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1 INTRODUCTION

In the dynamics of rotorcraft, and no doubt in many other problems, one
is often concerned with the timewise stability of solutions of differential
equations with periodic coefficients (see e.g. Ref.,l). Consider the linear

system

dx(t)

Tt A(L)X(t) (1)

where A(t) denotes an n x n matrix whose elements are periodic functions of

period 1, i.e.
At + 1) = A(t) . (2

Now it is established (Ref.2, pp.336-8) that the equation (1) can be trans-
formed into a similar equation with constant coefficients (i.e. it is reducible

in the sense of Lyapunov)

difr)y _
T BY(t) (3)
where X = L{t)Y(t) (4)

and B is an n x n matrix whose elements are independent of t. The matrix

L(t) is called a Lyapunov matrix, It satisfies the equation

dL

d—t-=AL-LB (5)

and is periodic of the same period as A. Thus (1) has the solution

X = L(t)et . (6)

This 18 a statement of the well known Floquet theorem (see e.g. Ref.3, p.55).

It follows that the stability of (1) can be determined by studying the
eigenvalues of the constant matrix B. A simple and useful way of determining

these (cf. Ref.l) 1s by integration over a period. If we write

E o= X(0X 0 7
then

1

E = L©0)eEL7H0) (8)



and so the two matrices E and eBT are similar (i.e. one is obtained from
the other by a similarity transformation). Thus the eigenvalues of E are

. Bt ,
equal to the eigenvalues of e ; and hence the eigenvalues of B are equal

to ot 1 times the logarithm of the eigenvalues of E, and are determined

(LY

modulo 2wi/t. Integrations are a period, with the imitial condition

X = X(0), immediately given E and so enables one to determine the eigen-
values of B which are called the characteristic exponents of the system.

If none of the characteristic exponents have positive real parts then the

system will be stable*.

This integration method works well provided none of the eigenvalues of
E are small; but in the latter case it is extremely difficult to determine the
corresponding characteristic exponents at all accurately. In particular if the
system is reciprocal - that is the eigenvalues of E are either unity or in
reciprocal pairs - this difficulty does not in general occur; but non-
reciprocal systems have been encountered by the authors which possessed an
almost singular E matrix. In such circumstances it would be advantageous if
B could be found directly and in this connection an iteration procedure based

on Coakley's4 work was investigated.

2 THE ITERATIVE PROCEDURE

In Ref.4 Coakley devised an iterative procedure for transforming an almost

a

periodic system with rapidly varying coefficients into one with more slowly
varying coefficients. For a periodic system this method can, in principle, be
used to make the transformation to a constant coefficient system and hence to

obtain the matrix B directly. For this case the procedure is as follows.

The Lyapunov matrix of the transformation is written as
L(t) = I + V(t) (9)

where V(t) 1is periodic of period T, and I is the unit matrix. Then from

(5

dv
dt

U -8B (10)

*Assuming the characteristic exponents are all distinct. If not there is the
possibility of secular instability specified by the appearance in the general

integral of terms et
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where U = A+ AV - VB (11)

V can obviously be written in the form

Vs ] i {a oM™t - p T (12)
n=l inw n n

(there is no need to include a constant term since this is catered for by the

1 term in equation (9)). So to satisfy (10) U is given by

U = B + Z {Anelnwt + B e*lnmt}

. (13)
n=1 n

We need therefore to determine values of the matrices B, An’ Bn which

will result in equation (l11) being satisfied by the above expressions for U
(r)’ A(r), 3D
n n
Ur’ Vr the corresponding approximations to U, V. Then we can use (l1) to

and V. Suppose B are approximations to these matrices; and

get a further approximation Ur+ .

1
- _ (r)
Ur+1 A+ AVr VrB . (14
Having got Ur+l we can immediately get the corresponding further approxima-
tion B(r+1), Air+1), Bir+1), Vr+1 from equations (13) and (12). This then

is the iteration procedure and, provided it converges, it will determine the

matrix B etc.

