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SUMMARY

Twelve subroutines, written in ICL 1900 Fortran are presented for matrix
and other operations which are commonly encountered in the finite element
analysis of structures. Although the subroutines have been developed
specifically to deal with problems concerning flat plates they clearly

possess some wider generality.

Details are given of each subroutine including its method of use and its

complete listing.
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1 INTRODUCTION

Twelve subroutines are presented for various matrix and other operations
commonly used in the finite element method of structural analysis and
specifically for the analysis of flat plates. They are written in 1900 Fortran

which is the ICL implementation of ASA Fortran.

The subroutines are the result of experience in Structures Department,
RAE with the development of several research-type computer programs for the
finite element analysis of plate bending problems where it is important to take
advantage of symmetry and bandedness in the matrices to reduce computer storage

requirements and execution time.

The subroutines simplify the development of finite element programs, and
include many operations which are non-standard and make use of information
peculiar to finite element analyses. The use of double suffix arrays is
generally avoided because of the time penaltyl which is associated with their

use.

The Report commences with a brief description of the kinds of operations
and matrices which are encountered in finite element analyses; this is followed

by a description and illustrative example of the use of each subroutine.

The subroutines, which are listed in full in the Appendix, have been
tested and used in current finite element programs but there must, however,

be instances where their efficiency and generality can be improved.

2 GENERAL NOTATION

[ ] matrix or row vector
{} colum vector
[ k] element stiffness matrix
(k] stiffness matrix for the whole structure
n outward pointing normal from the boundary
{q} colum vector of generalised displacements
{Q} column vector of generalised loads
5 distance measured around the boundary in the clockwise sense

X,y rectangular Cartesian coordinates



The programming notation which is used in the subroutines is defined in

section 4.

3 MATRIX OPERATIONS IN THE FINITE ELEMENT METHOD

The finite element method requires that the plate be divided by imaginary
lines into a number of 'finite elements' which are then assumed to be connected
at a discrete number of points on their boundaries. Fig.l shows a simple
example of such a plate divided into triangular finite elements which are
connected at the corners (nodes) and mid-points of the sides. The plate is
described by specifying the node and mid-point numbers of each element together

with the coordinates of the nodes with respect to a given set of axes.

Finite element methods can be divided into two main categories, displace-
ment (stiffness) methods or force (flexibility) methods. Since both of these
involve the same type of operations our subsequent references can be to the
displacement method only. It is pertinent to consider briefly the kind of
operation encountered and the type of matrix, i.e. symmetric, banded, square
etc. A description of the finite element methed is given in the book by
Zienkiewic22 where the square, symmetric element stiffness matrix [k] is

given as

(i - [ f (81 [DI[B] dx dy W

element
area

where [D] is a square symmetric matrix called the elasticity matrix which
contains the material properties of the plate and [B] is a rectangular matrix
containing functions of x and y. Frequently, however, the matrix [B] 1is
expressed as the product of various rectangular matrices, e.g. the element

stiffness matrix of a recently developed finite element is given by

(K] = f I [t15tr ™ol el FI[ 1) ax dy (2)

element
area

where [T] and [C] are rectangular transformation matrices of constants and

[Fl is a rectangular matrix of so-called shape functions.



The individual stiffness matrices for each element are then compounded
into a stiffness matrix [K} for the whole structure. This (global) stiffness
matrix is also symmetric and all the non-zero terms are ideally contained within
a band surrounding the leading diagonal. The width of this band depends
critically on the way in which the elements are numbered and it is evident that
it is required to number the elements in such a way that the greatest difference
between the node or mid-point numbers in any one element 1s as small as
possible. 1In simple regular structures the optimum node numbering is frequently
obvious but in large complicated structures this is far from the case.

Attention is drawn here to work on methods of bandwidth.reductionB’4 because
of the considerable advantages which accrue in the saving of storage space for
problems involving large numbers of elements. The bandwidth also influences
strongly the execution time for the solution of the final stiffness equations

for the unknown generalised displacements {q} where
[kl {q} = {Q} . (3)

This computation invariably accounts for a substantial part of the total

computing time.

The flow chart of a typical finite element program is shown in Fig.2 and

the subroutines corresponding to the steps in the chart are as follows

FE INPUT Program Parameters

FE PARAMETERS

MAT ATBA } Element stiffness matrix

INTEGRAL MAT ATBA assembly

ADD TO BANDMAT Add element contribution to global
ADD TO VECTOR stiffness matrix and right hand side

ALTER BANDMAT
Impose boundary conditions and
SOLVE CONSTRAINED BANDMAT solve

SOLVE BANDMAT

Thus, the element stiffness matrix (equation 2) can be built up using MAT ATBA
for the product [C]T[D][C] (= [E] say), INTEGRAL MAT ATBA for the area
integral of iriEllF] (= ldl say) and MAT ATBA again for the product
[11%el1l.



4 DESCRIPTION OF SUBROUTINES

Each subroutine is described in detail but the following generalities and

notation apply to them all,

The individual subroutines are self contained with the two exceptions of
SOLVE CONSTRAINED BANDMAT which calls SOLVE BANDMAT and FE INPUT which calls
FE PARAMETERS. Every identifier used in the subroutines is either locally
declared or is an argument of the subroutine. Extensive use is made of dynamic
dummy arrays which, in 1900 Fortran, cannot be incorporated in COMMON storage
specified in the subroutine. The user can, however, construct his program in

such a way as to make use of the COMMON facility.

If a two-dimensional array A in the calling segment is used to store a

m{rows) by n(cols) matrix then the following program notation is employed

IA is the first dimension of A (= m),
JA 1is the second dimension of A (& n),
MA = m,
NA = n.

Similarly IB is the first dimension of array B, IC is the first dimension of
array C and so on. In general the prefices M and N refer to the dimensions of
the actual matrix while I and J refer to the overall dimensions of the array
in which the matrix is stored. This notation allows an array A to be
declared in the calling segment as A (IA,JA) and to be used for varying sizes
of matrices so that, for instance, several examples with differing dimensions

may be run at one time.

The following diagrams illustrate this notation and the storage of the
two types of matrices, banded symmetric and rectangular (or square), within the

calling segment. The m x n rectangular matrix [A] where
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lr __ :
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is located in the array A(IA,JA), IAzm, JA2n as follows

NA
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M |
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MA - L] L] L[] - » L] 0
IA
A(IA,JA) = ) . . .
y am’l L] » L] am’n
0
L -
- JA

It should be noted that, for convenience, the elements of the above matrix [ Al
are located in the array by a scheme which is at variance with standard Fortran

practice. If [A]l occupies the whole of the array, i.e. IA = MA, JA = NA, then

both storage schemes coincide and A 1is dimensioned A(MA,NA).

A m by m banded symmetric matrix with a semi-bandwidth (JSEMI) of 3,
where semi-bandwidth = (bandwidth + 1)/2, of the form
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is located in the rectangular array A(IA,JA) where IAzm, JA:JSEMI as follows
o JSEMI R
21,1 31,2 21,3 :
82,2 %2,3 %2,4 |
83,3 %3,4 :
MAL |%4,4 ' |
0
A(TA,JA) = |
IA
m-2,m |
m—l,mo |
a 0 0 |
m,m
| 2 =
0
. JA

With the exception of subroutines FE INPUT, FE PARAMETERS and SOLVE

CONSTRAINED BANDMAT all dummy arguments are declared as one-dimensional arrays

within the subroutines.

Hence an array declared A(IA,JA) in the calling

segment is automatically stored column by column in the one-dimensional array

A(TAJA) (where TAJA = TA*#JA) within the subroutine and so reference to element

A(11) in the subroutine corresponds, if IA = 10 say, to element A(1,2) in the

calling segment.

To dimension these arrays the additional notation

~
™~
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IATJA = TAXJA
IATA = TA*IA
JAJA = JA*JA
MANA = MA*NA
TAJSEMI = TA*JSEMI

is required, where * denotes multiplication, with similar expressions for

MAMA, IBJB etc.
The following integer notation is used

NEL number of elements

NAM = number of nodes and mid-points

NEQ = number of equations
NNODE = number of nodes
NCONC = number of concentrated loads

NF = number of degrees of freedom at a node (NF30)

MF = number of degrees of freedom at a mid-point

JEL = number of nodes and mid-points required to define
one element, but if MF is negative (see below) JEL

must be set equal to -MF*JEL

A negative value of MF 1s used to signal a special type of input for the node
numbers in a method which makes use of an extended interpolation and which will
be described in a later Report; locations are left for pseudo mid-point
numbers which are not, however, prescribed at input. The following notation

refers to real numbers

NU = Poisson's ratio
D = flexural rigidity
Qo = intensity of uniformly distributed load

Additional notation 1s defined within the subroutine descriptions.

4.1 Subroutine FE INPUT

The subroutine reads and prints the data necessary to describe the
elemental divisions, material properties and applied loading. The subroutine
FE PARAMETERS (see section 4.2) is called to evaluate additional parameters
used in subsequent calculations. The subroutine requires the following arrays

to be dimensioned in the calling segment.
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REAL X(IXY), Y(IXY), CMAG(ICON)
INTEGER ELNO(IEL,JEL), IDENT(ID), CNODE(ICON)

where TXY:NAM, ICON2NCONCz1, IEL:NEL and IDzNAM. Note, even if there are no

concentrated loads CMAG and CNODE must be dimensioned. The instruction

CALL FE INPUT (NEL, Qo, NCONC, CNODE, CMAG, ELNO, X, Y, IEL, JEL, IDENT,
ID, NF, MF, NEQ, NAM, NNODE, JSEMI, NU, D, IXY, ICON)

then results in the reading (in free format) of the following data

(i) CAPTION, a single card containing any required heading in columns

1 to 72.

(ii) NEL, NCONC, NU, Qo, D {(Note, NU must be declared real in the
calling segment, and Qo is subsequently assumed zero 1f its absolute

value is less than 0.0000001).

(iii) CNODE(I),CMAG(I) an integer array and a real array respectively
containing the node numbers and magnitudes of each applied concentrated
load. (I =1,2,........NCONC)

Omit if NCONC = 0O,

(iv) ELNO(I,J), an integer array containing the node numbers and, if
appropriate, the mid-point numbers taken in sequence around each element
starting at a node. The array is read a row at a time, one finite
element to a row. (I =1,2,.,......NEL, J =1,2,.......JEL. Note, if
1,1-MF,1-2*MF,.......JEL+MF+1).

n

MF 1s negative then J

(v) NODE, X(NODE), Y(NODE). The real arrays X and Y are filled by
reading NNODE cards, each card containing an integer (NODE) equal to
a node number and two real numbers equal to the X and Y coordinates of

that node.

