
reason for this is that the terms neglected in deriving equation (89) may be of 
the same order of magnitude as the correction to L' (a(A*,)/a7.) (x,20) for the 
effect of non-zero thickness of the aerofoil wake. Thus, when including the 
effect of non-zero wake thickness in (a (A*,)w wo) we will retain the 

squa‘rhs and products of the correction terms, containing this velocity correction, 
in the expression for ALF W. By reference to equation (30) we see that this 
implies that we use instea: of equation (89) the expression 

ALF,W '> . 

a*I 
(x,+0) + ; 

a b.Ww) a (A$,) a(A$J 

az a2 (x,+0) + a2 a2 (x,+0) 

a% aW ) 
=-&- (x,-O) + + azw (x,-O) 

+ a (A+,) 
a2 (x,-O) 

1 
a (A$,) 
. az (x,-O) dx . 

> 
(93) 

It will be noted here that ALF W now contains a term associated with the flap 

boundary layer as well as the wlke of the main aerofoil. For convenience, 

however, we have supposed this to be part of the' wake correction. 

4 CALCULATION PROCEDURE 

4.1 Determination of Ay n and AY ., 

The vortex strengths Ay,B and Ay,W are, respectively, given by 

equations (27) and (59). Dealing with the first of these we find it is con- 

venient to rewrite equation (27) as 
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where 

dG F(k) 

x 
= $H(S-cA)-- . 

CE 

(94) 

(95) 

Integrating equation (95) we obtain, with G(O) = 0, 

G(S) = F(S)H(S - c,) - 
F(+S 

=E 
(96) 

Here we have used the fact that the displacement flux, $I*, vanishes at the 

attachment point of the flap, which point is assumed to be at F, = cA (a 

reasonable assumption for 'small' flap gaps and overlaps). In consequence, 
F = $f - $* u also vanishes at this pomt. 

The first integral in equation (94) is standard in aerofoil theory and is 

evaluated without difficulty with the aid of the trigonometric substitution 

CO6 8’ =25’-, . 
% 

(97) 

The second integral is evaluated numerically by means of the method that has 
been extensively applied by Weber 15 to integrals of this type for functions 

G(S) satisfying the requirement 

G(O) = G(cE) = 0 . 

Hence, noting from equation (96) that our function G(C) does indeed satisfy 
this requirement, we obtain the result 
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where s (4) 
uv ' 

a Weber coefficient, is defined in Ref.15, and 6 IJ and 5, are 
pivotal points defined by 

Strictly, Weber's method is only applicable if G(S) is continuous and 
differentiable. As is evident in equation (95) this condition is not satisfied 
in our case, there being a finite discontinuity in dG/dS at 5 = CA. This 
type of discontinuity is met in the linearised theory of aerofoils with plain 

18 flaps , and it evidently results III a logarithmic type of singularity in 

A-i ,B 
at the point of discontinuity. Since this is a weak singularity it seems 

unlikely that the failure to represent the discontinuity will cause serious 
errors in the lift of the flap. To check the validity of this assertion we 

have performed some calculations for the distribution 

F(C) = 5 - cA (99) 

which gives a finite discontinuity in dG/dS at 5 = cA. 

--"The>econd-inigG1 of equation (94) is readily evaluated in this case 
18 

and it is found that the corresponding vortex strength is given by 

Av,,(S) = $ tan; +; In 
I 

sin (8 + x)/Z 
sin (e-x)/2 ' 

with 

(100) 

2cA CO6 x =--, . 
CE 

The approximate summation equivalent of equation (100) is derived from 
equation (98) as follows: 

Av,,(C,) = i ($, - +(6,, - CA) - k, - CA) $/C, 1. 

. . . . (101) 

Results,calculated by employing the 'exact' equation (100) and the 

approximate equation (101) for X = n/3 and with N = 32, are exhibited in 

Table I for various values of V. Generally, the agreement between the two sets 
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of results is seen to be good, with the possible exception of the point v = II 

at which the error in the approximate result is nearly 7%. This error is, 
however, considerably greater than the mean error, of less than I%, of the 
other values. The reason for the comparatively large error at the point v = II 
appears to be that this particular point 1s close to the discontinuity in 
dG/dS at e = ~13. Here the approximation can be expected to fail. 
Nevertheless, in view of the apparent accuracy of the approximate solution 
elsewhere, we feel confident to use it, at least for a value of N no less 
than 32. 

Two integrals appear in the expression for Ay 
SW' 

namely equation (59). 
The first of these integrals is basically similar to the first integral in 
equation (29) of Ref.18 for the strength of the vortices on the chord of an 

aerofoil with a jet-augmented flap. The only difference between the two 
integrals is that y w of equation (59) is replaced by the jet vortex strength 

YJ = - KJV,CECJY2 

in Ref.18. Here CJ = J/&CR is the jet-momentum coefficient. 
--__c_-.*_ - __ 

In Appendix G the analogy between the jet sheet of a blown flap and the \ 

wake (first suggested by Spence and Beasley 4 ) is used to evaluate the first 
Integral of equation (59) approximately. It is shown that 

where X = 
I - (I - c/c,+ 

(102) 

The coefficients Bn and Dn are solutions of M linear, algebraic 
18 equations , which are quoted in Appendix G. There it is shown that, for small 
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CD = D/i~Vzc0, whi?h ximplies small dr*J/cE and BW/cE, ,these equations may be 
written as 

M-l 
1 bD = '0 'D - - - f 

n=O Inn* CE 2 m (x) 

m = 0,1,2,...M-I . 

M-1 
1 

'0 'D b B = ---f(n) 
*=O lrin n CE 2 m 

(103) 

Here the functions bm and fm(x), which are defined in Appendix G, are 
independent of CD. Consequently, for small CD, B and D n n are linearly 
dependent on CD. 

Solutions of equations (103) for M = 3 are given in Table 2 for a value 
of c /c 9 

FE typical of that tested by Foster, et at. , namely 0.31 (x = I.18 rad). 
The indication of calculations performed by Space 17 for various M are that, 
with M = 3, the coefficients Bn and D n (n < 3) should be estimated with 

adequate accuracy. Furthermore, he shows that these coefficients'converge 
rapidly in the case of a large value of M. Therefore, noting that X is 
significantly less than unity over the major part of the flap chord, we conclude 
that the terms D,X* and B,X" (n > 2) in equation (102) are likely to give 
only a small contribution to the flap lift and may reasonably be ignored. 

The second integral of equation (59) may be evaluated by following the 

method used in obtaining equation (98) from equation (27). Hence we find that 
this integral, which we will term I 3’ may be written as 

I3 
L(CB) ‘E - 5, =- 

CE ( > 

1 
I Nil ,(4) 

5, +<“=‘v (L(CJ - L(CE)Sp/CB/ , (104) 

where L(S) is an integral of the equation 
, 

dL =T 
x-c= - 

(5 - CA)2 + z; > 
H(E - c,) 

satisfying the condition L(0) = 0. This integral,is found to be given by 

L(S) = - “(5 - c,) , (105) 

where we have replaced $$ by $$' in accordance with equation (87). 



60 

Consequently, employing the truncated version of equation (102) and 

replacing the second integral of equation (59) by the right-hand side of 

equation (104), we are able to rewrite equation (59) as 

+ m&j [a{Bo( ,2”x,> + B,Xv + B,Xt} 

L(CB) 1 
. +- 

CE 

I Nil ,(4) 
+g&J'v 

(L(s~) - L(c&,,/cB 1 . (106) 

A similar process is used to derive F ,w(F,,) from equation (74). By 

comparing equations (59), (74) and (106) we find that we may write 

F,&) = - H$ - CA);, 

+ 2”qg l{Eo( ,2>x”)+ i,X” + B2x:} 

+ 6{tio(,2~x~+E,x”+ii2x:}] 
QC,) CE - 5” 1 

+- 
=E ( > 

I "r' ,(4) - 
5" +<u=,w 

(L(SJ - Lk&)CEt , (107) 

where 

56) = $x, - ;p,, + + IL$'(x,) tan-' H(E - cA) , (108) : 

and it is shown in Appendix G, with the aid of the previously-mentioned jet- 

flap analogy, that En and in are solutions of the linear equations 
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M-l c 
1 

n=O 
bm6n = - 3 A! f 

CE 2 m 
(x) 

(109) 
M-l c 

m = O,l,Z,...M-1 . 

1 
'0 D b i = ---f(n) 

*=o Innn cE2 m 

Here, with the aid of equations (G-19) and (87), we have that 

CD = CD - 4; 1 de;’ 
(Ii 1 -+2-F dx +z) _ 

Noting from equations (103) and (109) that 

DnCD 
BE 

fin = - ii nD 
cD ; n=- cD 

we observe that it IS possible to derive En and E n from the solutions for 
D and B n n* 
4.2 Evaluation of corrections to speeds at edges of flap boundary layer 

The correction to the speed of the flow at the edges of the flap boundary 
layer due to the flap boundary layer is given by equation (33). The first 
Integral in this equation may be written in a more suitable form by using the 
trigonometric substitution (97); thus, referring to this integral as 14, we 
have 

TI 
5 =- 

2n J 
de' , 

X 

(110) 

where cos e = 2'CA + x)/c, - I. 

Consistent with equation (98) we disregard the possibility of a logarithmic 

singularity in Ay 
,B 

at e=x. Thus, with the exception of a simple pole at 
5' = c A that exists when x = 0, the integrand of 14 is bounded. The 
singularity may be dealt with separately by rewriting equation (110) as 
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ll 6 
=4 = T;; i AY ,$cA) 

(cm x - cos E’) si; 8’ de, 

i 
(cos e - cos e’) 

,,(5’) - AY,&)) (‘OS ’ - ‘OS “) sin ” 
(COS e - cos e’j2 

, (III) 

where the first integral, which contains the singularity, may be evaluated 

explicitely and the second integral has a bounded integrand. 

Evaluating the second integral of equation (111) by means of the 

trapezium rule we have, subject to two assumptions to be given shortly, 

I4 = ‘z;; ’ AY,&) {ln(‘“: “)+ cAx+ x - I} 

i , 

( N-l 
+ ; ,=;+I i Ay,$,) - AY,,(Ql 

(~0.3 x - ~0s eu) sin @ u 
ccos e - cos eU) 2 

+ 
Av,,K,-,) sl* eNvl (cos x + 1) 

~(COS e + 1j2 
ii. 

(112) 

Here m 1s the integral part of (I + NX/TI) and we have made use of the two 

assumptions, firstly that, for sufficiently large N, 

Au,,(c,-,I sin ON-, = lim (Ay,,(<‘) sin e’) , 
9 1-t~ 

and, secondly, 

AY,~(c~) = Ay,B(S,) . 

The error in 14 resulting from the use of the first of these assumptions 5 

is readily found to be O[(n/N)31 f or distributions which behave like 

tan (e/2) near e = 71. For N = 32 this error is evidently negligible. The 

second assumption can be justified by the observation that, in all the cases 

examuxd in this Report, AY ,dC) 
varies slowly near 5 = cA. 

