
C.P. No. 1223 

. 
4 PROCUREMENT EXECUTIVE, MIN‘ISTRY OF DEFENCE 

AERONAUTICAL RESEARCH COUNClL 

CURRENT PAPERS I 

Fortran Subroutines fok Finite 
Element. Analysis 

bY 

6. C. Merrrfield 

Structures Dept., R.A.E., Farnborough 

LONDON: HER MAJESTY’S STATIONERY OFFICE 

1972 

PRICE 80 p NET 





UDC 531.25 : 518.5 : 531.258 

CP No.1223 * 
August 1971 

FORTRAN SUBROUTINES FOR FINITE ELEMENT ANALYSIS 

by 

B. C. Merrifield 

SUMMARY 

Twelve subroutines, written in ICL 1900 Fortran are presented for matrix 
and other operations which are commonly encountered in the finite element 

analysis of structures. Although the subroutines have been developed 
specifically to deal with problems concerning flat plates they clearly 
possess some wider generality. 

Details are given of each subroutine including its method of use and its 
complete listing. 

* Replaces RAB Technical Report 71156 - ARC 33734 
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1 INTRODUCTION 

Twelve subroutines are presented for various matrix and other operations 

commonly used in the finite element method of structural analysis and 

specifically for the analysis of flat plates. They are written in 1900 Fortran 

which is the ICL implementation of ASA Fortran. 

The subroutines are the result of experience in Structures Department, 

RAE with the development of several research-type computer programs for the 

finite element analysis of plate bending problems where it is Important to take 

advantage of symmetry and handedness XI the matrices to reduce computer storage 

requirements and execution time. 

The subroutines simplify the development of finite element programs, and 

include many operations which are non-standard and make use of information 

peculiar to finite element analyses. The use of double suffix arrays is 

generally avoided because of the time penalty' which is associated with their 

use. 

The Report commences with a brief description of the kinds of operations 

and matrices which are encountered in finite element analyses; this is followed 

by a description and illustrative example of the use of each subroutine. 

The subroutines, which are listed in full in the Appendix, have been 

tested and used in current finite element programs but there must, however, 

be instances where their efficiency and generality can be improved. 

2 GENERAL NOTATION 

[ 1 

I I 

[ kl 

[ Kl 

n 

In) 

fQ} 

S 

X,Y 

matrix or row vector 

column vector 

element stiffness matrix 

stiffness matrix for the whole structure 

outward pointing normal from the boundary 

column vector of generalised displacements 

column vector of generalised loads 

distance measured around the boundary in the clockwise sense 

rectangular Cartesian coordinates 



The programming notation which is used in the subroutines is defined in 

section 4. 

3 MATRIX OPERATIONS IN THE FINITE ELEMENT METHOD 

The finlte element method requires that the plate be divided by imaginary 

lines into a number of ‘finite elements’ which are then assumed to be connected 

at a discrete number of points on their boundaries. Fig.1 shows a simple 

example of such a plate divided into triangular finlte elements which are 

connected at the corners (nodes) and mid-points of the sides. The plate is 

described by specifying the node and mid-point numbers of each element together 

with the coordinates of the nodes with respect to a given set of axes. 

Finite element methods can be divided Into two main categories, displace- 

ment (stiffness) methods or force (flexibility) methods. Since both of these 

involve the same type of operations our subsequent references can be to the 

displacement method only. It is pertinent to consider briefly the kind of 

operation encountered and the type of matrix, i.e. symmetric, banded, square 

etc. A description of the finite element method is given in the book by 

Zienkiewicz2 where the square, symmetric element stiffness matrix [k] is 

given as 

[kl = 
II 

[ B1 T[ Dl[ Bl dx dy 

element 
area 

(1) 

where [D] is a square symmetric matrix called the elasticity matrix which 

contains the material propertles of the plate and [ 81 is a rectangular matrix 

containing functions of x and y. Frequently, however, the matrix [B] is 

expressed as the product of various rectangular matrices, e.g. the element 

stiffness matrix of a recently developed finite element is given by 

[kl = 
II 

1 Tl T[ Fl T[ Cl T[ Dl [ Cl [ Fl [ Tl dx dy 

element 
area 

(2) 

where [T] and 1 Cl are rectangular transformation matrices of constants and 

[ Fl is a rectangular matrix of so-called shape functions. 
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The individual stiffness matrices for each element are then compounded 
into a stiffness matrix [KI for the whole structure. This (global) stiffness 
matrix is also symmetric and all the non-zero terms are ideally contained within 
a band surrounding the leading diagonal. The width of this band depends 
critically on the way in which the elements are numbered and it is evident that 
it is required to number the elements in such a way that the greatest difference 
between the node or mid-point numbers in any one element 1s as small as 
possible. In simple regular structures the optimum node numbering is frequently 
obvious but in large complicated structures this is far from the case. 
Attention is drawn here to work on methods of bandwidthxeduction 394 because 
of the considerable advantages which accrue in the saving of storage space for 
problems involving large numbers of elements. The bandwidth also influences 

strongly the execution time for the solution of the final stiffness equations 
for the unknown generalised displacements {q> where 

[Kl {q) = {Ql . (3) 

This computation invarlably accounts for a substantial part of the total 

computing time. 

The flow chart of a typical finite element program 1s shown in Fig.2 and 

the subroutines corresponding to the steps in the chart are as follows 

FE INPUT 
FE PARAMETERS 1 

Program Parameters 

MAT ATBA 

I 

Element stiffness matrix 
INTEGRAL MAT ATBA assembly 

ADD TO BANDMAT 

I 

Add element contribution to global 
ADD TO VECTOR stiffness matrix and right hand side 

ALTER BANDMAT 

SOLVE CONSTRAINED BANDMAT 
SOLVE BANDMAT I 

Impose boundary conditions and 
solve 

Thus, the element stiffness matrix (equation 2) can be built up using MAT ATBA 

for the product tCITID][Cl (- [El say), INTEGRAL MAT ATBA for the area 
integral of [FI~IEI[FI (= ICI say) and MAT ATBA again for the product 

[ Tl T[ Gl [ f . 
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4 DESCRIPTION OF SUBROUTINES 

Each subroutine is described in detail but the following generalities and 

notation apply to them all. 

The individual subroutines are self contained with the two exceptions of 
SOLVE CONSTRAINED BANDMAT which calls SOLVE BANDMAT and FE INPUT which calls 

FE PARAMETERS. Every identifier used in the subroutines is either locally 
declared or is an argument of the subroutine. Extensive use is made of dynamic 

dummy arrays which, in 1900 Fortran, cannot be incorporated in COMMON storage 
specified in the subroutine. The user can, however, construct his program in 
such a way as to make use of the COMMON facility. 

If a two-dimensional array A in the calling segment is used to store a 
m(rows) by n(cols) matrix then the following program notation is employed 

IA is the first dimension of A (am), 
JA is the second dimension of A b n), 
MA = m, 
NA = n. 

Similarly IB is the first dimension of array B, IC is the first dimension of 
array C and so on. In general the prefices M and N refer to the dimensions of 
the actual matrix while I and 3 refer to the overall dimensions of the array 
III which the matrix is stored. This notation allows an array A to be 
declared III the calling segment as A (IA,.JA) and to be used for varying sizes 
of matrices so that, for instance, several examples with differing dimensions 
may be run at one time. 

The following diagrams illustrate this notation and the storage of the 
two types of matrices, banded symmetric and rectangular (or square), within the 
calhng segment. The m x n rectangular matrix [A] where 



[Al = 
m 

I . 1,l 9,2 9,3 * * * 9.1 

32.1 =2,2 * * * * * 

33,1 * * * * - * 
. . . . . . . 

. . . . . . . 

. . . . . . . 

3 a ,m,l * * * * * m,, 

is located in the array A(IA,JA), IAm, JALn as follows 

Ml 

A(IA,JA) = 

NA 
I 
?,l 5,2 9,3 * * * 5,n 

l2,1 a2,2 * * * * * 

'3.1 * - * * * * 
. . . . . . . 

. . . . . . . 

. . . . . . . 

3 
bl' * - * * 

a 
m,* 

0 

0 

JA 

IA 

It should be noted that, for convenience, the elements of the above matrix [Al 

are located in the array by a scheme which is at variance with standard Fortran 

practice. If [Al occupies the whole of the array, i.e. IA = MA, JA = NA, then 
both storage schemes coincide and A is dimensioned A(MA,NA). 

Am by m banded symetric matrix with a semi-bandwidth (JSEMI) of 3, 
where semi-bandwidth = (bandwidth + 1)/2, of the form 



m 

[Al = m 

I 

JSEMI JSEMI * * * * 
";s---a- -=--- \ - -=- -=- - - \ 

&,I 1.2 1,3 1.2 1,3 \ \ 
a2 l'"2.2 a2,3 a2,4 \ 0 

, 
\ \ 

a3.l "3.21a3,3 a3,4 a3,5 \c 
\ 

a4,2 a4,3\a4,4 a4,5 a4,6 \ 

\ \ 
a5,3 - \' * * \ 

* \ * * am-z,, 
\ 0 '1' aln-l,l 

. a m,m-2=m>nl-lam,m 
\ 

\ 

\ 

\ 

\ 
\ 

\- ---- -1 
is located in the rectangular array A(IA,JA) where IAm, JA&JSEMI as follows 

A(IA,JA) - 

1 

A 

. JSEMI * 

‘1.1 %,2 ?,3 I 
I 

"2,2 a2,3 a2,4 I 

33,3 a3,4 . I 
I 

%,4 * ' 
I 

. . . 
I 

. . %I-2,m 1 

a m-1,mO I 

3. 0 0 
m,m I 

---v--e 

0 

0 

IA 

With the exception of subroutines FE INPUT, FE PARAMETERS and SOLVE 

CONSTRAINED BANDMAT all dummy arguments are declared as one-dimensional arrays 
within the subroutines. Hence an array declared A(IA,JA) in the calling 
segment is automatically stored column by column in the one-dimensional array 
A(IAJA) (where IAJA = IA*JA) within the subroutine and so reference to element 

A(11) in the subroutine corresponds, if IA = 10 say, to element A(1,2) in the 
calling segment. To dimension these arrays the additional notation 
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IAJA = IA*JA 
IAIA = IA*IA 
JAJA = JA*JA 
MANA = MA*NA 

IAJSEMI = IA*JSEMI 

is required, where * denotes multiplication, with similar expresaons for 
MAMA, IBJB etc. 

The following integer notation iS used 

NEL = number of elements 
NAM = number of nodes and mid-points 
NEQ = number of equations 

NNODE = number of nodes 
NCONC = number of concentrated loads 

NF = number of degrees of freedom at a node (NFsO) 
MF = number of degrees of freedom at a mid-point 

JEL = number of nodes and mid-points required to define 
one element, but if MF is negative (see below) JEL 
must be set equal to -MF*JEL 

A negative value of MF 1s used to signal a special type of input for the node 
numbers in a method which makes use of an extended interpolation and which will 
be described in a later Report; locations are left for pseudo mid-point 

numbers which are not, however,prescribed at input. The following notation 

refers to real numbers 

ND = Poisson's ratio 
D = flexural rigidity 

Qo = intensity of uniformly distributed load 

Additional notation 1s defined within the subroutine descriptions. 

