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SUMMARY

A computer program has been written in FORTRAN to calculate the pressure

distribution on an annular aerofoil at zero angle of incidence at subsonic

speed. The theory and the program are described and some comparisons between

the predicted pressure distribution and experimental results are presented.

Close agreement between theory and experiment is obtained.
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1 INTRODUCTION

There has been a renewed interest in methods of calculating the pressure
distribution on an annular aerofoil or engine cowl in recent years. This is a
result of the need to design improved fan cowls for engines of high by—-pass

ratio.

The theory advanced here is a logical extension of the earlier work on
annular aerofoils. Kuchemann and Weber1 developed a theory for calculating
the velocity distribution on thin annular aerofoils which was extended by
Bagley et aZz to include thickness and incidence effects, but again using
distributions of singularities placed on a cylinder. With the increasing
availability of large, high speed digital computers, 1t has been possible to
develop a method using singularities distributed over the bedy surface, which

should in practice, give more accurate results,

The method of surface singularities was placed on a firm foundation by
A.M.0. Smith3 but this method as published, is not capable of calculating the
pressure distribution over the whole surface of an annular aerofoil; the
afterbody of the aerofoil has to be replaced by a semi-infinite cylinder. This
is a serious deficiency because the effect of the afterbody becomes increas-
ingly important as the length to diameter ratio of the aerofoil is reduced,
and the circulation developed around the aerofoil plays a large part in

determining the overall forces and pressure distribution on the body.

The fan cowl of an engine of high by-pass ratio has to cope with a
wide range of operating conditions varying from the take off condition, when
the mass flow is high, to the engine failure condition, when the fan is wind-
milling and the mass flow is low. It is essential, therefore, to be able to

calculate the pressure distribution on the aerofoil at any specified mass flow

ratio.

The method of surface singularities and the extensions that have been
made for the annular aerofoil problem are described in section 2., The computer
program is explained in section 3 and some examples of its use are presented

in section 4. The present theory is compared with other calculation methods

in section 5.

2 THE THEORY OF SURFACE SINGULARITIES APPLTIED TO ANNULAR AEROFOILS

2.1 The method of A.M.0. Smith for bodies of revolution

The principles on which the method of surface singularities is based3 are

now well-established and only a brief description of the theory is given below.



The surface on which the pressure distribution is to be calculated 1s
specified by a number of ordinates, and surface elements are formed by joining
these ordinates with straight lines, Thus for axisymmetric bodies with N
ordinates specified, the surface is approximated by N - 1 conical frustra,
Fig.l. A control point at which the boundary conditions are applied is
selected on each element; this point is usually taken as the mid-point of the

element for convenience.

A surface source density of unit strength is placed on each element and

the velocity component normal to the surface induced at every control point
by all the other elements is calculated by numerical integration., This leads
to a matrix [Vn..] whose elements are the normal velocity components induced
at the ith contr;i point by the source density on the jth element. The
diagonal entries of the matrix represent the normal velocity induced at the
ith control point by the source density on its own surface element. To obtain
the actual normal velocities the elements of the matrix must be multiplied
by the proper values of the source density qj, which are as yet unknown.

N-1
Thus the quantity j[: Vn..qj is the total normal velocity at the ith control

11
j=1

point due to the complete set of N - 1 surface elements.

The boundary condition applied at each control point is that the total
normal velocity is zero, i.e. the flow is tangential to the surface of the
aerofoil. A set of simultaneous linear equations can be written down which is
equivalent to the application of the boundary condition at each control point,

The equations are of the form

N
ES

Vnijqj = VO S1ln ei + Fi 1,2.1-N-1 (1)

[
[l

-1
i=1
where Bi is the surface slope of the aerofoil at the ith control point and

Fi is any other prescribed normal velocity boundary condition, e.g. suction

+ * - - - .
or blowing. The term VO sin ei in the equations is the contribution from

the free stream velocity flowing through the surface which must be cancelled.

This term must be evaluated in the correct sense.

-y
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The set of linear equations can be solved for the unknown source
strengths qj and the tangential velocity component and the pressure coef-

ficient at the control point calculated.

The theory developed by A.M.0, Smith for bodies of revolution at zero
angle of incidence goes no further, so it cannot be used for the annular
aerofoil problem as no Kutta condition has been applied, and the circulation
around the aerofoil is undefined. Furthermore there is no convenient way of

changing the mass flow through the aerofoil.

2.2 Controlling the mass flow ratio

The mass flow through the aerofoil can be changed by the addition of a
uniform vortex distribution whose strength can be varied to give the required
intake flow., This vortex distribution, which is referred to as the 'fan' vortex,
extends from the leading edge of the aerofoil to infinity downstream. This
distribution could be placed anywhere on the surface or inside the aerofoil,
and could vary in strength along the chord. The particular choice made here,
of a uniform vortex distribution placed on the camber surface of the aerofoil
and on a cylinder downstream of the trailing edge, has proved satisfactory

in all cases so far examined.