We have not attempted to assess the accuracy of the approximate lntegra- 

tion scheme used in evaluating 14; however, the contribution of I4 to the 
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cdrrect‘ion’to the flap lift is found to be small - no more, in fact, than 10% 

of the total correction due to the flap boundary layer. We consider therefore 

that the present integration scheme with N = 32 is adequate fqr our purposes. 

The second integral III equation (33) requiring evaluation is given by 

m 

I 
J 

dx’ 
‘5 = x AqF,B x - x’ ’ 

0 

(113) 

It is convenient to rewrite equation (113) by employing transformations 

(22) and dividing the integration Into two parts from 0 to 
=E 

and from 

% 
to -, as follows: 

CE m 
I 

I5 = 27 i (114) 

6 

AqF,BH(S’ - cA) E “‘;, + $ 
J 

AqF,B ; “‘;, . 

CE 

The first of the integrals in equation (1141, 

CE 
1 I ‘6 = T;;. AqF,BHK’ - c,) c “‘;, , 

0 

(115) 

may be wrItten ln the form 

cE 

I6 = & J 
EkE) dS, 

CE 
c-p+& E(S’) 

EkE) 
- - 

0 CE 

where 

5 
E(5) = 

from equatio:s (12) and (22). Here ije have supposed, as before, that $;J and 
. ’ ? 

$I;, vanlsh,at the leading edge of the flap, which point is assumes to be at 
. . 
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The second of the integrals an equation (116) may be evaluated numerically 
by the method Weber 12 has used for determining the velocity distributions of 
aerofoil thickness distributions in a potential flow. Hence, evaluating the 
first integral in equation (116) explicltely and integrating the second integral 
numerically by Weber's method we have the result 

1 E(cE) 5, 
'6 = T;; cE In cE - 5 

-( > ” 
E(S,,) 

EkE) 
- - 

CE 
Ep , (118) 

where s (1) is defined in Ref 12 . 
lJv 

The accuracy of Weber's method for smooth and continuous distributions of 

F‘(E) is undoubted, at least, for values of N > 16. However, we note from 
equation (117) that, in the present case, E(c) has a discontinuous first slope 
at 5 = CA, in general. It is appropriate, therefore, to consider the accuracy 
of a distribution of this type, such as 

E(S) = (5 - cAMS - c,) . (119) 1 

Substituting E(S) from equation (119) Into equation (116) and performIng 
the routine integration we find that, for this distribution, 

I6 = & In 
5 - CA 

I I* CE - 5 (120) 

Results for I6 that have been computed by using the exact result (120) 
and the approxrmate expression (118), with N = 32, are shown in Table 3 for 

x = 1113. It will be noticed that the agreement between the two sets of results 
is satisfactory for v either less than 6 or greater than 12; but in the 
neighbourhood of the discontinuity in dE/d< at 8 = n/3 the agreement is not 

good, the error being as much as 12% for " = II. An improvement in accuracy 
in this region might be obtained by removing the discontinuity in the form of a 3 
distribution similar to that given in equation (119). This has not been done, 
however, since it was found that, in each of the cases to be examined in 
section 5, the slope of E(S) at 5 = CA + is very small compared with 

E(cE)/cE. This suggests that the present test of the accuracy of equation (118) 

is rather severe. Additionally, it is found that the contribution to the lift 
of the flap associated with I6 is small compared with that associated with 

AY .B' 
It was decided, therefore, to retain approximation (118) with N = 32. 
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. 

In the absence of either experimental results or a reliable theory for the 

behaviour of AqE B downstream of-the flap trailing edge we have assumed that 

it has the form 

AqFB = - 
, 5>CE , (121) 

where X is an arbitrary parameter. 

The model of the displacement flux implied by equation (121) is 

illustrated in Fig.8, where it is compared with a plausible suggestion for the 

actual distribution. It will be seen that our model correctly represents the 

total change in displacement flux between the trailing edge of the flap and 

infinity. 

In section 5 it is shown that the effect, on the lift of the flap, of 

varying X is insignificant. The implication of this is that the flap lift is 

insensitive to detailed changes in the shape of the distribution of displacement 

flux in the wake; and thus it is considered that the approximation (121) is 

acceptable for our purposes. 

Substituting AqF B from equation (121) into the second iAtegrs.1 of 

equation (114), performing the integration and combining the resulting expression 

with equations (116) and (118) we have 

, E(cE) 5 ” 
I5 = TG CE In CE - 5, -( ) 

+‘NjI (I) 
EKu) 

EkE) 
2CE 11=] sIl" - - 

CE G 

, E(cE) - ECm) (I + X)CE - 5, 
+TF hcE 

In 
'E - 'v > 

. (122) 

This completes the description of the methods used to evaluate the 

integrals of equation (33). It only remains to note that we may write in place 

of equation (33) 

aw ) "F B 2 (x,+0) = I4 * -+- + I5 , a2 (123) 

with I 4 given by equation (ll2), 15 given by equation (122) and AyF B 

(= AY,B for cAQ 5 < c,) obtainable from equation (98). 
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A similar procedure is used to determine the correction to the speeds at 

the edges of the flap boundary layer due to the wake of the main aerofoil. 

Noting that in our approximation 

a (A$J~,) ( ), a (A$J~) 
a2 u = a2 (x,CO) , 

L 

we find that these speeds are given by equation (92), which includes a first- 

order correction for wake thickness as well as non-zero displacement of the wake 

from the flap chord. In the last-named expressv~n there are two integrals 

similar to those considered previously. The first, 

(in which we have replaced 4 by x' for convenience), may be approximated 

in the same manner as for the integral I . 
5' 

that is to say we first rewrite 

equa+!ion (124), with the aid of equations (22) , as 

1 
=7 = I;; 

d?$ 
dS' H(S' - c ) dS' ' A E-c'+% (125) 

6 
CE 

Here we have used the fact that ET = cA. The first of these integrals is 

evaluated by using the method employed in the evaluation of the integral 
'6 

(equation (115)). In the reduction of the second integral we follow the method 

used in the evaluation of the second integral of 15. That is to say we assume 

that 

di$ { Jl;;(c,) - “p} -=- 
G xcE 

H 
1 
(I + h)cE - 5) ; 5>cE . (126) ' 

This equation may be written in a more sultable form by using a result given in 

Appendix E, namely that P vanishes far downstream. Consequently, as may be 

inferred from equations (72), 

(127) 
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As with the approximation to AqF B for points downstream of the flap 

trailing edge we fitid that the variation in flap lift due to changes in the 

parameter X III equation (126) is negligible (see section 5). 

Using equation (127) to eliminate ;;(-I from equation (126) and 

substituting the right-hand side of the resulting expression for d$$/dF, in the 

last integral of equation (125) we obtain finally 

, $CE) - JI;c=, (1 + X)c - 5 
+T;; 

E " 

xcE 
In 

=E - 'v 

The second integral in equation (92). 

=A 
6 

I8 = YiK J GA w 

CA - 5' 
2dE' , 

0 ' (CA + x - 5') 

differs from I 4 (equation (110)) only in having in its integrand FA w 

instead of AyA B. Therefore, using the approximation that was employer III 
> 

evaluating 14, we obtain 

(129) 

'8 

(cos x - cm eu) sin 9 
L1 

2 

F w(CN-,) sin eN-, (cos x + I) 
+ 

2 (cm e + I)2 

(128) 

(130) 

Thus, by referring to equations (92), (124) and (129), we are able to 

write for the corrections to the speeds at the edges of the flap boundary layer 

due to the wake of the main aerofoil 
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a (A$) 
(x,-CO) = - &(x - K& + I7 + & “$““r’ 

X- yr 
a2 

i 
(x - q2 + z; 

+I 7i;F 
a+ 2 3 (131) 

with I 
7 

and I g given by equations (128) and (130), and FF w given by 

equation (107). The corresponding expression for a 'thin' wake'at a 'small' 
(1) distance from the flap chord is obtained simply by replacing Fw by yw , 

;$ by $$' and zF w by AyF w. 

4.3 Calculation of corrections to flap lift 

The correction to the lift of thi\flap due to the flap boundary layer is 

given by equation (31). To evaluate the Integral in this expression we first 

employ transformations (22) and the trigonometric substitution (97). Hence we 

find that 

AcL 
F,B 

E ALF B ;pV c ,/ z. = cos(B+a) J(B)sinedB , (132) - 

where 

(x,+0) 
a (AtQ a*I a (A$,) 

a2 (x,+0) - z (x,-O) az (133) 

(a(A+B)/az)(x,cO) being obtalned from equation (123). 

Performing the integration of equation (132) approximately with the aid of 

the trapezium rule and noting that, for sufficiently large N, 

J (em-, ) = J(x) 

we obtain the result 

m-2 
AC 

LF,B 
= cos (6 + a) ,L, J(e,,) sin e,, + & J(emvl) sin em-, 

i 

+ (X - n(mi ‘))J(em-,) sin em-, 
> 

. (134) 

Here, it may be recalled, m is the entire or integral part of (1 + Nx/n). 
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To test the accuracy of equation (134) we have considered the hypothetical 
case having 

Hence, combining equations (123), (132)) (133) and (135)) we have in this case 

X 

ACL = cos (6 + a) - 
F,B 

B sin e de . (136) 

In particular, for the F(S) distribution of equation (99) we may use 
equation (100) to eliminate AyF B from equation (136) to yield 

ACL = cos (B + CI) - sin (e + x)/2 
sin (0 - x)/Z I} 

sinede . 
F,B 

Spence 18 has evaluated the integral of this equation explicitely in his 
work on blown flaps. We find that it is possible to infer from his 
equation (11) that 

ACL = cos (6 + a) ZE 2: . 
F.B co lr 

Using equations (123). (l32), (133) and (135) we may write for the 
approximate equivalent to equation (136) 

(137) 

AcL = cos (8 + a) - 
F,B 

1 Ay,,(S,) sin eu + & AY,~(~~-,) sin es,-, 

+ (x - ‘(mi ‘))AY,~(S~-,) sin emsI . (138) 

To compare the approximate result with the exact result (137) it is only 

necessary to substitute the Ay ,B given by equation (100) into equation (138) 
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and to perform the summation. However, in the computer programme, which has 
been written to evaluate AC 

LF,B 
equation (138) employs the approximation (101) 

for Ay . We have previously shown, however, 
(101) a;: small except possibly close to 

that the errors in approximation 

5 = CA. Hence the results obtained 
by this procedure should enable us to judge the accuracy of equation (134) 
compared with equation (132). In fact, with x = n/3, we obtain the following 
results for AC 

LF,B 
CO/CE cos (f? + a): 

Exact, Eqn.(l37) Approximate, Eqn.(l38) with 
Eqn.(lOl); N = 32 

I 0.349 I 0.340 I 

The error in the approximate result is evidently small, and this test 
appears to Justify the use of approximation (134) with N = 32. 