4.1 Subroutine FE INPUT 

The subroutine reads and prints the data necessary to describe the 
elemental divisions, material properties and applied loading. The subroutine 

FE PARAMIUERS (see sectIon 4.2) is called to evaluate additional parameters 
used in subsequent calculations. The subroutine requires the following arrays 

to be dimensioned in the calling segment. 
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REAL X(IXY), Y(IXY), CMAG(ICON) 
INTEGER ELN~(IEL,JEL), IDENT( CN~DE(ICON) 

where IXY>NAM, ICONtiCONC>,l, IEL?.NEL and ID>,NAM. Note, even if there are no 

concentrated loads CMAG and CNODE must be dimensioned. The instruction 

CALL FE INPIJT (NEL, Qo, NCONC, CNODE, CMAG, ELNO, X, Y, IEL. JEL, IDENT, 
ID, NF, MF, NEQ, NAM, NNODE, JSEMI, NU, D, IXY, ICON) 

then results in the reading (in free format) of the following data 

(9 CAPTION, a single card containing any required heading in columns 
1 to 72. 

(ii) NEL, NCONC, NU, Qo, D (Note, NU must be declared real in the 
calling segment, and Qo is subsequently assumed zefn If its absolute 
valueisless than 0.0000001). 

(iii) CNODE(I),CMAG(I) an integer array and a real array respectively 
containing the node numbers and magnitudes of each applied concentrated 

load. (I = l,Z,........NCONC) 
Omit if NCONC = 0. 

(iv) ELNO(I,J), an integer array containing the node numbers and, if 

appropriate, the mid-point numbers taken in sequence around each element 
starting at a node. The array is read a TOW at a time, one finite 
element to a TOW. (I = 1.2 , . . . . . . . NEL, J = 1,2 , . . . . . . . JEL. Note, if 
MF 1s negative then J = l,l-MF,l-2*MF , . . . . . . . JEL+MF+l). 

C-J) NODE, X(NODE), Y(NODE). The real arrays X and Y are filled by 
reading NNODE cards, each card containing an integer (NODE) equal to 
a node number and two real numbers equal to the X and Y coosdlnates of 
that node. 

The subroutine FE PARAMETERS is called to evaluate addltional pasameters and 
on return the pertinent information is prlnted. All parameters, input and 
calculated, are returned through the argument list to the calling segment. 

Note that a negative value of MF requires a special FE PARAMETERS sub- 
routine. 

For the purpose of illustration, consider the square plate shown in 
Fig.1. The plate is divided into 8 elements, hence NEL = 8, and assuming the 
bending deflection w and its derivatives aw/ax, aw/ay to be the 
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generalised displacements at a node and aw/an to be the generalised 
displacement at a mid-point, then NF.= 3 and MF = 1. There are six nodes and 
mid-pants to each element, hence JEL = 6. In the calling segment the 
dimension statements are 

REAL X(100),Y(100),CMAG(10), NU 
INTEGER ELNO(20,6), IDENT(130), CNODE(10) 

which allows for a case with up to 10 concentrated loads, 20 elements and 
100 nodes and mid-points. The calling statement is then 

CALL FE INPUT (NEL, 90, NCONC, CNODE, CMAG, ELNO, X, Y, 20, 6, IDENT, 
130, 3, 1, NEQ, NAM, NNODE, JSEMI, ND, D, 100. ICON) 

The subroutine reads the following data for the square plate of unit length 
side with Poisson's ratio 0.3 and flexural rigidity 1.0, under a concentrated 
load of magnitude 1.0 applied at node 13. 

CAPTION CARD 

a 1 

13 1.0 
1 2 

3 4 
5 6 

15 16 
25 24 

23 22 
21 20 

11 10 
1 -0.5 
3 0.0 
5 0.5 

11 -0.5 

13 0.0 
15 0.5 
21 -0.5 
23 0.0 

25 0.5 

0.3 0.0 

3 8 
5 7 

15 14 
25 17 
23 18 
21 19 
11 12 

1 9 
-0.5 
-0.5 
-0.5 
0.0 

0.0 
0.0 
0.5 
0.5 
0.5 

1.0 

13 9 
13 a 
13 7 
13 14 
13 17 
13 18 
13 19 
13 12 
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The print-out from the subroutine is then as follows 

Print of CAPTION CARD 
NUMBER OF ELEMENTS 
NUMBER OF NODES 
NUMBER OF NODES AND MID-POINTS 
NUMBER OF EQUATIONS 
SEMI BANDWIDTH OF STIFFNESS MATRIX 
POISSONS RATIO 
FLEXURAL RIGIDITY 
INTENSITY OF UD LOAD 

CONCENTRATED LOAD 

NODE MAGNITUDE 
13 1.0 

ELNO 
1 2 3 8 13 

3 4 5 7 13 

5 6 15 14 13 
15 16 25 17 13 

25 24 23 18 13 
23 22 21 19 13 

21 20 11 12 13 

11 10 1 9 13 

8 
9 

25 
43 
23 

0.3000 
1.0000 
0.0000 

9 
8 
7 

14 

17 
18 

19 
12 

NODE X Y 
1 -0.5 -0.5 
3 0.0 -0.5 
5 0.5 -0.5 

11 -0.5 0.0 
13 0.0 0.0 
15 0.5 0.0 
21 -0.5 0.5 
23 0.0 0.5 
25 0.5 0.5 

4.2 Subroutine FE PARAMETERS 

The subroutine evaluates parameters which are required in subsequent 

calculations. More explicitly, given the integers NRL, IEL, JEL, ID, NF, MF 

and the integer array ELNO, the instruction 

CALL FE PARAMETERS (NEL, ELNO, IEL, JEL, IDENT, ID, NF, MF, NEQ, NAM, 
NNODE, JSEMI) 

results in the calculation of the integer array IDENT which relates node 
and mid-point numbers with positions in the global stiffness matrix, together 
with the integers NEQ, NAM, NNODE, JSEMI, and returns them through the 
argument list. The subroutine requires the following arrays to be 
dimensioned in the calling segment 
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INTEGER ELNO(IEL, JEL), IDENT 

The semi-bandwidth of the stiffness matrix, JSEMI, is calculated by evaluating 
the semi-bandwidth associated with each element (a function of its maximum 
and minimum node or mid-point numbers) and taking the greatest of these. 

To Illustrate, consider the same example as in sectlon 4.1. In the 

calling segment the arrays are dimensioned 

INTEGER ELN0(20,6), IDENT(100) 

which allows for 20 elements and 100 nodes and mid-points. ELNO contains the 
node and mid-point numbers as follows 

The cal .ing statement for this case is then 

1 2 3 

3 4 5 
5 6 15 

15 16 25 

25 24 23 

23 22 21 

21 20 11 

11 10 1 

0 0 0 

0 13 9 
7 13 8 

14 13 7 
17 13 14 
18 13 17 
19 13 18 
12 13 19 
9 13 12 
0 0 0 

JEL (=6)' 

IEL (=20) 

GALL FE PARAMETERS (8, ELNO, 20, 6, IDENT, 100, 3, 1, NEQ, NAM, Nh'ODE. 
JSEMI) 

and the subroutuve returns with the values NAM = 25, NEQ * 43, NNODE = 9, 
JSEMI = 23 and the array IDENT which contains 

. 
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NAM 
(=25) 

IDENT(100) = 

Tll 
4 
5 
8 

41 
0 

0 

;:loo) 

which states for example, that the variation associated with the generalised 
displacement aw/an at mid-point 2 occupies row 4 in the square global 
stiffness matrix, or that the variations associated with W, aw/ax, aw/ay 

at node 3 occupy rows 5, 6 and 7 respectively. 

4.3 Subroutine MAT ATBA 

The subroutine evaluates the matrix equation 

[Cl = [Al T[ Bl[ Al 

where [Al is a m by m rectangular matrix stored 1x1 the calling segment 
III the real array A(MA,NA) and [Bl is a m by m synrmetric matrix stored 
III the real array B(MA,MA). The subroutine finally multiplies the n by n 
symmetric matrix product [AI~[B][A] b y the given real number CONSTANT 
before returnlng the result to the real array C(NA,NA). Note that the 
arrays A,B,C, have the same dimensions as the corresponding matrices 

[Al ,[Bl ,[c], and that, although symmetric, the complete matrix [BI is 
required. The subroutine is used to perform a matrix operation which is 
frequently required in setting up the element stiffness matrices. The 
matrices involved are of a constant size for a given type of element so 
that no allowance is made in dimensioning the arrays for variations between 
different data cases. The calling statement is 

CALL MAT ATBA (A, MANA, MA, B, MAMA, C, NANA, CONSTANT) 
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. 

As an example consider equation (2) where it is required to evaluate 
the matrix product [CITID][Cl. The three by three symmetric elasticity 
matrix IDI is stored in the array D(3,3), [Cl is a three by six trans- 
formation matrix stored in the array C(3,6) and the result is to be stored in 
the six by six array CTDC(6,6). Assuming that CONSTANT in this use is 2.3 
then the calling statement is 

CALL MAT ATBA(C, 18, 3, D, 9, CTDC, 36, 2.3) . 

4.4 Subroutine INTEGRAL MAT ATBA 

The subroutine evaluates the equation 

[cl = 
II 

[ AlT[ BI[ A] dx dy 

element 
area 

where [AI is a m by n rectangular matrix, 1 Bl is a m by m symmetric matrix 
of constants and [Cl is a n by n matrix. The elements of the matrix [A] 
are functions of x and y. e.g. x, y, xy (or of area coordinates 2 like Ll, L2, 
L:! L3) and hence [AI can be written as 

[Al = [Al]fl(~,y) + [A21f2b,y) + ......[Ailfi(x,Y) + . . . . ..[pk~fK(~.~) 

where the [Ai] are m by n matrices of constants and K is an integer equal 
to the total number of different functions. An integer NTYPES denotes the 

largest number of fi(x,y) required to define an element of [A]. In the 
calling segment the real array A(MANA, NTYPES) holds the amplitudes of the 
fi(x,y) so that these components of the element alj in [Al are stored in 
A(i',l), A(i',2) , . . . . . . . A(i',NTYPES) with 1' = (i-l)*NA+j. The integer array 
ATYPE(MANA, NTYPES) holds type numbers (integers 1,2.......K) stored in the 
same way, which identify the fl(x,y) as they occur in A(MANA,NTYPES), so that 
type number 1 indicates function type fl(x,y) and so on. The type numbers must 

be in ascending numerical order but followed by any zeros. The array A must 
be arranged in sympathy with ATYPE. Within the subroutine the arrays A and 

ATYPE are declared as one-dimensional arrays A(MANANTYPES) and ATYPE(MANANTYPES) 
where MANANTYPES = MA*NA*NTYPES. 