The subroutine FE PARAMETERS is called to evaluate additional parameters and
on return the pertinent information is printed. All parameters, input and
calculated, are returned through the argument list to the calling segment.
Note that a negative value of MF requires a special FE PARAMETERS sub-

routine.

For the purpose of illustration, consider the square plate shown in
Fig.l. The plate is divided into 8 elements, hence NEL = 8, and assuming the

bending deflection w and its derivatives 3w/dx, dw/dy to be the
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generalised displacements at a node and dw/3n to be the generalised
displacement at a mid-point, then NF = 3 and MF = 1. There are six nodes and
mid-points to each element, hence JEL = 6. 1In the calling segment the

dimension statements are

REAL X(100),Y(100),CMAG(10), NU
INTEGER ELNO(20,6), IDENT(130), CNODE(10)

which allows for a case with up to 10 concentrated loads, 20 elements and

100 nodes and mid-points. The calling statement is then

CALL FE INPUT (NEL, Qo, NCONC, CNODE, CMAG, ELNO, X, Y, 20, 6, IDENT,
130, 3, 1, NEQ, NAM, NNODE, JSEMI, NU, D, 100, ICON)

The subroutine reads the following data for the square plate of unit length
side with Poisson's ratio 0.3 and flexural rigidity 1.0, under a concentrated

load of magnitude 1.0 applied at node 13.

CAPTION CARD

8 1 0.3 0.0 1.0
13 1.0
1 2 3 8 13 9
4 5 13 8
6 15 14 13
15 16 25 17 13 14
25 24 23 18 13 17
23 22 21 19 13 18
21 20 11 12 13 19
11 10 1 9 13 12
1 -0.5 ~0.5
0.0 -0.5
5 0.5 -0.5
11 0.5 0.0
13 0.0 0.0
15 0.5 0.0
21 -0.5 0.5
23 0.0 0.5
25 0.5 0.5



12

The print—out from the subroutine is then as follows

Print of CAPTION CARD
NUMBER OF ELEMENTS =

NUMBER OF NODES = 9
NUMBER OF NODES AND MID-POINTS = 25
NUMBER OF EQUATIONS = 43
SEMI BANDWIDTH OF STIFFNESS MATRIX = 23
POISSONS RATIO = 0.3000
FLEXURAL RIGIDITY = 1.0000
INTENSITY OF UB LOAD = 0.0000
CONCENTRATED LOAD
NODE MAGNITUDE
13 1.0
ELNO NODE X Y
3 8 13 1 -0.5 -0.5
3 5 7 13 3 .0 -0.5
5 15 14 13 5 0.5 -0.5
15 16 25 17 13 14 11 ~0.5 0.0
25 24 23 18 13 17 13 0.0 0.0
23 22 21 19 13 18 15 0.5 0.0
21 20 11 12 13 19 21 -0.5 0.5
11 10 1 9 13 12 23 0.0 0.5
25 0.5 0.5

4.2 Subroutine FE PARAMETERS

The subroutine evaluates parameters which are required in subsequent
calculations. More explicitly, given the integers NEL, IEL, JEL, ID, NF, MF

and the integer array ELNO, the instruction

CALL FE PARAMETERS (NEL, ELNO, IEL, JEL, IDENT, ID, NF, MF, NEQ, NAM,
NNODE, JSEMI)

results in the calculation of the integer array IDENT which relates node

and mid-point numbers with positions in the global stiffness matrix, together
with the integers NEQ, NAM, NNODE, JSEMI, and returns them through the
argument list. The subroutine requires the following arrays to be

dimensioned in the calling segment

L]

I
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INTEGER ELNO(IEL, JEL), IDENT(ID)

The semi~bandwidth of the stiffness matrix, JSEMI, is calculated by evaluating
the semi~-bandwidth associated with each element (a function of its maximum

and minimum node or mid-point numbers) and taking the greatest of these.

To 1llustrate, consider the same example as in section 4.1. 1In the

calling segment the arrays are dimensioned
INTEGER ELNO(20,6), IDENT(100)

which allows for 20 elements and 100 nodes and mid-points. ELNQO contains the

node and mid-point numbers as follows

b 2 3 8 13 11

4 5 7 13 8
6 15 14 13
15 16 25 17 13 14
ol |z 24 23 18 13 17 IEL (=20)

23 22 21 19 13 18
21 20 11 12 13 19
| 1 10 1 9 13 12
o 0 0 0 0 0

L ' JEL (=6) '4 {

The calling statement for this case is then

CALL FE PARAMETERS (8, ELNO, 20, 6, IDENT, 100, 3, 1, NEQ, NAM, NNODE,
JSEML)

and the subroutine returns with the values NAM = 25, NEQ = 43, NNODE = 9,
JSEMI = 23 and the array IDENT which contains
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o W =

NAM
(=25) ’
. ID

IDENT (100) = . (=100) .

0]

— - Y

which states for example, that the variation associated with the generalised
displacement aw/on at mid-point 2 occupies row 4 in the square global
stiffriegss matrix, or that the variations associated with w, 9w/3x, 3w/dy

at node 3 occupy rows 5, 6 and 7 respectively.

4.3 Subroutine MAT ATBA

L]

The subroutine evaluates the matrix equation

(c] = [al Y B][A]

D

where [A] is a m by m rectangular matrix stored in the calling segment
1in the real array A(MA,NA) and [B] is a m by m symmetric matrix stored
in the real array B(MA,MA). The subroutine finally multiplies the n by n
symmetric matrix product [A]T[B][A] by the given real number CONSTANT
before returning the result to the real array C(NA,NA). Note that the
arrays A,B,C, have the same dimensions as the corresponding matrices
{a]l,iB],[C], and that, although symmetric, the complete matrix [B] is
required. The subroutine is used to perform a matrix operation which is
frequently required in setting up the element stiffness matrices. The
matrices involved are of a constant size for a given type of element so
that no allowance is made in dimensioning the arrays for variations between

different data cases. The calling statement is

i

CALL MAT ATBA (A, MANA, MA, B, MAMA, C, NANA, CONSTANT)
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As an example consider equation (2) where it is required to evaluate
the matrix product [C]T{D][C]. The three by three symmetric elasticity
matrix [D] 1is stored in the array D(3,3), [C] is a three by six trans-
formation matrix stored in the array C(3,6) and the result is to be stored in
the six by six array CTDC(6,6). Assuming that CONSTANT in this case is 2.3

then the calling statement is
CALL MAT ATBA(C, 18, 3, D, 9, CTDC, 36, 2.3) .

4.4 Subroutine INTEGRAL MAT ATBA

The subroutine evaluates the equation

[q - [ J (a1 T[BI[A] ax dy

element
area

where [A] is a m by n rectangular matrix, [B] is a m by m symmetric matrix
of constants and [C] is a n by n matrix. The elements of the matrix [ Al
are functions of x and y, e.g. %, ¥y, xy {(or of area coordinates2 like Ll’ L2,
L2 L3) and hence [A] can be written as

(Al = [Allfl(x,y) + [Azlfz(x,y) + -.....[Ai]fi(x,y) + ......[AK]fK(x,y)

where the [Ai] are m by n matrices of constants and K 1s an integer equal
to the total number of different functions. An integer NTYPES denotes the
largest number of fi(x,y) required to define an element of [A]. 1In the
calling segment the real array A(MANA, NTYPES) holds the amplitudes of the
fi(x,y) so that these components of the element alj in [Al are stored in
AG', 1), AL',2),.v0e00.. A(i',NTYPES) with 1' = (i-1)*NA+j. The integer array
ATYPE (MANA, NTYPES) holds type numbers (integers 1,2.......K) stored in the
same way, which identify the fl(x,y) as they occur in A(MANA ,NTYPES), so that
type number 1 indicates function type fl(x,y) and so on, The type numbers mus
be in ascending numerical order but followed by any zeros. The array A must
be arranged in sympathy with ATYPE. Within the subroutine the arrays A and
ATYPE are declared as one-dimensional arrays A(MANANTYPES) and ATYPE (MANANTYPE
where MANANTYPES = MA*NA*NTYPES.

In the calling segment the square matrix [B] 1is a matrix of constants
stored in the real array B(MA,MA) and the result [C] 1s stored in the real

array C(NA,NA). The real array INT(X,K) contains the symmetric matrix of

15

t

8)
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integrals over the element area so that the i,jth element holds the area

integral of fi(x,y)fj(x,y) (i,j =1,2......K). Within the subroutine INT is

declared as a one-dimensional array INT(KK) where KK = K*#K. The subroutine

uses two one-dimensional real arrays SPARE1(100) and SPARE2(100) as working s
space, but if MANA is greater than 100 these arrays must be re-dimensioned

accordingly.

The subroutine is used in setting up the element stiffness matrices and

the calling statement is
CALL INTEGRAL MAT ATBA(A, MANANTYPES, B, MAMA, C, NANA, INT, KK, ATYPE).

Since the matrices 1nvolved are again a constant size the corresponding arrays

are dimensioned accordingly.

To illustrate the use of the subroutine consider the case where [Al

is the matrix

0.0 2.5 + 3.2x 0.0 0.0 4.1
2,1 - 0.9x + 1.7y 0.0 6.3x + 1.2y 2.4y 5.3x
0.0 0.0 0.0 4.2 - 2.7x  -2.6y

Here there are three fi(x,y) name ly fl(x,y) = constant, fz(x,y) = x and

w}

f3(x,y) =y and so K = 3. All three types are required to specify element

a5 1 and so NTYPES = 3. Since MA =m = 3 and NA = n = 5 the arrays A and
ATYPE are as follows .
-'0.0 0.0 0.0 -O o] 0 ]
2.5 3.2 0.0 1 2 0
0.0 0.0 0.0 0 0 0
0.0 0.0 0.0 0 0 0
4.1 0.0 0.0 1 0] 0
2.1 -0.9 1.7 1 2 3
0.0 0.0 0.0 0 0 0
A(15,3) =] 6.3 1.2 0.0 ATYPE(15,3) = | 2 3 0
2.4 0.0 0.0 3 0] 0
5.3 0.0 0.0 2 0 o
0.0 0.0 0.0 0 0 0
0.0 0.0 0.0 0 0 0 )
0.0 0.0 0.0 0] 0 0 )
4.2 -2.7 0.0 1 2 0
| -2.6 0.0 0.0 A 0 '
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Thus the second rows (say) indicate that element a of the matrix [A]

1,2
consists of two terms, one of function type 1 with coefficient 2.5 (i.e. 2.5)
and one of function type 2 with coefficient 3.2 (i.e. 3.2x). In short, each
row of array A and the corresponding row of array ATYPE, define one element

of the matrix [A].