The increment in the lift of the flap due to the wake of the main aerofoll, 
including second-order correction terms to allow for the non-zero thickness of L 

the wake, is given by equation (93). Rewriting this expression in coefficient 
form and employing transformations (22) and (97) we find that 

X 

AcL 
LF,W = cos (B + a) 

i 
K(B) sin 6 de , 

F,W 0 
(139) 

where 

=E K(8) = - a*I (x,+0) + + 
a (A+,) 

(x,+0) + 
a @JIB) 

2 z- a2 a2 (x,+0) 
a (A$,) 

CV a2 (x,+0) 
O- 

- 

. 
Using the approximation that was employed to derive equation (134) from 

equation (132) we have in place of equation (139) 
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m-2 
ACL = cos (6 + a) 

F,W 
$ 1 K(eP) sin OM + & K(Bm-,) sin em-, 

!.I=] 

The accuracy of this approximation has already been considered in relatwn to 

equation (132). 

Comparing equations (90) and (93) we see that, for a sufficiently 'thin' 

wake, we may replace equation (140) by the expression 

AC(') 
LF,W 

= cos (f3 + a) 
II m-2 K(l) G 1 Cell) sin ep + & K sin e 

lJ=l m-1 

+ x- 
( 

n(m - I) 
N 

> 
K(')(e m-l ) sin e 

where 

K(') 0) = (x,+0) - 

4.4 Evaluation of corrections to overall lift 

Whilst our main interest is in the lift of the flap we have also estunated 

the corrections to the overall lift arising from the flap boundary layer and the 

wake of the main aerofoil. Employing the lift-clrculatlon theorem 
II 

for 

viscous flows we have for the increment in lift due to the various viscous 

effects 

AL = pV_Ar . (141) 

Here Ar is the increment in circulation, due to the viscous effects, around 

a simply-closed contour which surrounds the main aerofoil, the flap and their 

associated boundary layers, and cuts the wake at right angles far downstream 

of the flap. 
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It will be recalled that we have regarded the wakes of the flap and the 

main aerofoil as one for the purpose of representing the vortex effect of the 

wakes downstream of the flap trailing edge. Hence we write 

Ar = AT 
9B 

+ Ar 
,ws 

+ Ar 
.m ' 

(142) 

where 

=E 

Ar = 
,B J Ay ,BdC (143) 

0 

1s the mcrement in circulation due to the flap boundary layer; Ar 
,ws 

is the 

increment due to the sources representing the displacement effect of the wake 

of the main aerofoil; and Arw v 1s the increment due to the vortices of the 

wakes of both the flap and the &in aerofoil. Note that we have not included 

an increment due to the sources of the wake of the flap. In our approximation 

this is zero owing to the fact that these sources are assumed to be on the line 

5 = 0. Hence they induce zero downwash at the chords of the flap and the main 

aerofoll and consequently do not influence r. 

The increment in lift coefficient caused by the flap boundary layer may 

be written, by reference to equations (141), (142) and (143), as 

AcL 
z hL,B 

,B I& 
Ay,BdS . 

Employing transformations (22) and (97) we may rewrite this expression as 

follows: 

This integral may be evaluated by using the trapezium rule viz: 

(144) 

i 

ACL 
Ay B('N-1) 

(145) 
,B vcn 
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Here, as in the derivation of equation (IIZ), we have assumed that 

Av,,(E,-1) ai* eNwl = lim (AY,~(E) sin ‘8) , 
em 

which results in an error of O((T/N)~) for a Ay,B that behaves like 
tan (8/Z) near 8 = IT, as noted before. 

The accuracy of equation (145) may be assessed by considering again the 
F(S) distribution of equation (99). Upon replacing Ay,B in equation (144) 
by the vortex distribution corresponding to this F(S) distribution, i.e. from 
equation (IOO), we have, with V = 1 m 

. 

This integration has been performed by Spence 18 , and it is readily inferred 

from his equations (a), (9) and (IO) that 

ACL = + sin x) . (146) 
,B 

To determine ACL from equation (145) we have used the approximate 
,B 

summation version of equation (IOO), namely equation (IO]), the N in both 
sunnnations being 32. Using this procedure, we find that, for x = n/3, 

ACL c /c 
,B" E 

is 1.913 which, to four significant figures, is in agreement with 

the exact result. It would appear, therefore, that the approximate formula (145) 
is suitable for our purposes. 

For the purpose of estimating the correction due to the wakes we propose 
to use the 'thin'-wake approximation and, as in section 3.1, we suppose that 

the distance of the wake of the main aerofoil from the flap is small compared 
with the flap chord. Hence to obtain 

Al. ,ws = AY dC ,WS 
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we refer to equation (59) for Ay 
,w 

and note that Ay 
,ws 

is given by the 
last integral term of that equation. This term has previously been called 13% 
Therefore, using the method employed in the derivation of equation (145) from 
equation (144) and replacing Ay ,ws by I3 we have the result 

AcL 
,ws 

= $;(;j; 13(C,) 

where I3 is defined as an approximate sum in equation (104). 

sin BP + JI,(s,-,) sin ON-, 
> 

, (147) 

The wake vortices are comprised of (a) a distribution of vortices just 
above the flap, representing the vortex effect of that part of the wake of the 
main aerofoil which is immediately above the flap and (b) a distribution 
representing the combined aerofoil-flap wake downstream of the flap trailing 
edge. As is evident in equation (59) the former distribution requires an equal 
and opposite distribution on the flap chord. Therefore, in practice, the net 
contribution of these two distributions to Ar 

*WV 
can be expected to be very 

small or negligible. As remarked before, the distribution (b) is analogous to 
the distribution of vortices along the Jet sheet of a blown flap. According to 
Spence IS the increment in lift coefficient of a blown flap due to these vortices 
is given by 

ACL = CE - 4n(DOB + BOa) , 
=0 

where, it should be noted, AC L is based on cO instead of the cB that 
spence uses. Therefore if, as previously, we employ the analogy between the 
wake vortices and the vortices of the jet sheet of a blown flap we obtain for 
the increment in lift coefficient due to the wake vortices 

ACL = 
,m 

k 4n(DO8 + BO") , 
cO 

where D 0 and B o are coefficients in the linear equations (103). Referring 
to the solutions of these equations for M = 3 in Table 2 we find that it is 

possible to write 

ACL = 
>m 

- 4nCD(0.526 + 0.46~) . 
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'Finally, we note that the total increment ln lift coefficient due to the 

various viscous effects is given by 

ACL = ACL + AC + AC 
,B L,ws L,wJ 

5 RESULTS OF CALCULATIONS 

The calculations have been performed for a number of Fowler-flap con- 

figurations. 9 
These configurations were tested by Foster, et al. who used the 

RAE 3ft (0.9lm) chord twodimensional model. Throughout these tests the Reynolds 

number based on =0 was 3.8 x 106. Each of these configurations have in 

common the flap angle 8 = 24' and the overlap l/c, = 0.042. Three flap 

gaps (g/c, = 0.020, 0.025 and 0.040) are considered and two values of a, 

-Soand 3', are examined. 

Where possible, the calculations have been based on results derived from 

velocity surveys conducted above the flap in the boundary layer of the flap and 

the wake of the main aerofoil. The object of this is to ensure that we use 

nominally correct values for the quantities associated with the viscous part of 

the flow field. By so doing we consider we will be better able to judge: 

(i) the relative importance of the wake of the main aerofoil as compared 

with the boundary layer of the flap; and 

(ii) the significance of the thickness effect of the wake of the main 

aerofoil. 

Throughout the calculations the Integer N in the sumnation formulae of 

section 4 was kept constant at 32, this value appearing to give accurate values 

for the corrections, as indicated before. 

5.1 Effect of flap boundary layer 

Foster 16 has derived from velocity surveys the distribution of the dis- 

placement thickness 
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along the flap upper surface, IJ being the velocity at the edge of the boundary 
layer. These results are illustrated graphically in Fig.9 for the various 
configurations. 

Associated with the displacement thickness 6; is a pseudo displacement 
flux 

$;r’ = U&X = 
U U - u(z))dz . 

This differs from the displacement flux $15 (equation (II)) by the amount 

% 

I 1 U - u,(z) - A+))dz . 
0 

This term is invariably assumed to be negligible in the case of isolated wings3; 
and hence % IS assumed to be equal to $16'. In the present case, we assert 
that it is consistent with our assumption that the flap boundary layer is 
'thrn' to neglect this term in comparison with Jlr;. This may be proved by 
examining the first-order thickness correction to the approximate equation (15) 
for a 'thin' boundary layer. The term neglected by using this equatmn include 
term like (a(A$,)/az),z, which is of the same order as the difference between 

% and $I*' u shown above. Consequently we replace I$$ by $16' III the 
calculation of the boundary-layer effect. 

No corresponding velocity surveys have so far been made below the flap; 
consequently lt has been necessary to estimate the displacement-thickness 
distribution along the flap lower surface. The boundary layer on this surface 
was assumed initially to be laminar; it was then calculated by using a computer 
programme which is based on Thwaites method 11 for laminar layers and which 

19 embodles the transition criterion of Crabtree . The experimental lower-surface 
pressure distribution was used as input data. Insofar as the results obtained 
by using this programme indicate that transition to a turbulent layer does not 

take place,our initial assumption of laminar flow appears to be justlfled. The 
results derived for the displacement thickness are shown in Fig.10. Evidently, 
the displacement thickness of the lower-surface layer is very much less than 

that of the corresponding chordwise position on the upper surface. As with 

$6 we replace UJ; by "f'. 
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The results calculated for the correction to the flap lift due to the flap 
boundary layer are shown in Table 4 under the column labelled ACL . We see 

F,B 
that there is a significant increase in -ACL upon altering g/c0 from 

F,B 
0.02 to 0.04, as might have been anticipated from the distributions of dlsplace- 
ment thickness given in Fig.8. On the other hand, an increase in a from 

-5' to 3' results in only a small change in A$, . 
F,B ' 

All the results for ACL were derived with the parameter h of 
F,B 

equation (121) set equal to 0.04. This was considered to be a reasonable value 

from observations of the behaviour of the displacement flux in the wakes of 
13,14 isolated aerofoils . Some calculations have, however, been performed on 

the effect of X on AC . 
LF,B' 

the results of these calculations are shown in 

Fig.11 for the case g/co = 0.02, a = -5'. It will be seen that ACL 
F,B 

varies very slowly with X. 

Table 4 also includes the corrections to the overall lift due to the flap 
boundary layer, ACL . As with the correction to the flap lift, the largest 

,B 
correction is obtained with the largest gap for both values of a. 

5.2 Influence of wake of main aerofoil 

5.2.1 'Thin'-wake calculations 

As noted in section 3.2 we may replace JIi by JI$' for a sufficiently 

'thin' wake. Results for Jl$'/V_c, deduced from velocity surveys performed by 

FosterI are shown in Flg.12. 