In the calling segment the square matrix [BI is a matrix of constants 

stored in the real array B(MA,MA) and the result t cl IS stored in the real 

array C(NA,NA). The real array INT(K,K) contains the symmetric matrix of 
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integrals over the element area so that the i,jth element holds the area 
integral of fi(x,y)fj(x,y) (i,j = l,Z......K). Within the subroutine INT is 
declared as a one-dimensional array INT(KK) where KK = K*K. The subroutine 

uses two one-dimensional real arrays SPABXl(100) and SPAREZ(100) as working 
space, but if MANA is greater than 100 these arrays must be re-dimensioned 
accordingly. 

The subroutine is used in setting up the element stiffness matrices and 
the calling statement is 

CALL INTEGRAL MAT ATBA(A, MANANTYPES, B, MAMA, C, NANA. INT. KK, ATYPE). 

Since the matrices uwolved are again a constant size the corresponding arrays 
are dunensioned accordingly. 

To illustrate the use of the subroutine consider the case where [A] 
is the matrix 

0.0 

[ 

2.5 + 3.2x 0.0 0.0 4.1 
2.1 - 0.9x + 1.7y 0.0 6.3x + 1.2~ 2.4~ 5.3x 
0.0 0.0 0.0 4.2 - 2.7x 1 -2.6~ 

Herethere are three fi(x,y) namely fl(x,y) = constant, f2(x,y) = x and 
f3(x,y) = y and so K = 3. All three types are required to specify element 

a2,1 and so NTYPES = 3. Since MA = m = 3 and NA = n = 5 the arrays A and 

ATYPE are as follows 

A(15,3) = 

0.0 0.0 0.0 
2.5 3.2 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
4.1 0.0 0.0 
2.1 -0.9 1.7 
0.0 0.0 0.0 
6.3 1.2 0.0 
2.4 0.0 0.0 
5.3 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
4.2 -2.7 0.0 
,2.6 0.0 0.0 

ATYPE(15.3) = 

0 
1 
0 
0 
1 
1 
0 
2 
3 

2 
0 
0 

0 
1 
3 

0 
2 
0 
0 
0 
2 
0 
3 
0 

0 
0 
0 
0 
2 
0 

0 
0 
0 
0 
0 
3 
0 
0 
0 

0 
0 
0 
0 
0 
0 



17 

. 

. 

Thus the second rows (say) indicate that element al 2 of the matrix [Al 
consists of two terms, one of function type 1 with &efficient 2.5 (i.e. 2.5) 
and one of function type 2 with coefficient 3.2 (i.e. 3.2x). In short, each 
row of array A and the corresponding row of array ATYPE, define one element 
of the matrix [Al. 

The matrix INT is the three by three matrix of area integrals 

(1 

i 

const dx dy 
f l 

x dx dy 
II Y dx dy 

INT(3,3) = I/x dx dy \I x2 dx dy /j xy dx dy 

I/Y dx dy (I xy dx dy 
1 

\I y2 dx dy 

and B is some three by three array of constants. The calling statement is 

CALL INTEGRAL MAT ATBA (A, 45, B, 9, C, 25, INT, 9, ATYPE) 

and the result is returned by the real array C(5,5). 

4.5 Subroutine ADD TO BANDMAT 

The purpose of this subroutIne is to form a global stiffness matrix [K] , 
sea equation (3). from the individual stiffness matrices [kl. The subroutine 

adds the elements of the m by m symmetric matrix IBI into posltions in the 
banded symmetric matrix [Al as specified by the one-dimensional integer array 
IPOSITION. In the calling segment the matrices [B] and [Al are stored 
respectively in the real arrays B(IB, JB) and A(IA, JA) as already described, 
while the integer array IPOSITION is dimensioned IB where IB>,MB. Note that only 
the upper triangle of [B] is strictly required. If the prescribed semi-band- 
width JSEMI is insufficient an error message to this effect is output and 
control returned to the calling segment with JSEMI set equal to zero. Because 
of the smetry of the matrices [Bl and IA], rows and columns of IBI are related 
to rows and columns of [A] by a single one-dimensional array IPOSITION. Thus, 
IPOSITION = p indzcates that row (column) i in [Bl corresponds to 
row (column) p in [A]. A negative value of p is taken to indicate that the 
sign of both the ith row and column of [Bl is to be changed before the addition 
takes place. The value p = o indwates that the ith row and column of [B] 

contribute nothing to [Al. The subroutine is called by the statement 

CALL ADDTO BANDMAT (A, IAJSEMI, IA, B, IBJB, IB, MB, IPOSITION) 
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As an illustrative example consider the triangle of Fig.1 which is denoted 

by node and mid-point numbers 1, 2, 3, 8, 13, 9 taken in the clockwise 

direction. It is assumed that the deflection w, and its derivatives aw/9x 

and aw/ay are the generalised displacements at the nodes and that the normal 

slope &?/an is the generalised displacement at the mid-points. For 

compatibility of normal slope between elements the convention is now adopted 

that If the second node number in the clockwise direction along one side of the 

element is greater than the first node number on that side then the sign of 

the directional derivative &a/an at that mid-point is to be changed. Assume 

that a 12 by 12 element stiffness matrix [B] is stored in the array B(15, ZO), 

and suppose that the banded syrmnetric global stiffness matrix [Al is 

dimensioned A(45, 23). Then, for this element, the integer array IPOSITION 

contains 11 2 3 4 5 6 7 14 21 22 23 -151, the minus sign indicating that the 

signs of the 12th row and column of [Bl are to be changed before addlng. 

The calling statement 

CALL ADD TO BANDMAT (A, 1035, 45, B, 300, 15, 12, IPOSITION) 

then returns the array A with, for example, B(l, 1) added to A(1, 1). B(1, 2) 

to A(l, V, . . . . . . -B(8. 12) to A(14, 2), . . . . . . -(-B(12, 12)) to A(15, 1). 

4.6 Subroutine ADD TO VECTOR 

This subroutine is used to form the global column vector {Q} of 

equation (3) from the contributions of each element in a similar way to that 

used in subroutine ADD TO BANDMAT to form the global stiffness matrix. The 

subroutine multiplies the column vector (B) by a given real number CONSTANT 

and adds the result into positions in the column vector (A) as specified by 

the integer array IPOSITION. In the calling segment the column vectors (B) 

and IA) are stored respectively in the one-dimensional real arrays B(IB) 

and A(IA) where IBaMB and IA>m. The array IPOSITION is the same as that used 

in ADD TO BANDMAT and again if any element of IPOSITION is negative the sign of 

the corresponding element of {Bl is changed before adding, also a zero 

value XI IPOSITION indicates a zero contribution to (A). The calling state- 

ment for the subroutine is 

CALL ADD TO WXl'OR (A, MA, B, MB, IPOSITION, CONSTANT) 

To illustrate, consider the previous example (section 4.5) where in 

this case [A] and [B] are column vectors, then the calling statement 
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CALL ADD TO VECTOR (A, 43, B, 12, IPOSITION, 1.0) 

adds, for example, B(1) to A(l), B(2 to A(2) ,...B(8) to A(14), . . . -B(12) to 
A(15). 

4.7 Subroutine ALTER BANDMAT 

Having derived the global matrices [Kl and [Q) of equation (3) It 
is now necessary to impose the boundary conditions. Those considered here 
take the form of explicit constraints involvmg only a single variable at the 
nodes or mid-points, for example, w = CONST at node i, and it is required to 
modify [K] and IQ) accordingly. Other types of boundary conditions are 
considered in section 4.12. Thus, in the subroutine, given a row (coIum) 
number I (an integer), the Ith column of the symmetric banded matrix [A] is 
multiplled by a given real number CONST and subtracted from the column vector 

IS}. In the calling segment the matrix [A] is stored in the real array 
A(IA,JSEMI) as already described and the column vector (B) in the real array 
B(IB) where IBsMB. The Ith row and column of [Al are then replaced by 
zeros except for the leading diagonal element which is given the value 1.0 and 
the Ith element of IB) is replaced by CONST. The calling statement for the 
subroutine is 

CALL ALTER BANDMAT (A, IAJSEMI, IA, B, MB, I, CONST) . 

To illustrate, consider the following simple example. Let the symmetric 
banded matrix 

[Al = 

A(5,3) = 

1.9 2.1 -5.1 0.0 0.0 
2.1 3.4 1.5 3.3 0.0 

-5.7 1.5 2.2 4.5 2.8 
0.0 3.3 4.5 5.6 -1.8 
0.0 0.0 2.8 -1.8 4.7. 

be stored in the real array A(5, 3) as 
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If initially (Bl, stored in the real array B(5), is zero, I = 3 and CONST = 

2.0 then the calling statement 

CALL ALTER BANDMAT (A, 15, 5, B, 5, 3, 2.0) 

returns the arrays A and B with the following values 

B(5) = 

4.8 

. . 
11.4 

-3.0 

2.0 

-9.0 

r5.6 

Given a symmetric banded matrix [A] with semi-bandwidth JSEMI, stored 

in the calling segment in the real array A(IA, JA) as already described, the 

subroutine evaluates [Al2 which is returned in the array A thereby over- 

wrltmg the original matrn. The squaring of a matrix of semi-bandwidth JSEMI 

results in a matrix of semi-bandwidth JSEMI2 = 2*JSEMI-1 so it is important 

to note that in this case it is necessary to set JAaJSEMI2. The subroutine is 

used to form a positive definite symmetric banded matrix from a non-singular 

symmetric banded matrix and the calling statement is 

CALL SQUARE BANDMAT (A, IAJSEMI2, IA, JSEMI, MA) 

where IAJSEMI2 = IA*JSEMI2. 

As an illustrative example let 

r 1.0 2.0 

2.0 2.0 3.0 

3.0 3.0 4.0 

4.0 4.0 5.0 

5.0 5.0 

[Al = 6.0 

1 0 

6.0 

6.0 7.0 

7.0 7.0 8.0 

8.0 8.0 9.0 

9.0 9.0 10.0 

10.0 10.0 

so that JSEMI = 2 and hence JSEMI2 = 3. The matrix [Al is stored in the array 
A as follows 

i 
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. 

A(10.3) = 

-l.O 2.0 0.6 
2.0 3.0 0.0 
3.0 4.0 0.0 
4.0 5.0 0.0 
5.0 6.0 0.0 
6.0 7.0 0.0 
7.0 8.0 0.0 
8.0 9.0 0.0 
9.0 10.0 0.0 

10.0 0.0 0.0 

where here IA = 10, JA = 3. The calling statement 

CALL SQUARE BANDMAT (A, 30, 10, 2, 10) 

returns the array A so that it contains the upper half band of [Al2 as 

follows 

5.0 6.0 
17.0 15.0 
34.0 28.0 
57.0 45.0 

A(10,3) 66.0 = I 86.0 
121.0 91.0 
162.0 120.0 
209.0 153.0 
262.0 190.0 
200.0 0.0 

4.9 Subroutine MlJLT BANDMAT VECTOR 

6.6 
12.0 
20.0 
30.0 
42.0 
56.0 
72.0 
90.0 

0.0 
o.o- 

The subroutine post-multiplies the symmetric banded matrix [A] by a 
column vector {B} where, in the calling segment, [Al is stored in the real 

array A(IA, JA) and {B) in the real array B(IB). The array B is overwritten 
by the result. Within the subroutine the real array SPARR(100) is used as 
working space and must be re-dimensioned accordingly if MB>lOO. The calling 
statement is 

CALL MULT BANDMAT VECTOR (A, IAJSRMI, I& B, MB). 

