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SUMMARY

The effect of a particular type of heat addition on the flow around a two-
dimensional, flapped aerofoil section, at low Mach number, 1s 1nvestigated using
a transformation which enables the compressible flow with heat addition to be
deduced approximately from a certain incompressible flow with fluid additionm.
The incompressible flow may be determined by the technique of conformal
mapping. It i1s concluded that heat addition in a suitable distribution can so
reduce the adverse pressure gradient on the upper surface of the flap that
greater flap angles than are normally possible can be émployed without separa-
tion of the boundary layer (according to a simple separation criterion). The
result is an increase 1n lift. The effect is illustrated for a flapped aero-

fo1l section of convenient mathematical form,
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1 INTRODUCTION

The effect of heat addition on low speed flow of an inviscid fluid was

discussed by Broadbentl, who demonstrated that in a flow region where

D 1D
— (1 > = 2P
P 5¢ (L/0) > Dt
that is to say, where pressure variations are small compared with variations in
specific volume, an approximate solution of the relevant flow equations can be
obtained by a simple transformation of the solution of a certain incompressible
flow problem. This problem retains the geometry of the original but replaces

heat sources by fluid sources. Under the transformation, pressure distribu-

tions are unchanged. In the present Report, this property is used to discuss the

effect of heat addition on twodimensional flow past a lifting aerofoil section,
with particular reference to the modification of pressure gradients near

trailing-edge flaps.

The possibility was suggested by Broadbent2 that a suitable heat scurce
distribution, placed in the neighbourhood of the upper surface of a trailing-
edge flap might reduce the adverse pressure gradient there to such an extent
that large flap deflection angles could be achieved without the onset of
boundary layer separation (a conventional flap with no slots or blowing is
assumed), A first investigation2 of the effect of heat addition on adverse
pressure gradients was made using a simple Joukowski aerofoil, with suffi-
ciently encouraging results to prompt an examination of the effect on a flow
past an aerofoil in a configuration of high lift, that is with a trailing-edge
flap deflected. The essential qualitative features should be exhibited for
any reasonably realistic aerofoil with a flap. In the sequel, the twodimen-
sional case is considered, and a family of profiles used which is convenient

for the application of complex variable methods.

When a flap is deflected, in low speed flow, its primary effect is to
increase the circulation around the aerofoil and so increase lift. The
undesirable secondary effect is to increase the adverse pressure gradient along
the upper surface of the flap. As the flap deflection is increased, there will
thus come a point when the flow will separate, resulting in considerable loss
of 1life. 1In this Report, the complicated problem of boundary layer separation
will be simplified by the assumption that separation depends only on the

magnitude of the local adverse pressure gradient. With some standard upstream



flow speed and angle of attack, one may define a critical flap angle a®r rad,
at which separation occurs. This angle, in turn, defines a maximum adverse

pressure gradient ¢° under which an attached boundary layer can subsist in
o

L which can be

the region above the flap, and a maximum lift coefficient C

achieved by this flap mechanism,

Can this situation be improved by heat addition near the flap? If, by
adding heat, the adverse pressure gradient along the upper surface of the flap
can be reduced then, according to the above criterion, it may be possible to
operate the flap at angles o > %1 without separation (i.e. with a maximum
adverse pressure gradient on the flap of G = Go) and with an increase in lift
c, >cp).

According to the first paragraph, this problem can be transformed into
one involving fluid addition in incompressible flow. Subsequent analysis
applies only to the inviscid, external flow field, the boundary layer being
assumed to remain attached and of negligible thickness. When a solution of
the incompressible, inviscid flow equations has been found, a decision may be
made retrospectively whether a boundary layer on the flap could have remained

attached under the conditions of pressure gradient predicted.

Whilst adverse pressure gradients can certainly be reduced by heat addi-
tion, and so larger flap angles achieved without separation, it is not obvious
that lifting properties will be improved. There is a secondary effect, namely
the reduction of tot;& circulation (assuming the source is added above the
aerofoil), It is part of the investigation to compare this loss of circulation
(and hence 1lift) with the increase which can be gained from the use of greater

flap angles.

In section 2, the analogy between incompressible flow with fluid addition
and compressible flow at low Mach number with heat addition is examined and the
approximations discussed. The central problem of the Report is treated in
section 3. As far as possible, progress has been made analytically using com-
plex function theory and conformal mapping. It is therefore necessary to find
a reasonably realistic flapped aerofoil section which is the image, under a
conformal mapping, of one of the geometric shapes for which the flow equations
can be solved by elementary methods (e.g. a circle). This is done in
Appendix A. The standard expressions for velocity, pressure etc. are set up in
Appendix B, and a numerical method is considered in Appendix C. Numerical

results are discussed in section 4.
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2 THE INCOMPRESSLBLE FLOW - COMPRESSIBLE FLOW ANALOGY

2.1 A statement of the analogy

The analogy between compressible flow at low Mach number with heat addi-
tion and i1ncompressible flow with fluid addition was set up by Broadbent1 and
a discussion sufficient for the present purpose, using simpler mathematical
1deas was given by EdwardsS. This discussion is summarised here. More

precisely, the analogy 1s between:

(a) an incompressible flow with a fluid source distribution (and possibly

also a system of body forces) in a finite region;

and (b} a compressible flow in which a heat source distribution and an addi-
tional system of body forces replace the fluid source distribution of the

incompressible analogue.

Suppose the flow {(a) 1s fully defined so that in particular, the pattern
of streamlines, the pressure field, and the fluid source distribution (and 1f
appropriate, the body force distribution) are known. An attempt is made to
determine a compressible flow which has precisely the same streamlines and
pressure field, but in which the fluid source distribution 1s replaced by a
heat source distribution and an additional body force distribution (the heat
and body force may be thought of in combination simply as an energy source
distribution). This process may be shown possible, giving rise, however, to a
'compressible flow' in which there may be large variations of density due to
variations 1n temperature caused by the heat addition, but variations of pres-
sure are too small to cause changes of temperature and density. This fact
limits the 'compressible flow' to Mach\pumbers at which normal compressibility
effects are negligible. The identity of streamlines and pressure 1in the two

flows, implies the i1dentity of momentum flux also.

The analogy may be used to determine compressible flows at low Mach
number with energy addition, by first solving an incompressible flow problem
with fluid addition. The appreximation so introduced 1s precisely that which
is always associated with the use of incompressible flow calculations for low
Mach number flows. The 'heat flap' problem subsequently discussed, concerns a
high lift device used at landing and take-off when speeds are low, so that the
use of the analogy would appear justified. The following discussion is
expressed i1n the geometry of flow past an aerofoil as will subsequently be

required, although the analogy is of far more general application.



22 Justification of the analogy
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A full justification of the analogy would require a proof that a com—
pressible flow with energy addition exists which has streamlines and pressure
distribution identical with those of the incompressible flow. This can be
done following the method of Broadbentl, but here, existence is assumed and a
suitable energy source distribution obtained by identifying a limited set of

properties of the two flows,

Fig.l depicts the flow about a twodimensional aerofoil section. Only two
streamlines are shown, and they are supposed to include the streamtube S,
Station O 1s supposed to be far upstream, and station 1 far downstream.