For a (1) 'thin' wake the vortex strength yW = yW may be estimated by 
using equation (48). However, since this involves the determination of the 
curvature of the wake, it is found preferable to use instead an alternatlve 

result. This is derived in Appendix C and given as equation (C-28). Using this 
expression and referring to Foster's wake-survey results we have been able to 
calculate the results for yW (')/V_, shown in Fig.13, for the part of the wake 

immediately above the flap. (1) Note that, without exception, yW changes sign 

at some point along the flap. The reason for this may be found by examining 

equation (48). We see that, since i, 6; and EJW are all positive, the only 
quantity in which the change in sign can occur IS K~, i.e. the curvature of 

the wake. An examination of the shape of the wake from Foster's results seems 
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to suggest that this indeed happens. Shortly after leaving the main aerofoll, 
the wake attempts to follow the flap upper surface, thus ensuring th'at Icw is 
positive. Almost immediately after this, however, the wake begins to bend 

towards the direction of the main stream, and, in consequence, ~~ becomes 
negative. 

The correctIon (1) ACL is calculated using the method of section 3.1. 
F,W 

This method, it will be recalled, is based on the assumption that the wake is 
not only 'thin' but it is situated at a 'small' distance from the flap. The 
results for AC$)W so obtained are shown in Table 4. Comparing these results 

with those for A;, we see that, for cx = -5', the effect of the wake on 
F,B 

the lift of the flap is small compared with that due to the boundary layer of 
the flap. Not surprisingly, perhaps, the wake effect increases in magnitude 

upon increasing the incidence to 3'; it is, nevertheless, smaller, in 
magnitude, than the corresponding correction for the flap boundary layer. 

Throughout the calculations of AC(') 
LF,W 

the parameter X of equation (126) 

was held constant at 0.04. However, as in the case of ACL the influence L 

of x on AC& 
F,B' 

is found to be insignificant. 

Some comments are appropriate on the relative significance of the various 
terms in ACLi)w. We may divide the various contributions into those due to: 

, 

(i) the point source at the shroud trailing edge; 

(ii) the distributed sources of the aerofoil wake; 

(iii) the wake vortices including the vortices of the combined wake down- 
stream of the flap trailing edge. 

In all the cases considered, we find that the largest contribution to 

-Acyw comes from the distributed sources, contributions (i) and (iii) being 

relatfvely small in magnitude. This may be illustrated by reference to the case 

g/co = 0.02, a = -5O for which a breakdown of the various contributions may be 
L 

given as follows: 

y;, 

(iii) 
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The result of adding the corrections ACL 
F,B 

and AC;') to 
F,W 0 

CL 
F I' 

the flap-lift coefficient of the first inviscid approximation, is shown in 

Table 4, where the corrected coefficient is referred to as c(1) L . Comparing 
F 

this coefficient with the flap-lift coefficient derived from experimental 
16 pressure distributions , CL , 

F 
we see that CL:' is, in all cases, lower 

than C 
LF 

. It may be that this is due to our neglect of the thickness of the 

wake and the non-zero distance of the wake from the flap. We will consider 

this aspect in sectlon 5.2.2. 

Table 4 also contains results for ACL and ACL ; these are used in 
,WS ,WJ 

conjunction with ACL to correct CC,),, the corrected result being referred 

to as (1) ,B 
cL * Comparing this coefficient with the result for the overall-lift 

coefficient derived from experimental pressure distributions we see that the 

present method overestimates the correction, generally. 

5.2.2 -Effect of wake thickness and distance of wake from flap 

We recall from section 3.2 that, if the singularities in the 'thin'-wake 

formulation are placed on the mean line of the wake, the first-order corrections 

to the vortex and source strengths of the wake for non-zero wake thickness are 

both zero. We suppose therefore that these singularities are placed on this 

line. Consequently, the corrections to $*' and (1) 
w yw 

given in section 3.2 

apply exclusively to the effect of non-zero distance of the wake from the flap 

chord.' The results calculated for AC, are shown below for the case 

g/co = 0.02. 

CLF. 

They 
hF,W 

are compared there with the results for 

a0 AcL AC(') AC 
F,W LF,W 

L 
F,B 

cL 
F 

-5 +0.005 -0.017 -0.103 0.543 

3 +0.024 -0.049 -0.117 0.520 

AC(') AC L F,W' L 
and 

F,B 

In the calculation of ACL we have used the second-order expression 
F,W 

for ALF,ws equation (93). However, almost identical results are obtained if 

one neglects the products and squares of the velocity corrections as is done in 
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AC(') 
LF,W 

. We may conclude from the above results, therefore, that the correction 

to AC 
LF,W 

for the non-zero distance of the aerofoil wake from the flap 1s of 

the same order as AC;;)W. Indeed, we see that the result of applying this 

correction is to change'the sign of AC 
LF,W 

from negative to positive, 

although,in the process,the magnitude of this coefficient is noticeably reduced. 

Hence it is apparent that the solution for ACL is sensitive to the choice 
F,W 

of position of the line on which the singularities are placed. 

Insofar as ACL and AC;ow are small in magnitude compared with CL 
F,W F 

the change in ACL due to the n&-zero distance of the aerofoll wake is not 
F,W 

particularly significant. Of more significance, perhaps, is the effect of the 

distance correction on the flap pressure distribution insofar as this affects 

the development of the boundary layer on the flap upper surface. We have 

therefore examined the pressure distributions, corresponding to the two methods, 

on the surface of the flap for the case a = -5O, g/co = 0.02. The two dlstri- 

butions are derived as follows: To the upper and lower surface velocity distri- 

bution of the first inviscid approximation we add (a(A$)/az)(x,?O). For a 

sufficiently 'thin' boundary layer this procedure yields the velocity distri- 

bution at the edge of the boundary layer. Consequently we may "se Bernoulli's 

equation to obtain the static-pressure distrlbutzon there. In the case of the 

first-order method for a 'thin' wake and 'small' flap gap we neglect the 

squares of (aw)la2.) h+o)/vm. On the other hand, for the theory further 

corrected in a first-order way for wake thickness and distance of the wake from 

the flap (which reduces to a correction for the distance of the wake from the 

flap if the singularities in the 'thin'uake method are supposed to be on the 

mean line of the wake) we include the products and squares of the velocity terms 

containing (a(A$)/az)(x,+O) but neglect the term((a(A*B)/az)(X,~0)t2/~~. 

Hence, assunnng that the static pressure does not vary across the flap boundary 

layer, we arrive at the surface-pressure distribution. These two approaches 

are consistent with the corresponding methods used to derive the corrections 

for the flap lift. 

The results of these calculations are shown in Fig.14, where they are 

plotted in coefficient form, viz: 

c 

C 
P 

= (P - P,)/lPVZ , 
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and are compared with the pressure distributions of the first inviscid 
approximation and experiment. Evidently, the change in pressure gradient 
associated with the correction for non-zero distance of the wake from the flap 
and wake thickness is small compared with the pressure gradient of the experi- 
mental pressure distribution. Although this remains to be proved quantitatively, 
it seems likely, therefore, that the development of the boundary layer on the 
flap "111 not be materially altered by including the thickness-distance correc- 
tion in the wake contribution. Taking this point of vxew a stage further we 
infer from the results given above for glc() = 0.02 that the effect of the 
wake on the lift of the flap, after correction for wake thickness and distance 
of the wake from the flap, is small. It becomes even smaller if one excludes 
from the wake correction the contribution of the point source at the shroud 
tralllng edge e.g. with g/c0 = 0.02, 

( 
c( = -5' AC is then equal to 

L 
LF,W 

-0.001 implying therefore that the effect of the distributed sources and 
vortices of the wake on the flap lift LS, in fact, very small. A quite 
adequate approximation for estimating C and also the displacement thickness 

LF 
of the flap boundary layer may therefore be obtained by neglecting the distri- 
buted sources and vortices of the wake altogether. The flap-lift coefficient 
so derived is shown in Table 4 as c(2) ; and we observe that this coefficient 

LF 
is in much better agreement with C than is (1) 

LF CLF * To avoid overcrowding 

we have not shown the pressure distribution achieved by this method of 
correction; but we find that it lies very close to curve (I~). 

Fig.15 shows pressure dlstrlbutlons for the case g/co = 0.04, ci = -5O. 
Agaln we see that the difference between the distribution containing a first- 
order correction for the wake effect and the distribution with a further 
correction for wake thickness and distance from the flap is small. We notice, 
however, that the curve obtained by neglecting the dxstrlbuted sources and 
vortices of tke wake (but retaining the effect of the flap boundary layer and 
the point source) IS notlceably different from the other two corrected curves 
in the region 0.1 <x/co < 0.3 on the upper surface. However, it is open to 
question whether this discrepancy would seriously influence the boundary layqr 
on the flap upper surface, since the differences between the pressure gradients 
of the three cited curves do not seem to be significant. 

The agreement between the corrected pressure distributions and the experi- 

mental distributions of Figs.14 and 15 cannot be described as good. It is 

outside the scope of the present investigation to examine, in detail, the 
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reasons for this. We note, however, that the major part of the viscous 

correction is due to the flap boundary layer for the present flap configurations. 

Future work on this subject might therefore be concerned with possible higher- 

order approximations to the velocity field of the vorticity layer comprls=ng 

the boundary layer of the flap. Since the flow separates from the upper surface 

of the flap' for both the cases exhibited in Figs.14 and 15, a method that 1s 

based on the notion of a 'thin' boundary layer, such as the present one, may be 

inadequate. To illustrate this we note in Fig.15 that, downstream of the 

separation point at x/c 0 
= 0.29, the load on the flap is significantly under- 

estimated by the present method. 1n this respect it is appropriate to remark 

that work is currently in hand at the RAE on the determination of a suitable 

theoretical model for multiple aerofoils having regions of separated flow. 

6 CONCLUDING REMARKS 

The present investigation shows that the effect of the wake on the lift of 

the flap 1s of secondary unportance compared with the effect of the flap boundary , 

layer, at least for tne flap configurations examined. 

Conslderatwn has been given in this Report to the question of how the 2 

neglect of tne thickness of the wake in the 'thin'-wake theory nnght Influence 

the results for the flap lift and the pressure distribution of the flap. It 1s 

shown that, provided (a) the sources and vortices of the wake are placed on the 

mean line of the wake, and (b) the displacement flux JIG is replaced by the 

pseudo displacement flux 

%’ = (ij - u)dz , 

ii 

the first-order correction to the 'thin'-wake theory for wake thickness 

vanishes. 

As a first approximation for flap gaps that are small compared with the 

flap chord, it is reasonable to place the singularities of the wake on the 

upper surface of the flap, or, if the flap is of small thickness - chord ratio 

and camber, on the flap chord. The indications of the present calculatzons 

are that this approximation overestimates the magnitude of the correction to 

the lift of the flap for the effect of the wake. 