As an example consider the array A(10.3) given in section 4.8, then if 
B(10) is the array {l.O 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0) the calling 

statement 
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CALL MDLT BANDMAT VECTOR (A, 30, 10, B, 10) 

post-multiplies the array A by array B and returns the result through B as 
follows B(10) = (5.0 15.0 31.0 53.0 81.0 115.0 155.0 201.0 253.0 190.0). 

4.10 Subroutine POSDEF HATINV 

The subroutine finds the inverse of the positive definite symmetric matrix 

[Al stored in the calling segment XI the real array A(MA, MA). The method used 
is that of Choleski in which [A] is expressed as the product of an upper and 
a lower triangular matrix where, because of symmetry, the lower 1s the transpose 

of the upper. The inverse is returned in the array A thereby overwriting the 
origlnal matrix. Although [Al is symmetric it is assumed that the full matrix 
is supplied U-I the array A. The calling statement is 

CALL POSDEF MATINV (A, MAXA). 

To illustrate, the calling statement 

CALL POSDEF MATINV (A, 144) 

overwrites the 12 by 12 symmetric positive definite matrix IA1 stored in the 
real array A(12, 12) by its inverse [Al-'. 

It should be noted that the inversion of a symmetric positive definite 

matrix is now available in the ICL Scientific Subroutines Llbrary5. This 

library subroutine, written in PLAN uses the Gaussian elimination method and 
requires only the lower triangle of 1 Ai stored as a one-dimensional array; 

it is found to be up to six times faster than the present subroutine which 
is therefore included only to complete the package. 

4.11 Subroutine SOLVE BANDMAT 

This subroutine is used to solve the banded system of simultaneous 
equations given by equation (3) to obtain the unknown generalised displace- 
merits. The method used is due co Martin and Wilkinson6 and is most efficient 
if the bandwidth IS small compared with the order of the matrix. The sub- 
routine solves the matrix equation 

1 Al [ Xl = [ BI 

where [Al 1s a symmetric positive definite banded matrix and [ Bl is a 
matrix of right hand sides. In the calling segment [B] is stored in the real 
array B(IA, JB) where JB is the numberof right hand sides, if JB = 1 then 

[ Bl can be stored in the one-dunensional array B(IA). The solution matrix is 

i 

P 
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returned in B thereby overwriting the original matrix. An integer NCHANGE 

is also required to be prescribed, its value depending on the way in which 

[ Al is stored. If the upper half band of [Al is stored as already described 

then NCHANGE can be any integer greater than zero, if the lower half band is 

stored then NCHANGE must be set equal to zero. During the solution the original 

matrix [Al is destroyed. If [Al is singular, or not positive definite, 

the subroutine outputs an error message FAILED IN INVERSION and control is 

returned to the calling segment with A undefined. The calling statement is 

CALL SOLVE BANDMAT (A, IAJSEMI, IA, MA, B, IAJB, NCHANGE). 

To Illustrate, if [Al is a 20 by 20 symmetric positive definite matrix 

with semi-bandwidth 5, the upper half band of which is stored in the array 

A(30, 5) and [Bl is a column of right hand sides in the array B(30) then the 

calling statement 

CALL SOLVE BANDMAT (A, 150, 30, 20, B, 30, 1) 

returns the solution through the array B(30). 

A more general subroutine is available in the ICL Scientific Subroutines 

Library for the solution of banded simultaneous equations but, because of its 

generality, it requires the whole band to be stored. 

4.12 Subroutine SOLVE CONSTRAINED BANDMAT 

This subroutine is used to solve the banded system of simultaneous 

equations given by equation (3) when the solution is subject to linear 

constraints which are provided by the boundary conditions and are of a more 

complicated form than those which can be applied with subroutine ALTER 

BANDMAT. The method which is used to apply the constraints without increasing 

the bandwidth or losing the symmetry of [Kl is due to Morley7 and the sub- 

routine SOLVE BANDMAT is called for the solution of the final equations. More 

explicitly, when the matrix equation 

[AltX) = {B) 

is derived by way of a variational process, as in equation (3), the subroutine 

obtains the solution for IX) subject to the imposition of linear constraints 

The matrix [Al is a symmetric positive definite banded matrix and is stored 

in the calling segment in the real array A(IA,JA), {B} is a column vector 

stored in the real array B(IA), {D) is a colurm vector stored in the real 
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array D(IA) and [Cl is a tridiagonal matrix consisting of unit diagonal 
elements and/or square submatrices of order two of the form 

[cl = 

. 0 

1.0 

C. I ,j 
C. 

IA+1 

I 
'j+l,j 'j+l,j+l 

1.0 

The square submatrices are stored in the real array C(IA, 2) as follows 

C(IA,2) = IA 

b.0 0.0 

0.0 0.0 

'i , 1 'i,2 
C i+l,l C i+1,2 

C. 
J,l 

C 
J.2 

C. 
1+1,1 

C. 
3+1,x 

0.0 0.0 

. 
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The subroutine requires an accompanying integer array IDENT(NAM) described in 
section 4.2 and an integer array CONROW which is filled as follows 

CoNROW(1) = 0 If row I 1s not a constraint row 
CoNROW(1) = 1 if row I is an isolated constraint row, which involves 

only one variable 
CONROW = 2 if row I is a constraint row forming a submatrlx with 

row I+l, i.e. involves two variables 

If both rows I and I+1 forming a submatrix are constraint mws then CONROW(1) = 
CONROW(I+l) = 2. It should be noted that the one-dimensional array SPARE(200) 
is used as additional working space and must be re-dimensioned accordingly If 

MA>zcKl. The calling statement is 

CALL SOLVE CONSTRAINED BANDMAT (A, B, C, D, IA, JSEMI, CONROW, IDENT, MA, NAM). 

To illustrate the use of the subroutine consider the smple case of a 
single triangle with nodes and mid-points numbered as shown in Fig.3. The 
kinematic boundary conditions for two sides are also shown where w is the 
out of plane deflection and h/an is the normal slope. The generalised 
displacements at a node are w,aw/ax, aw/ay and at a mid-point awlan. The 
angle Y64 for example, is the angle included by the intersection of the 

outward pointmg normal n to the side joining nodes 6 and 4 with the Ox 

axis. The distance around the boundary of the element is measured in the 

clockwise sense by S. The integer array IDENT for this case contains 

11 4 5 6 9 101. 

To satisfy the boundary conditions along side 6-4, 1.e. w = 0, the values 

of w and the SlOpe &J/as are prescribed at each end. The condition w = 0 
can be prescribed directly at nodes 6 and 4 but the slopes au/as are obtained 
from 

aw aw aw 
x= -sin y x + CoS Y F . 

Consider node 6 (noting that IDENT(6) = 10): the condition w6 = 0 is directly 
prescribed by setting CONROW(10) = 1 and D(10) = 0.0, while the additional 
condition aw6/as = 0, which is given by the equation 

0.0 = aw6 aw6 -sin y64 a~ + ~0s y64 F 
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can be put in either row I1 or row 12 of [cl. The convention adopted here is 

that the first of the two rows is used unless it has been previously filled, 

so that, m this case we set CONROW(11) = 2, D(l1) = 0.0, C(11,l) = -sin y64 

and C(11,2) = cos y64. Similarly at node 4, where IDENT(4) = 6, we set 

CONROW(6) = 1 and D(6) = 0.0 to prescribe w4 = 0.0 and CONROW(7) = 2, D(7) = 

0.0, C(7,l) = -sin y64, C(7,2) = cos y64 to prescribe aw4/as = 0. 

To satisfy the boundary condition along side 4-1, i.e. aw/an = 0, the 

value of aw/an 1s prescribed at the points 4,2 and 1. At the mid-point, 2, 

aw2/3n = 0 is directly prescribed by setting CONROW(4) = 1 and D(4) = 0.0 but 

at nodes 4 and 1 the aw/an is given by the equation 

aw 
an' 

aw . aw co.5 y z + sin y q- . 

nence at node 4 the equation 

a"4 a"4 0.0 = cos Y41 ax + s=n Y41 ay 

is put III row 8 (row 7 is already filled) so that CONROW(8) = 2, D(8) = 0.0, 

C(8,l) = cos y41 and C(8,2) = sin y41. Similarly at node 1 where IDENT(1) = 1, 

CONROW(2) = 2, D(2) = 0.0, C(2,l) = cos y41 and C(2,Z) = sin y 
41' 

In this case,therefore, the constraint equations can be written 

0 

cm y41 sin y41 

0.0 1.0 

1.0 

1.0 

1.0 

-sin y64 cos y64 

03s Y41 sL* Y41 

1.0 

1.0 

-s=* Y64 cos Y64 

0.0 1.0 

- 
"1 

awl/h 

awlIay 
aw2/an 

aw3/an 

w4 
aw4/ax = 

aw4/ay 

aw5/an 

"6 
aw61ax 

aw61ay 
J 

- - 

"1 
0.0 

awl/al 

0.0 

aw3/ar 

0.0 

0.0 

0.0 

3w5tac 

0.0 

0.0 

h6/ay 
_ - 

e 
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so that the arrays C and CONROW are as follows 

i 

C(12) = 

0.0 

cos Y41 

0.0 

0.0 

0.0 

0.0 

-sin ~6~ 

cLx+ Y41 
0.0 

0.0 

-sin y64 

0.0 

- 0.0 

sin -ibl 

1.0 

0.0 

0.0 

0.0 

cm Y@ 

sin y4, 

0.0 

0.0 

cos Ygl 

1.0 

CONROW(12) = 

Then given an array A(12,12) containing the global stiffness matrix and an 

array B(12) containing the right hand sides the calling statement 

CALL SOLVE CONSTRAINED BANDMAT (A, B, C, D, 12, 12, CONROW, IDENT, 12, 6) 

returns the unknown displacements through the array B. 

5 CONCLUSIONS 

The subroutines which are described provide building blocks which enable 

finite element programs to be quickly assembled and tested taking full 

advantage of the symmetry and handedness of the matrices. The subroutines can 

be divided into two main groups. those concerned with operations on rectangular 

or square matrices and those concerned with operations on banded matrices. The 

former group may be used to set up the element stiffness matrices while the 

latter serve to set up and solve the global equations. 



28 

REFERENCES 

NO. - 

1 

2 

3 

4 

5 

6 

7 

Author(s) 

A. W. Ode11 

0. C. Zienkiewicz 

Y. K. Cheung 

F. A. Akyuz 
S. Utku 

L. S. D. Morley 
B. C. Merrifield 

R. S. Martin 
J. H. Wilkinson 

L. S. D. Morley 

Title, etc. 