The matrix INT is the three by three matrix of area integrals

r—

—
chonst dx dy IJ x dx dy ff v dx dy

INT{3,3) = JJx dx dy jf x2 dx dy IJ xy dx dy
f!y dx dy f[ xy dx dy If y2 dx dy

and B is some three by three array of constants. The calling statement 1s

CALL INTEGRAL MAT ATBA (A, 45, B, 9, C, 25, INT, 9, ATYPE)

and the result is returned by the real array C(5,5).

4.5 Subroutine ADD TO BANDMAT

The purpose of this subroutine is to form a global stiffness matrix [K] ,
see equation (3), from the individual stiffness matrices {kl. The subroutine
adds the elements of the m by m symmetric matrix [B] into positions in the
banded symmetric matrixz [A] as specified by the one-dimensional integer array
IPOSITION. In the calling segment the matrices [B] and [Al are stored
respectively in the real arrays B{IB, JB) and A{(IA, JA) as already described,
while the integer array IPOSITION is dimensioned IB where IB3MB. Note that only
the upper triangle of [B] is strictly required. If the prescribed semi-band-
width JSEMI is insufficient an error message to this effect is output and
control returned to the calling segment with JSEMI set equal to zero. Because
of the symmetry of the matrices [B] and !A], rows and columns of [B] are related
to rows and colums of [A] by a single one-dimensional array IPOSITION. Thus,
IPOSITION(i) = p indicates that row (colummn) i in [B] corresponds to
row {column) p in [A]. A negative value of p 1is taken to indicate that the
sign of both the ith row and column of [B] is to be changed before the additien
takes place. The value p = o indicates that the ith row and column of {B]

contribute nothing to [A]. The subroutine is called by the statement

CALL ADD TO BANDMAT (A, IAJSEMI, IA, B, IBJB, IB, MB, IPOSITICN)
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As an illustrative example consider the triangle of Fig.l which is denoted
by node and mid-point numbers 1, 2, 3, 8, 13, 9 taken in the clockwise
direction. It is assumed that the deflection w, and its derivatives aw/8x
and 0Ow/dy are the generalised displacements at the nodes and that the normal
slope 3w/3n 1s the generalised displacement at the mid-points. For
compatibility of normal slope between elements the convention is now adopted
that 1f the second node number in the clockwise direction along one side of the
element is greater than the first node number on that side then the sign of
the directional derivative 3w/3n at that mid-point is to be changed. Assume
that a 12 by 12 element stiffness matrix [B] is stored in the array B(15, 20),
and suppose that the banded symmetric global stiffness matrix (Al is
dimensioned A(45, 23). Then, for this element, the integer array IPQSITION(12)
contains {1 2 3 4 56 7 14 21 22 23 ~-15}, the minus sign indicating that the
signs of the 12th row and column of [B] are to be changed before adding.

The calling statement
CALL ADD TO BANDMAT (A, 1035, 45, B, 300, 15, 12, IPOSITION)

then returns the array A with, for example, B(l, 1) added to A(l, 1), EB(1l, 2)
to A1, 2), ...... =B(8, 12) to A(14, 2), ...... =(-B(12, 12)) to A(15, 1).

4.6 Subroutine ADD TO VECTOR

This subroutine is used to form the global colummn vector {Q} of
equation (3) from the contributions of each element in a similar way to that
used in subroutine ADD TO BANDMAT to form the global stiffness matrix. The
subroutine multiplies the column vector {Bl} by a given real number CONSTANT
and adds the result into positions in the column vector {A} as specified by
the integer array IPOSITION. 1In the calling segment the column vectors {B}
and {A} are stored respectively in the one-dimensional real arrays B(IB)
and A(IA) where IB3MB and IA3MA. The array IPOSITION is the same as that used
in ADD TO BANDMAT and again if any element of IPOSITION is negative the sign of
the corresponding element of {B} 1is changed before adding, also a zero
value i1n IPOSITION indicates a zero contribution to {A}. The calling state-

ment for the subroutine is
CALL ADD TO VECTOR (A, MA, B, MB, IPOSITION, CONSTANT)

To illustrate, consider the previous example (section 4.5) where in

this case [A] and [B] are column vectors, then the calling statement

o

1)

i



1)

CALL ADD TO VECTOR (A, 43, B, 12, IPOSITION, 1.0)

adds, for example, B(1) to A(1), B(2 to A(2),...B(8) to A(14), ... -B(12) to
A(15).

4.7 Subroutine ALTER BANDMAT

Having derived the global matrices [K] and {Q} of equation (3) 1t
is now necessary to impose the boundary conditions. Those considered here
take the form of explicit constraints involving only a single variable at the
nodes or mid-points, for example, w = CONST at node i, and it is required to
modify [K] and {Q} accordingly. Other types of boundary conditions are
considered in section 4.12. Thus, in the subroutine, given a row (column)
number I (an integer), the Ith column of the symmetric banded matrix [A] is
multiplied by a given real number CONST and subtracted from the column vector
{B}. 1In the calling segment the matrix [A]l is stored in the real array
A(IA,JSEMI) as already described and the column vector {B} in the real array
B(IB) where IB:MB. The Ith row and column of [A] are then replaced by
zeros except for the leading diagonal element which is given the value 1.0 and
the Ith element of {B} is replaced by CONST. The calling statement for the

subroutine is
CALL ALTER BANDMAT (A, IAJSEMI, IA, B, MB, I, CONST) .

To illustrate, consider the following simple example. Let the symmetric

banded matrix

1.9 2.1 -5.7 0.0 0.0
2.1 3.4 1.5 3.3 0.0
[aA] = -5.7 1.5 2.2 4.5 2.8
0.0 3.3 4.5 5.6 -1.8
| 0.0 0.0 2.8 -1.8 4.7 |

be stored in the real array A(5, 3) as

(1.9 2.1 -5.7
3.4 1.5 3.3
A(5,3) = 2.2 4.5 2.8 .
5.6  -1.8 0.0
| 47 0.0 0.0 |
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If initially {B}, stored in the real array B(5), is zero, I 3 and CONST =

2.0 then the calling statement

CALL ALTER BANDMAT (A, 15, 5, B, 5, 3, 2.0)

returns the arrays A and B with the following values

— - - -
1.9 2.1 0.0 11.4 :
3.4 0.0 3.3 ~3.0

A(5,3) = [1.0 0.0 0.0 , B(5) = | 2.0 .
5.6 -1.8 0.0 -9.0
4.7 0.0 0.0, [~5.6 ]

4.8  Subroutine SQUARE BANDMAT

Given a symmetric banded matrix [A] with semi-bandwidth JSEMI, stored
in the calling segment in the real array A(IA, JA) as already described, the
subroutine evaluates [A}2 which is returned in the array A thereby over-
writing the original matrix. The squaring of a matrix of semi-bandwidth JSEMI
results in a matrix of semi-bandwidth JSEMI2 = 2*%JSEMI-1 so it is important
to note that in this case it is necessary to set JA2JSEMI2. The subroutine is

used to form a positive definite symmetric banded matrix from a non-singular

=

symmetric banded matrix and the calling statement is
CALL SQUARE BANDMAT (A, IAJSEMI2, IA, JSEMI, MA) -
where TAJSEMI2 = TA*JSEMIZ2,

As an illustrative example let

1.0 2.0
2.0 2.0 3.0
3.0 3.0 4.0
4.0 4.0 5.0
5.0 5.0 6.0

[A] = 6.0 6.0 7.0
7.0 7.0 8.0
0 8.0 8.0 9.0
9.0 9.0  10.0
L 10.0  10.0 | :

so that JSEMI = 2 and hence JSEMI2 = 3. The matrix [A] 1is stored in the array
A as follows
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1.0 2.0 0.07]
2.0 3.0 0.0
3.0 4,0 0.0
4.0 5.0 0.0
A(10,3) = 5.0 6.0 0.0
6.0 7.0 0.0
7.0 8.0 0.0
8.0 9.0 0.0
9.0 10.0 0.0
10.0 0.0 0.0 |

where here IA = 10, JA = 3. The calling statement
CALL SQUARE BANDMAT (A, 30, 10, 2, 10)

returns the array A so that it contains the upper half band of [A]2 as

follows

[~ 5.0 6.0 6.0 |

17.0 15.0 12.0

34.0 28.0 20.0

57.0 45.0 30.0

A(10,3) = 86.0 66.0 42.0

121.0 91.0 56.0

162.0 120.0 72.0

209.0 153.0 90.0

262.0 190.0 0.0
| 200.0 0.0 0.0_|

4.9 Subroutine MULT BANDMAT VECTOR

The subroutine post-multiplies the symmetric banded matrix [A] by a
colunn vector {B} where, in the calling segment, [A] is stored in the real
array A(IA, JA) and {Bl} in the real array B(IB). The array B is overwritten
by the result. Within the subroutine the real array SPARE(100) is used as
working space and must be re-dimensioned accordingly if MB>100. The calling

statement is
CALL MULT BANDMAT VECTOR (A, IAJSEMI, 1A, B, MB).

As an example consider the array A(10,3) given in section 4.8, then if
B(10) is the array {1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0} the calling

statement
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CALL MULT BANDMAT VECTOR (A, 30, 10, B, 10)

post-multiplies the array A by array B and returns the result through B as

follows B{10) = {5.0 15.0 31.0 53.0 81.0 115.0 155.0 201.0 253.0 190.0}.

4,10 Subroutine PCSDEF MATINV

The subroutine finds the inverse of the positive definite symmetric matrix
[A] stored in the calling segment in the real array A(MA, MA). The method used
is that of Choleski in which [A] 1is expressed as the product of an upper and
a lower triangular matrix where, because of symmetry, the lower 1s the transpose
of the upper. The inverse is returned in the array A thereby overwriting the
original matrix. Although [A] is symmetric it is assumed that the full matrix

is supplied 1n the array A. The calling statement is
CALL POSDEF MATINV (A, MAMA).
To illuscrate, the calling statement
CALL POSDEF MATINV (A, 144)

overwrites the 12 by 12 symmetric positive definite matrix [A] ctored in the

real array A(12, 12) by its inverse [A]—l.