Comparison between pressure distributions calculated by using the various 

approximations dxcussed here and the experimental pressure distributions 

suggest that there is scope for improvement in the present theory. Since the 
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boundary layer contributes the major part of the reduction in the lift of the 
flap,future work should be directed towards examining the accuracy of the 'thn' 
boundary-layer approximation. 

Finally, it is appropriate to comment on the type of flow that has been 
considered in this Report. The configurations exannned here were chosen because 
with them it is possible to distinguish between the wake of the main aerofoil and 

the boundary layer of the flap upper surface. With this type of flow it is 
possible to envisage a calculation procedure by which the viscous or 'inner' 
solutions for the wake and the boundary layer can be determined virtually 
independently of each other, the effect of the one on the other being regarded 
as a change in the 'outer' velocity distribution. Two of the gap cases studied 
here, namely g/c0 = 0.02 and 0.025, are close to the gap giving optnnum lift 

and are thus of practical significance. However, Foster, et at. 9 remark that, 

to establish the optimum gap and to calculate the lift for off-design cases, It 
will be necessary to examine flows in which the boundary layer and the wake 
cannot be separated. For such flows the viscous part of the solution poses some 
severe problems; but, in principle, the flow induced in the irrotational part 
of the flow field by the combined vorticity layer can be determined in much the 
same manner as was used in sections 2 and 3. 
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,’ Appendix A 

DERIVATION OF THE FLOW FIELD INDUCED BY AN ARBITRARY VORTICITY DISTRIBUTION 
. I 

Consider the finite region E, which represents the region bounded by 
the contour c defining the edges of the flap boundary layer and the wake of 
the flap. This region is illustrated in Fig.2. 

Green's second formula 10 for the scalars u and v in the region Z 
may be written'as 

> J 
d!L = (uV2v - vV2u)dS , 

c 
(A-1) 

where the line integration around c is performed in the clockwise sense, e 
is the normal vector outward from Z, dL is an element of length, and dS 1s 
an element of area. 

:_ L Firstly, identify u with $I, the stream function of the (real) flow 
around the main aerofoil and the flap. Outside Z, $ satisfies Poisson's 
equation 10 

v2* = ll , 

with n the vorticity of the ilow within Z. Here the sign convention is such 
that rl is taken positive if the rotation of the vorticlty is clockwise. Hence 
equation (A-I) may be written as 

> J 
d9. = W2" - vn)dS . 

z 

Secondly, we observe that the stream function induced at a point P by 
an elementary vortex, which is of strength ndS and situated at a point E 

within C, is given by' 

d(‘NE = ndS In (r)/2* , (A-3) 

where t is the vector, with origin at P, in the direction PE. Therefore, I 

making the substitution 
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” = - In (r)/Zn 

for v in equation (A-Z), and referring to equation (A-3), we find that the 

stream function induced at P by the vorticity in E is 

For points P external to the region Z, equation (A-4) may be reduced 

further by noting that, in this case, 

V2 (In r) = 0 . 

Therefore we have, in the region external to Z, 

(ln r) dP. . 

That is to say, the expression for the induced stream function in the region 

external to Z has been reduced from an area integration, as implied by 

equation (A-3), to a line integration. 

Equation (A-5) may be written in an alternative form by noting from simple 

geometrical and trigonometrical considerations (see Fig.2) that 

dll = rdT/sin T 

Here T is the included angle between the L dIrection and the negative r 

direction. Further, the positive or negative signs are to be taken depending 

on whether the vector K passes, respectively, out of or into Z at the 

element d9.. Thus equations (A-5) and (A-6) may be combined to read 

(A-7) 

e 
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Partial Integration of the second term of the integrand of equation (A-7) 
allows us to write 

(A-8) 

It is convenient to write 

$ = JI, + “JI, + NW 9 (A-9) 

where suffix I refers to the first inviscid approximation, A$, is the 
incremental stream function due to the existence of a boundary layer on the 

flap, and Aew is the additional stream function resulting from the presence 
of the wake of the main aerofoil. Associated with each of these components of 
the stream function is a certain vorticlty distribution which will be presumed 
to be known (e.g. from inviscid-flow calculations and boundary-layer calculations). 

It follows, therefore, from equation (A-3) that 
1 

w, = N,), + (WE), + (WW)I: . (A-10) 

Consequently, upon comparing equations (A-g), (A-9) and (A-10) we have 

(NJ,), = & 
a (A$,) 

an In r + (') a(;2) T de . (1) 
c 

A similar analysis may be constructed to determlne the stream function 
induced by the vorticity of the wake of the main aerofoil. Calling the region 
enclosed by the wake r and the contour, defining the edges of the wake, k 
(Fig.7) we have, by analogy with equation (I), the result 

(A+,), = $ i 
k 

a (W,) 

0 

a bN@ 
an lnr+ '_ ap. (A-11) 

External to the region I: and to the main aerofoil the flow A$, is 

irrotational. Therefore, neglecting the fact that the wake of the main aerofoil 

tends to merge with the wake of the flap downstream of the flap trailing edge, 

we have 
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(A$,), = 0 

and, in consequence, 

o=& 
a (A+,) 

an h r + (') a(;;B' de . 

Hence, combining this expression with equation (A-II) we obtain the result 

(A$$, = & J 
k 

where Al) = A$I~ + A+,. 

dE 9 (34) 
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, Appendix B 

THE EVALUATION OF THE LIMIT OF AN INTEGRAL 

We wish to evaluate the limit 

m 

L lim I9 = 2n a9 J 
fb') 

z dx' 

0 (x - x')2 + z2 
(B-1) 

for all X. Provided that f(x) is analytic in the interval 0 <x < m we 
may use Taylor's series to write 

f(x’) = f(x) + (x' - x)(df/dx)(x) + (x' - x)2(d2f/dx2)(x)/2' + . . . . 

Therefore, in place of equation (B-l), we have 

m m 

z 
(x - x')2 + z2 

dx' + g (x) 

m 

+ 1. d2f (x) 

I 

’ - x)2z 

2! dx2 o (xjx- x)2 + z2 dx' + *-* 
i 

' 

Performing the indicated integration we find that all but the first term vanish 
in the limit as z tends to zero, and we are left with 

I9 = q li& + tan-1 ($) , 

which becomes, on taking the limit, 

I9 = 

! 

0 , x<o 

f(x)/4 , x=0 

f(x)/2 , x>o . 

(B-2) 
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Appendix C 

THE STRENGTH OF THE VORTICES SIMULATING THE WAKE OF THE MAIN AEROFOIL 

The strength of the wake vortices per unit x-wise length is given by 

equation (41), viz: 

yw = (s!pL)++?LpL)~ .  (41) 

For a wake having edges that are substantially parallel to the flap chord 

we may use the approximation 

(dQi = + dx . (C-1) 

Examination of wake-survey data taken by Foster 16 indicates that the error in 

YW' resulting from the use of this approxmation, is negligible. Therefore we 

may write in place of equation (41) 

Yw = (*)+ +(*) , 

= (s&q+ f?lq- -(xq+~+(~) 2 . (C-2) 

To determne the first two terms on the right-hand side of equatmn (C-2) 

we examine the z component of the Navier-Stokes equations II , viz.: 

at4 aw w,+u, = -paz ‘“+“(i!J+iLJ). 

Using the equation of contmuity 

at.4 au z+s = 0 

\ 
we are able to recast equation (C-3) in the form 

2 ah/u) 

z=-Pu ax +q$+$) .  

(C-3) 

(C-4) 

(C-5) 
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The requirement that the flow is tangential to a streamline may be 

expressed as 

dz 
2 (x;*) = ; , (C-6) 

where suffix s refers to the streamline. Therefore, combining equations (C-5) 

and (C-6), we have 

= (C-7) 

Consequently, integrating equation (C-7) across the wake, we have 

The indications of wake surveys 16 are that, in the wake, 

‘0 au -- = 
v, ax O(1) . 

(C-8) 

(C-9) 

Therefore, by using equation (C-4), we find that the third term on the right- 

hand side of equation (C-8) is O(v/V,cO) compared witch PV:. Therefore, under 
9 the conditions of the experiments of Foster, et al. , in which V,cO/v was 

3.8 x IO 6 , the cited term may be considered to be negligible. 

If 

1s the thickness of the wake we may infer from equations (C-4) and (C-9) that 
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w = 0 [V,Gw/co 1 . 

Appendm C 

Hence, regarding x/c F as being of O(l), we deduce that the last term of 

equation (C-8) is O[v(GW/cF)*/Vmco] compared with pV2. Therefore, noting 

that GW/cF Q 1, we conclude that the last term, like the previous one con- 

sidered, is negligible. Consequently, we may disregard the last two terms of 

equation (C-8) to obtain instead 

p+ 
-p-=-p 2 J 

d*z 

W 
u + (x;$)dz + P j-u2 -f-(2 (x;,,)? (x;$)dz . (C-10) 

dx w 

In other words, for the purpose of deriving the rise in static pressure across 

the wake, the flow may be supposed inviscld. 

Examining the orders of magnitude of the two terms on the right-hand side 

d2z 
of equation (C-IO) we find that the first of these is 0 ---% 6 

( > dx2 ' 
compared 

2 

with p?, 
dz 
-2 whilst the second is 0 dx K )I in comparison with pV2. Results 

obtamed experimentally by Foster 
16 

indicate that, typlcally, dzs/dx is of 

d2z 
the order of 0.01 in the wake above the flap, whilst 2 6 

dx2 ' 
reaches a value 

of the order of 0.1 near the flap trailing edge. This mplies that, for the 

reglon above the flap, the last term in equation (C-IO) is very small compared 

with the first term on the right-hand side. Further downstream, we would expect 

the situation to be somewhat different. However, since it is probably true that 

the vortex strengths of the wake of the main aerofoil and of the flap wake reach 

their respective maximum values near the trailing edge of the flap, we will 

disregard the last term of equation (C-10). Similarly, noting from simple 

geometrical considerations that the curvature of each streamline is given by 

(with the centre of curvature taken below the streamline) it is consistent with 

the last approximation to replace d2zs/dx2 in equation (C-IO) by --K. There- 

fore the rl.se in static pressure across the wake becomes finally 
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(C- I I ) 

Outside the wake, in the irrotational part of the flow field, the total 
head is constant. Hence, using Bernoulli's equation,we have in place of 
equation (C-II) 

In consequence of the observation that (dzs/dx)' 4 1 in the region where 

the vortex strength is most significant we may disregard the terms 
in equation (C-12) compared with (a$/az):. 

Cw/ax)~ 
Therefore equation (C-12) may be 

rewritten as 

In turn, we may rewrite this as 

- (it&)+-(+ = -$iu2dz , 

where t = 1 {(@+ +(%)I , 

and 
2 

Kw = u dz 

(C-13) 

(C-14) 

1s the weighted mean curvature of the streamlines of the wake. 
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Defining the wake displacement and momentum thicknesses as 

we may rewrite equation (C-13) in the following manner: 

(C-15) 

(C-16) 

In the first inviscid approximation the streamlme slopes and curvatures 
are slightly different from those of the real flow. However, the approximations 
leading from equation (C-IO) to equation (C-16) would appear to be equally valid 
in the case of the Kutta approximation. Therefore noting from equations (C-15) 
that, in the first inviscid approximation, provided KW$ is small, 

we may use equation (C-16) to write 

(z&q+ (2) = - (KW)Ic16W . 