Between stations 2 and 3 and in the tube S, 1is a region R which is
supposed to contain the source and body force distributions, In order to
present a simple physical theory, 1t 1s supposed that the streamtube S 1s
sufficiently thin that the flow within may be assumed uniform across any
section. In the incompressible flow the region R contains a fluid source
distribution so that the streamtube is thicker far downstream of R than it

1s upstream. An identical thickening of the streamtube in the compressible

I

case can be achieved by heat addition {which raises the temperature and

reduces the density) although to satisfy the requirement that the momentum flux

%)

should be the same in both flows, 1t can be shown that mechanical energy (or
equivalently, momentum) must also be added, by means of a body force

distribution.

1]

Suppose A = thickness of tube 8§
m = total strength of fluid source distribution in the
incompressible flow
Q = total strength of energy source distribution (heat and
mechanical energy) in compressible flow
= pressure

p

U = flow speed

Y = ratio of specific heats of stream fluid
p

= density.

The suffices 0, 1 are used in both flows to denote conditioms at stations O,

@)

1. The extra suffices i, ¢ are used to distingulsh incompressible flow and

compressible flow variables. R
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Iin the 1ncompressible flow, conditions far upstream and far downstream

are the same, and density 1s the same everywhere, hence:
Pi. T Po 1. = Y% Pl = Po T ?
At all corresponding polnts in the two flows, the pressures are equal, hence,
in particular,
Plc 7 Pii :

A consequence of the correspondence between the pressure fields 1s that the
Mach number of the compressible flow must be approximately the same as that of
the incompressible flow (1.e. very small)., Variations of density in the com-
pressible flow are therefore only associated with variations in temperature
and do not arise from variations in pressure, The variations in temperature

are due to energy introduced into the compressible flow through the energy

source distribution.

Since the streamline patterns of the two flows are identical, the stream-
tube thickness A 1s the same, for each flow, at every station, and in

particular,

A = A = A (say)

The equations of conservation of mass for the two flows read:
pOUOAO = pOUoA1 - pgm (incompressible)

pOUOA0 = plcuchl (compressible) .

The equation of conservation of energy in the compressible flow reads:

p p
L v Pe, 2]
oUoho {5 =T 5= * % P11eM (T 0. - -

The last three equations express conservation of guantities along the tube 8.
This is clearly reasonable in the case of mass, and is justified for energy on

neglecting diffusion.

The momentum flux at all corresponding stations is to be equal in the two

flows, and in particular, at the downstream station:
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All the downstream variables may be eliminated between the forgoing equations

P
_ Y 0 12 ( m
Q = pmi—— —+ ;U M2+ s
0 {Y L pq é} U2

an expression which relates the fluid source strength m to the energy source

and there follows

strength Q and involves only known or controllable quantities. In general,
the energy Q will be mainly heat energy. In fact, it can be shown that if
the local flow speed in the source region is U, the pressure p, and the

density p, the energy added as heat 1is

m
Q, = pm—Y—2=£ (? + )
H 0" v lop UOAO

and the energy added as mechanical energy 1is

_ 112 m
% ozl (2 + g%

00

The mechanical energy component divided by the heat component 1s thus equal to

(iUzﬁ/(§_%—T'§) = ${y - l)M2

where M 1is the Mach number. Only flow at low Mach number is under considera-

tion so that this ratio 1s small. Hence the rate of input of heat QH may be

accepted as a good approximation to the total energy input Q. Similarly, 1t 1s

clear that:

- X BV o+ 3y - DM

Q v - 1 Po™ (% * oA ) [1+ 4y 1)M0]
00

M

only m and upstream variables, and will be taken, in subsequent applications,

as the approximation for both Q and QH:

Q = Q = I P.I (? + —£L~> .
H y~-1"0 UOAO

h = upstream Mach number). The leading term of this (neglecting MO) involves

i»)

il



")

*

1}

1)

LTI

3 FLOW ABOUT A FLAPPED AEROFOIL SECTION

3.1 A family of flapped aercfoil sections

It 1s assumed that the 'heat flap' effect under discussion may be
exhibited by any reasonably realistic aerofoil with variable flap deflection.
The analogy discussed in the previous section leads to a twodimensional, incom—
pressible, irrotational* flow problem (for which solution by complex variable
techniques is standard) and so it 1s convenient to employ profiles which can be
mapped by a simple conformal transformation on to one of the geometrical shapes
for which the flow equations can be solved by an elementary technique (e.g. a
cirele)., It 1s necessary, then, to determine a family of profiles in this
class which may reasonably be thought of as one aerofoil under various condi-
tions of flap deflection. This 1s done in Appendix A. Each profile 1s defined

by the parameters:

L = chord length of wing from leading edge to the knee of the flap
§ = ratio flap chord length to L
o (on rad = flap deflection angle)

£ = 'thickness parameter' - see Appendix A

.

and the profile so determined 1s denoted P(L,8,a,c)., Variation of the para-

meter o 1is supposed to provide the required variation of flap deflection.

The profile is obtained from the circle C{(e) in the complex z-plane,
having centre the point =&, and radius 1 + ¢ (C(e) thus passes through the
peint ¢ = 1). The region exterior to C{g) 1is denoted D(e), and 1s mapped
onto the region exterior to P(L,8,a,e), regarded as lying in a complex

z-plane, by the mapping For brevity, the arguments of P, C and D,

F .
L,8,n
and suffices of F will often be dropped. The details of F are given 1in

Appendix A and Figs.l4 and 15. The properties pertinent here are:

(a) F 1is conformal throughout D except at the point ¢ =1 (¢ > 0)
(b) F(Q) = L exp(~-iam) (trailing edge)
(c¢) F'(g) 0 as ¢ ~1
(d) F(g) > as g+«
(e) F'(r) » a constant, A as [ - «,
The profile is located in the z-plane with the knee of the flap at the origin

and the main wing profile along the negative real axis.

* The incompressible flow 1s 1irrotational, but rotationality is introduced in
the compressible flow by the transformation.
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3.2 The incompressible flow problem

With a conformal mapping as quoted above, any incompressible, 1rrota-

tional flow in the profile plane 1s simply related to an incompressible,

o

irrotational flow in the circle plane. The precise relationship is given 1in
Appendix B, together with a direct determination of the circle plane flow.

The profile plane flow is uniquely determined by the following requirements:
(a) The zero normal velocity condition on the aerofoil.

(b) The condition at infinity - the velocity must approach that of the

free stream.

(c) Since the flow region 1s doubly connected, a condition fixing the
circulation around the aerofoil - this 1s provided by Joukowski's

hypothesis.

(d) The existence of certain flow singularities - sources, doublets,
etc., or distributions of source. In this Report, only sources and

source distributions are introduced.

On the basis of Appendix B, it 1s thus possible to determine all

an

characteristics of the flow around any quoted profile P for given far-flow

conditions, and fluid source distributions. In particular, the following may

)]

be calculated:

(a) Lift coefficient C, = total 1ift force .

L 2
N
. P~ Py v Y
(b) Pressure coefficient C = 5 = 1 - T (by Bernoulli's
fp U 0
00
equation).
Here, ¢ = total chord of aerofoi1l = L(1 + §) for o« and ¢ small
U = local flow speed UO = U(w)
P = local pressure Py = p (=)

Po ™ undisturbed density = constant density of incompressible flow.

The 1ift force mentioned here may be calculated as OOUOK (¢ = eirculation).