Execution times on the RAE 1907 computer. 
RAE Technical Memorandum Space 120 (1969) 

i 
The finite element method in structural and continuum 
mechanics. 
McGraw Hill (1967) 

An automatic node-relabelling scheme for bandwidth 
minimisation of stiffness matrices. 
AIAA Journal 5, 4, 728-730, (1968) 

Bandwidth reduction of label sequences as encountered 
in finite element calculations. 
RAE Technical Memorandum Structures 789 (1970) 

Scxntific subroutines. 
ICL Technical Publications 4096 
First edition May 1968 

Symmetric decomposition of positive definite band 
matrices. 
Numerlsche Mathematlk 7, 355-361 (1965) 

Bending of a square plate with central square hole. 
RAE Technical Report 69031 (1969) 



APP-A 

APP.A 

LISTING OF SUBROUTINES - 

s A.1 FE INPUT --- 

SUBROUTINE FE INPUT(NEL,QO,NCONC,CNODE,CMAG,ELNO,X,Y, lEL,JEL. 
1 IDENT, ID,NF,MF,NEQ,NAM,NNODE,JSEMl,NU,D, IXY. ICON) 

c C+.**.....+**.........*...*......... 

. 

C 
C 

: 
C 

E 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

: 
C 
C 

THE SUBROUTINE READS AND PRINTS BASIC FINITE ELEMENT DATA AND CALLS 
SUBROUTINE FE PARAMETERS TO CALCULATE THE ADD IT IONAL PARAMETERS 
REQU ~RED WH ICH ARE ALSO PRINTED. 
THE SUBROUT INE READS- CAPTION,NEL,NCONC,NU,QO,D,CNODE.CMAG,ELNO,X,Y. 
PRINTS- CAPTION,NEL,NNODE,NAM.NEQ,JSEMl,NU,D,QO,CNODE,CMAG,ELNO,X~Y. 
WHERE: 
CAPTION IS A SINGLE CARD WITH ANY REQD. TITLE IN COLS l-72. 
NEL=NUMBER OF ELEMENTS, NCONC=NUMBER OF CONCENTRATED LOADS. 

NU=POISSONS RATIO, QD=INTENSITY OF UD LOAD. 
D=FLEXURAL R IG ID ITY, NNODE=NUMBER OF NODES. 

NAM=NUMBER OF NODES AND M IDPO INTS, NEQ=NUMBER OF EQUATIONS. 
JSEM I=SEM I-BANDWIDTH 0~ GLOBAL ST IFFNESS MATR Ix. 
CNODE=lNTEGER ARRAY CONTAINING NODE NOS. AT WHICH CONC. LOADS APPLIED. 
CMAG =REAL ARRAY CONTAINING MAGNITUDES OF CONC. LOADS. 
ELNO =INTEGER ARRAY CONTAINING THE NODE AND MIDPOINT NUMBERS TAKEN IN 
SEQUENCE AROUND EACH ELEMENT STARTING AT A NODE(ONE ELEMENT TO A ROW). 
x,y =REAL ARRAYS CONTAINING X,Y COORDINATES OF NODES. 
IDENT=INTEGER ARRAY RELATING NODE AND MIDPOINT NUMBERS TO POSITIONS 
IN THE GLOBAL STIFFNESS MATRIX. (NOTE, [DENT Is NOT PRINTED) 

THE ARRAYS ARE DIMENSIONED: 
CNODE( ICON),CMAG( ICON),ELNO( IEL,JEL),X(IXY),Y( IXY), IDENT( ID), 
WHERE: ICON>OR=NCONC>OR=l, IXY>OR=NAM, IEL>OR=NEL, ID>OR=NAM, 
AND JEL=NUME?ER OF NOBES AND MiDPOINTS REQUIRED TO BESCR IBE 
ONE ELEMENT. 

IN ADDITION NF=NUMBER OF DEGREES OF FREEDOM AT A NODE, 
AND MF=NUMBER OF DEGREES OF FREEDOM AT A MIDPOINT. 

NE’, IF MF<O A SPEClAL FE PARAMETERS SUBROUTINE IS REQUIRED. 
c..+.r.................*...*..*....* 

REAL CAPTION(V),X(IXY),Y( IX’o,CMAG( lCoN),NU 
INTEGER ELNO( IEL,JEL), IDENT( lD).CNoDE( ICON) 
READ(l,lD)CAPTION 
READ(1,2O)NEL,NCONC,NU,QD,D 
IF(NCONC.EQ.O)GOTO 8 
DO‘1 I=1 .NCON(: 

1 READ(l,jO)CNODE(I).CMAG(I) 
8 Jl=JEL 

J2=1 
lF(MF)D.3.3 
Jl=JEL+MFtl 
J2=-MF 

3 Do 2 I=l,NEL 
2 READ(l,40)(ELNO(l,J),J=l,Jl,J2) 

CALL FE PARAMETERS(NEL,ELNO,IEL,JEL,JEL,lDENT,lD,NF,MF,NEQ,NAM,NNODE, 
IJSEMI) 

WR ITE(2,50)CAPT ION 
wRITE(2.60) 
WRITE(~,~D)NEL,NNODE,NAM,NEQ.JSEMI.NU,D 
WR ITE(2.80 )QO 
IF(NCONC.EQ.O)GOTo 9 
WRITE(2,VD) 
DO 4 I=1 ,NCONC 

4 WRITE(2,lOO)CNODE(l),CMAG(~) 



App.A (cont’d) 

App.A (cont’dj 

9 WRITE(2.110) 
J=NNODE 
lF(NNODE.LT.NEL)J=NEL 
DO-5 I=l,J 
IF( I.GT.NEL)GOTO 6 
WRITE(2,12tl)(ELNO(l.K),K=l,JEL) 
IF( I.GT.NNODE)GOTO 5 
GOTO 7 

6 WRlTE(2.130) 
7 READ(l,jD)NODE,X(NODE),Y(NODE) 

WRITE(2,l4fJ)NODE,X(NODE),Y(NODE) 
5 CONTINUE 
- RETURN 

C 
IO FORMAT(9AE) 
20 FORMAT(210,3F0.0) 
30 FORMAT( 10,2FO.O) 
40 FORMAT(10 IO) 
50 FORMAT(lHl///2OX,9AS) 
60 FORMAT(lHO,40X,lDHDATA PRINT OUT) 
70 FORMAT(lHO.lgHNUMBER OF ELEMENTS=.15X, 15/17H NUMBER OF 

1,15/31H NUMBER OF NODES AND MIDPOINTS=,4X,15/ 
221H NUMBER OF EQUATIONS=,lIX, 15/ 
3351-1 SEMIBANDWIDTH OF STIFFNESS MATRIX=, 15116~ POISSONS 
4.F6.4/19H FLEXURAL RIGIDITY=.9X.Fl2.4) 

80 60~MAi 
90 FORMAT 

100 FORMAT 
110 FORMAT 
120 FORMAT 
130 FORMAT 
140 FORMAT( 

END 

iH0.22HINTENSITY OF U;D.iOAD=.5X,Fl2.4) 
lH0,17HCONCENTRATED LOAD/17H NODE MAGNITUDE ) 

:~O::~~~~~;~~O,60X,4HNODE.6X,lHX,SX,lHY) 
:~ j1216) 

NODES=,lEIX 

RATlO=.lBX 

A,2 FE PARANETERS 

SUBROUTINE FE PARAMETERS(NEL,ELNO, IEL,JEL. IDENT, ID.NF,MF,NEQ,NAM, 
lNNODE.JSEMI) 

C*...r-*~.: . . . . l ** . . . . . l . . ..I l ...*.**. 

C THE SUBROUTINE CALCULATES NEQ,NAM,NNODE,JSEMl,AND IDENT( 
C THE SUBROUTINE REQUIRES: 

: 
THE INTEGER ARRAY ELNO( IEL,JEL) EACH ROW CONTAINING THE NODE AND 
MIDPOINT NUMBERS IN SEQUENCE AROUND ONE ELEMENT STARTING AT A NODE. 

C THE INTEGERS NEL.NF.MF.(NOTE NF.MF >OR= 0) 
C THE ARRAY DIMENsioNi (INTEGERS) iD,IEC,JEL; 
C THE NOTATION IS THAT OF SUBROUTINE FE INPUT. 
C*****rr***..*..*......*.......*.... 

INTEGER ELNO( IEL.JEL). IDENT( ID),DIFF 
K,NAM=O 
DO 2 I=l,NEL 
DO 2 J=l,JEL 

2 IF(ELNO( I,J).GT.NAM)NAM=ELNO(I.J) 
C 

NNODE=O 
IDENT(l)=l 

DO 1 Il=l.NAM 
DO 13 I2=1,NEL 
l3=1 

6 IF(NF.EQ.D)GOTO 4 

. 

N 
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IF( Il.NE.ELNO( 12, I3))GOTO 5 
NNODE=NNODE+I 

. 

m 

5 

4 

:z 
13 

I 

C 

8 

9 

IO 

11 

7 

tF(II.NE.NAM)IDENT(I1+I)=IDENT(II)+NF 
GOT0 1 
13=13+1 
IF(MF.EQ.D)GOTO 12 
IF( II .NE.ELNO( 12. I3))GOTO 14 
IF(II.NE.NAM)IDENT(Il+~)=IDENT(Il)+MF 
GOT0 1 
13=13+1 
IF( 13.LE.JEL)GOTO 6 
CONTINUE 
CONTINUE 
IF(MF.EQ.D)NNODE=NAM 

NEQ=NF *NNODE+MF*(NAM-NNODE) 
JSEM I =0 
DO 7 I=I.NEL 
Ml=0 
M2=NAM+I 
DO 8 J=l.JEL 
IF(ELN0 I,J).GT.Ml)Ml=ELNO(I.J 
IF(ELN0 !,J).LT.M2)M2=ELNO(l,J I 
IF(MF.NE.D)GOTOg 
M3=1DENT(Ml )+NF-1 
GbTOll 
J=l 
K=MF-1 
IF(Mfl.EQ.ELNO( I,J))K=MF-I 
J=J+2 
IF(J.LE.JEL)GOTOlO 
M3=IDENT(MI )tK 
M4=IDENT(M2) 
D IFF=M)-MP+1 
lF(DIFF.GT.JSEMI)JSEMI=DIFF 
RETURN 
END 

A.3 ?JAT ATBA 

SUBROUTINE MAT ATBA(A.MANA,MA.B.MAMA.C.NANA.CONSTANT) 
c***r*rrr.........*...............** 
c THE SUBROUTINE EVALUATES [C~=[A~TRANSPOSE*[B~*[A~*CONSTANT WHERE [A] 
c IS MA BY NA,[B] IS SYMMETRIC MA BY MA.AND [C] IS NA BY NA. 
C THE SUBROUTINE REQUIRES: 
C THE REAL ARRAY A(MA.NA) CONTAINING [A]. 
C THE REAL ARRAY B(MA.MA) CONTAINING [B]. 
C THE REAL ARRAY C(NA,NA) TO CONTAIN THE RESULT,[C]. 
C A REAL NUMBER ‘CONSTANT’. 
C NOTE, MANA=MA*NA,MAMA=MA*MA,NANA=NA*NA. 
c...*......................*........ 