Consequently, recalling that 

(C-17) 

we may combine equations (C-Z), (C-16) and (C-17) to obtain the result 

yw = K&6$ + ,a,) - (Qi - (KWqq $ p$) ~+(*) g- . (C-18) 
+ 

If the wake of the main aerofoil and the boundary layer of the flap are 

both 'thin' we would expect that d 
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as a result of the fact that KW and v are close to their corresponding 
inviscid values in this case. Additionally, for a 'thin' wake at a 'small' 
distance above the flap chord, the last two terms of equation (C-18) are small 
compared with the incremental velocities associated with the 'thinlyrake 
approximation. Hence, as a first approximation for a 'thin' wake at a small 
distance above a flap with a 'thin' boundary layer, we write 

yw = ,,iq + e,) . 

This result 1s similar to an expression derived by Spence and Baaslay for the 
wake of an isolated aerofoil, the only difference being that these authors used 
the approximation fi = V_. In the region of the trailing edge of the flap, 
where VW/V_ generally attains its greatest magnitude (at least for the part 
of the wake above the flap) this seams to be a good approximation. 

As we shall sea later we may also confidently use equation (48) to 
calculate the vortex effect of the (thin) wake of the flap. 

With a correction for the effect of wake thickness and the non-zero dis- 
tance of the wake from the flap the strength, per unit x-wise length, of the 
vortices simulating the wake of the main aerofoil may, by reference to 
equation (82), be written as 

Yw = Yw - $2 z+) + g( a(A$)) (x,+0)(2+ - z-)) 

(2, - 2-j 
> 

. (82) 

The last term in this equation IS rather curious, since it seems to imply 
that, even if the wake did not exist, so that yW and JI; ware both zero, 
there would, nevertheless, be a distribution of vortices above the flap. This 
apparent contradiction may be resolved by usng equation (C-18) for yW instead 
of equation (48). 

The second term on the right-hand side of equation (C-18), 

-(KwU - (KW)Iq 6w' may be interpreted as the increase in the jump in x-wise 

velocity across the wake resulting from: 
I 



96 Appendix C 

(a) the flow induced at the wake by the vorticity of the flap boundary 
layer; 

(b) the effect of non-zero wake thickness on the velocities induced at 
the edges of the wake by the vorticity, within and exterior to the wake, 
associated with the wake. 

Contribution (a) is found by noting from equations (11) that the vorticity 
of the flap boundary layer induces an increment in stream function at the upper 
edge of the flap boundary layer or flap wake 

(A$,), = - $6(x) . I 

Since the flap is supposed to be of small thickness-chord ratio and camber and 
the flap boundary layer is considered to be 'thin' we may rewrite this 
expression as 

We have also assumed the wake to be at a 'small' distance above the flap chord. 
Hence, in‘the region occupied by the wake, 

AJl,(x,d = - $t;Cx, (C-19) 

to a good approximation. Therefore, using the fact that, in the region external 
to r. and to the main aerofoil, the flow induced by the vorticity of the flap 
boundary layer is irrotational, we have in this region 

a2 UN,) 
+ 

a2wJB) 

a2’ ax2 
= 0 . (C-20) 

Hence, upon combining equations (C-19) and (C-20), we have for the region of the 
wake 

a2(A*,) d2$j 

a2’ 
= -. 

dx2 

Thus, by integrating this equation with respect to z across the wake, we find 

that 
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(C-21) 

We determine contribution (b) by examining the downwash induced at the wake 
by the vorticity resulting from the presence of the wake. For a 'thin' wake and 
a sufficiently 'small' flap gap, the downwash, caused by the existence of the 
wake, just below the wake may be written as 

a (A$$)) 
ax (x,+0) . 

Therefore, after alloung for the presence of the wake-source distribution (of 
linear strength d$$/dx) we find that the downwash induced at the wake itself 
by the vorticlty Identified with the wake is given by 

a (A$$')) I d% = 
ax 

(x,+0) - - - . 2 dx (C-22) 

To obtain contribution (b) we have to subtract from this expression the 
downwash induced at the wake by the vorticity in that portion of the wake a 
distance of O(6w) either side of the x-wise position under consideration. 
This 1s the 'near field' or 'inner' vorticlty which determines the value of yw 
in the approximation for a 'thin' wake and a 'thin' flap boundary layer. The 
remainder is therefore irrotational in the inner region; and,for sufficiently 
small 6W/CO, this remainder may be regarded as the Cauchy principal value of 
the downwash induced at the wake by the vortlcity associated with the wake. We 
may write therefore 

, dlL* W = 
ax 

(x,+0) - - - 2dx ' (C-23) 

with the Cauchy principal value of the right-hand side being understood, and 
suffix b referring to contribution (b). 

In consequence of the irrotationality of the flow (b) we have for the 
region of the wake 
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a2 Ww)b a2 (A$)b = - 
az2 ax2 

from equation (C-23). Hence, upon integrating this equation across the wake,we 
have 

Therefore, combining the two contributions (a) and (b) given by 
equations (C-21) and (C-24), we may rewrite the second term on the right-hand 
side of equation (C-18) as 

- (K u - d2$ a(A$(')) dJI* 
w (KW)IqGW = z b+ - 2-j - & a; (x,+0) - ; 2 (2, - 2-j . 

> 

. . . . (C-25) 

It only remains to determine the last two terms of equation (C-18). For 
'small' wake thickness and flap gap 

a(A*(‘)) (x,+0) , 
ax 

a(Aji$‘)) d$; 
, = 

ax 
(x,+0) - - dx 

from equation (81). Similarly, referring to equation (42), we find that 

d$* U d$* w 
ax 

(x,+0) - - - - . dx dx 
+ 

(C-26) 

(C-27) 

Therefore, combining equations (C-18), (82), (C-25), (C-26) and (C-27), we 

obtain finally 

(83) 
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A similar analysis could be used to determine the second order vortex 

strength of the wake of the flap (including a first-order correction for wake 

thickness and distance of the wake from the x axis). We find, in fact, that, if 

the suffix W is supposed to refer to the flap wake, an expression that 1s 

identical to equation (83) is obtained. However, we have assumed that the flap 

wake is 'thin'. Therefore, the term (z + z )/2 + - in equation (83) may be 

supposed identical to the ordinate of the rear dividing streamline of the flap. 

Various experimental results for isolated aerofoils 13,14 indicate that 

(d'$$/dx')(c,/V,J differs significantly from zero only close to the flap 

trailing edge, where the ordinate of the rear dividing streamline is small 

compared with co. Therefore it seems reasonable to neglect the last term of 

equation (83) III the case of the flap wake, implying5 therefore, that we may 

estimate the vortex strength of the flap wake by using equation (48). 

We observe that in equations (48) and (83) we are faced with the difficulty 

of having to evaluate K W to determine the vortex strength. This may be 

obviated, however, by using equation (C-16) to eliminate KW from equations (48) 

and (83). Thus, for example, we have in place of equation (48) 

(C-28) 
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MANIPULATION 0~ THE WAKE VORTEX INTEGRAL 

We use here a method given by Spence It3 for transforming the double Integral 

into a single integral. 

Spence observes that, since 5 is in (0,cE) there is no residual at 

the singularity of the integrand at 5' = Fw = CE. Consequently we may inter- 
change the order of the Integration in equation (D-1) and by using the fact 

that 

we may rewrite I 
JO as 

The integration with respect to 5' may be performed by using the 

followmg identities given by Spence 

Therefore we have finally 



101 

Appendix E 

THE LIMIT OF P AND Q INFINITELY FAR DOWNSTREAM 

Downstream of the flap trailing edge the wakes of the main aerofoil and the 

flap merge; hence it is no longer possible to distinguish the separate effects 

of either wake. Since, however, we have supposed the wake of the flap to be 

'thin' and since we are concerned here with the thickness effect of the aerofoil 

wake we will consider the merged wake to be made up entirely of the wake of the 

main aerofo11. 

According to the mixing-length theory 19 a turbulent, twodimensional wake 

grows like x 1 far downstream. Therefore we have, for small a and 5, 

=+ - =- 
1 %ax , X’” , (E-1) 

where a is a finite, non-zero constant. 

To determine the asymptotic b'ehaviour of z+ and z- separately we 

require another relationship between a+, a- and X. Unfortunately, there 

appears to be little theoretlcal or experimental information available on the 

far-downstream behaviour of curved, turbulent wakes. Those results which are 

available from experiments on isolated aerofoils 13,14 appear to indicate that 

the wake tends to become symmetrically disposed with respect to the rear 

dividing streamline far downstream. We will assume, therefore, that, in the 

present case, the combined wake is symmetrical with regard to the rear dlvlding 

streamline of the main aerofoil for sufficiently large X. Hence, by considering 

the behaviour of this streamline far downstream, we find that 

z+ + z ‘L b(a + 8)~ , X’-- , (E-2) 

with b a finite, non-zero constant and c1 and S supposed small, as before. 

Hence, combining equations (E-l) and (E-Z), we obtain the result 

1 z+ , z- = x , x+- . (E-3) 

In order to determine the asymptotic behaviour of P and Q It only 

remains to examine the velocity corrections a(A$)laz and a(A$)/ax in the far 

field. This we do by observing (see Appendix A) that the correctlon.to the 

lrrotational part of the flow field for the effects of viscosity can be obtained 



102 Appendix E 

by placing suitable distributions of sources and vortices along the edges of 
the boundary layers and the wakes. Sufficwntly far downstream the effect of 
these dlstrlbutions may be represented by a point source and a point vortex 
placed close to the flap. For convenience, we positlon these singularities at 
the leading edge of the flap. Hence we are able to deduce that 

(E-4) 

where K I and K 
2 

are constants that are proportional to the vortex and 
source strengths, respectively. Therefore, noting that 

(64) 

it is possible to Infer from equations (E-3) and (E-4) that 

lim (P) = 0 . 
X" 

Similarly, recalling that 

d(h)+ d(A$)- 
Q = dx z+ - & z- 

and employing the result 

it is readily inferred from equations (E-3) and (E-4) that 

(64) 

lim (Q) = 0 . 
x-= 
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DERIVATION OF THE EFFECTIVE DISPLACEMENT FLUX ;* 
w t 

The effective displacement 

equation (85), as 

: flux, T* 
W' 

may be written, by reference to 

j-2 + 
+ 

acALf) 
(x,+0) (2 + - 2-j , (85) 

(1) 
YW = “;*J + 2 (z+ + 2-j 

I 

(1) 
+ L. 

2 * (x,+0) 
I 

(2, - 2-j . 