There is really another term representing the force directly on the source

*)

distribution, but as this 1s of the order of magnitude of the total source

strength (which is small 1n all applications) it is negligible. Similarly,

fa}

the drag is modified by an extra small term. The coefficients CL and C

may be applied directly to the analogous compressible flow with heat addition,

as discussed in section 1.
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Plan tour numerical investigation

|
In the next section, the following cases are examined numerically using

the results just set up:

(a) A profile P(L,é,ao,a) under certain standard conditions at
winfinity, with a maximum adverse pré;sure gradient on the flap of c®
and lift coefficient CE 1s taken as a datum condition, which- for
realism would be chosen to represent the 'critical' situation where flow
over the flap is on the point of separation (possibly determined by

experiment),
This case will be used to define:

(i) A lift coefficient which 1s the theoretical maximum obtainable

by the flap mechanism under flow conditions with no recirculation.

(11) A maximum adverse pressure gradient on the flap which can be
withstood by the boundary layer (it is assumed that the maximum
tolerable adverse pressure gradient varies little over the length of

the flap).

(b) Another profile P(L,8,a,e) with a > o’ under the same conditions
at infinity. 1In the absence of sources, this profile leads to a flow
with a maximum adverse pressure gradient on the flap larger than ¢° so
that separation is predicted by the above criterion, recirculation occurs
and the solution 1s invalidated. However, the solution will imply a 11ft

coefficient C1 > CE. If now a heat source distribution 1s devised which

modifies the f%ow 1n such a way that the new maximum adverse pressure
gradient on the flap 1s G <G° and the lift coefficient is

Cp (CE <:CL <:Ci), 1t will have been shown explicitly that greater 1lift
can be achieved using heat as a 'catalyst' to keep the boupdary layer

attached. It remains
(1) to determine suitable heat distributions

(11) to characterise the results of (b) i1n some way which will
enable judgments of efficiency of the 'heat flap' to be made (com—

pared with other high l1ft devices).

Determination of suitable source distributions

'

The determination of suitable fluid source (or equivalently heat) dis-

tributions 1s governed by three considerations:
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(a) the requirement to ensure ¢ < G°
(b) the requirement CL >'C:
{(c) the need tu add heat over a streamtube sufficiently thick to ensure
that the factor 2 + m/UOAO in the expression for Q the required heat

addition (section 2.2) 1is not too large.

It is convenient to work initially in the circle plane {f-plane) and to des-
cribe the source distribution by polar coordinates (r,9) defined by

£ = r exp(1p) - ¢ (that is with respect to the centre of the circle C(e) -
Fig.2). The corresponding profile plane distribution can be obtained by the
transformatijon F and it is convenient to use coordinates (h,s) shown in
Fig.2; s 1is the distance around the upper surface of the profile from the
trailing edge to the foot of the profile normal passing through the point 1in
question; h 1is the distance from the profile aleong the profile normal. The
system 15 only well defined in the unshaded region of Fig.2 but all points of

interest are in this regiom.

Consideration (a) essentially governs the distribution in the s-direction
and is not very semnsitive to the precise h-distribution. Consideration (c)
affects the h-distribution only. Consideration (b) restricts the total source

strength but is not strongly related to the spatial distribution.

For the purpose of calculation it 1s very convenient to regard the fluid
as being added in point sources, but this is inconsistent with requirement {(c)
since in this case, Ao = 0. Nevertheless, it is reasonable to suppose that
the 'heat flap' effect is not strongly dependent on the h~distribution and so
a calculation using point sources would differ little from a calculation using
the same total scurce strength in a distribution smoothed out along the profile
and over a band of non-zero thickness. This assumes that the point source
distribution is located at a sufficient distance from the profile to ensure
that its discrete nature does not cause violent fluctuations in the pressure
gradient on the profile. 1In the sequel point source distributions are used to
approximate continuous distributions. One continuous distribution is con-

sidered directly.

The s-distribution is governed by the requirement to reduce G to a
value no greater than c°. Suppose an existing flow pattern arising from the
free stream and some source distribution is modified by the addition of a
single new source (or concentrated source reglon) near the point z*, The

sltuation of interest occurs when:

)

.y

)

.}

fa)
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(a) Both modified and unmodified flows have no stagnation points along
the upper surface of the profile. 1In other words the sources are not

too strong.

(b) The new source 1s added somewhere in the region above the upper

surface of the flap.

The corresponding situation in the circle plane 1s shown in Fig.3. It 1s
evident that the effect of superimposing the additional velocity distribution
associated with the new source on the existing distribution, is to reduce the
velocity gradient close to g* = F-l(z*). A similar effect occurs in the
profile plane. Thus close to 2z* the adverse pressure gradient 1s also
reduced although 1t 1s likely to have increased elsewhere.; This suggests the
possibility of adding heat in a suitable distribution to reduce the adverse
pressure gradient where it 1s most serious at the expense of i1ncreasing it

where 1t is less significant.

In the subsequent numerical work, the value of r at which point sources
are added 1s arbitrarily selected and then suitable 6-distributions are
obtained either by trial and error or by a systematic method given in
Appendix C. Likewise, for the continuous distribution, the r-dependence is
fixed by choosing the distribution independent of r over a range
l1+e¢<asSrsb, and zero for other values of r, The 6-distribution 1is

obtained by trial and error.

3.5 The treatment of point source distributions

When a point source distribution is considered, 1t is necessary to assign
to it a non-zero value of AO. The justification for this is mentioned 1n the
previcus section. The actual wvalue of AO selected 1s a matter of choice, but
clearly the smaller 1its value, the more reasonable is the supposed relationship
between the point source case and its continuous equivalent (and the more
reasonable is the discussion in section 1). On the other hand the larger the
value of AO the smaller 1s the factor (2 + m/UOAO) in the heat consumption
Q@ and hence the more efficient will the heat flap apparently be. Suitable
streamtube thicknesses will also be affected by considerations of temperature
rise and fuel to air ratio which might lead to combustion. It 1s evident that
only the order of magnitude of Q@ will come convincingly from this sort of

calculation, and so any reasonable value of A. will suffice. In all the

0
point source distributions subsequently considered, the sources lie at a mean
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height h#L (with an error of no more than 107) and so it would appear reason-
able to select a streamtube of upstream thickness AO = 0.2h*L which extends
equal distances above and below the mean line of sources. The tube thickness
in the neighbourhood of the sources may then be shown to be of the same order
of magnitude as the varlation in height and the tube lies strictly cutside the
profile. The crucial factor 2 + m/UOAD 15 not strongly dependent on the
choice of 0.2. Any value giving rise to Ay E'm/UO 1s suitable. A typical
value for m/U0 subsequently obtained ts 0.01 and h* 1s 0.03 so that 1f

A = ¢h*L, any value of ¢ 2 0.1 will not alter the final order of magnitude.

3.6 Parameters for the heat distributicns

The two significant features of the system modified by increasing flap
deflection, and adding heat are the extra lift obtained and the heat added.
The former 1s clearly expressed by the increment in lift coefficient
CLQ = CL - CE. The heat addition may be conveniently expressed as a specific

fuel consumption parameter CF defined as:

weight of fuel consumed by the 'heat flap' per unit time
additional lift obtained.

It is necessary to introduce a suppose calorific value H for the fuel (units

of energy per unit weight of fuel).