The 'fan' vortex itself induces a normal velocity component at the
control points on the surface of the aerofoil which must be cancelled. The

set of equations (1) are modified to

N-1
.
= 3 - * 1 = -
ZVH. qj VD sin Gi Vn.YF i 1,2...N~-1 (2)
i] i
3=1

where Vg Yg is the normal velocity induced at the ith control point by the
'fan' vortex of strength Yg*

The strength of the 'fan' vortex required to give a specified mass
flow ratio is not known initially. In the computer program, two values of
the '"fan' vortex are specified and the corresponding mass flow ratios calcu-
lated. From these, the 'fan' strength required to give the required mass
flow ratio is deduced. Tt is shown in section 3 that this does not lead to a

lot of extra computing,

2.3 The Kutta condition

The circulation around the aerofoil is undefined until a Kutta condi- -

tion is applied at the trailing edge. The condition normally applied in surface



singularity methods for twodimensional aerofoils is that there should be no
difference in the tangential velocity between the first and last control points, N
i.e. at the points nearest the trailing edge of the aerofoil on the lower and

upper surface. This condition has to be modified in the annular aerofoil

L

problem to allow for the velocity jump across the trailing edge due to the

trailing vortex cylinder.

Another uniform vortex distribution has to be added to apply the Kutta
condition. This distribution is also placed on the camber surface and only

extends over the chord length of the aerofoil.

The 'Kutta' vortex as this distribution will be called, also induces
a normal velocity at the control points, thus the set of equations (2) becomes
N-1

-
= 7 — * T o= -
Vnijqj + VniYk Vo sin Bi vniYF i 1,2...N-1 (3)

j=1

where Vn Yi is the normal velocity induced by the 'Kutta' vortex of strength

1
Yk'

The tangential velocities at the control points nearest to the trailing -
edge have to be carefully written down because of the sense in which the
velocity components are evaluated. The calculation is always made in the
direction of increasing i, Fig.l, thus along the inner surface, the calcu-
lation is proceeding against the free stream velocity, and this component
evaluated in the correct sense is negative. On the outer surface, the calcu-
lation is made in the opposite direction, and the component of the free

stream veloclty is positive.

To evaluate the velocity jump at the trailing edge we require the velo-
cities to be measured in the sense of =x increasing. Thus on the outer

surface, the tangential velocity at the last control point is

V. cos 6 + v q.

- +V. oy, * VR oy
0 N-1 ty-1,; 3 ty-p K ty_q F

and on the inner surface at the first control point the tangential velocity

is
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N-1
( 05 6 E: v v vk
=V, cos + q. + Y, + Y
0 1 : tl,j ] ty k ty F
i=1
N-1
where ZVt qj is the total tangential velocity induced by the source
1,3

j=1

distribution on the complete set of surface elements, and Vt Yoo Vt Yg
1 1

the tangential velocity components induced by the 'Kutta' and 'fan' vortex

are

distributions respectively.

The difference in these tangential veloclty components must be equal
to the strength of the 'fan' vortex, thus the equation used to satisfy the

Kutta conditien is

N-1
% v +V ) V. +V. ) V. (Cos 8. + cos 0. .)
- q. - Y = COS cos -
/ €5 tyep,y t; Tty 'k 0 1 N-1
i=1
+(VE +VE Dyl vy, (4)
e, TV LT

The equations (3) and equation (4) form a set of N simultaneous linear
equations from which the N -1 source strengths qj and the strength of the

'Kutta' vortex Yk can be determined.

2.4 Centrebodies and spinners

The effect of a centrebody or spinner can be included in the calculation
with only a small alteration. If NC is the number of ordinates specified
on the centrebody there will be an additional NC-1 surface elements and
control points making a total of N + NC - 2. The summations in all the
equations must therefore be made over all N + NC -~ 2 elements and the range
of i in equations (3) is similarly increased. The equation used to satisfy

the Kutta condition is unchanged except for the range of the summation.

2.5 Compressibility considerations

The theory described in sections 2.1 to 2.4 is based on incompressible
flow but the effect of changing the free stream Mach number can be investigated
using the Prandtl-Glanert transformation. The radial ordinates of the body are

scaled by a factor of B(=]|]1 - Mz) and the incompressible flow calculated on



the analogous body. The velocity increments thus calculated are rescaled by a
factor of 1/B, on the radial velocity, and 1/82 on the axial velocity.
The tangential velocity at the ith control point then becomes

n v v

x r .
= . — R e e.
Vti VO cos Bl 32 cos 91 5 sin i

and the pressure coefficient is calculated using the formula

3.5

. 2 _x-1 2 _ -

% = 2 { 1 2 Mz(Vt. 1) }
M 1

3 THE COMPUTER PROGRAM

The computer program has been written in FORTRAN for an ICL 1907 computer.

A listing of the program is given in Appendix A and a flow chart in Fig.2.

The program consists of a MASTER segment: A34R; five subroutines: XFAN,
CAM, FORM, ELE, INVERT; two library subroutines: F4ELCl, F4ELC2; and four
function segments: SIMPSN, DIR, TERP, VR. The MASTER segment is described in
section 3.1 and the subroutines and functions in section 3.2. The core store

requirements and running time of the program are discussed in section 3.3.

The numbers in brackets in the following text refer to the line numbers

in the listing of the program.

3.1 The MASTER segment

The MASTER segment controls the running of the program and all the input
and output operations. The physical quantities represented by the main

arrays and variables used in the segment are listed in Appendix B.

The initial statements (0110-0170) are the normal FORTRAN statements
for declaring the size of arrays and the type of variable used. The program
has been written to accept up to 89 control points which is equivalent to 90
body ordinates for an isolated aerofoil, or 91 ordinates for an aerofoil and
centrebody. The pressure distribution at up to five mass flow fatios can
be produced with a single run of the program. These limits can be changed

by altering the dimensions of the arrays throughout the program.