The first term on the right-hand side of equation (F-l), 

*; = J {u,(z) - u(z)tdz , 
W 

may be written as 

JIG = “$1 - 

where $$' = (i - u(z)tdz 
J 
W 

(F-1) 

(F-2) 

is referred to as the pseudo displacement flux. 

Suppose firstly that all velocities in equations (F-l) and (F-2) are 

normalized with respect to V_ and all lengths with respect to =0* Thus, as 

will be seen later, the last term of equation (F-2) is of the same order as the 

last term in equatmn (F-I). Consequently, if we define 

Aij = ij- 

(i 

y(z)dz (z, - z ) 

ii - 

, (F-3) 

W 

we are able to write in place of equation (F-2) 

(F-4) 
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where Ai is of the same order as the curly-bracketed term in equation (F-l). 
Hence the error in G$ resulting from the use of the theory of section 3.1 
(for a 'thin' wake and a 'small' flap gap) to determine AC is no'greater than 
the errors in TJ* W implicit in the "se of y$') and a(A$('))/az in place of 

yw and a(A$)/az in equation (85). In the following,therefore,we derive A! 
on the basis of these approximations. 

The x-wise velocity at the lower edge of the wake 

( )- .?I! = 
a2 

“,(ZJ + ( )- a.$, 

= “I(zJ + * (x,+0) 9 (F-5) 

for a 'thin' wake and 'small' flap gap. Similarly, we have for the upper edge 
of the wake 

( > ?!k 
a2 = ul(z+) + ( 1 UAf)) , 

+ + 

= ul(z+) + 
acAt)( 

a2 (x,+0) + Y$l) I (F-6) 

i 

from equations (77). 

To determine the relationship between uI(z+) and uI(z-) we "se 
Taylor's theorem 

u,(z) = 
a"I 

“,(ZJ + Tg- (z-)(2 - z-1 + O(UI(Z~)(Z - z-13) , 

. . . . (F-7) 

wherein we have assumed that the curvature of the streamlines of the first 
inviscid approximation are such that the z derivatives of u,(z) in the wake 
exist and are, at most, of order UI (z-1. Hence replacing z by z+ in 
equation (F-7) and combining the resulting expression with equations (F-5) and 
(F-6) we find that 
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+ Ud’)) (x +0) + (1) 
a2 , UI (2~) b+ - 2-j ') . (F-8) 

Equation (F-7) my be used to derive the expression 

J au 
uI(z)dz = u,(zJ(z+ - z-) + ;$ (z-)(z+ - z-j2 + o(uI(z-)(z+ - Q3)- (F-9) 

W 

Therefore we may use equations (F-8) and (F-9) to replace equation (F-3) by the 
expression 

(1) 
YW Aij = 2+ ( acnp x,+0) + O(uI(z-)(z+ - z-j') . (F-10) 

The last term of equation (F-IO) may be neglected on the basis that it IS, 

at most, of order (z, - z-1 compared with the term 

(1) 
YW -+ 

a (A$y) 
2 a2 

(x,+0) 

which comprises the contribution of the wake to the first two terms of the last- 
named equation. Hence, as asserted before, At is of the same order as the 

curly-bracketed term of equation (F-l). Therefore, upon disregarding the last 
term of equation (F-10) and combining the modified expression with 
equations (F-l) and (F-4), we have finally that 

(1) 

;* = YW 
W %' 2 +-(z+tz) . (86) 
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THE ANALOGY BETWEEN THE WAKE DOWNSTREAM OF THE FLAP AND 
THE JET SHEET OF A BLOWN FLAP 

For 'small' wake thickness and 'small' flap gap the linear strength of 
the vortex distribution of the combined aerofoil-flap wake is given by 

YW 
= cwU(6$ + 0,) ' (48) 

provided it is understood that the suffix W refers to the combined wake. 

Spence and Be&y4 remark that 6; and 8 W are close to their 

asymptotic values far downstream except near to the trailing edge of the flap. 
They therefore suggest the use of the approximation 

6; = 
eW = (fJ,)_ = CDCO/2 , (G-1) 

where CD = DI$pVzcO 

is the drag coefficient of the configuration. Similarly, the indications of 

pressure distributions' are that i is nearly equal to V even close to the co 
flap trailing edge. Therefore, in place of equation (481, we may write 

Yw = KVCC WmOD ' (G-7.) 

The strength of the vortex distribution of the jet sheet of a jet flap or 
blown flap is given by 18 

YJ = - KJVmCECJ/2 , (G-3) 

with 

CJ = 

the Jet momentum coefficient, which, following convention, we base on 'E* 
We see that, for the vortex distributions of the two systems to be 

identical, equations (G-2) and (G-3) require that 

KWCOCD = - KJCECJ/2 . (G-4) 
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Now, for sufficiently small CJ and CD, we expect the curvature of the 

jet or the wake to be approximately equal to the curvature of the rear dividing 
streamlme of the flap as predicted by the first mviscid approximation in the 

case of no flap blowing. In consequence, for small CD and CJ, we have as 
an approximation 

It follows, therefore, from equation (G-4) that the two cases are analogous, at 
least approximately, provided that 

CJ = - 2COCD/CE . (G-5) 

SplD2-2 
17.18 shows that the vortex distribution, needed on the chord of an 

aerofoil with a blown flap to nullify the downwash induced by the vortices of 
the jet sheet, is given by 

Here X = 
1 - (1 - c/c,+ 
I + (I - ucE+ 

and B n' Dn are solutions of the linear equations I8 

M-l 
1 

n=O ( 
am + t bm Dn = 

1 
f,,,(x) 

' m = 0'1'2'-**M-I - (G-7) 2; kmn + t ,_)Bn = f,(r) 

1 
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The coefflclents a and b and the function fm(x) are defined as 
follows: 

a mo = sin@ . a m ' = (l+cos$m)sinnd, m n>O ; 

b 4 = 
4n2 - 1 

co.5 n 4 (G-8) m 

where $m = m/M, m = 0,1,2,...M-1. 

Inspection of equations (G-7) and (G-8) reveals that a valid approximation 
to equations (G-7) for small CJ is obtained by neglecting the terms am, viz: 

M-l C 
c 

n=O 
bwDn = -$ fm(X) 

M-l 
c bmBn = cJ 

n=O 
y f,h) 

m = 0,1,2,...M-I . (G-9) 

Equations (G-S), (G-6) and (G-9) allow us to write down the analogous 
relationships 

with 
M-l 

1 
'0 'D b D = ---f(x) 

*=I) Innn CE 2 m 

, m = 0,1,2,...M-I . 
M-l 

1 bmB, = _ 3 'D 
n=O CE 

T f,(ld 

(102) 

(103) 
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These results may be extended to allow for the non-zero thickness of the 
wake of the main aerofoil as well as the non-zero distance of this wake from the 
x-=1*. With this allowance the vortex strength becomes 

Fw = 
I 

KWC(6$ + e,) 
, d*Ji* 

aerofoil 
- - 2 (2, + 2-j 

* dx* 
x>c F. (84) 

aerofoil 
+ flap 

An examination of Spence's 18 analysis of the blown flap shows that the 
approximation leading to equations (103). namely the neglect of the terms a,,,* 
of equation (G-7), is equivalent to the assumption that 

KW = (KWjI , 

which is consistent with the assumption of section 3.1 that the combined wake 1s 
'thin'. It is not sufficient, therefore, in the calculation of ;W, to deter- 
nnne the first term on the right-hand side of equation (84) by the method given 
above. To be consistent with this equation we have to allow for the change in 
the curvature of the combined wake due to the effect of viscosity. The 
appropriate change m the curvature of the wake of the main aerofoil may be 
Inferred from equation (C-25). Thus using, as before, the approximation 

for stations downstream of the flap trailing edge, and employing the fact that 

we may rewrite equation (C-25) as 

aerofoil 
(x,+0) - L- d”;*J 

2 dx >I aerofoil 

. . . . (G-11) 

Since the flap wake is supposed 'thin' (sectlon 2.1), it is probable that 

no extra accuracy in the vortex strength of the flap-wake component of the com- 

bined wake can be expected by incorporating the viscous correction to 
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I( Iflap. Therefore we apply the curvature correction only to the aerofoil 

constituent of the combined wake. Consequently, we have, by employing 
equations (84), (G-IO) and (G-11) 

Yw = I kW)IV_q + e,) I aerofo11 
+ flap 

- {g? - I%( acAz? (++O) - ; 2))a,,,foi~l~~ + eWlaerofoi, 

I 
, d2$; - -- 
2 dx2 (Z+ + z-1 

I aerofoll 
(G-12) 

The effect of the first term on the right-hand side of equation (G-12) on 
the vortex distributions of the main aerofoil and the flap having already been 
consldered we examine the effect of the last two terms. Thus the increment in 
circulation, that is identified with these terms, around the combined aerofoll- 
flap wake is given by 

ArW = - [{$ - -$-(a(A$") (x,+0) - ;z))(&; + BW)dx 

=F 

I -- 
2 

CF 

(G-13) 

. 

where It 1s to be understood hereafter that suffix W refers to the wake of the 
man aerofoil. 

Experience with isolated aerofoils 13,14 . lndlcates that the first and 
second derivatives of $* and $* 

i 
u W decay rapidly downstream of the flap 

trailing edge. On Intuitive grounds we would expect that the same is true of 
,*(I) w * Therefore a seasonable approxunation to the integrals of equation (G-13) ' 
can probably be obtained by replaclng z+ + z and 61*J+B W by their 
respective values at x=c F' If we do this we find that 
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, dG* 
+? Liz- w (z+ + 2-j I X=C F 

(G-14) 

Here we have used the fact that the flap is a streamline of the flow mduced by 
the vorticity of the wake of the main aerofoil, so that 

GA+;‘)) 
ax (x,+0) = 0 . 

BC F 

Further, we have made use of the property of $15, $i and A$$') noted above, 
namely that the first derivatives of I);, $6 and A$;') tend to zero rapidly 
downstream of the flap trailing edge. 

Insofar as the combined wake is downstream of the flap it seems reasonable 
to suppose that the lift of the flap will be influenced mainly by the overall 
circulation around the combined wake without particular regard to the detailed 
distribution of circulation in the wake. Therefore we assume that we can 
estimate the change in lift of the flap associated with the last term of 
equation (84) by equating Ar w to the increment in wake circulation resulting 
from an increase in CD, AC, say. The increment in wake circulation resulting 
from an increase in CD is found by integrating equation (G-2) (with CD 
replaced with AC,) along the wake. Thus w& find that 

(G-15) 

For a sufficiently 'thin' wake and a 'small' flap gap ~~ may be assumed 
equal to the curvature of the rear dividing streamline of the main aerofoil. 