Suppose a particular heat source distribution involves a total heat addition

rate Q per unit span

Y m
Q = ——— P (2 + ————)
Y 1 "0 UOAO

If U0 and L are taken as velocity and length scales (L 1s the chord length

of the profile from leading edge to flap knee - the total chord c is approxi=-

mately equal to L(1+8)), 1t 1s clear that m « UL, The rate of fuel consump-

¢}
tion 1s Q/H and the additional lift developed 1s %pOUgcCLq, thus:
: ) 20 i YP, 2m(2 + m/UOAO)
F 2 o HU (y - 1)U_cC
QOUOCCLQH 070 0 LQ

in which the square brackets contain a dimensionless quantity independent of

velocity and length scales. CF has dimensions 1/time, and UOCF is independent

of velocity and length scales. If a total operating time t 1s assumed per

sal

w

n

L}

*)

)



)

%)

L]

»)

15

flight, the quantity tCF measures the total extra fuel load divided by the
extra lift (it is still inversely proportional to UO). If, for a realistic

value of U0 this is small, whilst C is positive, the effectiveness of the

LQ
'heat flap' would have been shown, as far as is possible by the present
analysis. Comparison can be made directly with specific fuel consumptions for

other high 1ift devices {e.g. blowing flaps or lift engines).

In numerical work, SI units are used and a calorific value of
4.4 x 106 J/N is assumed for H. The operating time is taken as t = 200 s.
Values of UOCF’ UOtCF, and tCF are tabulated, the latter with U0 = 60 m/s.
4 RESULTS AND DISCUSSION

4,1 Notation and layout

All the symbols in this section are defined in section 3. Results for
each solution are displayed in a combination of graph and table, Pressure
distribution curves have - Cp plotted against s over a range beginning at
the trailing edge and running along the upper surface to well past the knee of
the flap. Where a pressure distribution includes the effect of sources, the
corresponding distribution before sources were added is shown for comparison.
Point sources are depicted on graphs by a dot at the appropriate value of s,

the information h, r, 6, m being given in a table.

4.2 The datum condition

The datum condition is taken to be the profile P(1.0,0.25,0.05,0.1)
with U0 = 1 and angle of attack 0.057 rad (= 90). The values of the various

parameters of the profile are thus:

L =1
§ = 0.25
" = 0.05 (flap deflection angle, also about 9°)

g = 0.1.

The aim of the calculation is to determine initially CE and subsequently con-

sider CLQ and UOCF for various source distributions. All these quantities

are independent of Us and L which one is thus at liberty to take as unity.

Addirionally, is dimensionliess whilst has the dimensions of length

CLq YoCr
and will be expressed in whatever units of length are used in the constant
quantities, H, Py Pp- The profile is depicted in Fig.l7a, and the pressure

distribution for no additional sources is shown in Fig.4. The adverse pressure
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gradient G(s) 1is the positive slope of this graph. Very close to the
trailing edge, G is large (G~ 9 for s ~ 0.002), it then falls to values

|y

of order 3, then rises to a local maximum of 6.16 at s = 0.2509, which is
very close to the flap knee. Later G becomes negative, and is only large .
and positive again at and beyond s * 0.6 which is outside the present region
of interest. One must discount the large G-value at s ~ 0,002, since such
values inevitably occur on any non-symmetrical aerofoil., This is essentially
admitting that a separation does occur very close to the trailing edge and
trusting that the inviscid solution outside the boundary layer is not appre-
ciably affected other than in a thin wake extending back from the trailing
edge. This kind of problem is discussed by Smith4 although it is not yet
possible to give a final conclusion on the importance of the trailing edge
separation in distorting the flow further upstream. The value to be taken

s}

as G, the maximum tolerable adverse pressure gradient on the flap, is 6.16

which occurs close to the flap hinge. The lift coefficient in the datum

condition is C: = 1.67.

4,3 The first comparison case

H)

Consider next, the profile P(1.0,0.25,0.,075,0.1), with the same

upstream velocity U0 = 1 and angle of attack = 0.05y rad. The only change

is that the deflection angle of the flap becomes 0.0757 rad (= 13.50). The

'a}

profile is depicted in Fig.l7b. In the absence of sources, the maximum
adverse pressure gradient on the flap is 10.34 (so that separation is pre-
dicted by the criterion previously set up) and the lift coefficient is

Ci = 1.96. A selection of source distributions which will reduce the
maximum adverse pressure gradient on the flap to a value no greater than c°
(= 6.16) is presented in Figs.5-9. Some of the distributions are obtained by
trial and error, others by the systematic method (quoting a maximum tolerable
adverse pressure gradient of 6.16 in one case and 5 and 3 respectively in the
other two cases, to show the possibilities of the method). The relative

efficiencies may be judged from the following table:

in
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Figure No. Max. adverse

(te) trial and pressure C UOCF UOtCF tCF
error gradient LQ 2 -

(s) systematic on flap (/s ™) (n/s) (UO 60 m/s)
5(te) 5.65 0.25 0.014 2.8 0.046
6(te) 5.56 0.21 0.047 9.4 0.156
7(s) 6.16 0.26 0.008 1.6 0.027
8(s) 5.00 0,245 G.014 2.9 0.048
9(s) 3.00 0.16 0.104 20.8 0.346

In calculating these figures, the following values have been used:

y = 1.4
= 4.4 x 10% /N
t = 200 s
P = 10 N/m2
Py = 1.2 kg/m3
AO = 0.2Zh*L

The most efficient of these solutions is that described by Fig.7. For this
solution, a 15.5% 1increase in lift is achieved by a heat addition described by

a specific fuel consumption at 60 m/s of 0.48 1lb wt fuel per hour per 1lb of lift

force. This figure is quite comparable with the specific fuel consumptions for

e.g. fan 11ft engines,

4.4 The second comparison case

Consider the profile P(1.0,0.25,0.1,0.1), with the same upstream
velocity Uy = 1 and angle of attack = 0.05% rad. The only change is that the
deflection angle of the flap has been 1increased again to O.lm rad (= 180). The
profile 1s depicted in Fig.l7c. In the absence of sources, the maximum
adverse pressure gradient on the flap is 15.58 (so separation 1s predicted) and
the 1i1ft coefficient Ci = 2.25. Three source distributions which will each
reduce the maximum adverse pressure gradient on the flap to a value no greater
than G° (= 6.16) are presented in Fi1gs.10-12. The efficiencies may be judged

from the following table:
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Figure No. Max. adverse
(te) trial and pressure c UOCF UOtCF tCF
error gradient LQ 2 U =
{s) systematic on flap (m/s™) (m/s) ( 0 60 m/s)
10(te) 6.15 0.47 0.046 9.3 0.155
11(s) 6.16 0.50 0.019 3.8 0.063
12(s) 5.00 0.47 0.032 6.3 0.105

Here the most efficient sclution is that described 1n Fig.ll. A 30%
1ncrease in lift is achieved by a heat addition described by a specific fuel

consumption at 60 m/s of 1.14 1b wt fuel per hour per 1lb of 1lift force,

4.5 Continuous source distribution

Consider the profile used in the first comparison case (section 4.3)
with an equivalent fluid source distribution defined in the circle plane as

u(z*) where:

(a) uw#0 only in a region R(circle) consisting of points

ck = (r,0) with 1.15 <r <1.25 and 33° <8 <52.5°.

(b) In R(circle), u 1is a function of 8 only and

0.0044(8 - 33)2 33° < g < 45°

u(s)
1.3 - 0.025(6 - 50)° 45° < p < 52.5°

u(e)

{6 measured in degrees in the calculation of p). This distribution is shown
diagrammatically in Fig.13. The corresponding source distribution in the
profile plane occupies an approximate region R(profile) consisting of points
(h,s) with 0.12 <s <0.26 and 0.02 <h <0.05, which extends in a narrow
band above the aerofoil from a point about half way along the flap to just past
the flap knee (Fig.l3). Data for this source distribution is also shown in

Fig.l3 and in particular

: Max. adverse pressure gradient on flap = 4.19
CLQ = 0.25 ,
UOCF = 0.032 m/s
UOtCF = 6.4 m/s

tCF (UO = 60 m/s) = 0,11

m)

!