REAL A(MANA),B(MAMA),C(NANA) 
NA=O.ItMANA/MA 
12=-MA 
11 =-NA 
DO 1 I=l,NA 
Il=IltNA 
12= 12tMA 
J2=12-MA 
Jl=II-NA 



1 
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DO 1 J=I,NA 
Jl=Jl+NA 
J2=J2+MA 
C(JltI)=O.O 
DO 1 K=l,MA 
SUML=O.O 
Ll =-MA 
DO 2 L=l.MA 
Ll=LltMA- 

2 SUML=SUMLtA(J2+L)*B(LltK) 
1 C(J1tl),C(l1tJ)=C(J1+l)tA(l2tK)rSUML*CONSTANT 

RETURN 
END 

A’.4 INTEGRAL VAT ATG 

SUBROUTINE INTEGRAL MAT ATBA(A,MANANTYPES,B,MAMA,C,NANA,INT,KK, 
1ATYPE) 

C+*...‘...................***.*...... 
C THE SUBROUTINE EVALUATES THE INTEGRAL.OYER THE ELEMENT AREA,OF 

[AITRANSPOSE~[BI~[AI 
E WHERE [A]=[A~]*F~(X Y)+[A2l*F2(X y)+...[All*FI(X Y)+...[AKl*FK(X Y), 
C THE IAll ARE MA BY ;A MATRICES 0; CONSTANTS AND iBl IS A MA BY M: 
c SYMMETR~CMATR lx OF CONSTANTS. THE SUBROUTINE REQuiREs: 
C THE REAL ARRAY B(MA,MA) CONTAINING THE MATRIX [B]. 
C THE REAL ARRAY C(NA,NA) T0 CONTAIN THE RESULT (SYMMETRICAL). 
C THE INTEGER NTYPES=THE LARGEST NUMBER OF FI (X,Y) REQUIRED TO 
C DEFINE AN ELEMENT OF THE MATRIX [A]. 
C THE REAL ARRAY A(MANA.NTyPES) CONTAINING THE AMPLITUDES OF THE 
C Fl(X,y) STORED ROW By ROW FROM [A]. THUS THE ELEMENT (1,J) OF [A] 
C IS STORED IN A( ID,l),A( ID.2) ,...A( ID,NTYPES) WITH ID=( I-1 )*NAtJ. 
C THE INTEGER ARRAY ATYPE(MANA,NTYPES) IDENTIFIES THE Fl(X,Y) AS 

t 
THEY OCCUR IN A(MANA.NTYPES).THE TYPE NUMBERS IN ATYPE(ID,l), 
ATYPE(ID,P),... ATYPE( ID,NTYPES) MUST BE IN NUMERICAL ORDER 

C FOLLOWED BY ANY ZEROS. 
C THE ARRAY A MUST BE ARRANGED IN SYMPATHY WITH THE ARRAY ATYPES. 
C THE REAL ARRAY INT(K,K) (SYMMETRIC) THE (1.J TH ELEMENT OF WHICH 

E 
1 CONTAINS THE AREA INTEGRAL OF FI(X,Y)+FJ(X.Y . 

THE INTEGER K=TOTAL NUMBER OF DIFFERENT FUNCTIONS FI(X.Y). 
C NB. MANANTYPES=MA.NA*NTyPES,NANA=NA.NA,MANA=MA*NA,MAMA=MA*MA,KK=K*K. 
C**r******r*..........*.......*.*..* 

-----________-------------------------- 
: SUBROUTINE FAILS FOR LACK OF STORAGE IN 
C SPAREl,SPAREZ IF MAeNA.GT.100 

REAL SPAREl(lOD),SPARE2(1OD) 
C -------------c------_________________c_ 
C 

REAL A(MANANTYPES),B(MAMA).C(NANA).INT(KK) 
INTEGER ATYPE(MANANTYPES) ,coL,RoW 

C 
K=O.ltSQRT(l.O*KK) 
MA=O.ltSQRT(l.O*MAMA) 
NA=D.ltSQRT(l.O*NANA) 
MANA=MA*NA 
DO 1 I=l.NANA 

1 C(rI )=O.O 
Ll =MANANTYPES+lANAt1 
L2=MANA 
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lF(Ll.EQ.l)L2=1 
C 

DO 2 L=l,K 

: DERIVE SPAREl(MA NA)=AREA INTEGRAL OF FL(X,Y)*A(MA,NA). 
C SPARE1 STORES COiUMN BY COLUMN. 
C 

Jl=O 
DO 3 COL=l,NA 
ID=-NA 
DO 3 ROW-1 ,MA 
Jl =Jl +I 
ID= ID+NA 
SPARE? (J1 )=O.O 
DO 4 JD=l ,Ll ,L2 
JJ=ID+JD+COL-1 
J=ATYPE( J3) 
lF(J)0,3,0 
J2=K*(J-1 )+L 

4 SPARE1 ( Jl )=SPAREl (Jl )+A( J3)* INT( J2) 
3 CONTINUE 

C 
C DERIVE SPARE2(MA,NA)=MATR IX MULTIPLICATION B(MA.NA).SPAREl(MA,NA). 
C SPARE2 STORES ROW BY ROW. 
C 

J2=0 
DO 5 ROW=l.MA 
Jl=O 
DO 5 COL=l,NA 
J2=J2+1 
SPARE2(J2)=0.0 
J)=-MA 
DO 5 I=l,MA 
J3=J3+MA 
Jl =Jl +l 

5 SPARE2( J2)=SPARE2( J2)tB( J3tROW)rSPAREl (J1 ) 

DERIVE SPAREl(MA,NA)=AL(MA,NA). 
SPARE1 STORES ROW BY ROW. 

7 

DO 6 J1=l,MANA 
SPARE1 (Jl )=O.O 
DO 7 JZ=l.Ll.L2 
J3=J2 
lF(ATYPE(Jl+J+I)-L)7,8,6 
CONTINUE 
GOT06 

8 SPARE1 (Jl )=A( JltJ3-I ) 
6 CONTINUE 

c 
ii DERIVE ADDITION TO 
C 

DO 9 ROW=l,NA 
DO 9 COL=ROW,NA 
CD=O.O, 

C(NA,NA)=SPAREl(MA,NA)TRANSPOSED*SPARE2(MA,NA). 

Jl=NA*(COL-1 )tROW 
J2=-NA 
DO 10 I=l,MA 
J2=JZ+NA 

10 CD=CD+SPAREl (J2tROW)*SPARE2( JZtCOL) 
9 C(JS)=C(Jl)tCD 
2 CONTINUE 
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C 
C SYMMETRICAL C(NA,NA). 
C 

Jl =-NA 
DO 11 I=l,NA 
Jl=Jl+NA 
JZ=-NA 
DO 11 J=l,NA 
JZ=J2+NA 

11 C(Jl+J)=C(JZ+I) 
RETURN 
END 

A.5 ADD TO BANDNEAT 

SUBROUTINE ADD TO BANDMAT(A, IAJSEMI, 1A.B. IBJB, lB,MB, IPOSITION) 
c****r**+***.....r......*........... 
C THE SUBROUTINE ADDS THE ELEMENTS OF THE MB BY MB SYMMETRIC MATRIX [B] 
C INTO POSITIONS IN THE SYMMETRIC BANDED MATRIX [A] AS SPECIFIED BY THE 
c ELEMENTS OF THE INTEGER ARRAY IPOSITION. THE SUBROUTINE REQU IREs: 
C THE REAL ARRAY B( IB,JB) CONTAINING THE MATRIX [B] (IB,JB >OR= MB). 
C NOTE ONLY THE UPPER TRIANGLE OF [B] IS STRICTLY REQUIRED. 
C THE REAL ARRAY A( IA,JSEMl) CONTAINING THE UPPER HALF BAND OF THE 
C MATRIX [A]. 
C THE INTEGER ARRAY IPOSITlON(MB) THE ITH ELEMENT CONTAINING THE 
C ROW/COLUMN OF A TO WHICH THE IfH ROW/COLUMN OF B CORRESPONDS. 
C IF THE ITH ELEMENT OF IPOSITION IS NEGATIVE THE SIGN OF THE ITH ROW 
C AND COLUMN OF B IS CHANGED BEFORE ADDING. A ZERO VALUE INDICATES THAT 
C THE ITH ROW AND COLUMN OF B CONTRIBUTE NOTHING TO A. 

P 

C NOTE. IBJB=IB*JB. IAJSEMI=IA*JSEMI. 
c++ l -*....:..*..................a*.*. 

REAL A( IAJSEM.l),B( IBJB) 
s 

INTEGER lPOSlT10N(MB),ROWA,ROWB,COLA,COLB 
JSEMI=O.l+IAJSEMI/IA 
06 1 ROWB=l,MB 
DO 1 COLB=ROWB,MB 
I=(COLB-1 )* IBtROWB 

ROWA=lPOS ITION(ROWB) 
IF(ROWA)O.l,O 

ROWA=-ROWA 
B( I)=-B( I) 
COLA= IPOS IT ION(COLB) 
IF(COLA)0,1,5 
COLA=-COLA 
B(I)=-B(I) 
NCOL=COLA-ROWAt 
IF(COLA.LT.ROWA)NCOL=ROWA-COLA+1 
lF(NCOL.GT.JSEMl)GOT02 
J=(NCOL-1 )*IAtROWA 
IF(COLA.LT.ROWA)J=J-ROWAtCOLA 
A(cl)=B( I)tA(J) 
CONTINUE 
RETURN 
WRITE(2,3)NCOL 
FORMAT(1H ,44HSEMIBANDWIDTH INSUFFICIENT REQUIRES AT LEAST.15) 
JSEM I=0 
RETURN 
END 



A.6 ADD TO VECTOR 

SUBROUTINE 

APP.A (cont’d] 
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ADD TO VECTOR(A,MA,B,MB,lPOSlTlON.CONSTANT) 
~.+*r*.+.................*.......... 
C THE SUBROUTINE ADDS THE ELEMENTS OF THE MB BY 1 COLUMN VECTOR [B], 
C MULTIPLIED BY A GIVEN CONSTANT,INTO POSITIONS IN THE MA BY 1 COLUMN 
C VECTOR [A] SPECIFIED BY THE ELEMENTS OF THE INTEGER ARRAY IPOSITION 
C THE SUBROUTINE REQUIRES: 
C THE REAL ARRAY B(MB) CONTAINING THE COLUMN VECTOR [B]. 
C THE REAL ARRAY A(MA) CONTAINING THE COLUMN VECTOR [A]. 
C THE INTEGER ARRAY IPOSITION THE ITH ELEMENT CONTAINING THE 
C ROW OF A TO WHICH THE lTH ROW OF e CORRESPONDS. 
C THE REAL NUMBER ‘CONSTANT’. 
C IF THE ITH ELEMENT OF IPOSITION IS NEGATIVE THE SIGN OF THE ITH ROW 
C OF B IS CHANGED BEFORE ADDING. A ZERO VALUE INDICATES THAT THE ITH 
C ROW OF B CONTRIBUTES NOTHING TO A. 
C***+**..+.+*.................*...** 

DIMENSION A(MA),B(MB), IPOSIT10N(MB) 
DO 2 I=l.MB 
J=IPOSITiON( I) 
IF(J)O.2,1 

B(I)=-B(i) 
J=-J 

1 A(J)=A(J)tCONSTANT*B( I) 
2 CONTINUE 

RETURN 
END 

T 
A.7 m BANDMAT 

SUBROUTINE ALTER BANDMAT(A,IAJSEMI,lA.B,MB,l.CONST) 
. C..+..*...*...*.......*......*...... 