In the particular case when the matrix A 1is real, it follows from (8)
and (7), since X 1is always real, that B will be real provided we make
L{0), which is arbitrary, real. Also, from (6), L(t) will be real for any
t. Consequently U and V will also be real and so each matrix Bn will be

the complex conjugate of A , which we denote by Kn'

If we take

u, = A (15)
as the first approximation to U, where, say

m . .
A = B(O) + z {A(O) el'ﬂwt + K(O) e-lnmt} (16)
=1 n n

then the (r+l)th approximation will have the form



(r+1)m . _ s
U = B(r) + z {A(r)e1nwt + A(r)e 1nmt} (an
r n=1 n n

The associated form of Vr is )
(r+l)m . _ iy i

v_ o= AL alD inut _ 3(n) minwty (18)

r B R n
3 THE CONVERGENCE CRITERION

In Ref.4, Coakley states, without proof, an explicit condition which, he
says, guarantees the existence of solutions to equation (11}. This condition

is
fal < (3 - 2/Dw (19)

where the matrix norm Al is any norm which satisfies the conditions

—

laAl > 0 wunless A = 0

lal = || . lal

\ (20)
la + sl < fal + 0gl
=

lasl Al ., 18l

We know however that such a solution always exists. There always is a
Lyapunov matrix which will give the desired transformation (cf. Ref.2, p.338).
The above condition is rather a sufficient condition for the convergence of the

iterative procedure described in the previous section. It is obtained as

follows.

Taking the 'norm’ of both sides of equation (l4) gives

(r)
HUr+1ﬂ < lal + IIAIHIvrlI + IlvrllllB . (21)

Now, from (17) and (18)
vl < Ly (22)
r [{}] r
I5{0 ) < o I (23)

and so

i



Hurﬂ ﬂuruz
llurﬂll < fal + Gal — + — .

Suppose
ftal < kw

then, since UO = 4, using (24), we find that

ol < (+ %)
b b < Qe s 2 + 6k + 4k Mw

etc.

and for the rth approximation

r+1 . z’ ( .
gl < w{} a.k’ + ) a.r)kl
r i i

i=l ior+2

where

i-1
a, = &4+ jzl 35853 =2+ (r+1)

i-1
“gr} = aifil} ) “§rﬂl)a§f§1) jairen > 2t
j=l
2r--l
- 3 a§r'1>a§f51) {e@ ey 2"
¥ ‘L’-l
j=i-2

and on the right-hand side of the last two eguations

agr_l) = a, for =171
1 3
Thus

pimit o < o § ak’
ko . 1
Lo 1=1

(24)

(25)

(26)

27

(28)

(29)

+ 1

(30)

(31)

(32)



where the a, are given by (28) and {(29). Calculated values of the ratio of
successive coefficients in the series on the right hand side of this inequality

are: -

n 1 2 3 e 103 104
a - »
= | o.5] 0.3] 0.27 0.1740833 { 0.1740591
n+l

These appear to be converging to the number (3 - 2/2) quoted by Coakley4.
Consequently we can say with virtual certainty that the series will converge

for
k < (3-2Y2) (33)
which gives, from (25) and (32) the condition (19), i.e.

lal < (3 - 2/2)w

as sufficient to ensure convergence of the iterative procedure. This criterion
is very restrictive but from the very nature of our calculations, i.e.

'taking norms',it can be seen that it will often be far too conservative, and,
as results show later, convergence can be obtained even when the criterion 1s

far from being satisfied.

4 APPLTICATIONS

Some fairly simple examples were taken to see how and when the method
worked, and in particular to get some idea about how conservative the conver-
gence criterion (19) is. In each case they were systems for which the matrix
A contained no overtones, i.e. m =1 in equation (16). For this case it can

easily be shown that, with the iterative method of section 2

B L 5O i 0,0 0, )
: . 70, ()
RN %_{ﬁ(O)Air) e S Air)B(r)} (359
() (0) (r) (0) , (r) (1)
A A AR
Ar(lr+1) %{ (0) e 1 A;ll . 1:11+1 nn r} 2<n<r1) (36)

i



(r) (0),(r) (r)
L) i o A A Ay A 37
T+l W r +1 r r+1l
(0) ,(x)
A4
(r+l) i1 T+l
Ars2 e Tl 38

(r)

It is easily seen that all the B are real, though the other matrices will
in general be a complex. A computer program was written to perform iteratively

the operations given by the above set of equations.

