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A RESULT CONCERNING THE SUPERSONIC FLOW BELOW A PLANE DELTA WING

by

P. L. Roe

SUMMARY

If a plane delta wing in inviscid supersonic flow supports an attached
shockwave, the surface pressure distribution is uniform near the leading edges,
and non-uniform near the centreline. In this Report an exact expression 1is
given for the pressure gradient at the junction of the uniform and non-uniform

regions.

* Replaces RAE Technical Report 72077 - ARC 33828
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] INTRODUCTION

One of the classical problems of supersonic aerodynamics is the inviscid
flow past the lower surface of a plane delta wing supporting an attached shock-
wave. This problem, together with the type of solution usually assumed, is
shown in Fig.l1. The flow near the leading edges is uniform, bounded by a plane
shockwave, and may easily be calculated by the exact shock relationships. This
uniform flow terminates as soon as the influence of the apex is felt, that is,
on the Mach cone drawn from the apex. The construction of this cone follows at
once from knowing the direction and Mach number of the uniform flow. The inner
region of the flow is non—uniform. Computation of the flow in this region is
difficult, although by now numerical solutions have been presented by many
authors. One of the difficulties is that near the boundary of the non-uniform
region, flow quantities change rather rapidly, and although the effect of this
on the accuracy of numerical solutions has been discussed, the true local

behaviour dees not seem to have been determined.

In the present note an expression is derived for the spanwise pressure
gradient on the wing surface on the inboard side of the boundary between the
uniform and non-uniform flows, Ability to predict this gradient accurately

should be a good test of any proposed numerical method.
2 ANALYSIS

If the flow is as drawn in Fig.}, and contains no embedded shocks, then
all flow properties will be continuous across OBC, and in a region which includes
that surface the flow will be irrotational. For the present purpose we only
require that these two properties of continuity and irrotationality hold near
0B. That is, the.analysis will be unaffected by any embedded shocks which may
exist, provided they do not extend to the surface. Inboard of OBC, we shall

assume that all flow variables are twice differentiable functions of position.

Through O draw OA parallel to the velocity vector in the uniform flow
(region OTCB) and take OA to be the axis of spherical polar coordinates.
Specifically, for any required point P, let r be distance from 0, 6 be the
angle POA, and ¢ be the angle between the plane POA and the plane of the wing.
Let (u,v,w) be corresponding velocity components. The equations of inviscid

. . . s 1
conical flow of an ideal gas are, in these coordinates, as follows .
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The flow near the leading edge may be written in terms of the magnitude

g of the uniform velocity vector, thus

u = q cos O
v = -4 sin®
w o= 0

a = q sin u

(6a)
(6b)
(6c)
(6d)

where y is the Mach angle in the uniform flow. The boundary of the uniform

flow is 6 = yu.

Along the surface of wing (¢ = 0) we have the boundary condition w

and so the following equations, valid on the surface, can be derived from

equations (1) to (3).
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v = -1l2p
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In equation (7) we can substitute a-28p/86 for 23p/38 (because the
entropy is constant) and if we also use equation (9) to eliminate 3v/36 we

obtain

1 ow 1 v2 32
u+ v cot 6+ SIn 636 - pv 1 - ;f Y (10)

which we rewrite to give an explicit equation for the pressure gradient on the

wing surface, thus

1 3w
+ v cot § + — -—
P e sin 0 36
3 = pv vz (]1)
==
a

On the boundary of the non—~uniform region we can substitute into this
expression the values of u, v, a, 8, taken over from the uniform flow. The
numerator and the denominator are both then zero, but we can still obtain an
answer by applying‘l'Hospitals rule; replacing each of them by their derivative

with respect to 6. We obtain

EE.+ £ 8 v _ 5 2 9 - cos 6§ 3w l 32w
) 26 =~ ©° 5g vV cosec sinl g 20  sin 0 3699
2 . oy (12)

3 298 2 39
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This can be simplified by substituting v for 3u/88 (equation (8)) and

noting that at the point of interest v = -a. Thus
2
v 2 cos 6 9w i 3w
cot O FU cot 6 7 3% + i © 5659
ap _ -} 2 sin 6 (13)
20 v 3a . oV
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We shall now show that on the line OB the terms involving derivatives
with respect to ¢ are both zero., We are assuming that all flow quantities
are continuous across the surface OBC. Since this surface coincides with ’
8 = u = constant, derivatives involving only r or ¢ will also be continucus .
across it. In particular 09w/3¢ is 1dentically zero outboard of OBC, (see

equation (6¢)), and 1s therefore zero immediately inboard of OBC.