It should be noted that the inversion of 2 symmetric positive definite
matrix is now available in the TCL Scientific Subroutines lerarys. This
library subroutine, written in PLAN uses the Gaussian elimination method and
requires only the lower triangle of [A] stored as a one-dimensional array;
it is found to be up to six times faster than the present subroutine which

is therefore included only to complete the package.

4,11 Subroutine SOLVE BANDMAT

This subroutine is used to solve the banded system of simultaneous
equations given by equation (3) to obtain the unknown generalised displace-
ments. The method used is due to Martin and Wilkinson6 and is most efficient
if the bandwidth 1s small compared with the order of the matrix. The sub-

routine solves the matrix equation

[alfx] = [B]

where [Al 18 a symmetric positive definite banded matrix and [B] is a
matrix of right hand sides., In the calling segment [B] 1is stored in the real
array B(TA, JB) where JB 1is the number of right hand sides, if JB = 1 then

[B] can be stored in the one-dimensional array B(IA). The solution matrix is

L¢]

L3}

°”
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returned in B thereby overwriting the original matrix. An integer NCHANGE

is also required to be prescribed, its value depending on the way in which

[A] 1is stored. If the upper half band of [A] is stored as already described
then NCHANGE can be any integer greater than zero, if the lower half band is
stored then NCHANGE must be set equal to zero. During the solution the original
matrix [A]l 1is destroyed. If [A] 1is singular, or not positive definite,

the subroutine outputs an error message FAILED IN INVERSION and control is

returned to the calling segment with A undefined. The calling statement is
CALL SOLVE BANDMAT (A, TAJSEMI, IA, MA, B, TAJB, NCHANGE).

To 1llustrate, if [Al 1is a 20 by 20 symmetric positive definite matrix
with semi-bandwidth 5, the upper half band of which is stored in the array
A(30, 5) and [B] 1is a column of right hand sides in the array B(30) then the

calling statement
CALL SOLVE BANDMAT (A, 150, 30, 20, B, 30, 1)
returns the solution through the array B(30).

A more general subroutine is available in the ICL Scientific Subroutines
Library for the solution of banded simultaneous equations but, because of its

generality, it requires the whole band to be stored.

4,12 Subroutine SOLVE CONSTRAINED BANDMAT

This subroutine is used to solve the banded system of simultaneous
equations given by equation (3) when the solution is subject to linear
constraints which are provided by the boundary conditions and are of a more
complicated form than those which can be applied with subroutine ALTER
BANDMAT. The method which is used to apply the constraints without increasing
the bandwidth or losing the symmetry of [K] is due to Morley7 and the sub-
routine SOLVE BANDMAT is called for the solution of the final equatiens. More

explicitly, when the matrix equation
(Al {x} = ({B}

is derived by way of a variational process, as in equation (3), the subroutine

obtains the solution for {X} subject to the imposition of linear constraints
[cl{x} = {D} .

The matrix [A] 1is a symmetric positive definite banded matrix and is stored
in the calling segment in the real array A(IA,JA), {B} is a column vector

stored in the real array B(IA), {D} 1is a column vector stored in the real
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array D(IA) and [C]

is a tridiagonal matrix consisting of unit diagonal

elements and/or square submatrices of order two of the form

1.0

1.0

Ci,i i,ie
Ci+1,i Ci+1,1+1
Cc. . C., .
[c] = isi i,i+l
41,5 %+1,501
1.0

.

The square submatrices

(0.0

6.0

i,1
i+l,
C(IA,2) = :
i,1
Ci41,
0.0

1

1

—

0.0

i+l1,2

1,2
Civ1,2
0.0

L4

——t

}

are stored in the real array C(IA, 2) as follows

1

()

IA

[L]
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The subroutine requires an accompanying integer array IDENT (NAM) described in

section 4.2 and an integer array CONROW(IA) which is filled as follows

CONROW(I) = 0 1f row I 1s not a constraint row

CONROW(I) = 1 if row I is an isolated constraint row, which involves
only one variable

CONROW(I) = 2 if row I is a constraint row forming a submatrix with

row I+l, i.e. involves twe variables

If both rows I and I+l forming a submatrix are constraint rows them CONROW(I) =
CONROW(I+1) = 2. It should be noted that the one-dimensional array SPARE (200)
is used as additional working space and must be re-dimensioned accordingly if

MA>200. The calling statement is

CALL SOLVE CONSTRAINED BANDMAT (A, B, C, D, IA, JSEMI, CONROW, IDENT, MA, NAM).

To illustrate the use of the subroutine consider the simple case of a
single triangle with nodes and mid-points numbered as shown in Fig.3. The
kinematic boundary conditicns for two sides are also shown where w 1is the
out of plane deflection and 3w/on 1is the normal slope. The generalised
displacements at a node are w,dw/dx, 3w/dy and at a mid-point dw/3n. The
angle Yeu for example, is the angle included by the intersection of the
outward pointing normal n to the side joining nodes 6 and 4 with the Ox
axis. The distance around the boundary of the element is measured in the
clockwise sense by s. The integer array IDENT for this case contains

{1 4 5 6 9 10}.

To satisfy the boundary conditions along side 6-4, 1.e. w = 0, the values
of w and the slope 3w/ds are prescribed at each end. The condition w =0
can be prescribed directly at nodes 6 and 4 but the slopes 03w/ds are obtained
from

g-‘l=--in a—W-i-cos 3w
3s S0 Y 3% Y 3y

Congider node 6 (noting that IDENT(6} = 10): the condition Ve

prescribed by setting CONROW(10) = 1 and D(10) = 0.0, while the additional

=0 is directly

condition 8w6/as = 0, which is given by the equation

BWB Bwb
0.0 = -sin Yo4 % + cos v, 3;
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can be put in either row 11 or row 12 of [C]. The convention adopted here is
that the first of the two rows is used unless it has been previously filled,
so that, in this case we set CONROW(1l1l} = 2, D(11) = 0.0, C(11,1) = -sin Ye4
and C(11,2) = cos o4 Similarly at node 4, where IDENT(4) = 6, we set

CONROW(6) = 1 and D(6) = 0.0 to prescribe w, = 0.0 and CONROW(7) = 2, D(7) =

0.0, C(7,1) = -sin You C({7,2) = cos Y4 toaprescribe awa/as = 0,

To satisfy the boundary condition along side 4-1, i.e. 8w/dn = 0, the
value of 3w/dn 1s prescribed at the points 4,2 and 1. At the mid-point, 2,
sz/an = 0 is directly prescribed by setting CONROW(4) = 1 and D(4) = 0.0 but

at nodes 4 and 1 the 23w/dn 1is given by the equation

L. cos dw sin dw
an T ax ¥ 3y )
Hence at node 4 the equation
ow Bw4
0.0 = cos Y“ T + sin Ylal W

is put in row 8 (row 7 is already filled) so that CONROW(8) = 2, D(8) = 0.0,
C(8,1) = cos Y41 and €(8,2) = sin Yar® Similarly at node 1 where IDENT(1) = 1,
CONROW(2) = 2, D(2) = 0.0, C(2,1) = cos Y1 and C(2,2) = sin Yyt

In this case, therefore, the constraint equations can be written

—

1.0 ] _wl_ﬂ [ wl_‘
co8 ¥, sin Y41 3w1/3x 0.0
0.0 1.0 Bwllay awllay

1.0 8w2/3n 0.0
1.0 3w3/3n aw3/an
1.0 w4 0.0
-sin Y64 cos Y64 awafax 0.0
cos v,y sin vy, 3w4/av 0.0
1.0 o 9
Bw5/an wS/ n
1.0 w6 0.0
—sin v, cos v, Bw6/ax 0.0
0.0 1.0 3w, /3y dw, /3y
N -— p— - —

n
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so that the arrays C and CONROW are as follows

(0.0 0.0 | (0]
cos Y,y sin Y41 2
0.0 1.0 0
0.0 0.0 1
0.0 0.0 0
0.0 0.0 1

c(12) = |__;_ — CONROW(12) = |,
€oS ¥,y sin Y41 2
0.0 0.0 0
0.0 g.0 1
~5in Yo, €05 Ygu 2
£.O 1.0 | | O

Then given an array A(12,12) containing the global stiffness matrix and an

array B(12) containing the right hand sides the calling statement

CALL SOLVE CONSTRAINED BANDMAT (A, B, C, D, 12, 12, CONROW, IDENT, 12, 6)

returns the unknown displacements through the array B.
5 CONCLUSIONS

The subroutines which are described provide building blocks which enable
finite element programs to be quickly assembled and tested taking full
advantage of the symmetry and bandedness of the matrices. The subroutines can
be divided into two main groups, those concerned with operations on rectangular
or square matrices and those concerned with operations on banded matrices. The
former group may be used to set up the element stiffness matrices while the

latter serve to set up and solve the global equations.
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App.A

LISTING OF SUBROUTINES

A,l FE_INPUT

aaoaaaooaooaaoaaoaoaoaaaaaaaagaoaaQaa

SUBROUTINE FE INPUT(NEL,QQ,NCONC,CNODE,CMAG,ELNO,X,Y, IEL, JEL,
11DENT, ID,NF ,MF,NEQ , NAM, NNODE , JSEMI,NU,D, 1XY, ICON)

B 2 ® B & & 5 8 8 F 5 &5 8 5 B B & 0 BRSNS ORE AR SRR R E RS RPN
THE SUBROUTINE READS AND PRINTS BASIC FINITE ELEMENT DATA AND CALLS
SUBROUT INE FE PARAMETERS TQ CALCULATE THE ADDIT IONAL PARAMETERS
REQUIRED WH!ICH ARE ALSO PRINTED.

THE SUBROUT INE READS- CAPT lON,NEL,NCONC,NU,Q0,D,CNODE,CMAG,ELNO,X, Y.
PRINTS~- CAPTION,NEL,NNODE,NAM,NEQ,JSEMI,NU,D,Q0,CNODE,CMAG,ELNO, X, Y.
WHERE

CAPTION 15 A SINGLE CARD WITH ANY REQD. TITLE IN COLS 1~72.

