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SUNMARY 

An iterative procedure for the determination of the characteristic 

exponents of linear differential equations with periodic coefficients is 

developed and applied to a number of examples. The conditions under which 

convergence is obtained are considered and it is shown that these do not 

necessarily exclude unstable motions of the system. 
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In the dynamics of rotorcraft, and no doubt in many other problems, one 

is often concerned with the timewise stability of solutions of differential 

equations with periodic coefficients (see e.g. Ref.1). Consider the linear 

system 

W t) - = A(t)X(t) 
dt (1) 

where A(t) denotes an n x n matrix whose elements are periodic functions of 

period T, i.e. 

A(t + T) = A(t) . (2) 

Now it is established (Ref.2, pp.336-8) that the equation (1) can be trans- 

formed into a similar equation with constant coefficients (i.e. it is reducible 

in the sense of Lyapunov) 

d-f(t) 
-Jr= BY(t) (3) 

where x = L(t)Y(t) (4) 

and B is an n x n matrix whose elements are independent of t. The matrix 

L(t) is called a Lyapunov matrix. It satisfies the equation 

dL 
JF = AL-LB (5) 

and is periodic of the same period as A. Thus (1) has the solution 

X E L(t)eBt . (6) 

This IS a statement of the well known Floquet theorem (see e.g. Ref.3, p.55). 

It follows that the stability of (1) can be determined by studying the 

eigenvalues of the constant matrix B. A simple and useful way of determining 

these (cf. Ref.1) is by integration over a period. If we write 

E = x(T)x-l(o) (7) 

then 

E = L(O)e BTL-l(0) (8) 
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and so the two matrices E and e 
BT 

are similar (i.e. one is obtained from 

the other by a similarity transformation). Thus the eigenvalues of E are 
BT 

equal to the eigenvalues of e ; and hence the eigenvalues of B are equal 

to T 
-1 times the logarithm of the eigenvalues of E, and are determined 

module Zni/T. Integrations are a period, with the initial condition 

x * X(O), immediately given E and so enables one to determine the eigen- 

values of B which are called the characteristic exponents of the system. 

If none of the characteristic exponents have positive real parts then the 

system will be stable*. 

This integration method works well provided none of the eigenvalues of 

E are small; but in the latter case it is extremely difficult to determine the 

corresponding characteristic exponents at all accurately. In particular if the 

system is reciprocal - that is the eigenvalues of E are either unity or in 

reciprocal pairs - this difficulty does not in general occur; but non- 

reciprocal systems have been encountered by the authors which possessed an 

almost singular E matrix. In such circumstances it would be advantageous if 

B could be found directly and in this connection an iteration procedure based 

on Coakley’s4 work was investigated. 

2 THE ITERATIVE PROCEDURE 

In Ref.4 Coakley devised an iterative procedure for transforming an almost 

periodic system with rapidly varying coefficients into one with more slowly 

varying coefficients. For a periodic system this method can, in principle, be 

used to make the transformation to a constant coefficient system and hence to 

obtain the matrix B directly. For this case the procedure is as follows. 

The Lyapunov matrix of the transformation is written as 

L(t) = I + V(t) (9) 

where V(t) is periodic of period T, and I is the unit matrix. Then from 

(5) 

*Assuming the characteristic exponents are all distinct. If not there is the 
possibility of secular instability specified by the appearance in the general 

integral of terms r t . 



where U = A+AV-VB 
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(11) 

V can obviously be written in the form 

v = I: 
n-1 

& (An+ - Bne-inwtl (12) 

(there is no need to include a constant term since this is catered for by the 

I term in equation (9)). So to satisfy (10) U is given by 

u = B + 1 {Aneinwt + Brie 
-inwt 

I . 
l-k=1 

(13) 

We need therefore to determine values of the matrices B, A,, Bn which 

will result in equation (11) being satisfied by the above expressions for Ll 

and V. Suppose B(r), A(r), B(r) 
n n 

are approximations to these matrices; and 

‘r’ ‘r 
the corresponding approximations to U, V. Then we can use (11) to 

get a further approximation Ur+l:- 

u 
r+l 

= A + AVr - VrB(‘) . (14) 

Having got Ur+l we can inmediately get the corresponding further approxima- 

tion B(r+l), A(r+l) ,(r+l) v 
n ’ n ’ 

r+l from equations (13) and (12). This then 

is the iteration procedure and, provided it converges, it will determme the 

matrix B etc. 

In the particular case when the matrix A is real, it follows from (El) 

and (7). since X is always real, that B will be real provided we make 

L(O), which is arbitrary, real. Also, from (6), L(t) will be real for any 

t. Consequently U and V will also be real and so each matrix B will be 
n 

the complex conjugate of A,, which we denote by Kn. 