L}

-
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Here a 12.5% increase in lift 1s obtained by heat addition with a specific fuel

consumption at 60 m/s of 1.92 1b wt fuel per hour per 1b of Lift force.

4.6 Energy addition in practice

It was noted 1n section 2.2 that the method of analysis used implies that
the heat addition 1s accompanied by a definite amount of momentum addition. At
low Mach numbers the total energy supplied 1s only very slightly greater than
the part supplied as heat, but although the supply of heat alone may be
relatively straightforward the supply of momentum as well may be more difficult,

since some form of propulsive system would be needed.

It is therefore of 1interest to speculate on the possible effect of adding
heat alone. The streamlines would then be affected and in view of the momentum
deficit one would expect the streamtubes to get locally fatter. This may
slightly change the optimum position of the heat source, but qualitatively the
general effect should be similar to that found in the analysis, and may even
be rather more powerful. No doubt this point would best be resolved by an

experiment.
5 CONCLUSIONS

The analysis of the preceding sections together with the numerical

examples has demonstrated:

(a) That a certain family of twodimensional flapped aerofoil sections can be
constructed using a family of conformal mappings of a circle. The mappings are
inspired by the degenerate case, when the resulting aerofoil is a 'skeleton'

consisting of a flat plate and a flat plate flap.

(b) That for such an aerofoil the upper surface pressure distribution shows a
significant adverse pressure gradient near the flap knee whose magnitude

1ncreases with increasing flap deflection.

(c) That by adding suitable fluid source distributions 1in the outer flow, the
adverse pressure gradient for 13.5° and 18° of flap deflection can be made as
good as (or better than; that for 90, with a consequent increase of up to 0.5
in usable CL.
(d) That on the present theory, the fluid source distribution may be replaced
by a certain heat source distribution, without altering the effect on adverse

pressure gradients. In the best example considered, an increase of 0.26 1n

CL was achieved by increasing the flap deflection and adding heat described by
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a specific fuel consumption parameter of value 0.48 1b wt fuel per hour per 1b

19

of lift force. This figure is comparable with the specific fuel consumptions

of other high lift devices {(e.g. fan lift engines).

[\l

In view of these results, it is suggested that an increase in the usable
CL of an aerofoi1l with flap should be possible by adding heat tec the external
flow above the knee, and so reducing the local adverse pressure gradient and
delaying separation. Since the main effect of the heat addition is fairly
local it is not thought to be important that the aerofoil used in the examples
is untypical of full scale practice, at least in order to demonstrate the

principle.

The attraction of the 'heat flap' suggestion is that the heat has a role
best described as that of a 'catalyst'. The extra 1ift 1s not a direct result
of the heat addition (by way of some sort of thrust) which might be expected
to require a very great deal of heat, but is strictly associated with an
increase in flap deflection. The heat makes the increase possible by retain-

1ng an attached boundary layer.

If a practical application is envisaged, however, a number of points -

need further investigation, e.g.:

(a)} more practical aerofoil shapes

)}

(b) the effect of heat on the boundary layer

(c) the modification of the results for finite Mach number

(d) possible use in conjunction with a slotted flap

(e) the practical problems of heat addition in the external flow and of a
small amount of momentum addition. If it is not possible to add momentum,
what is the modification of the 'heat flap' effect by omitting it?

(f) a project balance sheet in which possible gains through using a 'heat

flap' are offset against the penalties introduced by it,
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AEEendlx A

CONFORMAL MAPPING OF THE EXTERIOR OF A CIRCLE ON TO
THE EXTERIOR OF A FLAPPED AEROFOIL SECTION

Al Basic idea

A skeleton aerofoil consisting of a flat plate with a deflected flat plate
flap is first considered, and its outline, which may be regarded as a 'skeleton
polygon' (Fig.l4a), is mapped onto a unit cirele., This 1s done by first mapping
the exterior of the polygon onto an upper half-plane by a Schwarz-Christoffel
type transformation (Fig.l4b), and then mapping the half-plane onto the exterior
of a unit circle (Fig.l4c) by a M8bius transformation. These transformations
can be arranged so that the points at infinity in the circle and profile planes
correspond, and the trailing edge of the profile is mapped onto the point 1 in

the circle plane.

Flapped aerofoils of non-zero thickness are now considered by examining
the inverse i1mage under the above transformation, of the circle C(e) (Fig.l5a)
obtained by 'clothing' the unit circle. This inverse 1image turns out to be a
'clothing' of the skeleton polygon. Stages in the inversion of the transfor-
mation are shown i1n Figs.15b and ¢, and some resulting profiles appear 1n Fig.17.
In this Appendix the notation of Figs.l4 and 15 1s made standard, that is the
complex variable =z vrefers to the profile plane, w to the intermediate plane,

and ¢ to the circle plane.

4.2 The mapping w —» z

A.2.,1 General remarks about Schwarz—-Christoffel transformations

A mapping is required of the region Im[w] #0 of the complex w-plane
onto the exterior of the profile P0 (Fig.l4a) which is conformal except at a
set of four real points (which are to be mapped onto the vertices (1), (2),
(3), (4) of the skeleton) and at some point Vg with Im[wb] >0 (which 1s to
be mapped onto the point at infinity in the z-plane). The point W,y must be
introduced explicitly since ©, (= = in the z-plane) lies in the flow region
of the z-plane, and further it is required that Im[wo] # 0 because © is

not a boundary point of that region.

This 1s a special case of the problem of mapping the region Im[w] >0
onto the exterior of a finite, simple n~sided polygon in the z-plane, with
vertices at ZysZny wee Zoo viewed 1n the clockwige direction, and with

corresponding angles Oy TrCoTs oue anw rad, (al + a2 + ... + an = 2).
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This problem 1s to be distinguished from the more standard Schwarz-Christoffel
problem, which concerns the interior of the finite n-gon. Many texts only
treat the standard case, but see Markushev1ch5 {(for example) where the three

cases <« an exterior pornt of a finite polygon, = a vertex of an infinite

polygon and o an exterior point of a finite polygon (standard) are considered.

In the first case, he demonstrates that 1f f 15 a mapping with all the

properties demanded above then it must satisfy:

s}

o,

A (w - a;) :
1=1

(w = w) = 5y

f'(w) =

where:

(a) The a are the inverse images under the mapping £ of the
corresponding z . They are all real, and a; >‘a2 > .. >’an or cyclic

permutations of that statement.

{b) Any three a ~ may be arbitrarily selected (as long as the ordering
18 respected) and the rest are then uniquely determined by the propor-

tions of the sides of the polygon.

(c) iy (the inverse of image of <« under f) satisfies Im[wo] >0
and (important) a condition which ensures that f 1s a one-valued func-
tion on Im[w] > 0. This condition 1s that £' should have no residue
at any point in the upper half plane. The only point of concern is Wy»
and so this condition is simply that the coefficient of 1/(w - Wb) in

the expansion of f' about w be zero.
P 0

(d) The complex constant A is determined by the overall scale and
orientation of the polygon. Its position in the z-plane fixes a con-

stant of integration.