C THE SUBROUTINE MULTIPLIES THE ITH COLUMN OF THE SYMMETR IC BANDED 
C MATRIX [A] BY A GIVEN CONSTANT,SUBTRACTS THIS COLUMN FROM THE COLUMN 
C VECTOR [B] AND REPLACES THE ITH ROW AND COLUMN OF [A] BY ZEROS EXCEPT 
C FOR THE LEADING DIAGONAL ELEMENT WHICH IS SET EOUAL TO 1.0. 

C 

: 
C 
c+ l 

2 

1 

C THE SUBROUTINE REQU IkES: 
THE INTEGER I= THE REQUIRED ROW/COLUMN NUMBER. 
THE REAL ARRAY A(IA,JSEMl) CONTAINING THE UPPER HALF BAND OF [A]. 
THE REAL ARRAY B(MB) CONTAINING THE COLUMN VECTOR IBl. 
THE REAL NUMBER ‘Cot&T’. 

_ _ 

. . . . ..*..**.............*...*.... 
REAL A( IAJSEMI),B(~~B) 
JSEMI=O.ltIAJSEMI/IA 
l3=0 

DO 2 J=2,JSEMI 
Il=l-Jtl 
12=ItJ-1 
13=13+ IA 
IF(~~.GE.~)B(II)=B(~~)-A(~~~~~)~C~NST 
lF(12.LE.MB)B(l2)=B(l2)-A(l3tl)*CONST 

B( I)=CONST 
IT=-IA 

Do 1 J=l.JSEMi 
11-I-Jtl- 
13=13tIA 
IF( Il.GE.1 )A( 13tll)=D.D 

A(ljtl)=O.O 
A( I)=l.O 
RETURN 
END 
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A.8 SQUARE BAl?DErrAT 

SUBROUTINE SQUARE BANDMAT(A. IAJSEM12. IA,JSEMI.MA) 
C*...................**.*.*..**.*..* 
C THE SUBROUTINE SQUARES THE SYMMETRIC BANDED MATRIX [A]. 
C THE SUBROUTINE REQU IRES: 
C THE REAL ARRAY A( IA.JSEM12) CONTAINING THE UPPER HALF BAND OF [A] 
C IN COLS 1 TO JSEMI.JSEM12=2*JSEMI-l=SEMlBANDWlDTH OF [A] SQUARED. 
C NOTE, LA] IS OVERWRITTEN. 

* 

c+. . . ..*...t....*...*...*...*...*... 
REAL A( IAJSEMl2) 
INTEGER ROW,COL,R.C 
JSEMl2= IAJSEM l2/ IA+O.l 
J7= IA*JSEM I 
IROW= IA 
ICOL=JSEM 12tl 
L=O 
J5=-IA 
DO 2 ROW=l,MA 
J5=J5+ IA 
J8=J5-IA 
DO 2 COL=ROW,MA 
JE=JBtIA 
J=COL-ROW+1 
IF(J.GT.JSEM12)GOT02 
IF(L.GE.l )GOT09 
ICOL= IcoL;l 
IF( ICOL.GE.2t IA-lROW)GOTO6 
IROW=IROW-1 
ICOL=JSEM I2 

6 IF( IROW.GT. IA-JSEM 124.1 )GOT07 
L=l 
IROW=I 
I COL=O 

9 

7 

3 

2 

11 

ICOL= ICOLt 
IF( ICOL.LE.JSEMIZ)GOT07 
ICOL=i 
IROW=IROWtl 
B=O.O 
J3=ICOL*IA-IAtIROW 
J6=- IA 
DO 2 KCOL=l.MA 
J6=J6+ IA 
ll=J5-J6tKCOL 
KP=J&JEtCOL 
IF(ROW.LT.KCOL) ll=J6-J5tROW 
lF(KCOL.LT.COL)K2=J&J6tKCOL 
IF( Il.GT.J7.OR.K2.GT.J7)GOTO2 
A(J9)=A( Irl )*A(K2)tB 
B=Ajjy) 
CONTINUE 
L=O 
Il=MA 
Jl=2 
DO 1 I=l.MA 
DO 1 J=l , JSEM I2 
IF(L.EQ.1)GOTO11 
ICOL=JSEM 12+1-J 
IROW=MA-JSEM l2+2- I 
IF( I.LE.MA-JSEM12tl)GOTOfJ 
IF(L.EQ.O)lROW=lA-JSEMl2tl 
IF(L.NE.O.AND. ICOL.LE.JSEMl2-l)GOTOIO 
IROW= IROWtl 
ICOL=l t IA- IROW 
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10 L=l 
ICOL= IcoL+l 

8 Jl=Jl-1 
lF(Jl.GE.1)GOTO1 
11=11-l 
Jl =MA+l - I1 
rF(~i.G~.Js~~le)Ji=Js~kt12 

i ;I~;I~GE.I.~R. IRow.LE.IA)A( IA*Jl-l~+19 )=A(IA*ICOL-IA+IRoW) 

END 

A.9 MULT BANDVAT VECTOR - 

SUBROUTINE MULT BANDMAT VECTOR(A. IAJSEMI. lA,B,MB) 
C......*............................ 
c THE SUBROUTINE POSTMULTIPLIES THE SYMMETRIC BANDED MATRIX [A] BY THE 
C COLUMN VECTOR [a]. THE SUBROUTINE REQUIRES: 
C THE REAL ARRAY A( IA JSEM I ) CONTAINING THE UPPER HALF BAND OF [A]. 
C THE REAL ARRAY B(MBj CONTAINING THE COLUMN VECTOR [B]. 
C THE ARRAY B IS OVERWRITTEN BY THE RESULT. ( IAJSEMI=IA*JSEMI) 
C**r+~.rr.....**r*.........*....~..*. 
C --------__----------------------------------------------- 
6 SUBROUTINE FAILS FOR LACK OF STORAGE IN SPARE IF MB>100 

REAL SPARE(100) 
C --------_-_---------------------------------------------- 

REAL A( IAJSEMI),B(MB) 
JSEMI=O.l+IAJSEMI/IA 
DO 2 I=l,MB 

2 SPARE( I)=O.O 
Jl= IAJSEM I- IA+1 
DO 1 I=l.MB 
J2=0 
DO 1 J=l ,Jl, IA 
JZ=J2+1 
J3= I-J2tl 
J4=ItJ2-1 
IF(Jj.GE.l)sPARE(J))=SPARE(J?)+A(JtJ3-q)*B(l) 
IF(J.EQ.~ )G0T0i 
lF(J4.LE.MB)SPARE(J4)=SPARE(J4)tA(Jtl-1 )*B( I) 

1 CONTINUE 
DO 3 I=l,MB 

3 ;~;~;;‘A”“( I ) 

END 

A.10 POSDEF YATINV 

SUBROUTINE POSDEF MATINV(A,MAMA) 
c......r.*..................*.**...* 
C THE SUBROUTINE FINDS THE INVERSE OF THE MA BY MA SYMMETRIC POSITIVE 
C DEFINITE MATRIX [A]. THE SUBROUTINE REQUIRES: 
C THE REAL ARRAY A(MA,MA) CONTAINING THE COMPLETE MATRIX [A]. 
c A IS OVERWRITTEN BY ITS INVERSE. (MAMA=MA*MA) 
c*...rr........+.........*...*..**.. 

REAL A(MAMA) 
INTEGER ROW,COL 
MA=O.l+SQRT(l.O*MAMA) 
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2 
4 

: 

2 

8 
5 

IO 

11 

12 

Jl =MAMA-MA+1 
J2=0 
DO 1 COL=l,Jl,MA 
JZ=J2+1 
DO 1 ROW=l,MA 
J3=ROW+COL-1 
B-O.0 
IF(JZ.EQ.l.OR.ROW-JZ.LT.OkOTO4 
J4=ROW - 
DO 2 M=l, JZ-1 
B=BtA(J4)*A(JZtJ4-ROW) 
J4=J4tMA 
IF(ROW-J2)1,3,0 
A(J))=(A(J))-B)/A(CoLtJ2-1) 
GOT01 
A(J3)=SQRT(A(J3)-B) 
CONTINUE 
J2=0 
DO 5 COL=l,Jl,MA 
J2=J2+1 
J5=-MA 
DO 5 ROW=l,MA 
J3=ROW+COL-1 
J5=J5tMA 
B=O.O 
IF(ROW-JP.LE.O)GOTO6 
J4=J3 
DO -/ M=JZ,ROW-1 
B=BtA(J4)*A(COLtM-1 ) 
J4=J4tMA 
IF(ROW-J2)5.8,0 
A(J3)=-B/A(ROWtJ5) 
GOT05 
A(J3)=1 .O/A(COLtJP-1 ) 
CONT INuE 
J2=0 
DO 9 COL-1, Jl .MA 
J4=0 
JZ=JZtl 
DO 9 ROW=l, Jl .NA 
J4=J4+1 
B=O.O 
IF(J4-J2)11.0,0 
DO 10 N=J4,MA 
B=BtA(ROWtM-1 )*A(COLtN-1 ) 
GOT01 2 
A(COLtJO-1 )=A(ROWtJP-1 ) 
GOT09 
A (COLtJ4-1 )=B 

9 CONTINUE 

EF”” 

A.11 SOLVE BANDMAT -- 

SUBROUTlNE SOLVE BANDNAT(A,IAJSEMI,IA,NA,B,IAJB,NCHANGE) 
c.**...**.*.r......r................ 
c THE SUBROUTINE SOLVES THE MATRIX EQUATION [A]*[X]=[B] WHERE [A] IS A 
C MA BY MA SYNMETR IC BANDED MATRIX. THE SUBROUTINE REQUIRES: 
C THE REAL ARRAY A( IA.JsENI) C~HTAIHING A HALF BAND OF [A], IA>OR=NA. 0, 
C THE REAL ARRAY B(IA,JB) CONTAINING THE MATRIX OF RHS,[B].WHERE 
C JB IS THE NUMBER OF RHS. 
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C THE INTEGER NCHANGE=l IF ARRAY A CONTAINS THE UPPER HALF BAND 
C OF [A],AND =o IF A CONTAINS THE LOWER HALF BAND. 
C THE ARRAY B IS OVERWRITTEN BY THE SOLUTION. 
C NOTE IAJB=IA*JB , IAJSEMI=IA*JSEMI. 
c* l 