If we take 

uO 
= A 

as the first approximation to U, where, say 

,, = B(O) + jl fA;) ,inwt + ,p) .-inwt) 

then the (r+l)th approximation will have the form 

(15) 

-- 

(16) 



ur p B(r) + (=iljrn IAF)einwt + iE)e-iowtl - 

n=l 

The associated form of Vr is 

(r+l)m 
vr- 1 

n-1 

& iAF)einwt _ xz)e-inwt) . 

(17) 

(18) 

3 THE CONVRRCBNCE CRITERION 

In Ref.4, Coakley states, without proof, an explicit condition which, he 

says, guarantees the existence of solutions to equation (11). This condition 

is 

l\A! < (3 - 2fi)u (1% 

where the matrix norm UAII is any norm which satisfies the conditions 

!A! > 0 unless A = 0 

IlkAll = Ikl . llAl\ 

iA + Bll 4 UAli + OBll 

IIABII G IIAU . IIBII . 

(20) 

We know however that such a solution always exists. There always is a 

Lyapunov matrix which will give the desired transformation (cf. Ref.2, p.338). 

The above condition is rather a sufficient condition for the convergence of the 

iterative procedure described in the previous section. It is obtained as 

follows. 

Taking the 'norm' of both sides of equation (14) gives 

uu r+li < IiAll + IIAllIIVrll + nVrllUB(=+ . 

Now, from (17) and (18) 

P 

and so 

llB(=)ll < !hJ=ll 

(21) 

(22) 

(23) 



suppose 

flA[ < kw 

then, since UO S A, using (24)) we find that 

!h,i < (k + 2k*)w 

Uu2U < (k + 2k2 + 6k3 + 4k4)w 

etc. 

an,3 for the rth approximtion 

where 

a1 9 1 

i-l 
a. - aimI + 1 ajai,j 1 j=l 

i=2+(K++l) 
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(25) 

(26) 

(27) 

(28) 

(29) 

eizy’) + 1 a. i-1 (I-l)aj’-1) t-1 a(r) P 
1 i-j 

i s((r+2)+2 +1 
j*l ’ 

‘i-l 
a!r-l)a!ryl) i p (2’-l + 2) + 2= (30) D 

r-l J 1-1 
j4-2 

and on the right-hand side of the last two equations 

( r -1 )  a. D a. for j=l+r . 
J J 

Thus 

limit luKl < w i aiki 
K- i=l 

(31) 

(3-d 



where the a. 
I 

are given by (28) and (29). Calculated values of the ratio of 

successive coefficients in the series on the right hand side of this inequality 

are: - 

n 1 2 3 . . . . 103 104 

a 
-L 0.5 0.3 0.27 0.1740833 0.1740591 
a 

II+1 

These appear to be converging to the number (3 - 2&j quoted by Coakley4. 

Consequently we can say with virtual certainty that the series will converge 

for 

k < (3 - 2fi) (33) 

which gives, from (25) and (32) the condition (19), i.e. 

IlAn < (3 - 2fi)iw 

as sufficient to ensure convergence of the iterative procedure. This criterion 

is very restrictive but from the very nature of our calculations, i.e. 

’ taking norms ‘,it can be seen that it will often be far too conservative, and, 

as results show later, convergence can be obtained even when the criterion 1s 

far from being satisfied. 

4 APPLICATIONS 

Some fairly simple examples were taken to see how and when the method 

worked, and in particular to get some idea about how conservative the conver- 

gence criterion (19) is. In each case they were systems for which the matrix 

A contained no overtones, i.e. m = 1 in equation (16). For this case it can 

easily be shown that, with the iterative method of section 2 

(34) 

(35) 

n+l - n 
(2 Q n < r) (36) 



; 
1 

*(r) *(O)*(r) *(=)B 
*(=+l) * _ i B(o) $++ + 1 r _ r+l r 

r+l w r r+l 
I 

*(O)*(r) 
*(r+l) _ _ i ; + it1 . 

l-+2 w 

9 

(37) 

(38) 

It is easily seen that all the B (=) are real, though the other matrices will 

in general be a complex. A computer program was written to perform iteratively 

the operations given by the above set of equations. 

4.1 First example - a second order equation of dimension one 

The equation considered was Mathieu's equation with the addition of a 

viscous damping term, i.e. 