By applying a certain Mbbius transformation to the w-plane, 1t may be
mapped onto a w¥—plane (say) in such a way that the two upper half planes
correspond, and any one of the a;, 1s mapped onto gk This transformation
may be combined with f to produce a mapping f* of the wk-plane onto the

z-plane, satisfying:

w

W

w

fa
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n-1

oL

A% (w* - a%) *
1=1

f*'(w*) =
G = ) 2ux - i)

where 1t has been chosen to map a, onto @k and the notation:

’ W Wk, A > A%

has been used. In the sequel the w*-plane is used directly and the #*

suppressed.

A.2.2 Transformation of the skeleton polygon6’7

An appropriate form of equation (A-1l) for the skeleton polygon 1s

£ (w) Alw - D (w + X)w

(w - wo)z(w - ‘770)2

23

(a-1)

(A-2)

where an = flap deflection angle, and the following correspondences have been

chosen: -

vertex (1) > 1
vertex (2} =+ o
vertex (3) - -X

vertex (4) > O {see Fi1g.14) .

The conditions {(a)-(d) of A.2.1 become:

(a) X >0 (images of (1), (2), (4) have been fixed).

{b) X 15 determined by the parameter ¢ = ratio of flap chord length

to L (Fig.lé4a).

(¢) Closure condition (see below).

{(d) A 1is fixed by the parameter L and the orientation of the polygon.

The integration constant 1s fixed by noting that £(0) = 0, so that

W

-
f) = A -[ (t - D(t + Xt & .
—w e -’
(t Y 0

0
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Remarkably, this 1ntegral can be performed analytically, provided the closure

w

condition (c¢) 1s i1mposed. The result of the integration is here stated, and

the condition (c) deduced from a verification by differentiation.

"

Consider
(= - A LAt
(W = wyd(w - w,)
so that
2 0 - 1 ~a - -
: A I:W "1+ a (wo + wo) i T wowo]w
f'(w) = .

2 - .2
{w - wo) (w - wo)

This is precisely of the form of equation (A-2) 1f:

7
— a -
1-x = 1 +a (WO + wb)
Y (a-3)
_ 1l ~a = s
and X = T T a waO
.

These two equations amount to one complex condition on L when X is

eliminated, and this 1s the closure condition {(c) previocusly discussed. The

()]

condition £(0) =0 1is respected.

A.2.3 Matching parameters

The remaining constants are fixed by the demands: £(1) = - L and

f(- X) = 6L exp(- iam). The first becomes, on applying the closure condition
(A=3):

- An(l - a)/(1 + a)
(1 —a) - (1L + o)X

= L . (A-4)
The second, after similar manipulation becomes:

- Aa(l - (=X :
aEl + Z;(- %i —/§§x+ 2 - -4 exp(- iam) . (A=5) ¥

(s
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After division of (A-5) by {(A-4), there obtains:

X (L - o) - (1 + )X

I -ogx -~ a v - °

or, denoting

o

(L -a)/(1+a) = B , (B=-XMBX-1) = &X (A-6)

Graphical analysis (Fig.l16) shows that this equation has a unique solution which
satisfies 0 < B <X <1/8*, for all positive §, and 0 <o <1, The solu-

tion may be obtained numerically.

Finally from (A-4),

A = L1 +a)[@Q=-0a)=-0+ )X/l ~a) = =LA +a)(B -~ X)/aB

*

The whole transformation 1s thus determined,

A.3 The mapplng ¢ > W

This is a standard, M8bius transformation defined by the demands that

Y and mE are to correspond, and the point w = - X 1s to correspond with

z = 1. The required mapping is

- Kw
v o= g = —Q_ 0
g . - K
where K = (X + WO)/(X + 50).
A.4 Summary
The exterior of the circle |g| = 1, 1s mapped onto the exterior of the

polygonal curve P by the mapping fg, where

O’

2 2
Lray , (0+a) §1 - X)

* From equations (A-3), {Im[wO]}2 ol

[s)
It 18 clearly necessary that this expression be positive, and the condition

for this may be shown to be B <X <1/8.
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, - gwo - Kwo

At T+ o)

£(w) (w - WO)(W ~ GO)

X 1is the unique solution satisfying B <X <1/8 of

6" = (B -X/(X -1) ,
and WOGO = X/B , vyt ;0 = (1 -XA+u)/e , Imlw,] >0
A = -L(1+a)(B-X)ap ,
B = (1 -a)/Q+ea) ,
K o= (X +w)/(X+ GO) .

A.5 The 'clothed' aerofoil

The final step i1n constructing the aerofoil 1s to examine the image
under F = fg of the 'clothed' circle C(e), defined to have centre at
¢t =-¢ and radius 1 + €, so that it passes through ¢ = 1 but otherwise
lies strictly outside the unit circle. This means that the image curve will
be closed, and will have a continuously turning tangent except at the point
corresponding te 7 =1 (the trailing edge) where there is a singularity
the same as that of the skeleton., The trailing edge angle of the 'clothed'
aerofoil will thus be zero. Beyond this, it is necessary to turn to computa-
tion to discover the detailed shape. An aercfoil so produced, is defined by
the parameters L,8,c,£ and this profile is referred to as P(L,8,a,c).

Some resulting profiles are shown in Fig.l7.

A.6 Derivatives of the transformation F

Aw - 1) (w + 0w K0 = %)

(w - wb)z(w - 50)2 (¢ - K)Z

(a) F'(z) = f'(wg' (D)

-0
- - AW - D+ Xw 5 when the results of
K{w

o~ Gb)(w - 50)

(A-5) are applied. In particular,

W

(l

»

L]

I
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and

(b) As reguired 1in Appendix B,

j%-[log F'(2)]

F'(1) =
Alw
F'(eo) = 0
K(wb
= {say)
= 1 + 1 -
w - w+ X
w - w + X

- 1wy + X)waa

£ |@

fie

) T
- Wb_ dg
ﬁ.--—
2 Ky = wg)
) (r-r)?

27
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THE RELATIONSHIP BETWEEN PROFILE PLANE AND CIRCLE
PLANE FLOWS, AND THE BETERMINATION OF THE LATTER

B.1 The relationship

According to incompressible, irrotational, inviscid, flow theory, the
flow around the profile P(L,8,x,e) fixed by the data discussed in section 3.2
may be inferred from a certain flow 1in the region D of the g-plane, using the
method of complex potential. The complex potential W(z) 1s analytic except
at singularities of the flow, and satisfies dW/dz = V(z) where V 1s the
complex velocity and the bar denotes complex conjugate function. The function

Q(z) = W(F(z)) 1is the complex potential of a flew in D which satisfies:
(a) The rigid surface boundary condition on C(eg).

(b) If wvw(z) = dfifdy (= complex velocity in the z-plane) and

V(z)} > V

o as z + o, then v{(g) -~ Vo = AV

o a8 T 7=,

(c) The ¢ and 2z plane flows have the same circulation «k and the same
source-type singularities and distributions (of same strengths) at correspond-
1ng points by the mapping F. In the case of a source distribution u(g) 1in
the ¢-plane, the corresponding z-plane distribution is m(z) = p(F_l(z)).
Higher order singularities have a more complicated relationship but are not

relevant here.

