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A RESULT CONCERNING TBE SUPERSONIC FLOW BELOW A PLANE DELTA WING 

by 

P. L. Roe 

SUMMARY 

If a plane delta wing in inviscid supersonx flow supports an attached 

shockwave, the surface pressure distribution is uniform near the leading edges, 
and non-uniform near the centreline. In this Report an exact expressmn 1s 
given for the pressure gradient at the junction of the uniform and non-uniform 
regmns . 

* Replaces RAE Technical Report 72077 - ARC 33828 
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I INTRODUCTION 

One of the classical problems of supersonic aerodynamics is the inviscid 
flow past the lower surface of a plane delta wing supporting an attached shock- 

wave. This problem, together with the type of solution usually assumed, is 
shown in Fig.1. The flow near the leading edges is uniform, bounded by a plane 

shockwave, and may easily be calculated by the exact shock relationships. This 
uniform flow terminates as soon as the influence of the apex is felt, that is, 
on the Mach cone drawn from the apex. The construction of this cone follows at 
once from knowing the direction and Mach number of the uniform flow. The inner 
region of the flow is non-uniform. Computation of the flow in this region is 
difficult, although by now numerical solutions have been presented by many 
authors. One of the difficulties is that near the boundary of the non-uniform 
region, flow quantities change rather rapidly, and although the effect of this 

on the accuracy of numerical solutions has been discussed, the true local 
behaviour does not seem to have been determined. 

In the present note an expression is derived for the spanwise pressure 

gradient on the wing surface on the inboard side of the boundary between the 
uniform and non-uniform flows. Ability to predict this gradient accurately 
should be a good test of any proposed numerical method. 

2 ANALYSIS 

If the flow is as drawn in Fig.], and contains no embedded shocks, then 

all flow properties will be continuous across OBC, and in a region which includes 
that surface the flow will be irrotatlonal. For the present purpose we only 

require that these two properties of continuity and irrotationality hold near 
08. That is, the.analysls will be unaffected by any embedded shocks which may 
exist. provided they do not extend to the surface. Inboard of OBC, we shall 
assume that all flow variables are twice differentiable functions of position. 

Through 0 draw OA parallel to the velocity vector in the uniform flow 
(region OTCB) and take OA to be the axis of spherical polar coordinates. 
Specifically, for any required point I', let r be distance from 0, 6 be the 

angle POA, and I$ be the angle between the plane POA and the plane of the wing. 
Let (u,v,w) be corresponding velocity components. The equations of inviscid 
conical flow of an ideal gas are, in these coordinates, as follows'. 



Continuity 
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The flow near the leading edge may be written in terms of the magnitude 
q of the uniform velocity vector, thus 

u = 4 cog e (64 

" = - q sin e (6b) 

w = 0 (64 

a = q sin u (6d) 

where p is the Mach angle in the uniform flow. The boundary of the uniform 
flowis e=u. 

Along the surface of wing (4 = 0) we have the boundary condition w = 0, 
and so the following equations, valid on the surface, can be derived from 
equations (1) to (3). 
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(7) 
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In equation (7) we can substitute a -2 
ap/ae for ap/ae (because the 

entropy is constant) and if we also use equation (9) to eliminate adae we 

obtain 

u + v C0t e + 
1 aw 2 a v-L/-x& 

61n e a4 [ 1 a 
(IO) 

which we rewrite to give an explicit equation for the pressure gradient on the 

wing surface, thus 
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a 

(11) 

On the boundary of the non-uniform region we can substitute Into this 

expression the values of u, v, a, 8, taken over from the uniform flow. The 

numerator and the denominator are both then zero, but we can still obtain an 

answer by applying 1’Hospitals rule; replacing each of them by their derivative 

with respect to 8. We obtain 
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This can be simplified by substituting v for adae (equation (8)) and 

noting that at the point of interest ” = -a. ThUS 

av 2 ,208 e aw 1 

g = -lpv2 
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We shall now show that on the line OB the terms involving derivatives 
with respect to $ are both zero. We are assuming that all flow quantities 
are continuous acmss the surface OBC. Since this surface coincides with 
e = )I = constant, derivatives lnvolvmg only r or $ will also be cmtmuous 
across it. In particular k/a+ is Identically zero outboard of OBC, (see 
equatmn (6c)), and is therefore zero immediately inboard of OBC. 