'i + 2cr + n2(1 - 2p CO8 wt)f - 0 . (39) 

Making the substitution 

i = a (40) 

it becomes 

and 80 putting 

i = - n(l - 2lJ co* wt)f - 2cg (41) 

x = Cf,g1 (42) 

we obtain the equation in the desired form 

ff = A(t)x (43) 

where 

E B(O) + Af)elwt + jif3je-iwt . (44) 

It can easily be shown that this is a reciprocal system only when E is zero. 
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4.1.1 Other methods of solution 

Equation (39) can be put into the standard form of Mathieu’s equation 

by the transformation 

f = e-EtZ 

which gives 

i: + n2 ( 
1 -L 

0: - 2u co9 wt z = 0 . 
> 

(45) 

(46) 

Two methods of finding the characteristic exponents of equation (46) were 

considered. The first, which we call method a, is given by Bolotin in Ref.5 

(section 56, p.214). By expanding z as a Fourier series, with unknown 
vt coefficients, multiplied by an exponential term e , he obtains an infinite 

set of equations for the coefficients. For the existence of a non-trivial 

solution the corresponding infinite determinant muat be zero. An approxima- 

tion to this condition is equation to zero of the 3 x 3 determinant of the 

elements in the top left hand corner of the larger determinant. In our 

notation this is 

(V2 - w2) + o2 - E2 - m2 2vw 

- 2un2 2 2 " + i12 - E 0 

- 2vw 0 2 2 " -Id +f12-c 2 

= 0. (47) 

This approximation gives six values of the characteristic exponents instead of 

the expected two. Two of them should be good approximations to the expected 

values and so the method is useful for our comparison requirements. 

The second method, method b, is to obtain the solution as a power series 

in P (cf. e.g. Raf.6). This is6 

204p2 

4(02 2 
(48) 

- E ) - Id2 

3 

The characteristic exponents of equation (39) are of coursa given by 

A2 = (v - d2 . (49) 

c 
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4.1.2 Comparisons of solutions 

Two examples are given below where the iterative mathod converged to 

produce a matrix B whose eigenvalues were very nearly equal to the 

characteristic exponents as calculated by the two methods of the last section. 

(9 n = 1, Ll - 0.2, w = 10, E = 0 

After six iterations B had converged to 

B = [-1.010833 j 

which has eigenvalues given by 

x2 = - 1.000833 . 

Method a gave A2 = - 1.000833, - 80.995505, - 121.003659. 

Method b gave A2 - - 1.000833. 

(ii) 51 = 1, p = 0.25, w = 10, E = 0.25 

After six iterations B had converged to 

1 
B = 1 -0.5 

which has eigenvalues given by 

A2 = - 0.876299 f $ JO.938799 . 

Method a gave x2 = - 0.876301 - $ JO.938801 

= - 81.5022427 - + J81.5647427 

= - 120.2464561 - ; J120.3089561. 

Method b gave A2 = - 0.876301 - ; 40.938787. 

Thus it can be safely assumed that for both these examples the 

iterative method is converging to the correct solution. 

4.1.3 The criterion for convergence 

With the other parameters having the values used in the two examples of 

section4.1.2the frequency w was varied to find the minimum value at which 

convergence could be obtained. Thus 
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(3 For 0 = 1, Jo = 0.2, E = 0 (which makes* [Au = 1.4) the 

iterative process converged for w  2 3 approx., i.e. for 

IlAb < 0.47~. 

(ii) For Q = 1, u = 0.25, E = 0.25 (which makes* [IAn = 2) the 

iterative process converged for w  2 3 approx., i.e. for 

[IAH Q 0.67~. 

The criterion (19) is therefore extremely conservative for these two cases but 

there is no indication that we cw replace the figure in the criterion 

(3 - 2fimO.172) by a larger figure. If a different specific norm** 

is used the two limits of convergence become 

(9 IlAll < 0.57~ 

(ii) AAII G0.62~ 

sad the difference in the two numbers is much less. For a third set of 

parameters at one particular w  (i.e. Cl = 1, u = 0.005, E = 0, w  = 2) the 

process did not converge and this was a case for which, with the second 

definition of norm, 

IlAll = 0.63~ . 

All the above examples of convergence are to characteristic exponents 

with negative or zero real parts, which represent a stable motion of the 

system (cf. section 1). The instability regions of equation (39) have been 

fully determined (see e.g. Ref.7, p.98). An attempt was made to see if our 

iterative method could determine a solution in an unstable region. It was 

found however that the parameters could not be arranged so that the procedure 

would converge to an unstable root. 

*The specific norm used here is 

IAN = max 1 max jAij(t)l 
i j 

i.e. the maximum values of the modulus of each element of a row are summed, and 
the row is found for which this sum is a maximum. This maximum sum is then the 
value of the norm. 