This I-plane problem may be solved by the use of the circle theorem (see e.g.
Ref.8) or, in the case of source flow, the method of images. The circulation
is fixed by Joukowski's hypothesis which requires the velocity to be zero at
£ =1, When ? and Vv have been determined, the corresponding gquantities

W and V follow by the relations:
W(z) = () V(z) = V()/F'(5) (F(g) = 2)

B.2 The functions Q, v and «

(a) No singularities in the free stream

Ll—:—523-+ (v

Q(z) = volt + e) + Yo T e o

- GO)(l + g) log (¢ + €)

a function to be referred to as Qf(c) (f = '"free of sources'),

{x

Ll

‘.

}



[ 3]

Appendix B 29

2
- - 1 +¢ - f1+¢ -
V(@) = vg T v (r, T s) + (vg = vp) (z; n e) = ve(e)

¢ = 4r(l + s)Im[vO] = g

f

(b) A single point source of strength m at the point ¢* in D(e), with
Im{z*] >0

2
R, (2) + {log (z-c*) + log [“;E)— - <E*+e>] - LemE) o (1ve) tog (c+e)}

a(g) = T+e 1|
= Q.(2) + malck, ]
Vo - ;f(C) * E%.{;jé* ) (1+e)2ﬁf(;*ie)(c+€) i cia ] lf:zzlz é:z}
= if(;) + mvlg*,z]
- 2m(1+e)1m£§*J
[1-c*]
= Kg + m [ g*]

Since for Im[g*] >0, klz*] <0, the immediate effect of adding a source is

to reduce the circulation and so cut down 1lift.

(c) The complex potential for several point sources or a source distribution
consists of the basic function ﬂf(c) and a sum or integral over z* of the
functions u(z*)alc*,z], where u{z*) 1is the point source strength at [*

or source density at ¢* respectively. Similar expressions hold for v and

K

B.3 Pressure gradients

In making decisions on boundary layer separation, the derivative of Cp
around the surface of the aerofoil is required. If 8 1is the coordinate
measured around the profile from the trailing edge, the function of interest is
G(s) = - d(Cp)/ds, i.e. the adverse pressure gradient. This is calculated ag

follows:

6(s) = - dc)/ds = d(vﬁ/ug/ds i
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Suppose the point 8 corresponds to the point ¢ = (1 + e)exp(if) - € on

C(e). Treating © as a new coordinate, one obtains:
(1 + €)d8/ds = |dg/dz| = 1/|F"()I

Thus

d(VV)/de
U2+ o) [F()]

G(s)

d(vV)/de = 2Re[vdV/de]
dv/de = (1 + e)i exp(if)dvV/dg
a¥/dr = [F'(£)dS/dc - S(g)dr'/acl/I¥' ()12

= [x(z) - vd(log F")/dz]l/F'(z)

where x(z} = dG/dc.

Thus one obtains:

2 - d
G(s) = = ~5—=———1Im |exp(if)v {x - v 5= (log F')}:I
G [ { e

For the cases dealt with in section B.2, x takes the forms:

(a) 2v0(1 + e)zl(c + 8)3 - (vo - GO)(I +e)/ (g + E)z = Xf(C)

iy

*

Ll

(LY

(say) .

- 2 -
B { (z-t%)? [;1+e)2-(c*+e)(c+e) o) |1-z%| % (pee)?

= xg(0) + mxlex,cl .

(c) Xg Plus a sum or integral over z* of u(g*)xlz*,z].

The function d(log F')/d{ 1is computed in Appendix A.
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ABEendlx C

A SYSTEMATIC, NUMERICAL METHOD FCR THE REDUCTION
OF ADVERSE PRESSURE GRADIENTS

In this Appendix, the problem set up 1n section 3.3 1s approached 1in a
systematic way which may be carried out completely on a computer. The success
of the method in all circumstances cannot be guaranteed, but 1t has worked

satisfactorily in a number of cases.

A segment L of the upper surface of the profile 1s selected, along which
1t is required to reduce the maximum adverse pressure gradient to a quoted value

c°.

The segment L must not extend too far forward along the profile as it
will encounter regions where the boundary layer 1s thinner and can therefore
withstand greater adverse pressure gradients. Neither must it extend right

to the trailing edge near which numerical investigation shows that large adverse
pressure gradients inevitably exist, even for very small flap deflections. It
is assumed that the resulting separation very close to the trailing edge’ appre-

ciably distorts the external solution only in a thin wake.

The location S5 of the maximum value of G(s) on I 1is determined and
then a single point source is added in such a way as to reduce the adverse
pressure gradient at sy to G¢°. This 1s done by making use of the following
algorithm. Let the suffix u (unmodified) refer to the situation before the
source 1s added (initially u has the same meaning as f 1n Appendix B), and
the suffix m (modified) the situation after the source is added. 1If the
source has strength m and is located at z* = F(r*), (assumed to be close

to I), then:

v (L) v, (© + mvlz*,z]

X, (2) x, (&) + my [z*,z]

Substituting these in the expression for G(s) obtained in Appendix B (B.3)

one finds:

6 (s) = aglex,cl +ma [ox,2] + n’a,lch,c]

where each Al is real, and explicitly:
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~

Ay = - 2In exp(la)vu{xu - v, ;—C (log F') Ué}F'(c)|3
= G (s)
Al = = 2Im |exp(i®) {v([c*,z] {%u - Gu é% (log F'% i
+ v {x[c*,c] - vlz*,z] ad? (log F')} U§|F'(C)[3
A, = - 2Im |exp(i®)vilex,z]l {xlc*,c] ~ vic*,c] "&% (log F') /U§|F'(C)|3

Suppose now that the point s = h = 0 corresponds with

s
0’
z = (1 + g)exp(i®) - €. The procedure is to add a source at
g = (1 + ¢ + n)exp(10) - ¢ (where n 1s a preselected positive parameter
fixing the height above the aerofoil at which the source is added), Having so
fixed «¢*, the required source strength is determined by demanding

O
Gm(so) =G, or
o

2
A2m + Alm + AO -G = 0 .

. . o o]
The new adverse pressure gradient so obtained satisfies Gm(so) =G,

but 1t 1s possible that Gm(s) > 6% at some other points s 1in EI. The
process 1s therefore repeated taking as unmodified functions {u) the functions
previously suffixed (m) and adding a suitable source close to the new maximum
of Gu(s). The process is continued until a subsequent function Gm(s) is

smaller than G° everywhere on I,

The method is a relaxation process, but onewhich is so physically inspired
that a mathematical convergence proof is virtually impossible. Convergence pro-
perties are likely to depend on the parameter n and on the form of the initial
unmodified distribution. It 1s assumed at each stage that the quadratic equa-
tion has a real, positive solution. On physical grounds, one would expect this
to be true since one always has AO - ¢ >o. Certainly by adding a source of
sufficient strength, the local adverse pressure gradient Gu(so) (= AO) can
be reduced to an arbitrary extent, so the existence of one real, positive

solution is assured. To cover the possibility of the appearance of two positive

sources, a routine can be incorporated to choose the smaller (say).