After setting some initial constants used in the segment (0180-0200) the
input data is read (0210-0420). For the following text, it is assumed that
the input data is punched on 80 column cards and that the reader is familiar

with the FORMAT statement. The input data is summarised in Appendix C.



The first data card contains a case number, CASEN, of eight characters,
and a case description, stored in the array TEXT, of up to 72 characters. The
characters are read using an 'A' field descriptor and may therefore consist of
ény characters in the FORTRAN set, in particular, the case number need not
necessarily be an integer. These quantities take no useful part in the

calculation and are only used to identify the output.

The number of ordinates on the aerofoil surface, N, 1is read followed
by N pairs of ordinates X,R. The ordinates must be specified from the
trailing edge on the inner surface to the trailing edge on the outer surface
of the aerofoil. No special distribution of points is necessary though it is
advisable to space the ordinates closely in regions of high curvature and to
avoid rapid changes in the spacing between the points. The first and last
input points must be at the trailing edge of the aerofoil and one point must
be at the leading edge, X = 0. The error in the calculated ecirculation Yk
decreases as the point at which the Kutta condition is applied is moved nearer
to the trailing edge4 so it is recommended that the second, and last but one

input points, are fairly near to the trailing edge.

The number of ordinates on the centrebody, NC, is read, and if NC
is non-zero, the centrebody ordinates. These points should be in order of
increasing axial ordinate. The last pair of ordinates is followed by the
quantity RD, which is the radius of the centrebody at the leading edge of
the aerofoil. The program can therefore deal with spinners which protrude
from the aerofoil. If the centrebody does not extend toc the leading edge,
RD should be zero.

The number of mass flow ratios, NFl, at which the pressure distribution
is to be calculated is read followed by a card containing up to eight quantities.
The first three numbers are respectively, the trailing edge radius of the aero-
foil, RO, the chord length of the aerofoil, CHORD, and the free stream Mach
number. The remaining quantities are the values of the mass flow ratio, AOAI.
All the data referring to the geometry of the aerofoil and the centrebody must
be measured in the same coordinate system with the leading edge of the aerofoil

at X = 0.

The input peripheral is released (0430) and two arbitrary values of the
strength of the "fan' vortex are specified (0500-0520). The mass flow ratio
produced by these values of the 'fan' strength is calculated and linear inter-
polation is used to derive the 'fan' strength which will give the specified

mass flow ratio. A matrix formulation is used so the matrix of velocities
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corresponding to the left hand side of equations (3) and (4) has only to be
evaluated once as these velocities depend on the geometry of the configuration
and not on the 'fan' strength. The main matrix is inverted and a solution of
the equations can be obtained for any number of '"fan' strengths by a simple
matrix multiplication. Most values of the 'fan' strength required to give
mass flow ratios of practical interest have been found to lie between the two

values chosen, which are 0 and -0.3.

The input data is transformed according to the Prandtl-Glanert compres~
sibility laws (0530-0610) and the ordinates of the control peoints XP, RP
calculated (0620-0670).

The ordinates of the camber surface are not required to a high degree
of accuracy and linear interpolation is used. A dummy call to the interpola-
tion function TERP is made (0690) to transform the axial ordinate X(I) to
the array TH(I)}. The elements of this array are simply the axial ordinates
of the aerofoil but multiplied by -1 if the point is on the inner surface; it
is then possible to distinguish be$ween the inner and outer surfaces of the
aerofoil. The camber ordinates are calculated by the subroutine CAM, at
every 2% chord over the chord length of the aerofecil, and specified at every
4% chord on the cylinder downstream of the trailing edge. The camber surface
is covered with a uniform vortex distribution density so the choice of the
axial location of the camber ordinates is fairly arbitrary; in this respect
the present method is more flexible than is the case if discrete vortex rings

are used.

The velocity components induced at the control points by the two vortex
distributions are calculated by the subroutine XFAN (0720-0830). The subroutine
calculates the radial and axial velocity components because these are required
again later in the program, but then they are scaled by the appropriate com—
pressibility factors. The normal and tangential velocity components are put
in the arrays VNG, VIG for the 'Kutta' vortex distribution and in the arrays

VNF, VTF for the 'fan' vortex distribution.

The two right hand sides of the equations corresponding to the chosen
'fan' strengths are evaluated (0840-0950). The main matrix corresponding to
the left hand side of the equations is set up by the subroutine FORM and
inverted (0960-0980). The strengths of the singularities are found by multi-
plying the inverted matrix by the right hand sides (0990-1060). The source
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strengths are held in the array SOL and the strengths of the 'Kutta' vortex

in the array G.

The mass flow ratio is determined {1070-1280) by integrating the axial
velocities calculated across the face of the aerofoil. These axial velocities
do not need any scaling for compressibility as the caleulation is made in the

transformed space and the effective Mach number is zero.

The strengths of the 'fan' vortex distribution required to give the
specified mass flow ratios are obtained (1310-1320) and the calculation jumps
back (0850) to form a new set of right hand sides. The second set of source
and vortex strengths are found using the inverted matrix and as a check on the
interpolation the true value of the mass flow ratio 1s calculated. 1In all the
calculations made so far, the value of the mass flow ratio calculated using the
interpolated value of the 'fan' strength has agreed with the specified value

to an adequate accuracy.