We cannot directly apply this argument to the term with Bzw/398¢,
because in general derivatives inveolving © will not be continuous across O0BC.
However, we can show that this particular term is zero by appealing (for the
only time in the course of the argument) to the locally irrotational nature of

the flow. The r-component of vorticity can be wrltten] as:-—
_ 1w Sl oy
E = r[;e + w cot 6 sin 6 8%} (14)

and this is zero in a region including the line OB. Therefore we also have at

that point

"

2 2
3k . - 1[@w , 3w 1 v
Y 0 r[;83¢ *35 %°t % " Sime 3¢%] y (i5)

But we have just shown that 8w/d¢ = 0, and by a similar argument ‘

2
Bzv/8¢2 = 0, so we must also have 3 w/303¢ = 0, and equation (13) reduces
to

ap 9 cot O %% - v cot2 8
TR L 32 av ' (16)
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This equation now involves derivatives with respect to 6 only, and of
these we eliminate all except the pressure derivative, which is our primary

interest. From equation (9) we can write

1
—-—=—u—-—-—

39 pv

@i ar
D

. (17)

Also we can write the energy equation (5) in terms of derivatives along

the wing, e.g.

P
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3a _ _ (-1 du dv
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and by combining this with equation (8) for 23u/386 and equation (17) for
3v/38 we get

da _ &y - 1) 3p
T 25 36 ° (19)

Putting (17) and (19) into equation (16) and setting 6 = u,

u=gqcos u, v=-q sin y, we have finally
1 ap
5 q cos ¥
3p _ 2 38 . (20
38 cos u - —Y 1 3P
4 H 2pq s8in u 3

This equation allows two possible pressure gradients, either

d
Sg = 0 (21)
or
2 .
9P - P9 sin u cos u (22)
90 v + 1 '

The second solution can be written more concisely by putting pq2 = Ysz,

sin p = 1/M, cos u = (M2 - l)!/M, so that equation (22) becomes

13p _ Y 2
o ;ﬁ'“y+1(m 1) . (23)

Thus, if the flow is of the type shown in Fig.l, the initial surface
pressure gradient in the non-uniform flow must either take this value or zero.
Nothing in the above shows which value will be taken, but it 1s likely that the
question can be settled by examining a special case. If the angle of incidence

is very small, we can set, approximately, in equation (22), p = P Q= U,

4

=)

sin u = I/Mm, cos p = (Mi - 1) /Mm, and get

by | et ol
36 G+ D2 .

w0

(24)
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This result was given by Lighthill™, as applying at any small angle of
incidence, and so we can assume that the non-zero solution is the one which

generally applies inboard of B. 3

Note that the above analysis applies without modification to any conical .
wing having a sufficiently extensive plane region at its tips. In particular,
it applies to any wing of diamond or caret section, provided the non-uniform
flow is expansive rather than compressive, in which case an inner shockwave

may result.

An attempt was made to determine the second derivative, azp/aez, by a
similar procedure, but could not be carried through because of the appearance
in the analysis of a term 33w/a¢362 which could not be evaluated. The second
and higher derivatives are probably not determined until some further account
has been taken of the entire boundary conditions governing the non-uniform

flow.

3 COMPARISON WITH NUMERICAL SOLUTIONS AND DISCUSSION

In Fig.2a we show calculations3 for the compression side of a plane delta
wing with 45° sweep angle at 4° incidence in a free stream of Mach number
equal to 3.0. The numerical results are quite compatible with the present
analysis, but they do seem to indicate that the local solution 18 only valid

over a very limited part of the span.