4,1 First example - a second order equation of dimension one

The equation considered was Mathieu's equation with the addition of a

viscous damping term, i.e.
£+ 2k +0%(1 - 2ucos t)f = O . (39)

Making the substitution

£ = ag (40)
it becomes
g = = (1 - 2u cos wt)f - 2¢eg (41)
and soc putting
x = {f,g} (42)

we obtain the equation in the desired form

x = A(t)x (43)
where
P R I 0:1 dwe | (] -iut
-0 -2 Qu 0 u 0
- B(0) . A{o)elmt . K{O)e-iwt i (44)

It can easily be shown that this is a reciprocal system only when ¢ 1is zero,
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4.1.1 Other methods of solution

Equation (39) can be put into the standard form of Mathieu's equation

T

by the transformation

f = e 'z (45)

which gives

2
E+92(1-%-2ucoswt)z = 0 . (46)
Q

Two methods of finding the characteristic exponents of equation (46) were
considered., The first, which we call method a, is given by Bolotin in Ref.5
(section 56, p.214). By expanding 2z as a Fourier series, with unknown
coefficients, multiplied by an exponeqtial term evt, he obtains an infinite
set of equations for the coefficients. For the existence of a non-trivial
solution the corresponding infinite determinant must be zero. An approxima-
tion to this condition is equation to zero of the 3 x 3 determinant of the
elements in the top left hand corner of the larger determinant. In our

notation this is

(vz - wz) + 92 - 82 - uﬂz 2vw N
- 2u$22 v2 + 92 - 62 0 = 0 . (47)
- 2vw 0 u2 - m2 + 92 - 22

This approximation gives six values of the characteristic exponents instead of
the expected two. Two of them should be good approximations to the expected

values and so the method is useful for our comparison requirements.

The second method, method b, is to obtain the solution as a power series

in u (cf. e.g. Ref.6). This is6

4 2 8 4
\)2=—{92-52- 2 2+o(‘“;)} , (48)
407 - 7)Y - w W

The characteristic exponents of equation (39) are of course given by

P N (49)



£}

4.1.2 Comparisons of solutions

Two examples are given below where the iterative method converged to

produce a matrix B whose eigenvalues were very nearly equal to the

11

characteristic exponents as calculated by the two methods of the last section.

(i) 9=1, u=0.2, w=10, ¢ =0

After six iterations B had converged to

0 1
B =
-1.,000833

which has eigenvalues given by

Az = - 1.000833 .

Method a gave A% = - 1.000833, - 80.995505, - 121.003659.
Method b gave Az = - 1,000833.

(ii) @ =1, 1 =0.,25, w = 10, ¢ = 0.25

After six iterations B had converged to

0 1
B =
-1.001299 -0.5

which has eigenvalues given by

A2 = - 0.876299 + 1 /57538759

Method a gave )° = - 0.876301 - 3 /0.938801
= - 81.5022427 - -;- Y81.5647427

120.2464561 - —;_- /120, 3089561,

Method b gave Az =

0.876301 - -} /0.938787.

Thus it can be safely assumed that for both these examples the

iterative method is converging to the correct solution.

4.1.3 The criterion for convergence

With the other parameters having the values used in the two examples of
section 4,1.2 the frequency w was varied to find the minimum value at which

convergence could be obtained. Thus
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(1) For 2 =1, p=0.2, ¢ = 0 (which makes* [Al = 1.4) the
iterative process converged for w # 3 approx., i.e. for
lal € 0.470.

(i) For Q@ =1, w=0.25, ¢ = 0.25 (which makes* [lAl = 2) the
iterative process converged for w # 3 approx., i.e. for
lal € 0.67w.

The criterion (19) is therefore extremely conservative for these two cases but
there is no indication that we can replace the figure in the criterion

(3 - 2V/2 = 0.172) by a larger figure. If a different specific norm**

bl = j—z max (AZ.) (t)
i,j 3

is used the two limits of convergence become

(1) lal €0.57w
(ii) Mall <0.62u

and the difference in the two numbers is much less. For a third set of
parameters at one particular w {i.e. 9 =1, v = 0.005, ¢ =0, w = 2) the
process did not converge and this was a case for which, with the second

definition of norm,

lal = 0.630 .

All the above examples of convergence are to characteristic exponents
with negative or zero real parts, which represent a stable motion of the
system {cf. section 1). The instability regions of equation (39) have been
fully determined (see e.g. Ref.7, p.98). An attempt was made to see if our
iterative method could determine a solution in an unstable region. It was
found however that the parameters could not be arranged so that the procedure

would converge to an unstable root.

*The specific norm used here is

Ial = max[max |A..(t)|
L& ij
1 ]
i.e. the maximum values of the modulus of each element of a row are summed, and

the row 1s found for which this sum is a maximum. This maximum sum is then the
value of the norm.