**This is the Euclidean norm which is the square root of the sum of the maximum 
values of the squares of each element of the matrix. 

. 

c 
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4.2 Second example - a first order equation of dimension four 

As a second example a particular system was taken for which Cesari 

(Ref.3, p.74) has given the solution explicitly. The system is 

where 

A 

0 

I 2 
a1 P 
0 

0 

+ 

-1 

0 

0 

0 

0 

0 

- E 

j, = A(t)x (50) 

0 0 Ii- 0 0 E 

0 0 0 0 0 - 
+ 

0 '- 1 0 E/a 1 0 

2 
o2 O ca 2 O O 

0 0 E/O 2 

0 ca lo 1 

sin wt . 
0 0 0 

0 ca2/a1 0 . 0 _J 

CO8 wt 

(51) 

The attraction of this system is that it is unstable at all frequencies W. 

When a1 and o2 are equal it is a reciprocal system* (cf. section 4.21). 

4.2.1 The explicit solution 

In Ref.3 it is shown that 

at 
-0 1 sin ylt 

x = e (52) 
E{(W + Yl - a21 COS (w + Yl)t - a sin (w + yl)t}(A 

E02C(W + y 1 - 02) Sin (W + Yl)t + a CO9 (W + 
r 

co9 y t 1 

is a solution of (50) where 

then A'P = - PA if o1 = o2 which is a 
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Yl = 8-u1 

A = (w + B - o1 - 02)~ + a2 

7% - a - if3 

and a 3 mcI + i(w + 6 - u 1 - u2) 

are the roots of 

(53) 

(54) 

(55) 

Another solution is obtained by replacing cos by sin and sin by - cos in 

(52). Two other solutions are obtained by replacing CI by - ~1, o1 by o2 

y1 by -v2(=B-02), and interchanging the last two rows of (52). Thus 

there always are two solutions with characteristic exponents* with positive 

real parts (except for E=O when a is zero). The fact that (52) is a 

solution of (50) can be simply verified if one notes that from (55) and (56) 

a(26 + w - u 1 - a21 = E2 (57) 

a2 = 8(5 + w - u1 - u2) (58) 

which two equations can be put in the form 

2 
py 

C2(8 + w - u1 - u2) 

a = 
A 

To determine a one has to solve the quartic obtained by eliminating 6 

from (57) and (58), viz. 

4a4 + a2(w - u1 2 - u2) - E4 =o . 

This gives, since a is real 

(59) 

(60) 

(61) 

*The characteristic exponents are a 2 iy , - o +_ iy2. 
1 



16~~ + (w - ol - 02) 
4 

a = t 
- (w - o1 - 0*)2 

For c2/(w - ol - 02)2 small this 

a - IE2/(W - o1 

and the corresponding value of g 

f? = IE4/(W - o1 

4.2.2 Particular solutions 

15 

(62) 

gives 

- 02)l - 2E6/(U - o1 - 02) 
5 

(63) 

is 

- 02)31 - E8/(W - o1 7 
- u2) . (64) 

Calculations were made for the system (50) with the parameters having 

the values 

o1 = o2 = 1 

E = 0.2 (65) 

w = 10 . 

The iterative method converged after ten iterations to give a mtrlx B 

- 0.9999969 0 

0.004999996 0 0 
B = 

0 - 0.004999996 - 

0 I 

0.9999969 

0 0.9999969 - 0.004999996 

which has eigenvalues 

x = 0.004999996 + 0.9999969i , - 0.004999996 k 0.9999969i . 

These compare perfectly with the explicit solution of the last section which 

gives exactly the same characteristic exponents as far as the quoted 

significant figures. Comparison was also made with values obtained by the 

integration method briefly described in the introduction (see also e.g. Ref.1). 

The agreement again was good the latter method giving characteristic exponents 

c 
h = 0.004999986 k 0.9999969i , - 0.004999986 ? 0.999969i . 
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Thus here we have a case where the iterative procedure converges to an unstable 

solution. It is a case which certainly should converge according to the con- 

vergence criterion of section 3, equation (19) for with the specific norm 

IiAn = max 1 mx IAij(t) 1 
i j 

then 

IlAn = 1.4 

which is less than (3 - 2fi)iw for w = 10. 

5 CONCLUSIONS 

It has been shown that iterative procedure for the determination of the 

characteristic exponents of linear differential equations with periodic 

coefficients will obtain these with good accuracy provided convergence is 

obtained. However there is only a limited region in which the procedure 

will converge and this severely effects the value of the method. This region 

does not necessarily exclude all the regions where there is an unstable 

solution as was shown by the second example considered (section 4.2). 

i 

c 
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