6 
4 

2 
3 

205 

10 

9 

11 

1 

1 

13 
14 

.t.*.....*..........**......*.... 
REAL A(IAJSEMI).B(IAJB) 
JSEMI=O.l+IAJSEMI/IA 
JEI=O.l+IAJB/IA 
lF(NCHANGE.EQ.O)GOTO4 
DO 6 I=l.MA 
Il=MA-It1 
DO 6 J=l.JSEMI 
12=J*IA 
IF(Il-Jtl.GE.1)A(lAJSEMl-~2tll)=A(l2-lAtll-Jtl) 
L=JSEMI-1 
Ll=L*IA 
AA=l.O 
KA=O 
DO 1 I=l,MA 
IF(I-L)O,O,Z 
lB=L-ItI 
GOT03 
lB=O 
ID=l-LtIB 
DO 1 IH=IBtl,Ltl 
J=IH-1 
IE=J-1 
Jl=J*IAtI 
IC=L-JtIB 
yA=A(Jl) 
IF(IB-IE)O,O,BO 
DO 5 IJ=IBtI,IEtl 
IG=IJ-1 
YA=YA-A(IG*IAtI)~A(IC*lAtlD) 
IC=lCtl 
lF(J-L)7,0,7 
AA=AA*YA 
IF(YA)10,0,10 
KA=O 
GOT08 
IF(ABS(AA)-l)y,O.O 
AA=O.U625.AA 
KA=KAt4 
GOT010 
lF(ABS(AA)-0.0625)0,11,11 

AA=16*AA 

Ez-" 
IF(YA)8,0,0 
A(Jq)=I.O/SQRT(YA) 
GOT01 
A(JS)=YA*A(LltID) 
ID=IDtl 
KA=KA 
ID=L-1 

DO 16 J=l,JB 
DO 19 I=l,MA 
Jl=(J-l)*lA 
IF(I-L)O,O,l3 
IB=L-It1 
GOT01 4 
lB=O 
lC=l 
YA=B(Jl+l) 
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IF( lB-ID)O.O, 19 
DO 15 IH=lB+l,ID+l 
IE=IH-1 
KA=ID+~B-IE 
IC=Ic-1 
YA=YA-A(KA*IA*l)*B(Jl+lC) 
B(Jltl)=YA+A(Ll+t) 
DO 16 IE=l,MA 
I=MA-IE+l 
IF(MA-I-L)O,O,Zl 
IB=L-MA+ I 
yy 

= 
yA=B(Jltl) 
IC=l 
IF( IB-ID)O,O, 16 
DO 18 IJ=IBtl,IDtl 
IG=IJ-1 

KA=ID+IB-IG 
IC=ICtl 
YA=YA-A(KA*IA+IC)*B(Jl+lC) 
B(Jl+ I )=YA*A(Ll+ t) 
RETURN 
KA=KA 
WRITE(2.30) 
FORMAT(1H ,lgHFAILED IN INYERSION) 
I c=o 
RETURN 
END 

A .12 SOLVE COBSTRAIEIED BABDldAT 

SUBROUTINE SOLVE CONSTRAINED BANDMAT(A,B,C,D,IA.JSEMl,CONROW, 
1 IDENT.MA.NAM) 

c**r*r-rirrr***.*..*..*...*...r...**. 
C WHEN THE MATRIX EQUATION [A]*[X]=[B] IS DERIVED BY WAY OF A 
c VARIATIONAL PROCESS THE SUBROUTINE OBTAINS THE SOLUTION FOR [xi 
c SUBJECT TO THE LINEAR CONSTRAINTS [C]~[X]=[D],WHERE [A] IS SYMMETRIC 
c POSITIVE DEFINITE BANDED,[B] AND [D] ARE COLUMN VECTORS AND [cl IS 
C A TRIDIAGONAL MATRIX COMPOSED OF UNIT DIAGONAL ELEMENTS AND/OR 
C SQUARE SUBMATRICES OF ORDER TWO. THE SUBROUTINE REQUIRES: 

c” 
THE REAL ARRAY A(IA,JSEMI) CONTAINING THE UPPER HALF BAND OF [A]. 
THE REAL ARRAY B(IA) CONTAINING THE COLUMN VECTOR CBI (~A>OR=MA). 

c” 
THE REAL ARRAY CilA;Z) CONTAINING THE 2 Bi 2 SUBMATRiCES OF ~[C];~ 

C 
THE REAL ARRAY D(IA) CONTAINING THE COLUMN,VECTOR CD). 
THE INTEGER ARRAY IDENT(NAM). 

C THE INTEGER ARRAY CONROW WHICH IS FILLED AS FOLLOWS: 
C CONROW(I)=O IF ROW l IS NOT A CONSTRAINT ROW, 
C CONHOW(I)=l IF ROW I IS AN ISOLATED CONSTRAINT ROW, 
C CONROW( IF ROW I IS A CONSTRAINT ROW FORMING A SUBMATRIX WITH 
C ROW Itl.IF BOTH I AND It1 ARE CONSTRAINT ROWS THEN 
C CoNRoW(l)=CONRoW(1+l)=2. 

THE SUBROUTINE ‘SOLVE BANDMAT’ 
E THE ARRAY B IS OVERWRITTEN BY THE’RESULTS 
c NOTE, NAM=TOTAL NUMBER OF NODES AND MIDPOiNTS. 
C*.r*.r.....*..r.r......*~*.......** 
(: ----------------_---------------------------------------- 
c SUBROUTINE FAULTS FOR LACK OF STORAGE IN SPARE IF MA>200. 

REAL SPARE(200) 
C -__----^-------_----------------------------------------- 
C 



App.A (con, 

App.A (cont’d) 

REAL A(IA,JSEMl),~(lA),C(IA,2),D(IA) 
INTEGER CONROW(IA).IDENT(NAH),COL 

c 
C INVERT CONSTRAINT MATRIX C. 
C 

11 

4 

2 

7 

9 

6 

1 

12 

5 
C 

DO 5 I=l,NAEI 
J=IDENT(I) 
K=CONROW(J) 
~F(K.EQ.I~I.~R.K.EQ.~)GOT~~ 
lF(CONROW(J)-CONROW(Jtl))O,O,2 
DET=C(J,l)*C(Jt1,2)-C(J,2)*c(J+1.1) 
lF(ABS(DET).GT.0.0000l)GOTO6 
C(Jtl,i),D(Jt1)=0.0 
C(J+1,2)=1.0 
CONROW( 
CONROW(Jtl)=O 
lF(ABS(C(J,l)).GT.ABS(c(J,2)))GOTO7 
c(J+1,1)=C(J,1) 
c(Jt1,2)=C(J,2) 
C(J,I)=l.U 
C(J,2)=0.0 
CONROW(J+1)=3 
CONROW(J)=O 
D(Jtl)=D(J) 
D(J)=O.O 
GOTO 9 
c(J,2)=-C(J,2)/c(J,l) 
~(J,I)=I.o/c(J.I) 
J=Jtl 
GOT01 
C(Jtl,l)=-C(Jtl,l)/C(Jtl,2) 
C(Jt1,2)=l.O/C(Jt1.2) 
J=Jtl 
GOT01 
AA=l.O/DET 
C(J,2)=-C(J,2)*AA 
C(Jtl,l)=-C(Jtl,l)*AA 
AB=C(J.l)*AA 
C(J,i)kiJt1,2)*AA 
C(Jtl.P)=AB 
J=Jtl 
IF(J.GE.MA)GOTO 5 
IF(I.EQ.NAM)GOTO 12 
lF(Jcl.NE.IDENT(ltl))GOTO 12 
GOT05 
J=Jtl 
GOT011 
CONTINUE 

C PERFORM TRIPLE MATRIX MULTIPLICATION 
C 

10 

31 

15 
14 

DO 10 I=l,MA 
SPARE(I)=0.0 
J=O 
J=Jtl 
K=CONROW(J)tl 
~OT0(13,13,14,15)K 
J=J-I 
DO 16 I=l,MA 
COL=J-It1 
IF(I.GE.J)GOT016 
IF(COL-JSEMl)17,0,16 
A(l,COL)=C(J.l)*A(l,cOL) 



App.A (concl’d) 

App.A (concl’d) 

GOT016 
17 AA=A( I.COL) 

A(I,~Oi)=~~J,l)*AA+c(Jtl,l)*A(I,COLtl) 
A(1 COL+1)=C(J.2)*AAtC(Jtl,Z)*A(~,~OLt~) 

16 CON? INUE 
DO 18 cOL=J,JSEMI 
AA=A(J,cOL) 
A(J,cOL)=C(J.1)+AAtC(Jtl,~)*A(Jt~~~OL-1) 

18 A(J+l,cOL-l)=C(J,2)*AAtC(J+I,COL-1) 
A(Jtl,JSEMI)=C(J+1,2)*A(Jt~,Js~N~) 
A1=A(J,1)+C(J.1)tA(J.2)rC(J+I.I) 
A2=A(J,l)*C(J,2)tA(J.2)rC(Jtl,2) 
A3=A(J,2).C(J,l)tA(Jtl,l)*CtJt~,?) 
A4=A(J,2)*C(J,2)tA(Jtl,l)rC(J+1.2) 
A(J,l)=c(J,1)*AItC(Jtl~l)*A3 
A(J,2)=C(J,l)*A2tC(Jt1,1)*A4 
A(J+l.l)=C(J,2)+A2tC(Jtl,2)*A4 
J=J+l 

13 :L;J.LT.MA)GOTO 31 

30 J=Jtl 
K=CONROW(J)tl 
GOT0(19.19.20.21)K 
J=J-1 
AA=B(J+l) 
B(J+l)=C(J,2)*B(J)tC(Jt 
B(J)=C(J,l)*B(J)+C(Jtl, 
J=J+l 
IF(J.LT.MA)GOTO 30 
DO 22 I=l,MA 
1F(CONROw( 1))0,22,0 
DO 22 J=l.JSEMI 
J3=I-Jtl 
JP= It,J-1 

,1,2)*AA 
1 )+AA 

;;(j3;&.l)SPARE(J3)=SPARE(J3)tA(J3,J)*D(l) 
IF(J.iX.l)GOT022 
IF(J4.ik.hA)SPA&(J4)=SPARE(J4)tA(I,J)*D(l) 

22 CONTINUE 
DO 23 I=l,MA 
IF(CONROW(I))O,23.0 
B(l)=O.O 
SPARE( I )=O.O 
DO 24 J=l,JSEXi 
lF(l-J+l.GE.l)A(l-Jtl,J)=O.O 

A(l,J)=O.U 
24 A(l,l)=l.O 
23 CONTINUE 

DO 25 I=l,MA 
25 B(I)=B(l)-SPARE(I)+D(~) 

IAJSEMI=IA+JSEMI 
CALL SOLVE BAND!lAT(A, IAJSEMI, IA,MA.B, IA.1) 
J=O 

29 J=J+l 
K=CONROW(J)tl 
GOTO(26,26,26,27)K 

27 J=J-1 
28 AA=B(Jtl) 

B(Jtl)=c(Jt1,1).B(J)tC(Jtl,2)*AA 
B(J)=C(J,l)*a(J)+C(J,2)*AA 
*I=.lti - _~, 

26 IF (J.LT.MA)GOTO 29 
RETURN 
END 
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Fig.1 Square plate dwided mto triangular fmlte elements 
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