The tangential velocity component at the control points are calculated
(1360-1570) by adding the contributions from the source distribution, calculated
by the subroutine ELE, and the vortex distributions to the free stream velocity.

The appropriate compressibility scaling factors are used throughout.

The computed pressure distributions are then printed out preceded by a

tabulation of the input data (1580-1950).

3.2 Subroutines and funections

Five subroutines have been written; two are used to calculate the veloci=-
ties induced by the source and vortex distributioms: ELE, XFAN. The subroutine
CAM calculates the ordinates of the camber surface and the subroutine FORM

and INVERT set up and invert the main matrix.

The subroutine XFAN (1980-2430) calculates the axial and radial velocity
components induced at the contrel points by the 'fan' and 'Kutta' vortex distri-
butions. A vortex distribution of unit strength is placed on the camber surface
and on the cylinder downstream of the trailing edge. There is no closed form
for the velecity induced by an element of the camber surface as in the two-
dimensional case so an integration has to be made. Each element of the camber
surface is divided into a number of vortex rings, the number chosen depending
on the relative position of the control point and the element, and an integration
using Simpson's rule made. This numerical integration process is also performed

on the cylinder from the trailing edge to some convenient point downstream, in
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this case taken as 3.04 chords. The velocity components induced by the remain-
ing semi~infinite vortex cylinder downstream of 3.04 chord are evaluated at the
axial position corresponding to the contreol point but at a radial ordinate

equal to the radius of the cylinder (2370-2410). This allows a closed form for
the integral to be used and introduces only a small error. The summation for
the 'Kutta' vortex is taken over the first 50 elements of the camber surface

corresponding to an integration over the chord length.

The ordinates of the camber surface are calculated by the subroutine CAM
(2440~2610). The radial ordinates are calculated using linear interpolation
over the chord length (2570-2590) and are set equal to the radius of the trail-

ing edge for axial locations downstream of the aerofoil (2520-2530).

The subroutine FORM (2620-2880) sets up the main matrix of velocities
corresponding to the left hand side of equations (3) and (4) of section 2,3.
The normal velocity components induced by the source distribution on the
surface of the aerofoil are calculated by the subroutine ELE (2890-3460) which
is a modified form of the subroutine INX ! of Ref.5. The velocity components
are evaluated in a similar way to those in XFAN, but the subroutine ELE also
has to deal with the singular integral when the control point lies on the
surface element over which the integral is being made (3290-3420). The sub-
routine is also used in the MASTER segment to calculate the tangential velocity

components. The surface slope TAU in this case is replaced by TAU - /2.

The parameter Bl 1is used to scale the axial and radial velocity compo-
nents by the correct compressibility factors. When the normal velocities are
calculated, Bl 1is set equal to unity so that no scaling is applied, but in the

calculation of the tangential velocities, Bl 1is set equal to B, and B2 to

-

g<.

The main matrix is inverted by the subroutine INVERT (3470-3630). The
matrix is well-behaved and no sophisticated inversion technique is required.

The subroutine listed is the simplest that could be found6.

Two library subroutines F4ELCl, F4ELC2 are used in the program, to
calculate the first and second complete elliptic integrals which are required
in the calculation of the velocity components. The first parameter in the
subroutine is the argument, kz, and the second parameter is the value of

the integral on return. A simple polynomial approximation to each function is
14
used .
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The four function segments are self-explanatory and need little comment.
The function SIMPSN performs numerical integration using Simpson's rule. The
correct sense and value of the surface slope 1s evaluated by the function DIR
which is a modified form of the function PSI of Ref.6. The function TERP per-
forms linear interpolation. The dummy call to this function (0690) is used to
set up the array TH(I). The intake velocity ratio corresponding to the mass
flow ratio VI is calculated by the function VR. The velocity ratio is found

from an iterative solution to the equation7
VI = VR@.24°(1 - V&) + 1.0)%"° .

Newton's method for finding the zero of a function is used to give rapid

convergence.

3.3 Computing details

It is difficult to give the precise time taken by the program since it
varies considerably with the number of input points. On an ICL 1907 computer
with a 1.2 us core cycle time, a calculation with the maximum number of input
points needs about 10 minutes of central processor time. The program as listed

compiled by XFAT Mk.2E requires 30 k words of core store.

4 COMPARISON BETWEEN THEORY AND EXPERIMENT
The computer program was developed as a complement to some experiments
that were made on three annular aerofoi1s7. These aerofoils had a chord to

diameter ratio of unity and were tested over a wide range of Mach number and
mass flow ratio in the RAE 8ft x 6ft transonic tunnel. The cowls were mounted

on a semi-infinite centrebody which was represented in the calculations.

The calculated pressure distribution on cowl 1 at a high mass flow
ratio is compared with the measured distribution in Fig.3. The overall agree-
ment between theory and experiment is quite good except on the inner surface

downstream of the peak where there was a local flow separationm.

The importance of correctly representing the afterbody is demonstrated
in Fig.4. The pressure distribution calculated on the forebody of cowl 1 is
compared with that calculated on a forebody of the same shape followed by a
long cylindrical afterbody. The difference in the pressure distribution is

mainly due to the circulation developed around the complete cowl.