The same conclusion is reached if we examine (Fig.3) some more recent
calculations by several .sluthors"_6 for a wing with 50° sweep at 15° incidence
in a Mach 4.0 stream. For this problem Voskresenkii5 and South6 have obtained
extremely similar sclutions by very different methods. The rather earlier work
of Babaev4 15 now known7 to contain some errors. None of these solutions takes
account of the singular nature of the flow on OBC; indeed, all employ finite

difference methods that might be expected to smear out discontinuities.

The situation shown in Fig.3 is a little unclear. It is probably best to
disregard Babaevs results, especially as the effect of the errors discovered by
Ganzer 1s not easy to assess. The points given by South could well be
consistent with a curve having the predicted slope, especially if one accepts
that the points nearest the boundary probably contain the worst errors.
Voskresenskii presented his results as a continuocus curve in his report, but
must originally have obtained them as discrete points, rather like South's, so 3

that his results also may not be 1ncompatible with the present analysis.
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Probably the most accurate prediction currently available would be an empirical
fairing between South's or Voskresenkii's numerical values and the present

local solution.

The present ana}ysis thus supplements the current numerical methods by
supplying some additional detail, which could be significant if, for example, a
boundary layer calculation were to be carried out. For any future numerical
methods it could provide in advance a possibly useful boundary condition, or it

can be used as an a posterior: check on the accuracy of the computations.

4 IMPLICATIONS FOR THIN-SHOCK-LAYER THEORY
The present result has an important bearing on conical thin-shock-layer
theorys—lz. This theory is based on expanding the flow variables in powers of
€, where
pm
E = — .
p

p, being the density in the free stream, and p a typical density in the
disturbed flow. The theory 1s expected to apply to hypersonic flows. When first
presenting the relevant equations, Messiter8 noted that a difficulty occurred in
matching the uniform and non-uniform regions of the flow. Squirelo, Woodsli,
and Roe12 proposed various devices for overcoming the difficulty, Squire and Roe
both permitting a slight relaxation of the body boundary conditions and Woods

proposing a sclution with discontinucus shock strength.

The result in this Report offers a partial explanation of the difficulty.
In assigning orders of magnitude to the various terms in the equations of
motion, thin-shock-layer theory assumes that the spanwise pressure gradients

are evexrywhere of order =«

However, the true magnitude of the pressure gradient at the boundary of
the non-uniform flow can be found from equation (23). For hypersonic flow we

can replace (M2 - l)i in this equation by M = u/a. Since a2 = yp/p we have

9 _ __u (%ﬁ)i
08 (v + 1) \y
-1

in which all quantities are of order unity, except p, which is of order e .

-

Thus, at this particular point, the pressure gradient should be of order e 4,

and although the assumptions of thin-shock-layer theory are valid throughout
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most of tne flow, the assumption regarding pressure gradients 1is not uniformly

valid everywhere. This possibility, which was conjectured in Ref.12, is almost

certainly connected with the above mentioned difficulty. However, it should be

mentioned that this is not the only anomaly contained i1n thin-shock=-layer theory:

discussion of certain others will be found 1in Refs.8-12,

5 CONCLUSIONS

An expression has been derived for the pressure gradient on the surface

of a plane delta wing in supersonic flow, at the point where the uniform and

non-uniform regions meet. The result has been compared with numerical solutions

worked out by several authors. It can be regarded as supplementing these in a

significant point of detail. The result has alsoc been used to explain a short-

coming of thin-shock-layer theory.

"
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NOTATION

r, 9, ¢ spherical polar coordinates, defined at the beginning of section 2.1
u, v, w corresponding velocity components
a velocity of sound
P static pressure
q velocity = (u2 + v2 + w2)i
z spanwise distance
M Mach number = q/a
Y ratio of specific heats
u Mach angle = sin-ll/M
P density
radial component of vorticity
Subscript

@] denotes free stream values

[
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attached shockwave
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