*%This is the Euclidean norm which is the square root of the sum of the maximum
values of the squares of each element of the matrix.

"w

[
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4,2 Second example — a first order equation of dimension four

As a second example a particular system was taken for which Cesari

(Ref.3, p.74) has given the solution explicitly., The system is

x = A(t)x
where
pu— — i
rb -1 0 0 0 0 £ )
Ui 0 0 0 0 0 0 - 501/02
A = + ) cos wt
0 0 0 -1 0 e/c1 0 0
2
_0 0 0y 0_ €9, 0 ] 0 _
B
0 0 0] 6/02
0 0 ecl 8)
+ sin wt .
- € 0 0 o)
| o 602/01 0 . 0 _

The attraction of this system is that it is unstable at all frequencies

When 01 and 02

4,2.1 The explicit solution

In Ref.3 it is shown that

— cos Ylt —_

- i
T oy sin vyt

e{(u + Yy~ 02) cos (w + Yl)t - o sin (w + Yl)t}/A

ecz{(m * v - 02) sin (w + yl)t + o cos (w + yl)t}/ﬁ

—

A

18 a solution of (50) where

are equal it is a reciprocal system* (cf. section 4.21).

13

(50)

(51)

(52)

then A'P = - PA if o, = g, which is a

*Wi =
With P 1 9

0 0 0 1
o 0 -1 0
o 1 o O
-1 0 0 0O

condition” which ensures that the system is reciprocal.
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A= (w48 -0 -0+ (54)
1 2
and z = a - iBf
(55)
and z = -g + i(w + B - g, = 02)

are the roots of

z = = . (56)

Another solution is obtained by replacing cos by sin and sin by - cos in
(52) . Two other solutions are obtained by replacing o by -o, o, by o,
Yy by Y2(= B - 02), and interchanging the last two rows of (52). Thus
there always are two solutioms with characteristic exponents* with positive
real parts (except for € =0 when o is zero). The fact that (52) is a

solution of (50) can be simply verified if one notes that from (55) and (56)

2

a(28 +w =0 -0,) = ¢ (37
uz = B(R+w=-0, = G,) (58)
1 2
which two equations can be put in the form

eza

B = = (59)
2
e (B + w - oy ~ 02)

a = . (60)

A

To determine o one has to solve the quartic obtained by eliminating B8

from (57) and (58), viz.
4a4 + a2(m -0 - 02) -e =0 . (61)

This gives, since a 1is real

*The characteristic exponents are o % iyl, -0t iyz.

-

43
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J{/Iésa + (w = g, = 02)4 - {w - o = 02)2
a = = (62)
2/2
2 2 . .
For e /(uw - o, - 02) small this gives

o & (2w -0 - o) = 2% (w - o - o))’ (63)

and the corresponding value of £ is
8~ M=oy -0 - frw-0 -0’ (64)

4.2.2 Particular solutions

Calculations were made for the

the values

[} =
1

E =
[iV] =

The iterative method converged

0.004999996 -~ 0.9999969 0 0
0.9999969 0.004999996 0 0

B = 0 0 - 0.004999996 - 0.9999969
| 0 0 0.9999969 - 0.004999996 |

which has eigenvalues
A = 0.004999996 * 0.99999691

These compare perfectly with the expl
gives exactly the same characteristic

significant figures. Comparison was

system (50) with the parameters having

0.2 (65)

10

after ten iterations to give a matrix B

y = 0.004999996 * 0.99999691

icit solution of the last section which
exponents as far as the quoted

also made with values obtained by the

integration method briefly described in the introduction (see also e.g. Ref.l).

The agreement again was good the latter method giving characteristic exponents

A = 0.004999986 = 0.9999969i

L4

s = 0.004999986 + 0.999969i
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Thus here we have a case where the iterative procedure converges to an unstable
solution. It is a case which certainly should converge according to the con-

vergence criterion of section 3, equation (19) for with the specific norm

IAl = max } max |A,.(t)]
. r 1]
1 ]
then
lal = 1.4

which is less than (3 - 2V2)w for w = 10.

5 CONCLUSIONS

It has been shown that iterative procedure for the determination of the
characteristic exponents of linear differential equations with periocdic
coefficients will obtain these with good accuracy provided convergence is
obtained. However there is only a limited region in which the procedure
will converge and this severely effects the value of the method. This region
does not necessarily exclude all the regions where there is an unstable

solution as was shown by the second example considered (section 4.2).

al

LU A
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