The chief drawback of the systematic method is that it tends to produce
very irregular source distributions, unless, as is often the case, a small

number of well chosen sources is adequate.
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SYMBOLS

area of streamtube which encounters source distribution
chord length

circle

specific fuel consumption parameter

increment in lift coefficient due to 'heat flap'
region outside C

mapping from circle plane to profile plane
adverse pressure gradient

height coordinate above profile

calorific value of fuel

length of profile from leading edge to flap knee
point fluid source strength or distribution function
Mach number

pressure

profile curve

total heat source strength

polar coordinate 1in circle plane

source region

coordinate measured around upper surface of profile from trailing edge
streamtube which encounters source distribution
duration of use of 'heat flap', and time

flow speed (profile plane)

complex velocity (profile plane)

complex variable (intermediate plane)

complex velocity potential (profile plane)
complex variable (profile plane)

ar = flap deflection angle in radians

ratioc of specific heats

ratio flap chord length to L

"thickness parameter'

complex variable {circle plane)

polar coordinate in circle plane

circulation

lim F'(g)

‘;—Hb
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SYMBOLS {(concluded)

fiuid source distribution
complex velocity (circle plane)
density

dv/dg

complex velocity potential (circle plane)
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The additional velocities induced by the new source are
shown by arrows.There are two arrow chains:one Is

the ‘direct’ effect of the source and its image ard to
this is added an anticiockwise circulotion to restore
the Joukowski condition at the trailling edge.
Magnitude of velocity is represented by arrow length

Fig3 Effect on circle plane flow of adding a singie point source
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Far flow Ug=10 angle of attack = 0-05m rad (: 9")

Lift coefficient 167

Max flap adverse pressure gradient &:16

Fig. 4 Pressure distribution over the rearward upper
surface in the datum condition
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0

]

fay

{v

(w



.

Flap
hinge

B

O
No source

Sources as shown

0-5

Tru:ling edge

1 L L 211 AARSSS

GZNS

0.033{0-035|0- 036 0-0365]0-0376|0-028 0 osas 0-0389|0-0393|0- 039410 0392
2 | 12 L2 | 12 -2
43:5°| 45° (46-5°| 48° |49:5°

_—04

21 12| 12l 12 i-2 12
33°| 36°|37-5°| 39°|40-5°| 42°
0:002{0-002

an

Q-002]0-003|0-005/0-003

S|lo|o|T

IO-OOOS 0.0005]{0-0005| 0-G01 | 0-001

Profile P (10,0-25,0-075,04) (flap angle 13:5°)
Far flow U,=1.0, angle of attack=0-05m rad (':.' 9°)
Sources as shown

No source
Lift coefficient 1-96 1-88
Max flap adverse pressure gradient 10-34 556

Uo CF =0-047

-

Fig.6 First comparison case pressure curves

Second solution — trial and error
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Fig.7 First comparison case pressure curves
Third solution — systematic
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Fig.8 First comparison
Fourth solution
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case pressure curves
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Fig.lIO Second comparison case pressure curves

First solution — trial and error
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Fig.ISa-d Stages in constructing a flapped aerofoil:
mapping of “clothed” circle onto aerofoil

™

(&

L3}

]



.}

E /("'"

\ Y= 6x®
L/

1 /1
1/

T .
Lo y X
I g
B X Solution X

satisfies

asymptote
[—
_AX
|l vy \

asymptote

Fig.l6 Graphical solution of 6=x""(B-x)/(Bx-1)
for O<aw<! and O<B<l



d o«=00656=025 L=1, e=0-l
(ﬁap angle 9°)

D «=0075 §=025 L=I, €=0]
(tiap angle l3-5°>

| 1 [ [ 1 1 ]
__——'_-_—__-_—

_ln.-

—'z—

C «=0.1, §=0-25, L=1, ¢=0
(t1ap angle 18°)

Fig.[7a-c Aerofoil under various conditions of flap constructed
by method of appendix A

Printod ain 1 ngland for Hor Magesey s Statioscre Offree byt
Rowval Awcraft stabisshment Lanborough Dd 505710 K4 5(73

-

(s

(

(&

[L 7]

[



ARCCP No 1252 533694 65

January 1972 533694 511
53360482

Martin, J 5336947

A SUGGESTION FOR IMPROVING FLAP
EFFECTIVENESS BY HEAT ADDITION

The effect of a particular type of heat addition on the flow around a twodimensional,
flapped aerofoil section, at low Mach number, 15 mvestigated using a transformation
which enables the compressible flow with heat addition to be deduced approximately
from a certain incompressible flow with fluid addition  The ncompresstble flow may
be determined by the techmque of conformal mapping It 15 concluded that heat
addition m a surtable distribution can so reduce the adverse pressure gradient on the
upper surface of the flap that greater flap angles than are normally possible can be
employed without separation of the boundary layer (according 1o 2 simple separation
criterion) The result1s an increase in bft  The effect 1s dlustrated for a flapped aero-
fou sectron of convenient mathematical form

ARCCP No 1252 533 694 65

January 1972 533 694 511
53360482

Martin, J 5336947

A SUGGESTION FOR IMPROVING FLAP
EFFECTIVENESS BY HEAT ADDITION

The effect of a particular type of heat addition on the flow around a twodunensional,
flapped aerofoll section, at low Mach number, 1s investigated using a transformation
which enables the compressible flow with heat addition to be deduced approxmmately
from a certain incompresstble fliow with fluid addition  The icompressible flow may
be determined by the technique of conformal mapping. It is concluded that heat
addition 1n a suitable distribution can so reduce the adverse pressure gradient on the
upper surface of the flap that greater flap angles than are normally possible can be
employed without separation of the boundary layer (according to a sumple separation
criterion) The result 15 an increase m hft The effect 15 dlustrated for a flapped aero-
foul section of convenient mathematical form,

These abstract cards are inserted 1n Technical Reports
for the conventence of Librarians and others who

need to maintain an Information Index

O

ARCCP No 1252 533 694 65

January 1972 333694 511
53360482

Martmn, J 5336947

A SUGGESTION FOR IMPROVING FLAP
EFFECTIVENESS BY HEAT ADDITION

The effect of a particular type of heat addition on the flow around a twodimenswonal,
flapped aerofoul section, at low Mach number, 15 investigated using a transformation
which enables the compressible flow with heat addition to be deduced approximately
from a certain incompressible flow with flmd addition  The incompressible flow may
be determined by the techmque of conformal mapping It 15 concluded that heat
addition 1n a suitable distribution can so reduce the adverse pressure gradient on the
upper surface of the flap that greater flap angles than are normally possible can be
employed without separation of the boundary layer {according to a ssmple sgparation
cnterion) The tesult 13 an increase in Lft The effect 15 dlustrated for a flapped aero-
fo1l section of convenient mathematical form

DETACHABLE ABSTRACT CARDS

DETACHABLE ABSTRACT CARDS

i
L I - .

ut here ~ —

Cut here — ——



Fl

L

™

AT Y T A

woex ar vd hdl e iy

¥

v
=

-

e

LN

[E ot

TR T ]

r

Fetenlye

LR R

3

DRI LIE TS

~

Tt I T it P P —

i

i

1

t

1

|

!

t

]

!

F

1

T TR L FT T R N NPT P R e X}

]

]

]
oo
) _

i

™

Aoy oae

LT T

& VR I

4

s

LR L AAT]

r

-

Rkl AL}






© Crown copyright

1973

Published by
HER MAJESTY'S STATIONERY OFFICE

To be purchased from
49 High Holborn, London WC1 V 6HB
13a Castle Street, Edinburgh EH2 3AR
109 St Mary Street, Cardiff CF1 1JW
Brazennose Street, Manchester M60 BAS
50 Fawrfax Street, Bnistol BS1 3DE
258 Broad Street, Birmingham B1 2HE
80 Chuchester Street, Belfast BT1 4]Y
or through booksellers

C.P. No. 1252

C.P. No. 1252
SBN 11 470810 X