Hence we may write from simple geometrical considerations 

2 dz W -- 
KW = dx2 , 

d2zW . 
r -- . 

dx2 
* (G-16) 
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Therefore, combining equations (G-15) and (G-16), we have 

Ar = 
dzW m 

w - V,cOACD ;i;;- , I I =F 

= - V_cOACD@ + ~1) (G-17) 

for small g/CO, 5 and c(. Therefore, upon combining equations (G-14) and 

(G-17), we find that 

Consequently we may define an effective or equivalent drag coefficient, which 

includes a correction for the non-zero thickness and non-zero distance from the 

flap of the wake of the main aerofoil, namely 

CD = cD+Ac D ’ 

= c -(ii dJi;r I d% d"; 
D ;i;f+-- 2 dx (6; + e,) + 1- 2 dx (Z+ + 4 

+ a) , 
X=C F 

/ 
. . ../(G-19) 

from equatl0n (~-18). The corresponding coefficients En and in, which are 

used in place of B and D n n 
in equation (102) when allowance is made for the 

thickness and distance effects, are obtained simply by replacing CD by CD 
in equations (103) (see equations (109)). 

The change m the lift of the flap associated with term ACD is found to 

be very small for the configurations studied in section 5. Hence the errors in 

cLF 
resulting from the approximations used in obtaining equation (G-18) are 

considered to be of no significance. 

i 
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Table 1 

COMPARISON BETWEEN EXACT AND APPROXIMATE VALUES OF Ay ,'(E) FOR 
THF. F(S) DISTRIBUTION OF EQUATION (99); x = n/3 

- 

” 

4 0.300 0.293 

0 0.728 0.712 

II 1.47 1.57 

12 1.04 1.04 

16 0.752 0.751 

!O 0.760 0.757 

,4 0.960 0.960 

18 1.74 1.75 

Exact 
equation (100) 

AY ,B 

Approximate 
equation (IO]), N = 32 

Table 2 

SOLUTIONS OF EQUATIONS (103) FOR M = 3; cF/cR = 0.31 
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Table 3 

COMPARISON BETWEEN EXACT AND APPROXIMATE VALUES OF 16 

(EQUATION (116)) FOR THE E(S) DISTRIBUTION 0~ 
EQUATION (119); X = r/3 

- 

” 

- 

2 

4 

6 

8 

10 

11 

12 

16 

20 

24 

28 

- 

T 

Exact 
equation (120) 

‘6 

Approximate 
equation (118), N = 32 

0.513 0.510 

0.273 0.270 

0.108 0.101 

-0.0550 -0.0600 

-0.331 -0.367 

-0.464 -0.518 

-0.264 -0.255 

-0.110 -0.110 

-0.0714 -0.0713 

-0.0551 -0.0552 

-0.0479 -0.0479 



- 
a0 

-5 

-5 

-5 

+3 

+3 

+3 

AC 
$3 

ACL 
,B 

AC(') 
LF,W 

0.020 -0.103 -0.293 -0.017 

0.025 -0.103 -0.292 -0.021 

0.040 -0.158 -0.448 -0.027 

0.020 -0.117 -0.343 -0.049 

0.025 -0.100 -0.250 -0.053 

0.040 -0.216 -0.605 -0.065 

RESULTS FOR THE CORRECTIONS TO FLAP LIFT AND OVERALL LIFT 

(2) 

cLF cLF AcL 
,ws 

AcL 
VW 

5 
L 

Measured 
cL 

0.522 0.546 0.543 -0.075 -0.063 2.20 2.23 

0.540 0.566 0.550 -0.063 -0.057 2.20 2.20 

0.536 0.565 0.567 -0.044 -0.067 2.01 2.07 

0.464 0.523 0.520 -0.184 -0.125 3.04 3.25 

0.515 0.577 0.519 -0.180 -0.126 3.09 3.16 

0.448 0.517 0.510 -0.128 -0.149 2.70 2.93 

NB:- - AcL = increment of lift coefficient of flap due to flap boundary layer 
F,B 

ACL = increment of lift coefficient of flap due-to wake of main aerofoil 
F,W 

cL = flap lift coefficient 
F 

ACL = ncrement of overall-lift coefflclent due to sources of wake of main aerofoil 
,ws 

ACL = increment of overall-lift coefficient due to vortices of combined aerofoil-flap wake 
SW 

cL = overall-lift coefficient 

suffix (1) refers to first approximation for 'thin' wake and 'small' flap gap 

suffix (2) refers to approximation obtained by neglecting distributed sources and vortices of 
wake of main aerofoil. 
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D 
B*’ n 

B 
c 
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'A 

cD 

=E 

=F 

cJ 

cL 
C 
P 

=0 
E 
F 

fm(X) 

g 
G 
H 

I,'12'...19 

.J 

K(B) 
k 
9. 

? 

L 

L(S) 
m 

M 
N 

n 

2 

SYMBOLS 

coefficients defined in Appendix G 

solutions of linear equations (103) 

arbitrary constant 
contour bounding region Z (Fig.2) 
arbitrary constant 
chord of main aerofoil 

drag coefficient;= D/~pV~co 

extended chord of wing with high-lift devices deployed 

chord of flap 

jet-momentum coefficient based on cE; = J/~PV~S 

lift coefficient; = Ll~pV~co 

static-pressure coefficient; = (p - p,)/lp$ 

chord of basic wing 

function defined in equation (117) 

= *i - *r) 

function defined in equations (G-8) 

flap gap 
function defined in equation (96) 
Heaviside unit step function 
various integrals defined in text 

jet momentum flux 

function defined in respect of equation (139) in section 4.3 
contour bounding region r (Fig.7) 
distance, taken positive in clockwise direction, around contour 
c or contour k 

flap overlap 
lift 
function defined in equation (105) 

integer 

integer 
even integer 
integer 
normal vector outward from regions Z or r 
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SYMBOLS (continued) 

3 

P static pressure 

P field point external to E or r 

P,Q quantities defined in equations (64) 

9 source strength per unit length 

E vector joining P and element dll, the vector being taken 
positive in direction away from P 

smJ4) Weber coefficients 
12.15 

!Jv !Jv 

distance, taken positive in clockwise direction, around contour 
of main aerofoil 

velocity components in x and z directions 

x-wise velocity at edge of flap boundary layer 

mean of x-WISB velocities at upper and lower edges of wake 

velocity components in 5 and 5 directions 

complex velocity; = v - iv 
5 5 

free-stream speed 

rectangular cartesian coordinate system, x axis along flap chord, 
x = 0 at flap leading edge (Fig.1) 

1 - (1 - 5/c,+ 
= 

I + (I - El=*+ 

= E/CA - I + Xl,, 

angle between chord of main aerofoil and incident flow 

angle between chord of flap and chord of main aerofoil (Fig.]) 

vortex strength per unit length 

circulation (section 4.4) 

region occupied by wake of main aerofoil (Fig.7) 

boundary-layer thickness 

wake thickness 

displacement thickness 

incremental part of 

small parameter 

vorticity, taken positive when rotation is in clockwise sense 

wake momentum thickness 

= co* -' (2C/CE - 1) 

= pn/N 
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Q*’ 

** w 

“6’ 

SUFFIXES 

A 

B 

,B 

c 

F 

- I 

i 

J 

k 

SYMBOLS (continued) 

streamline curvature 

weighted mean curvature of streamlines of wake, defined ~.n 
equation (C- 14) 

parameter used in equations (121) and (126) 

index of inducing point for Weber summation (section 4) 

coefficient of viscosity (Appendix C) 

normal outward from main aerofoll (section 2.1) 

kinematic viscosity (Appendix .C) 

rectangular Cartesian coordinate system, 5 axis along chord of 
main aerofoil, 5 = 0 at leading edge of main aerofoil (Fig.]) 

dens i ty 

region bounded by edges of flap boundary layer and flap wake (Fig.2) 

included angle between 9. direction and negative r directmn 

= cos -I (2CA/CE - I) 

s trem function 

‘displacement fluxes’ of flap boundary layer, defined in 
equation (I I) 

6 

pseudo displacement flux of flap boundary layer, = 
J 

(U - u)dz 

0 

displacement flux of wake, defined in equation (42) 

pseudo displacement flux of wake = 
J 

(c - u)dz 

w 

refers to *am aerofoil, except for ZA which is z ordinate of 
point A (Flg.7) 

refers to effect of vorticity ldentlfled with flap boundary layer, 
except for zB which denotes z ordmate of point B (Fig.7) 

due to flap boundary layer 

refers to contour c 

refers to flap 

refers to first inviscid approximation 

refers to velocities induced by wake of main aerofoll 

refers to jet of blown flap 

refers to contour k 
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SYMBOLS (concluded) 

a 
s 
T 
u. L 
W 

.W 
,ws 
.w 
r 
u 
” 
+, - 

co 

(I), 

(1) 

(2) 

(2) 

refers to leading edge of wake of main aerofoil 
refers to streamline of wake 
refers to shroud trailing edge 
refer, respectively, to upper and lower edges of region E 

refers to effect of vorticity identified with wake of main aerofoll 
or simply to aerofoil wake 
due to wake of main aerofoil 
due to sources of wake of main aerofoil 
due to vortices of combined aerofoil-flap wake 
refers tc~ region r 
refers to inducing point 
refers to pivotal point 
refer, respectively, to upper and lower edges of wake of main 
aerofoil 
refers to conditions at Infinity 
refer, respectively, to constant load and 'flat-plate' vortex 
distributions (section 2.2) 
refers to first approximation for 'thin' wake and 'small' 
flap gap (sections 3, 4 and 5) 
refers to approximation obtained by neglecting distributed sources 
and vortices of wake of main aerofoil 
denotes first approximation above corrected for non-zero wake 
Ehickness and distance of wake from flap, except in case of 
IJ which IS defined above 
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6 M.J. Lighthill 

7 H. Glauert 
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B.R. Williams 
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Fig I Coordinate systems and notation for aerofoil with Fowler flap 



Fig.2 Definition of notation and geometry for analysis of flow field 
induced by vortrcity withln region 1 
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Fig.4 Variation of 12 with distance along 
the chord of the main aerofoll, cF /q,=O-5 



Vortex distrlbutlon 
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contour c 

Is approximated by 
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Fig 5 Approximation of. vortek and iource :dtstributrons 
associated’. with flap boundary layer 
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Flg.7 Definition of notation for analysis of flow field induced 
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Curve Case 
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Fig8 Model of displacement flux in wake of flap, 
implied by equn (121) 
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Derivation 

First InvIscId approxlmatlon 

Fwst mvlscld approxlmatlon 
corrected for flap boundary 
layer and aerofoll wake 
a first -order wake correction 
for’thm’ ulake and ‘small’ 
flap qap; 
b Correctlon (a) plus correction 
for luake thickness and 
distance of uake from flap 

Experiment 

Fig I4 Pressure distributions on flap g/co=0 02, d=-5’ 
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Above theory corrected for 
flap boundary layer wth.- 
a First-order wake correctlon 
for ‘thin’ Luake and ‘small’ 
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for uroke thickness and 

-----+-- distance of wake from flap 

-A- c Wake simulated by point 
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Fig.15 Pressure distributions on flop g /co=O04, OC= -5’ 
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