Some comparisons between the calculated pressure distribution, made

with about 70 control points, and the measured distributions for cowls 2 and 3
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are shown in Figs.5 to 8. Apain, good agreement is obtained except at the lead-

ing edge of the cowl where the theory overestimates the suction level.

The theory has been compared with the experimental results up to a Mach
number of 0.70 which is the Mach number at which shock waves started to appear
on the cowls. TFigs.9 and 10 show the pressure distribution on cowl 3 at a
Mach number of 0.70 and at two mass flow ratios., The agreement is reasonable on

the inner surface and behind the shock wave on the outer surface of the cowl.

Although the "fan' vortex 1s placed on a cylinder downstream of the
trailing edge, the stream tubes are curved as shown in Fig.ll. The stream tubes
were traced by calculating the value of the stream function at several radial
positions and at thirty axial stations using the singularity strengths obtained
from the program. Specified values of the stream function were found by inter—
polation, Fig.ll clearly shows the stream tubes expanding ahead of the cowl

and contracting downstream of the trailing edge.

The predicted pressure distribution on an annular aerofoil with a chord
to diameter ratio of 0.75 is shown in Fig.12. This is the aerofoil Bl designed
by the Admiralty Research Laboratory8 and tested in a low speed wind-tunnel
at NPL., The ordinates are not particularly well defined in the reference
and the calculation was made with only 50 control points, but the agreement

is still good.

5 COMPARISON WITH OTHER THEORIES

Several other methods for calculating the pressure distribution on an
annular aerofoil have appeared in recent years and these are compared with

experiment and the present method in this section.

The computer program written by Mason9 at Rolls Rovyce was one of the
first to be developed. The method is similar to that described in section 2.1
except that the surface singularities may be sources or vortices and a variety
of boundary conditions can be imposed. Most of the calculations for annular
aerofoils have been made using a surface vortex distribution with the boundary
condition that the stream function should have a specified value at all the
control points. The stream function is related to the inlet velocity ratio by

the formula

o=
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go the method can calculate the pressure distribution on the aerofoil for any
inlet conditions fairly easily. However, when the mass flow ratio is reduced
below the free flow value there should be a trailing vortex system similar to
that described in section 2.2 but this is not represented in the Rolls Royce
program. The greatest deficiency in the method is that no Kutta condition is
applied and generally, there is a singularity in the velocity distribution at

the trailing edge.

Some calculations have been made by Rolls Royce on the three annular
aerofoils tested at RAE7- Fig.l3 shows the predicted pressure distribution
on cowl 2 at low Mach number. The corresponding pressure distribution calcu-
lated with the present program is shown in Fig.5. The infinite velocity at
the trailing edge of the Rolls Royce calculation is not apparent in this case,
and generally, the agreement is good. A more typical result is shown in
Fig.l4, for cowl 3, corresponding to Fig.7 for the present method. The calcu-
lated pressure distribution breaks down at about 80% chord although the agree-

ment on the forebody and on the inner surface of the aerofoil is quite good.

A considerable amount of theoretical work on annular aerofoils using
linearised and non-linearised theory has been done by Geisslerlo. His non-
linearised theory uses a surface vortex distribution with the same boundary
condition used in the present method, i.e. the normal velocity component is
zero at the control points. Another vortex distribution, also placed on the
surface of the aerofoil is used to satisfy the Kutta condition, The Kutta
condition is applied at the trailing edge and is that the flow should be
tangential along a line bisecting the trailing edge angle. There is no con-
venient way of changing the mass flow ratio and to compare theory and experi-
ment at the same inlet conditions requires a change in the strength of the
'"Kutta' vortex distribution. A reduction of about 257 is required to match
the results for cowl 2 and about 207 for cowl 3. Once the strength of the
vortex distribution has been changed, the Kutta condition is no longer satis-
fied and the theory predicts an infinite velocity at the trailing edge. How-
ever, the agreement between theory and experiment is extremely good over all

but the last few per cent of the aerofoil chord.

Another approach to the problem has been adopted by Ryanll. This method
is based on the work of Martensen12 and Wilkinson13 for twodimensional aero-—
foils and cascades and uses discrete vortex rings instead of a distribution

on surface elements. The boundary condition is that the tangential velocity is
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zero inside the aerofoil. The major disadvantage of the method is that the
solution is calculated at specified locations so it is difficult to caliculate
the pressure distribution in regions of particular interest unless the number
of input points is increased significantly. However, this does not necessarily
give greater accuracy because errors arise from the use of isolated vortex
ringsa.

Ryan uses the same Kutta condition as Wilkinson13 that the load is zero
at the point nearest the trailing edge. This is achieved by setting the
vortex strength at the first and last points equal and opposite. This choice
of Kutta condition is not the best for cowls or intakes as considerable
numerical problems arise if the method is extended to calculate the pressure
distribution at different mass flow ratios to simulate the effect of a propel-

ler or screen.

The pressure distribution on the ARL duct Bl calculated by an early
version of Ryan's program ig shown in Fig.l5, and the results from the present
theory in Fig.12., The mass flow is incorrect by about 127, but better agree-

ment is obtained for the B3 duct, Fig.l6, particularly on the outer surface.