NEL=NUMBER OF ELEMENTS, NCONC=NUMBER OF CONCENTRATED LOADS.
NU=POISSONS RATI1O, QO=INTENSITY OF UD LOAD.
D=FLEXURAL RIGIDITY, NNODE=NUMBER CF NODES,

NAM=NUMBER OF NODES AND MIDPOINTS, NEQ=NUMBER OF EQUATIONS.
JSEM1=SEMI-BANDWIDTH OF GLOBAL STIFFNESS MATR IX.
CNODE=INTEGER ARRAY CONTAINING NODE NOS. AT WHICH CONC., LOADS APPLIED,
CMAG =REAL ARRAY CONTAINING MAGNITUDES OF CONC. LOADS.
ELNO =INTEGER ARRAY CONTAINING THE NODE AND MIDPOINT NUMBERS TAKEN IN
SEQUENCE AROUND EACH ELEMENT STARTING AT A NODE(ONE ELEMENT TO A ROW),
X,Y =REAL ARRAYS CONTAINING X,Y COCRDINATES OF NODES.
IDENT=INTEGER ARRAY RELATING NODE AND MIDPOINT NUMBERS TO POSITIONS
IN THE GLOBAL STIFFNESS MATRIX. (NOTE, IDENT IS NOT PRINTED)
THE ARRAYS ARE DIMENSIONED:
CNODE ( ICON),CMAG{ ICON),ELNO( IEL ,JEL),X(IXY),Y(1XY), IDENT(ID),
WHERE: ICON>COR=NCONC>0R=1,XY>OR=NAM, IEL>OR=NEL, ID>OR=NAM,
AND JEL=NUMBER OF NOBES AND MiDPOINTS REQUIRED TO BESCRIBE
ONE ELEMENT,
IN ADDITION NF=NUMBER OF DEGREES OF FREEDOM AT A NODE,
AND MF=NUMBER OF DEGREES OF FREEDOM AT A MIDPOINT.
NB, IF MF<0 A SPECIAL FE PARAMETERS SUBROUTINE IS REQUIRED,
& % & 2 # & & & & & B ¥ & & & B B S & F " 4 2 P " ® AR REE P 0w
REAL CAPTION{(9),X{1XY),Y(1XY),CMAG(ICON),NU
INTEGER ELNO( IEL,JEL)}, IDENT(ID),CNODE( ICON)
READ(1,10)CAPTION
READ(1,20 )NEL,NCONC,NU,Q0,D
IF (NCONC.EQ,O)GOTO 8
DO 1 1=1,NCONC
1 READ(1,30)CNODE(1),cMaG(1)
8 Ji=JEL
J2=1
IF(MF)0,3,3
J1=JEL+MF +1
J2=~MF
3 DO 2 1=1,NEL
2 READ(1,40){ELNO(1,J},J=1,J1,J2)
CALL FE PARAMETERS (NEL,ELNO, IEL,JEL, IDENT, 1D, NF,MF, NEQ,NAM, NNODE,
1JSEM1)
WRITE(2,50 )CAPT ION
VRITE(2,60)
WRITE (2,70 JNEL,NNODE ,NAM,NEQ ,JSEM] ,NU,D
WRITE(2,80)Q0
IF(NCONC.EQ.D)GOTO 9
WRITE(2,90)
DO 4 1=1,NCONC
4 WRITE(2,100 )CNODE(1)},CMAG( 1)
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App.A {cont'd)

9 WRITE(2,1160)
J=NNODE
IF (NNODE LT «NEL ) J=NEL
DO 5 1=1,J
IF(1.GT.NEL)GOTO 6
WRITE(2,120 )(ELNO{ 1,K),K=1,JEL)
IF(1.GT+NNODE )GOTO 5
GOTO 7
6 WRITE(2,130)
7 READ(1,30 )NODE,X{NODE ), Y{NODE)
WR1TE(2,146 )NODE,X(NODE ), Y(NODE)
5 CONT INUE
RETURN

10 FORMAT(9A8)
20 FORMAT(210,3F0.0)
30 FORMAT(10,2F0.0)
40 FORMAT{(1010)
50 FORMAT(1H1///20%, 9A8)
60 FORMAT(1H0,40X,14HDATA PR INT OUT)
70 FORMAT(1HO,19HNUMBER OF ELEMENTS=,15X,15/17H NUMBER OF NODES=,18X
1,15/31H NUMBER OF NODES AND MIDPOINTS=,4X,15/
221H NUMBER OF EQUATIONS=,14X,15/
335H SEMIBANDWIDTH OF STIFFNESS MATRIX=, 15/16H POISSONS RATI10=,18X
4,F6+4/19H FLEXURAL RIGIDITY=,9X,F12.4)
80 FORMAT(1HO,22HINTENSITY OF U.D.LOAD=,5X,F12.4)
90 FORMAT{1HO,17HCONCENTRATED LOAD/17H NODE  MAGNITUDE)
100 FORMAT(1H ,13,F12.6)
110 FORMAT(1HO,16X,4HELNO,60X,4HNODE ,6X,1HX,8X,1HY)
120 FORMAT(1H ,1216)
130 FORMAT(1H )
140 FORMAT(1H+,77X,15,2X,2F10.6)
END

4,2 FE PARANETERS

SUBROUT INE FE PARAMETERS(NEL,ELNO, IEL,JEL, IDENT, ID,NF,MF,NEQ,NAM,
1NNODE , JSEM1)
C #= & & % % 8 & & & # & & 8 & & 5 8 & % & & & % & 8 5 % % & & % % % & »
C THE SUBROUTINE CALCULATES NEQ,NAM,NNODE,JSEM1,AND IDENT(ID),
C THE SUBROUTINE REQUIRES:
C THE INTEGER ARRAY ELNO({IEL,JEL) EACH ROW CONTAINING THE NODE AND
C MIDPOINT NUMBERS IN SEQUENCE AROUND ONE ELEMENT STARTING AT A NODE.
C THE INTEGERS NEL,NF,MF.(NOTE NF,MF >Or= 0)
C
C
C

THE ARRAY DIMENSIONS ( INTEGERS) ID,IEL,JEL.

THE NOTATION IS THAT OF SUBROUTINE FE INPUT.

LI NS NN NN DS BEE BEE NEE BN NN I N BN JEN BEE NN NN NN NEE T BN TR BT R NN T N ST N N N BT N N
INTEGER ELNO( IEL,JEL), IDENT(1D),DIFF
K ,NAM=0
DO 2 1=1,NEL
DO 2 J=1,JEL

2 IF(ELNO{1,J)sGT+NAM)NAM=ELNC{1,d)}

NNODE=0
IDENT(1)=1
DO 1 11=1,NAM
DO 13 12=1,NEL
3=1
6 IF(NF.EQ.0)GOTO 4

&)

i

i~
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IF(11.NE.ELNO(12,13))GOTO 5
NNODE=NNODE +1
IF(11.NE.NAM) IDENT( 1141 )=1DENT{ 11 )F
GOTO 1

5 13=13+1
IF(MF.EQ.0)GOTO 12

4 IF(11.NE.ELNO(12,13))GOTO 14
IF(11.NE.NAM) IDENT( 11+4 )=1DENT(11)+MF
GOTO 1

14 13=134+1

12 IF(13.LE.JEL)GOTO 6

13 CONTINUE

1 CONTINUE
IF (MF +EQ « 0 JNNODE=NAM

NEQ=NF #NNODE+MF«{NAM=NNODE )
JSEMI=0
Do 7 1=1,NEL
M1=0
MZ2=NAM+1
DO 8 J=1,JEL
lF(ELNOE1,d)-GT.M1)M1=ELNO(l,dg

8 IF(ELNO{1,J)sLT.M2)}M2=ELNO(1,dJ
IF(MF ,NE.O)GOTOS
M3=1DENT (M1 )+NF =1
GOTO11

g J=1
K=MF-1

10 IF(MA,EQ.ELNO(1,J) }K=NF=1
J=J4+2
IF (JoLE.JEL)GOTO10
M3=IDENT{M1)+K

11 M4=1DENT(M2)
DIFF=M3~M4+1

7 IF(DIFF.GT«JSEMI )JSEMI=DIFF
RETURN
END

A.3 MAT ATBA

SUBROUT INE MAT ATBA(A,MANA,MA,B,MAMA,C,NANA,CONSTANT)

C o 2 & % & # & & & 8 & & 8 5 &6 % & 2 & 8 & 0 & & 2 & & & 8 &8 % 8 8 % &

GaaQagaaoaaQ

»

THE SUBROUTINE EVALUATES [C]=[A]JTRANSPOSEe«[B]e[A]#CONSTANT WHERE [A]
1S MA BY NA,[B] IS SYMMETRIC MA BY MA,AND [C] IS NA BY NA.
THE SUBROUTINE REQUIRES:
THE REAL ARRAY A{MA,NA) CONTAINING [A].
THE REAL ARRAY B{MA,MA) CONTAINING [B].
THE REAL ARRAY C{NA,NA) TO CONTAIN THE RESULT,[C].
A REAL NUMBER ‘“CONSTANT’.
NOTE, MANA=MA*NA,MAMA=MA®MA,NANA=NA®NA,.
*® % B % # & 2 & & € ® "8 ® & B R % 8 # B B " BB & 2 & B B R E BB
REAL A(MANA),B(MAMA),C{NANA)
NA=0.1+MANA/MA
12=~MA
11=-NA
DO 1 1=1,NA
[1=11+NA
12=12+MA
J2=12~-MA
J1=11=NA



App.A (cont'd)

App.A [cont'd)