We cannot directly apply this argument to the term with a2w/a'da$, 
because in general derivatives mvolving 0 will not be continuous across OBC. 
However, we can show that this particular term is zero by appealmg (for the 
only time III the course of the argument) to the locally irrotational nature of 
the flow. The r-component of vortlcity can be wrltten' as:- 

I av 
-sine 1 (14) 

and this is zero in a region including the line OB. Therefore we also have at 
that point 

3 aw 
a$ 

= o = 1 a2w 
[ 

I a2v 
r aea$ +zCOte-.- . 

'In e 1 w2 
(15) 

But we have just shown that aw/a$ = 0, and by a similar argument 
a2v/a+2 = 0, so we m"st ah0 have a2w/aea+ = 0, and equation (13) reduces 
to 

av 2 

g = - lPV2 
c0t e G - v COt e 

. S+E 
(16) 

This equation now mvolves derivatives with respect to 0 only, and of 
these we eliminate all except the pressure derivative, which is our primary 
interest. From equation (9) we can write 

av 
ae' 

Ii!!? 
-"-Gae . (17) 

Also we can write the energy equatmn (5) in terms of derivatives along 
the wing, e.g. 

i 



7 

a.3 aTjy$ = _ (y - 1) 2 p$+Gq (18) 

and by combining this with equation (8) for au/a8 and equation (17) for 

av/ae we get 

aa (Y - 1) * 
a X = 2p ae ’ 

Putting (17) and (19) Into equatwn (16) and setting 8 = u, 

u = q cos !.I, v = -q sin p, we have finally 

+ P cos lJ ae ZP 
.g= y+l ap * 

’ cm ’ - 2pq sin p aS 

This equation allows two possible pressure gradients, either 

i?P=o ae 

(19) 

(20) 

(21) 

(22) 

The second solution can be written more concisely by putting pq2 = yM2p, 

sin p = l/M, CO8 p = (M2 - 1+/M, so that equation (22) becomes 

1.2 = 
P ae 

+ (M2 - 1)' . (23) 

Thus, if the flow is of the type shown in Fig.1, the initial surface 

pressure gradient xn the non-uniform flow must either take this value or zero. 

Nothing in the above shows which value ~111 be taken, but it 1s likely that the 

question can be settled by examzning a special case. If the angle of incidence 

is very small, we can set, approximately, in equation (22), P = P,, 9 = u-9 
sin p = 1/M,, cos u = 0-f: - d/Mw, and get 

2 
CM: - 1)' 

Mi * 
(24) 



This result "as given by LIghthill', as applying at any small angle of 

incidence, and so we can assume that the non-zero solution is the one which 

generally applies inboard of B. 

Note that the above analysis applies without modification to any conical 
wing having a sufficiently extensive plane region at its tips. In particular, 
it applies to any wing of diamond or caret section, provided the non-uniform 
flow is expansive rather than compressive, in which case an inner shockwave 

may result. 

An attempt was made to determine the second derivative, a2p/af32, by = 
similar procedure, but could not be carried through because of the appearance 
in the analysis of a term a3w/a+ae2 which could not be evaluated. The second 
and higher derivatives are probably not determined until some further account 
has been taken of the entire boundary conditions governing the non-uniform 

flow. 

3 COMPARISON WITH NUMERICAL SOLUTIONS AND DISCUSSION 

In Fig.2a we show calculations3 for the compression side of a plane delta 

wing with 45' sweep angle at 4O . incidence in a free stream of Mach number 
equal to 3.0. The numerical results are quite compatible with the present 
analysrs, but they do seem to indicate that the local solution IS only valid 

over a very limited part of the span. 