The program developed at ARA by Langley (unpublished) uses a vortex
distribution on the surface of the aerofeil and another vortex distribution
on a cylinder downstream of the trailing edge. The boundary condition is
that the stream function should have a specified value on the surface as in
the Rolls Royce method and the Kutta condition is the same as in the present
method, Fig.l7 compares the pressure distribution predicted by Langley's
theory and the present method on an annular aerofoil with a chord to diameter
ratio of unity and a 107 RAE 101 thickness distribution. The agreement between

the two methods is quite good.
6 CONCLUSTONS

A theory has been developed and a computer program written to calculate
the pressure distribution on an isolated annular aerofoil or an annular
aerofoil and centrebody., The method gives results that are in close agree-
ment with experiment over a range of geometries, Mach number, and mass flow

ratio.

The present theory has also been compared with several other methods
dealing with the same problem. The calculation methods developed by Langley
and Geissler use a similar model of the flow and give similar results to the

present method though Geissler's method is less flexible since it cannot
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be used to calculate the pressure distribution at any mass flow ratio. The
other methods are deficient or restricted in some respects though good agree-

ment between theory and experiment is obtained in some cases.
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100

101

102

103

104

App.A

Listing of the program
MASTER A34R
ANNULAR AEROFOIL PROGRAM

DIMENSION TEXT(9),X(91),R(91).,XP(80Y,.RP(BO),F(S).,RC{102),X1¢102),

tRECI1) ,VF(11,5),VNP(B) ,VTF(89),VNG(BO),VYBLBD).,RHS(90,5),0(S),
250L<90,5),U(89,5),P1(89) :VAULI1) ,XRU(S),ANATL(S) ,¥RF(BD),VXP(8D),
IVRG(B9),VXG(89)

LOGICAL DER

REAL MACH,MACHZ

CoMMON B18(90,90)

NBm102

P124a2 ,0«ATANC, D)

DERE.FALSE,

READ INPUT DATA

READCY,400)CASEN, (FYEXT(1I),1=1,9)

FORMAT(10A8)

CASENSCASE NUMBER, TEXTaCASE DESCRIYpTYION (8,72 CHARACTERS RESP.)
READ(1,101)N

FORMAY(15)

NeNUMBER OF INPUT pOINTS

READ(1,102)(XC1)(RCY);1I®T,N)

FORMAT(8F10, 6)

X(IY,R(1) ARE BODY ORDINATES

READ(1,401)nNC

NCaNUMBER OF CENTRE=BODY POINTS, NoN£ LESS THAN 94
NPNCaNeNC

IF(NC.NE.O)READ(1,102)(XCY)R(1),1aNet ,NPNCY RD

READ ORDINATES OF CENTRE«BODY, RD=CENTRE=BOBY RADIUS AT Xu)
READC1.,103)NF1

FORMAT(I1)

NF1=aNUMBER OF MASS FLOW RATIOS (MAXIMUM OfF 3)
READ(Y,104) RO, CHORD ,MACH, CAGALICIY, ;131 ,NF1)

FORMATY(BF10.5)

ROAnTRATLING-EDGE RADIUS, CHORD®CHORD LENGTH

M=MACH NUMBER, AOA1(¢(I)=MASS FLOW Ravieos$

CALL RLEASE?1}

IF(NC.EQ.0)RD=D.,0

N1aNw1

NYed

NF=2

NPNC2=NPNC=2

IF(NC.EQ.O)NPNC2aN=1

0090
0100
0110
0120
0130
0140
0150
01460
0170
0180
01949
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0430
0440
0470
0480
0490

61



204

205

208
1000

401

1y

App.Alcont'd)

SEY UP TWO INITIAL FAN STRENGTHS
F(13=0.0

F(2)==0_3

TRANSFORM INPUT DATA
MACH2=MACH*MACH
BETA2=1,0-MACKZ
BETA=SQRT(RETAZ)
RO=ROBETA/CHORD
REPsRD*BETA/CHORD

Do 204 Ted.NPNC
Xc1dax(1Y/CHORD
RCIX=R(IIBETA/CHORD
CALCULATE CONTROL POINTS
ba 205 1=1,NPNC?

L=}

IF(I.GE.N)L=L+1
XPCIdY=0.5%(XCLY+X(|L+12)
RPEIY=0 5% (RCL)+RCL+1))
CALCULATE CAMBER ORDINAYES
AcTERP (N X ReO.3:DER)
DERS, TRUE.

CALL CAMEND,X1,RC/XsR¢NsDER,RO)

CALCULATE VELOCITIES INDUCED By FAN AND KUTTA VORTEX DISTRIBUTIONS

pe 208 I=1,NPNC2

Lsl

IF(1.GE.N)L=L+1

TAUSATANZ2 CR(Le1)mRELY $ XCL*1)=X(L))

CALL XFANCXP(I),RP(I)¢X1,RCIRO(VRF(II,UXF(I) VRG(I),VXG(I)/ND)

SNTaSINC(TAU)

CSY=COS(TAU)
VNF(I)eVRF(I)#CST=-yXF(I)*SNT
VNGCIYeVRG(I)I*CST=YXG(II*SNY
VIF(I)eVXF(1)WCSToYRFCIDIFSNY
VIG(I)avXG(I)*CSTeYRG(II#SNT
SEY UP RKS OF EQUATIONS

ba 401 1=1,NPNC2

L=1

IFCL.GE.N) Lal+d

SNTUSIN(DIR(RCL+T)=R(L) 4 XCL*1)=XLLYY)

po 401 Um1,NF
RNSCI,J)eSNT=PCJXwyNFLl)