DO 1 J=1,NA

J1=J1+NA

J2=J24MA

C({(J1+1)=0.0

DO 1 K=1,MA

SUML=0.0

Li=-MA

bo 2 L=1,MA

L1=L1+MA
2 SUML=SUML+A(J2+4L)*B(L1+K)
1 C(d1+l),C(I1+d)=C(d1+l)+A(12+K)-SUML¢CONSTANT

RETURN

END

A.4 INTEGRAL NAT ATBA
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SUBRO%T[NE INTEGRAL MAT ATBA{A,MANANTYPES,B,MAMA,C,NANA, INT,KK,
1ATYPE
®* & % # & ® B # & & 8§ B & # B & B ¥ % & B R & B "B PR R FEN
THE SUBROUTINE EVALUATES THE INTEGRAL,OVER THE ELEMENT AREA,OF
[AJTRANSPOSE«[B]e[A]
WHERE [A]={A1]*F1({X,Y)+{A2]eF2(X,Y)+tee[AI]oFI(X,Y)+ees [AK]oFK(X,Y),
THE [A!] ARE MA BY NA MATRICES OF CONSTANTS AND [B] IS A MA BY MA
SYMMETRIC MATRIX OF CONSTANTS. THE SUBROUTINE REQUIRES:
THE REAL ARRAY B(MA,MA) CONTAINING THE MATRIX [B].
THE REAL ARRAY C(NA,NA) TO CONTAIN THE RESULT (SYMMETRICAL).
THE INTEGER NTYPES=THE LARGEST NUMBER OF FI(X,Y) REQUIRED TO
DEF INE AN ELEMENT OF THE MATRIX [A].
THE REAL ARRAY A(MANA,NTYPES) CONTAINING THE AMPLITUDES OF THE
FI{X,Y) STORED ROW BY ROW FROM [A}. THUS THE ELEMENT (1,J) OF [A]
IS STORED IN A(ID,1),A(1D,2),eesA(ID,NTYPES) WITH ID=(1=1)eNA+J,
THE INTEGER ARRAY ATYPE(MANA,NTYPES) IDENTIFIES THE FI(X,Y)} AS
THEY QCCUR IN A(MANA,NTYPES).THE TYPE NUMBERS IN ATYPE(ID,1)},
ATYPE(ID,2),+s+ATYPE( ID,NTYPES) MUST BE [N NUMERI[CAL ORDER
FOLLOWED BY ANY ZEROS.
THE ARRAY A MUST BE ARRANGED IN SYMPATHY WITH THE ARRAY ATYPES.
THE REAL ARRAY INT(K,K) (SYMMETRIC) THE (I,dgTH ELEMENT OF WHICH
CONTAINS THE AREA INTEGRAL OF FI(X,Y)*FJ(X,¥Y).
THE INTEGER K=TOTAL NUMBER OF DIFFERENT FUNCTIGNS FI({(X,¥).
NB., MANANTYPES=MAeNAeNTYPES,NANA=NAeNA,MANA=MA®NA,MAMA=MA*MA, KK=KeK,
* & # & # 2 & & ® & & & 4 WS B SRR EREPEREE RN
SUBROUTINE FAILS FOR LACK OF STORAGE IN
SPARE1,SPARE2 IF MAeNA.GT.100
REAL SPARE1(106),SPARE2(100)}

s s S it s e o B —— - — ——— " g oy S o s

REAL A{MANANTYPES ),B(MAMA),C(NANA), INT(KK)
INTEGER ATYPE(MANANTYPES),COL,ROW

K=0+1+SQRT(1.0#KK)
MA=0,1+SQRT{1,0«MAMA)
NA=0,1+SQRT(1.0#NANA }
MANA=MA®»NA
DO 1 1=1,NANA

1 C(q)EO-O
L1=MANANTYPES-MANA+1
L2=MANA

r

t

L3

(»
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App.A (cont’d)
App.A {cont’d)
IF{L1.EQ.1)L2=1
DO 2 L=1,K

DERIVE SPARE1(MA,NA)=AREA INTEGRAL OF FL(X,Y)*A(MA,NA).
SPARE1 STORES COLUMN BY COLUMN.

4

J1=0

DO 3 cOL=1,NA
iD==NA

DO 3 ROW=1,MA
JT=Jd1+1
1D=1D+NA
SPARE1(J1}=0.0
DO 4 JD=1,L1,L2
J3=1D+JD+C0L~-1
J=ATYPE(J3)
IF{J)0,3,0
Jo=Ke#(J=1)+L
SPARE1(J1)=SPARE1(J1)+A(J3)e INT(J2)

3 CONTINUE

DERIVE SPARE2(MA,NA)=MATRI1X MULTIPLICATION B{MA,NA)«SPARE1{MA,NA).
SPARE?2 STORES ROW BY ROW.

5

J2=0
DO 5 ROW=1,MA

J1=0

DO 5 COL=1,NA

J2=d2+41

SPARE2(J2 )=0.0

J3==MA

DO 5 1=1,MA

J3=J3+MA

Ji=J1+1

SPARE2 (JR )=SPARE2(J2)+B(J3+ROW)*SPARE1{J1)

DER IVE SPARE1(MA,NA)=AL(MA,NA).
SPARE1 STORES ROW BY ROW.

7

8
6

DO 6 Ji=1,MANA
SPARE1(J1)=0,0

Do 7 J2=1,L1,L2

J3=J2
IE(ATYPE(J1+J2~-1)~L)7,8,6
CONT INUE

GOTOb
SPARE1(J1)=A(J1+J3-1)
CONT INUE

DERIVE ADDITION TO C(NA,NA)=SPARE1(MA,NA)TRANSPOSEDSPARE2(MA,NA).

10

9
2

DO 9 ROW=1,NA

DO 9 COL=ROW,NA

CD=0,0

Ji=NA=(COL=1 }+ROW

J2==NA

DO 10 1=1,MA

J2=J24+NA
CD=CD+SPARE1 ( J2+R0OW )#SPAREZ (J24COL )
C{J4 )=C(J1)+CD

CONT INUE



App.A (cont'd)
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App.A (cont'd)

SYMMETR ICAL. C(NA,NA).

J1==NA
DO 11 1=1,NA
J1=J1+NA
J2==NA
DO 11 J=1,NA
J2=J2+NA

11 C(J1+J)=C(J2+1)
RETURN
END

A.5 ADD TQ BANDMAT
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SUBROUTINE ADD TO BANDMAT(A, lAJSEMI, lA,B, 1BJB, IB,MB, IPOSITION)
# # B & % 5 & B 8 & F & & # F B R 8 & P B &£ B P " BB FE R B B R
THE SUBROUTINE ADDS THE ELEMENTS OF THE MB BY MB SYMMETRIC MATRIX [B]
INTO POSITIONS IN THE SYMMETRIC BANDED MATRIX [A] AS SPECIFIED BY THE
ELEMENTS OF THE INTEGER ARRAY IPOSITION. THE SUBROUTINE REQUIRES:
THE REAL ARRAY B(IB,JB) CONTAINING THE MATRI!X [B] (1B,JB >OR= MB).
NOTE ONLY THE UPPER TRIANGLE OF [B] IS STRICTLY REQUIRED.
THE REA% ?RRAY A(1A,JSEMI) CONTAINING THE UPPER HALF BAND OF THE
MATRIX [A].
THE INTEGER ARRAY IPOSITION(MB) THE ITH ELEMENT CONTAINING THE
ROW/COLUMN OF A TO WHICH THE ITH ROW/COLUMN OF B CORRESPONDS.

IF THE ITH ELEMENT OF IPOSITION IS NEGATIVE THE SIGN OF THE ITH ROW

AND COLUMN OF B IS CHANGED BEFORE ADDING. A ZERO VALUE INDICATES THAT
THE 1TH ROW AND COLUMN OF B CONTRIBUTE NOTHING TO A.

NOTE, IBJB=I[BeJB, |AJSEMI=1A®JSEMI,

® & B % % & & = & & #® & & # & B F = » F & ¥ ¥ B & & 5 & & B B B B BB

REAL A({IAJSEMY),B(1BJB)
INTEGER IPOSITION(MB),ROWA,ROUWB,COLA,COLB
JSEM1=0.1+AJSEMI/IA
DO 1 ROwWB=1,MB
DO 1 COLB=ROWB,MB
I=(COLB=-1 )» IB+ROWB
ROWA=1POS ITION(ROWB }
IF{ROWA)0,1,4
ROWA=-ROWA
B(1)==B(1)

4 COLA=1POSITION(COLB)
IF{coLA)0,1,5
COLA=-COLA
B(1)=-8(1)

5 NCOL=COLA-ROWA+1
iIF(COLA.LT,ROWA JNCOL=ROWA~COLA+1
IF (NCOL.GT.JSEMI1)GOTO2
J=(NCOL~1 )+ 1A+ROVA
1F (COLA LT+ROWA )J=J-ROWA+COLA
A(J)=B(1)+a(J)

1 CONTINUE
RETURN

2 WRITE(2,3)NCOL

3 FORMAT(1H ,44HSEMIBANDWIDTH INSUFFICIENT REQUIRES AT LEAST,I5)
JSEM1=0
RETURN
END

9
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App.A (cont'd]
App.A {cont'd)

A.6 ADD TO VECTOR
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SUBROUTINE ADD TO VECTOR(A,MA,B,MB, IPOSITION,CONSTANT )

* ®* # B % # ¥ # & 8 & & # @ & B & ¥ + % 3 & & B B E & O E P EE "
THE SUBROUTINE ADDS THE ELEMENTS OF THE MB 8Y 1 CCLUMN VECTOR [B],
MULTIPLIED BY A GIVEN CONSTANT, INTO POSITIONS IN THE MA BY 1 COLUMN
VECTOR [A)] SPECIFIED BY THE ELEMENTS OF THE INTEGER ARRAY IPOSITION
THE SUBROUTINE REQUIRES:

THE REAL ARRAY B(MB) CONTAINING THE COLUMN VECTOR [BJ.
THE REAL ARRAY A{MA) CONTAINING THE COLUMN VYECTCR [A].
THE INTEGER ARRAY IPOSITION(MB) THE ITH ELEMENT CONTAINING THE
ROW OF A TO WHICH THE 1TH ROW OF B CORRESPONDS,
THE REAL NUMBER ‘CONSTANT’.
IF THE {TH ELEMENT OF [POSITION 1S NEGATIVE THE SIGN OF THE [TH ROW
OF B IS CHANGED BEFORE ADDINGs. A ZERO VALUE INDICATES THAT THE ITH
ROW OF B CONTRIBUTES NOTHING TO A.
# % % 3 % % ¥ & ¥ B B 2 & & B ¥ B B &5 & FE E OB OEE F RS N E RN
DIMENSION A{MA),B{(MB)}, IPOSITION{MB)
Do 2 I=1,MB
J=IPOSITION( 1)
IF(J)0,2,1
B(1)=-B(1)
J=ed
1 A(J)=A(J)+CONSTANT#*B(I)
2 CONTINUE
RETURN
END

A,7 ALTER BANDMAT
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SUBROUTINE ALTER BANDMAT(A, IAJSEMI,1A,B,MB,1,CONST)

R & T & & & & # & B & & ® F BB & B & % ¥ B & * & & & 5 ® = F " " & ¥
THE SUBROUTINE MULTIPLIES THE 1TH COLUMN OF THE SYMMETR IC BANDED
MATRIX [A] BY A GIVEN CONSTANT,SUBTRACTS THIS COLUMN FROM THE COLUMN
VECTOR {B] AND REPLACES THE ITH ROW AND COLUMN OF [A] BY ZEROS EXCEPT
FOR THE LEADING DIAGONAL ELEMENT WHICH 1S SET EQUAL TO 1.0.