The same conclusion is reached if we examine (Fig.3) some more recent 

calculations by several authors 4-6 for a wing with 50' sweep at 15' incidence 
in a Mach 4.0 stream. For this problem Voskresenkii5 and South6 have obtained 
extremely similar solutions by very different methods. The rather earlier work 
of Babaev 4 1s no" known 7 to contain some errors. None of these solutions takes 
account of the singular nature of the flow on OBC; indeed, all employ finite 

difference methods that might be expected to smear out discontinuities. 

The situation shown in Fig.3 1s a little unclear. It is probably best to 
disregard Babaevs results, especially as the effect of the errors discovered by 
Gamer is not easy to assess. The points given by South could well be 
consistent with a curve having the predicted slope, especially if one accepts 
that the points nearest the boundary probably contain the worst errors. 

Voskresenskii presented his results as a continuous curve in his report, but 
must originally have obtalned them as discrete points, rather like South's, so 
that his results also may not be incompatible with the present analysis. 

i 

i 
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Probably the most accurate predxtion currently avaIlable would be an empirlcal 
fairing between South's or Voskresenkil's numerical values and the present 
local solution. 

The present analysis thus Supplements the current numerical methods by 
supplying some additional detail, which could be significant if, for example, a 
boundary layer calculation were to be carried out. For any future numerical 
methods it could provide in advance a possibly useful boundary condition, or it . . 
can be used as an a post~~i0~ check OR the accuracy of the computations. 

4 IMPLICATIONS FOR THIN-SHOCK-LAYER THEORY 

The present result has an important bearing on conical thin-shock-layer 
8-12 theory . This theory is based on expanding the flow variables in powers of 

E, where 

0, 
E =- I 

P 

p, being the density in the free stream, and p a typical density in the 
dlsturbed flow. The theory IS expected to apply to hypersonic flows. When first 
presentrng the relevant equations, Messiter' noted that a difficulty occurred in 
matching the uniform and non-uniform regions of the flow. Squire IO II , Woods , 
and Roe 12 proposed various devices for overcoming the difficulty, Squire and Roe 

both perratting a slight relaxation of the body boundary condltlons and Woods 
proposing a solution with discontinuous shock strength. 

The result in this Report offers a partial explanation of the difficulty. 
In assigning orders of magnitude to the various terms in the equations of 

motion, thin-shock-layer theory assumes that the spanwlse pressure gradients 
1 are everywhere of order E . 

However, the true magnitude of the pressure gradient at the boundary of 
the non-uniform flow can be found from equation (23). For hypersonic flow we 

can replace (M2 1 - I) in this equation by M = u/a. Since a2 = up/p we have 

+ ” ELI? 
0 

1 
(v+l) Y 

in which all quantities are of order unity, except p, -I which is of order E . 

Thus, at this partxular point, the pressure gradlent should be of order E -1 , 
and although the assumptions of thin-shock-layer theory are valid throughout 
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most of the flow, the assumption regarding pressure gradients IS not uniformly 

valid everywhere. This possibility, whrch was conjectured in Ref.12, is almost 

certainly connected with the above mentioned difficulty. HlX!WJer, it should be 

mentioned that this is not the only anomaly contained in thin-shock-layer theory: 

discussion of certain others will be found in Refs.8-12. 

5 CONCLUSIONS 

An expression has been derived for the pressure gradient on the surface 

of a plane delta wing in supersonic flow, at the point where the uniform and 

non-unlfonn regions meet. The result has been compared with numerical solutions 

worked out by several authors. It can be regarded as supplementing these in a 

slgniflcant poznt of detail. The result has also been used to explain a short- 

comlng of thin-shock-layer theory. 

i 
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Subscript 

0, 

NOTATION 

spherical polar coordinates, defined at the beginning of section 2.1 
corresponding velocity components 
velocity of sound 
static pressure 

velocity = (13' + v2 + v2+ 
spanwise distance 
Mach number = q/a 

ratio of specific heats 

Mach angle = sin-II/M 
density 
radial component of vorticity 

denotes free stream values 
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