1w

0s00
0510
0520
0530
0540
0550
05640
0s70
0580
0590
0600
0610
0620
0630
0640
0650
0660
0670
0680
0690
0700
0710
0720
0730
0740
0750
0760
0770
0780
0790
0800
0810
0820
0830
0840
0850
0860
0870
0880
0890
0900

{uy

077



290

400
209
1002
a9

90

216

214
215

213
217

900

App.A{cont'd)

TAUYBDIR(R(2)=R(1),X(2)=X(1))=-Pl24
TAUZEDIR(RIN)=R(NT) s X(N)=X(N1))=pl24
A=ABS(SIN(TAUZ))~ABS(SINC(TAU1))

DO 290 Ja1,NF
RESCNPNC2¢1,0)BF(JYM(VYFL1)+VTE(NTYIY#ASF(J)
FORM MAIN MATRIX AND INVERSE I!F NTad
IP(NT.EQ.1)CALL FORM(X,R,NPNC,VNG+VYG,PIsXP,RPsNPNC2,N)
TE(NT.EQ.1)CALL INVERT(NPNCZ2+1)

CALCULATE SOURCE AND KUTTA VORTEX STYRENGTHS
PO 400 t=1,NPNC2+4

D& 400 J=1.NF

SoL(1.,4)=0,0

po 400 x=1.NPNC2+1
SOLCTI,,J)aBIG(TsK)*RUS(K, J)+S0L(L, )

D& 209 J=mt1.NF

G(JIBSOL(NPNC2+#1,J)

CALCULATE MASS FLOW RATIOQ

po 89 1=z=1,11

DO 89 Je=1,NF

VFE(1,33=20.0

Az (RC(1)*RC(1Y=-RD%RD)/10,0

RECY1)Y=0.0014+RD

De 90 1=2,11

RFCIYeSORT(A*FLOAY(I=1)+RD#RD)
RF(11)Y=RF(11)=0.001

DO 215 1=1,41

CALL ELECO.O+RF(I),~PI24, X, R, NPNC/D,PY,1.0/NPNC2:N)
DO 216 Js1.NF

PO 216 Ks=1.,NPNC2

VECT, )Pl () «SOLIK,JI+VF(I,J)

CALL XFANC(O, O,RFCIY;X1,RC,)RO,VRY,VX1,VR2,VX2:,ND)
Do 244 J=1oNF

VECL,J)EVF(I d)+VXIwFL))+VN24G(J)Y+1. 0
CONTINUE

D& 217 Ju=t1.NF

be 213 1=1.11

VAULIYeVE(],d)
XMUCI)=STMPSN(VAU,1,11,A)/(10.0%a)

IF(NT _EQ.2)60 Y0 9201

CALCULATE FAN STRENGTHS FOR SPECIFIED MASS FLOW RATIOS
DO 900 J=t/NFY

F(J)em0 3w (A0AT(J)wXMU(1))/(XMU(2)nXMU(1)}

0910
0920
0930
0940
0950
0960
0970
0980
0990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
12990
1300
1390
1320

1¢



901

510

211

210

218
513

106

App.A(cont’d)

Nya2

NEaNE1

GO TO 1000

CALCULATE TANGENTIAL VELCCITIES

Do 510 I=%1,NPNC?2

L=1

IF(L . GE.N)L=L1

TAUSATAN2C(RC(L4T)=R{L)  XCL#1)=X(L))

SNTESIN(TAU)Y

CST=COS(TAUY

VTIPCI)eVXF(1)#CST/BETA2+VRF(1)*SNT/RETYA

VYG(I)=UXG(1)*CST/BETAZ+VRG(I)*SNY/BETA

00 210 1=21,NPNC2

L=1

IFC(I.GE.N)LaL+1

TAUSDIR(RCL+T1)=RCLY X(L+1)=X(L))=PY24

CALL ELECXP(I),RP(I),TAU;X,R,NPNC+1.P1,BETA,NPNC2:N)

be 211 Jmt,NF

Utr,J)=0.0

D& 211 K=1,NPNC2

UCT,d)3UCTd)+SOL(K,J)*PI(K)

SNT=SIN(TAY)

D& 210 J=1«NF

UCTsd)SUCT ) oG CIISVTGCTI)+ECII*VTF()uSNT

CONTINUE

CALCULATE AND PRINT QUTPUT

Do 218 1=1.NPNC

R(1Y=R(I)/BETA

DC 513 1=21.,NPNC2

RBCI)=RP{Y)/BETA

CALL DATE(A)

CALL TIME(B)

WRITEC(2,106)A,B,CASEN, (TEXTCI),In1,9),N,MACH

FORMAT(1HY r26X+28WROYAL AIRCRAFT ESTABLISHMENT/ /16X ,46KAERODYNAMLIC
15 DEPARTMENY =~ PROPULSION DIVISION////20%2»40RCALCULATION OF THE P
PRESSURE DISTRIBUTION//20X,39HON AN ANNULAR AEROFOIL BY THE METHOD
30F//30X,2YKSURFACE SINGULARITIES///7/25X,SHDATE ,AB,4X,SHTIME ,A8//
6/23%,34HCASE CONTROL DATA FOR PROGRAM A34R //29X,912HCASE NUMBER ,A
58/24X,17HCASE DESCRIPTION ,9A8/18X,23HNUMBER OF INPUT POINTS ,13/2
9% ,12HMACHKH NUMBER ,F8,5/7/23X,15HMAGs PLOW RATIO,6X,12HFAN STRENGTN
7/)