THE SUBROUT INE REQUIRES:
THE INTEGER |= THE REQUIRED ROW/COLUMN NUMBER.
THE REAL ARRAY A{1A,JSEMI) CONTAINING THE UPPER HALF BAND OF [A].
THE REAL ARRAY B(MB) CONTAINING THE COLUMN YECTOR [B1l.
THE REAL NUMBER “CONST”.

# # #® @ & # & ¥ ® & B» & & 8 # B B T ® @ # B FE B F & B & F ® 2 T = A »
REAL A(1AJSEMI1),B(MB)
JSEMI=0,1+1AJSEM1/1A
13=0
DO 2 J=2,JSEMI
1=1=Jd+1
12=14+J~-1
13=13+1A
1F(11.GE.1)B

2 IF(12.LE.MB)
B(1)=CONST
13=—14A
DO 1 J=1,JSEMI
[1=1~-Jd+1
13=13+1A
IF(11.GE.1)A{13+11)=0.0
1 A(1341)=0.0

A(I)=100
RETURN
END

13+11)%CONST

B{11)=-A(
=B(12)~A(13+1)eCONST

(11)=
B(12)



App.A (cont'd)

App.A (cont'd)

A.8 SQUARE BANDWAT
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SUBROUT INE SQUARE BANDMAT(A, IAJSEMI2, IA,JSEMI,MA)
# # & ® & & & & ¥ & & * & & = ¥ & B & B F ¥ ¥ F & BB B ¥ R " " E®R
THE SUBROUTINE SQUARES THE SYMMETRIC BANDED MATRIX [A].
THE SUBROUTINE REQUIRES:
THE REAL ARRAY A(IA,JSEMI12) CONTAINING THE UPPER HALF BAND OF [A]
IN COLS 1 TO JSEMI.JSEMI2=2¢JSEM1~-1=SEMIBANDWIDTH OF [A] SQUARED,
NOTE, |A] IS OVERWRITTEN.
® @ % & & & ¥ & & €& % & & & F B ¥ F BB 2SR OE R R LY E
REAL A{1AJSEMIZ2)
INTEGER ROW,COL,R,C
JSEM12=AJSEM 12/ 1A40,1
J]=1A®JSENMT
IROW=1A
ICOL=JSEM 12+1
L=0
J5==14
DO 2 ROW=1,MA
J5=J5+1A
JB=J5-14
DO 2 COL=ROW,MA
JB=JB+1A
J=COL-ROW+1
IF(JeGT+ JSEMI2 )G0TO2
IF(L.GE.1)GOTO9
ICOL=1COL~1
IF(ICOL.GE.2+ [A-IROW)GOTO6
IROW=IROW-1
ICOL=JSEMI2
6 IF{IROW.GT,. 1A=JSEM12+41 )GOTO7
L=1
IROW=1
1CoL=0
9 1COL=ICOL+1
IF( ICOL.LE ,JSEM12)GOTO7
1COL=1
IROW=IROW+1
7B=000
J3=1COL#* [A=1A+IROW
J6==1A
DO 2 KCOL=1,MA
JE=J6+1A
11=J5-J6+KCOL
K2=J6~J8+COL
IF{ROW.LT.KCOL) 11=J6~J5+ROW
IF(KCOL.LT.COL )K2=J8~J6+KCOL
3 IF(11.GTaJ7+0R.K2.,GT+J7)GOTO2
A(JB)=A( 14 )eA(K2)+B
B=A(J3)
2 CONTINUE
L=0
11=MA
J1=2
DO 1 1=1,MA
DO 1 J=1,JSEMI12
1IF(L.EQ.1)GOTO11
ICOL=JSEM I241~J
IROW=MA=JSEM [242=1
IF(1.LE.MA=JSEM12+1)GOTO8
IF(L.EQ.D) IROW=1A=JSEMI2+1
11 1F(L.NE.O+AND,s ICOLLE.JSEM12=1)GOTO10
IROW=IROW+1
1COL=14 A=~ IROW

L

iy

(»
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App.A (cont'd)
App.A (cont'd)

L=1

1COL=1COL+1

Ji=J1-1

1IF(J1.GE«1)GOTO1

1M=11=1

J1=MA+1-11

IF(J1.GTJSEMI2 JJT1=JSEMI2

IF(11.GEe1+0R. IROW LESTA)A( IA®J1=1A+11)=A(1A®ICOL=1A+|ROW)
RETURN

END

BANDVWAT VECTOR
SUBROUT INE MULT BANDMAT VECTOR(A, [AJSEMI, IA,B,MB)

® & B & £ ® & & & B ¢ &£ & & A 8BS B &K R G P E B S LR

THE SUBROUTINE POSTMULTIPLIES THE SYMMETRIC BANDED MATRIX [A] BY THE
COLUMN VECTOR [B]. THE SUBROUTINE REQUIRES:

THE REAL ARRAY A{1A,JSEM1) CONTAINING THE UPPER HALF BAND OF [A].
THE REAL ARRAY B(MBS CONTAINING THE COLUMN VECTOR [B].

THE ARRAY B 1S OVERWRITTEN BY THE RESULT. (IAJSEMI=lAeJSEMI)

* »

# & ® 2 & & & P & » F & 2 F S F B 2 "SR EERF LS E
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SUBROUTINE FAILS FOR LACK OF STORAGE IN SPARE IF MB>100

REAL SPARE(108)

- — - - - s -—— - T - -

REAL A(IAJSEMI),B{(MB)

JSEMI=0,1+ IAJSEM1/1A

DO 2 1=1,MB

SPARE(1)=0.0

J1=1AJSEM - 1441

DO 1 1=1,MB

J2=0

DO 1 J=1,J1, 1A

JZ=J2+1

J3=1=d2+1

Ja=1+J2-1
IF(J3.GE«1)SPARE(J3}=SPARE(J3)+A(J+J3=-1)eB(1)
IF(J.EQ.1)G0OTO1
IF(J4.LE.MB)SPARE(J4)=SPARE(J4)+A(J+1-1)eB (1)
CONT INUE

DO 3 1=1,MB

B({1)=SPARE(1)

RETURN

END

A.10 POSDEF MATINV
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SUBROUT INE POSDEF MATINV(A,MAMA)

® 8 B 5 S B B & & P F K5 B F e s RS E RN RN

THE SUBROUTINE FINDS THE INVERSE OF THE MA BY MA SYMMETRIC POSITIVE
DEFINITE MATRIX [A]l. THE SUBROUTINE REQUIRES:

A

* »

THE REAL ARRAY A{MA,MA) CONTAINING THE COMPLETE MATRIX [A].

1S OVERWRITTEN BY ITS INVERSE. (MAMA=MA®MA)

*® 2 B3 & & B & & F 2 & % & B 8 & % B & B ®E 2SS
REAL A(MAMA)

INTEGER ROW,COL

MA=0.1+SQRT(1.0¢MAMA)



App-A (cont'd)
App.A [cont'd)

J1=MAMA=-MA+1
J2=0
DO 1 COL=1,J1,MA
J2=J241
DO 1 ROW=1,MA
J3=ROW+COL=1
B=0.0
IF{(J2+EQ+140RROW-J2.LT.0 }GOTO4
J4=ROY
DO 2 M=1,J2-1
E=B+A({J4 )eA(J2+J4~-ROW )
2 JA=J4+MA
4 IF(ROW-J2)1,13,0
A{J3)=(A(J3)-B)/A(COL+J2~1)
GOTO1
A(J3)=SQRT(A{J3)-B)
CONT INUE
J2=0
DC 5 COL=1,J1,MA
J2=J2+1
J5=~MA
DO 5 ROW=1,MA
J3=ROW+COL~1
J5=J54+MA
B=O-0
IF(ROW=J2,.LE.0)GOTO6
Ja=J3
DO 7 M=J2,ROW-1
B=B+A(J4 }*A(COL+M~1)
7 JA=J4+MA
& IF{ROW=J2)5,8,0
A(J3)==B/A(ROW+JS)
GOTOS5
A(J3)=1.0/A(COL+J2~1)
CONT INUE
J2=0
DO 9§ COL=1,J1,MA
Ja=0
J2=J2+1
DO 9 ROW=1,J1,MA
J4=J4+1
B-'—‘O-O
IF(J4-J2)11,0,0
DO 10 M=J4,MA
10 B=B+A(ROW+M=1)eA(COL+M=1)
GOTO12
11 A(COL+J4-1)=A(ROW+J2=1)
GOTO9
12 A(COL+J4-1)=B
9 CONTINUE
RETURN
END

—=\

o

A.11 SOLYE BANDMAT

SUBROUT INE SOLYE BANDMAT(A, IAJSEMI,1A,MA,B, IAJB,NCHANGE )
Cl!&!ﬂl!t!lllll.lﬁliit!!it‘lll‘tl!tﬂ
C THE SUBROUTINE SOLVES THE MATRIX EQUATION {Ale[Xx]1=[B] WHERE {A] IS A
C MA BY MA SYMMETRIC BANDED MATRIX. THE SUBROUTINE REQUIRES:

THE REAL ARRAY A{1A,JSEM{) CONTAINING A HALF BAND OF [A], IA>OR=MA.
THE REAL ARRAY B(IA,JB) CONTAINING THE MATRI!X OF RHS,[B],WHERE
JB 1S THE NUMBER OF RHS.

aQaQa
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App.A (cont'd]
App.A {cont’d)

THE INTEGER NCHANGE=1 1F ARRAY A CONTAINS THE UPPER HALF BAND
OF [A],AND =0 IF A CONTAINS THE LOWER HALF BAND.

THE ARRAY 8 18 OVERWRITTEN BY THE SOLUTION.
NOTE [AJB=1AeJB , [AJSEMI=1A®JSEMI,.

. »

AW N AL
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# # & = % 2 & & & & & € 4 & ¥ & 4 F & & H® B » & & B 3 B 5 F B ES
REAL A(1AJSEM!),B(1AJB)
JSEMi=0.1+1AJSEMI/ 1A
JB=0.1+1AJB/1A
IF(NCHANGE .EQ .0 })GOTO4
DO & 1=1,MA

11=MA=1+1

DO 6 J=1,JSEMI
[2=JelA
IF(11~J+1,GE.1}A( TAJSEMI=12+411 }=A(12-1A+11=J+1)
L=JSEM]-1

L1=Le*lA

AA=1.0

KA=0

DO 1 1=1,MA

IB=L~14+1

GOTO3

IB=0

1D=1-L+1B

DO 1 IH={B+1,L+1

J= TH=1

1E=J-1

Ji=Je [A+]

1C=L~J+1B

YAa=A{J1)
IF(1B-1E)0,0,20

DO 5 1J=1B+1, 1E4+1
1G=1J-1

YA=YA-A{ 1GelA+I)ea{ ICe[A+ID)
1C=1C+1

1F(J—L)7,0,7
AA=AAeYA
IF(ya)10,0,10

KA=0

GOTOB

IF(ABS (AA)-1)9,0,0
AA=0.0625%A7

KA=KA+4

GOTO10
IF(ABS{AA)-0.0625)0,11,11
AA=16%AA

KA=KA=4

GOTO9

IF(YA)8,0,0
A(J1)=1.0/SQRT{YA)
GOTO1
A(J1)=YAeA{L1+ID}
ID=1D+1

KA=KA

ID=L-1

DO 16 J=1,JB

DO 19 1=1,MA
Ji=(J-1)+1A
IF(1-L)0,0,13
IB=L~141

GOTO14

1B=0

iC=1

YA=B (J1+1)



App.A (cont'd)

App.A (cont'd)

IF(1B~1D0)0,0,19
DO 15 IH=1B+1, 1D+1
[E=1H-1
KA=1D+1B~1E
iC=1C~1
YA=YA-A(KA* A+ )*B(JI1+IC)
B(J1+1)=YA#A(L1+1)
DO 16 1E=1,MA
1=MA-[E+1
IF(MA=1-L)0,0,21
IB=L-MA+1
GOTO17
21 1B=0
17 YA=B(J1+1)
1c=1
IF(1B-1D)0,0,16
DO 18 !J=1B+1, ID+1
1G=1J=1
KA=1D+IB~1G
IC=1C+1
YA=YA~A{KA® |A+1C)*B(J1+1C)
B(J1+1)=YAsA(L1+})
RETURN
KA=KA
WRITE(2,30)
30 FORMAT(1H ,19HFAILED IN INVERSION)
1c=0
RETURN
END

-
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4.12 SOLVE CONSTRAINED BANDMAT

SUBROUTINE SOLVE CONSTRAINED BANDMAT(A,B,C,D,1A,JSEMI,CONROW,

1IDENT, MA, NAM)

WHEN THE MATRIX EQUATION [Ale[X]=[B] I35 DERIVED BY WAY OF A

A TRIDIAGONAL MATRIX COMPOSED OF UNIT DIAGONAL ELEMENTS AND/OR
SQUARE SUBMATRICES OF ORDER TwO. THE SUBROUTINE REQUIRES:

LN I B B B TN EE RN T REE R Y NN N DN N B BN 2R R A TN I DY T N B N I K B

VARIATIONAL PROCESS THE SUBROUTINE OBTAINS THE SOLUTION FOR [X]
SUBJECT TO THE LINEAR CONSTRAINTS [CJ]e[X]=[D],WHERE [A] IS SYMMETRIC
POSITIVE DEFINITE BANDED,[B] AND [D] ARE COLUMN VECTORS AND [C] IS

THE REAL ARRAY A(1A,JSEM!) CONTAINING THE UPPER HALF BAND OF [A].
THE REAL ARRAY B(lA) CONTAINING THE COLUMN YECTOR [B] (lA>OR=MA).
THE REAL ARRAY C(1A,2) CONTAINING THE 2 BY 2 SUBMATRICES OF [C].

THE REAL ARRAY D(IA) CONTAINING THE COLUMN_VECTOR [D).
THE INTEGER ARRAY IDENT(NAM).

THE INTEGER ARRAY CONROW(I1A) WHICH IS FILLED AS FOLLOWS:
CONROW(I)=0 IF ROW 1 IS NOT A CONSTRAINT ROV,
CONROW(!)=1 IF ROW 1 IS AN ISOLATED CONSTRAINT ROW,

ROW I+1.IF BOTH | AND I+1 ARE CONSTRAINT ROWS THEN
CONROW( 1 )=CONROW( 1+1)=2.,
THE SUBROUTINE “SOLVE BANDMAT .

THE ARRAY B 1S OVERWRITTEN BY THE RESULTS.

NOTE, NAM=TOTAL NUMBER OF NODES AND MIDPOINTS.

——— o — —— Ty A . B S A S S S P Ay P S S ——

OO OGO OQG oo aOaQaQQQco G

SUBROUTINE FAULTS FOR LACK OF STORAGE IN SPARE IF MA>200.
REAL SPARE(200)

CONROW(1)=2 IF ROW I IS A CONSTRAINT ROW FORMING A SUBMATRIX WITH

L B SN BN N DEK BN 2 R O RN DK DR DN JEN NN DN R BN I R I R B AR T B K BN IR R NN JEE I
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C

c

C

App.A (cont’d)

REAL A(1A,JSEMI),3(1A),C(14,2),D(1A)
INTEGER CONROW(IA), IDENT({NAM),CUL

INVERT CONSTRAINT MATRIX C.

11

12
>

DO 5 1=1,NAN
J=IDENT( 1)

K=CONROW(J)
IF(K+EQsD.OR.K+ERQe1)G0TO1

1F (CONROW(J )~CONROW(J+1))0,0,2
DET=C(J, 1)%C{J+1,2)~C{(J,2)+C{J+1,1)
IF(ABS(DET).GT.0.00001)G0T06
C(J+1,1),D(J+1)=0.0
C{J+1,2)=1.0

CONROW(dJ)=2

CONROW(J+1)=0
IF(ABS(C(J,1))«GT.ABS(C(J,2)))GOTO7
C(J+1,1)=C(J, 1)
C(J+1,2)=C(J,2)

C(J,1)=1.0

C(J,2)=0.0

CONROW(J+1)=3

CONROW(J)=0

D{J+1)=0(J)

D(J)=0.0

GOTC 9

C(‘J’ 2)=_C(J12)/C(\Ju1)

C(J, 1)=1.0/C(J, 1)

J=J+1

GOTO1
C(J+1,1)==C(J+1,1)/C(J+1,2)
C(J+1,2)=1.0/C(J+1,2)

J=J+1

GOTO1

AA=1.0/DET

C(J,2)==C(J,2)%AA
C(J+1,1)=~C(J+1,1)eAA
AB=C(J, 1)*AA
C(J,1)=C(J+1,2)=AA
C({J+1,2)=AB

J=J+1

IF(J.GE.MA)GOTO 5
IF(1.EQ.NAM)GOTO 12
IF(J+1.NE. IDENT(1+1))G0TO 12
GOTOS

J=J+1

GOTO11

CONT INUE

PERFORM TRIPLE MATRIX MULTIPLICATION

10

31

15

14

DO 10 I=1,MA
SPARE(1)=0.0

J=0

J=J+1
K=CONROW(J)+1
GOTO(13, 13,14, 15)K

J=d-1
DO 16 1=1,MA
COL=J-1+1

IF(1.GE.J)GOTO16
IF(COL~-JSEMI)17,0,16
AC1,COL)Y=C(J,1)*A{1,COL)

App.A (con



App.A (concl'd)

17

16

18

13
30

21
20

19

22

24
23

25

29

27
28

26

App.A {concl'd)

GOT0156

AA=A(1,COL)

A(1,COL)=C(J, 1)#AA+C(J+1,1)*A(1,C0L+1)
ACL,COL+1)=C(J,2)*AA+C(J+1,2)eA(1,COL+1)
cONTIHUE

DO 18 COL=3,JS8EM]

AA=A(J,COL)

A(J,COL)Y=C(J, 1)*AA+C(J+1, 1)*A(J+1,C0L-1)

A(J+1,C0L-1)=C{J,2)*AA+C(J+1,2)¢A(J+1,C0L-1)

A(J+1,JSEMI)=C(J+1,2)sA(J+1,dSERI)
A1=A(3, 1)#C(J, 1)+A{J, 2)=C{J+1, 1)
A2=A(J,1)#C(J,2)+A(J,2)sC(J+1,2)
A3=A(J,2)+C(J, 1)+A(J+1,1)=C(J+1,1)
Ad=A(J,2)#C(Jd, 2)+A(J+1,1)eC(J+1,2)
A, 1)=C(J, 1)%a1+C(J+1,1) %43
A(d,2)=2C(Jd, 1)#A2+C{J+1,1)=A4
A(I+1,1)=C(J,2)*A2+C(J+1,2)*A4
J=J+1

IF{J.LT MA)GOTO 31

J=0

J=Jd+1

K=CONROW(J)+1

GOTO(19, 19, 20,21)K

J=J-1

AA=B(J+1)
B(J+1)=C(J,2)eB(J)+C(J+1,2)%AA
B(J)=C(J, 1)«B(J)+C{J+1,1)#AA

J=J+1

IF(J.LT<MA)GOTO 30

D0 22 1=1,MA

IF (CONROW( 1))0,22,0

DO 22 J=1,JSEMI

JI=i=J4+1

Ja=i+Jd~1
IF(J3+GE«1)SPARE(J3)=SPARE(J3)+A(J3,J)sD(1)
IF(J.EQ.1)G0T022

IF(J4.LE.MA)SPARE (J4)=SPARE(JA)+A(1,J)=D(1)
CONT INUE

DO 23 I=1,MA

IF (CONROW(1))0,23,0

B( I )=O-O

SPARE( 1)=0.0

DO 24 J=1,JSEMI

IF(1-J+1.6E. 1)A(1-J+1,J)=0.0
ACT,J)=0.0

AC1,1)=1.0

CONT INUE

DO 25 I=1,MA
B(I)=B(1)-SPARE{1)+D(1)
JAJSEMI=1A*JSEM!

CALL SOLVE BANDMAT(A, IAJSEMI, 1A, MA,B, 14,1)
J=0

J=J+1

K=CONROW (J )+1

GOTO(26,26,28,27)K

J=J-1

AA=B(J+1)
B(J+1)=C(J+1,1)#B(J)+C(J+1,2)*AA
B(J)=C(J, 1)*B(J)+C(J,2)*AA

J=J+1

IF (J.LT.MA)GOTO 29

RETURN

END

14
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Fig.1

Square plate divided into triangular finite elements



PROGRAM PARAMETERS

Y

ASSEMBLE ELEMENT
STIFFNESS MATRIX
(SQUARE SYMMETRIC)

I

ADD ELEMENT
CONTRIBUTION INTO
GLOBAL STTFPNESS
MATRTX
(RANDED SYMMETRIC)

IMPOSE BOUNDARY
CONDITIONS

SOLVE BANDED
EQUATIONS

Fig.2 Flow chart of a typical finite element analysis program



Fig.3 Notation and kinematic boundary conditions for illustrative example
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