1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730

ZT



107
108
109

116

304
305
222
t47
219

App.Alcont'd}

WRITE(2,107)(XMUCY),FCJd),d31,NF)

FORMAT(IN +,23X:F10,5,10X,F10.5)

”R!TE(2|108)

FORMATCIHO IS4 1OMINPUTY DAYA/ /27X 1uX,29X,INR/)

WRITEC2,9109)(X(1),RCI),131,NPNE)

FORMAT(1H r20X,F10,5,20X,F10.5)

DG 219 J=1/NF

XMeVR(XMUCGJ) sMACH2)
WRITECZ2,118)YCASEN , (TEXTCI) ;1219 s MACH,FCIY  XMNUCI) XM

FORMAT(THY r24X%32HCALCULATED PRESSURE DISTRIBUTION//20X,12NCASE NU
1MBER ,A8//24X,A7HCASE DESCRIPTION .9AB//29X.12HMACH NUMBER ,%#8,5//
228X 1XHFAN STRENGTYH FB,5//25X 16HMASS FLOW RATIO ,F8.5//20X.29HIN
SLET VELOCITY RATIO ,F8,5///25X2RXp.8X.2HRPBX,1HU,8X,2HCP/)

Do 222 1=21.NPNC?2

IF(MACKH . EQ,0,0)G0 TO 304

Cru2, 0w ((1,0"0,2%MACH2*CUCT+sJ)2UCT, U)e1.0))ew3 Seq 0)/(1,.4%MACH2)
GO TO 305

Ce=1_0=UCl,))sU(L,))

CONYINUE

WRITEC(2,117)XP(I),RP(1).,U(l,J),CP

FORMATY(1H +20X+4F10.5)

CONTINUE

STOP

ERD

17490
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1940
1970

£Z
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App.A(cont'd)

SUBROUTINE XFANCXP,RPsX1,RCIROAVR.AVN,GAVR,GAVX,ND)
CALCULATES THE AXIAL AND RADIAL vEtOCEITY 2OMPONENTS DUE TO
FAN AND KUTTA VORTEX DISTRIBUTIONS OF UNIT STRENGTH
DIMENSION RCIND) s XTUND) VX(50) VRS0, AAVX(101),AAVR(101)
REAL K,x2.KK2

NB1aND=1

AVX:AVR,GAVR(BAVX=D,0

PI2=B.0#ATANC(1,0)

0O 4 J=1,ND1

AASSQART (XTI (Ja1)=X1CJ)) a2+ (RCLIS1ImREC(I) I "n2)
REASQART((UP=X1¢J))on2+(RP=RC(J)II#2)+SQRT({XP=X1(J+1))2u2s(RP=RC(J

1¢1))#x2)

CCal.2+496.0%#AA/RS

NEDBCC

NRDmZ24NRD*1

IF(NRD.LY.3)NRD=3
DXE(X1(J*1)=X1CI))/FLOAT(NRD=1)
DRE(RC(I*1)RCC(JI)/ELOAT(NRD=1)
SESQRT(DR*DR+DX*DX)

26 1 1RD=T,NRD
RRERC(JI+DRWFLOATCIRD=1)
AXaX1¢JY+DX»FLOATC(IRD=1)

Az (XpeXXY®(XP=XX)

Gz (RPaRR)* (RP=RR)

B=Ga4 QwRP*RR4A

K=& . 0*RR*RP/DB

B=SQRY(B)

CALL P4ELCI(K,C)

CALL FA4ELC2(K,E)
VXCIRD)I)=(C~(1,042,0%RR*(RP~RR)/(A®B)IIE)/(P12%B)
VRCIRD)=(C=(1,0+42,04RRWRP/(A+C))nBYa(XXA=XP)/(P12+4RPB)
AAVXCI)=STIMPSNCYX,1,NRDS)
AAVR(J)=SIMPSNC(VR,1+NRD,S)

DO 4 Joq,ND1

AVXaAVYX+ARYX(})

AVREBAVR+AAVR()J)

be 7 J=:1,50

GAVX=GAVX+AAVX ()
GAVR=GAVR*AAVR())

1980
1990
2000
2010
2020
2030
2040
20590
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190

2200
2210
2220
2230
2240
2250
2260
22760
2280
2290
2300
2310
2320
2330
2340
23560
2360

%e



App.Alcont’d)

K24 0WROWRO/ ((XP=3 04)*%2+4 0%RO¥RO)

CALL F4ELCT1(X2,kK2)

CALL FAELC2(¢(K2,EK2)
AUXEAVX=(PI2/4,0"8QRY(1,0-K2)*KK2)/p12

AVRBAVR+ (1, 0/PI2)%(SQRT(K2)*(KK2w (2 0&(KK2-EK2)/K2)))
RETURN

END

SUBROUTINE CAMIND,X1,RC/XsRiN:DY1,RO)
CALCULATES THE ORDINATES OF THE CAMBER SURFACE
DIMENSTION X1 (ND)RCEND) , X(N),R{N)

LOGICAL D1

DG 4 1=1,.51

X1¢1)=0,02*FLOAT(1=1)

D6 2 1=52,Nb

X1 ¢1)s0 04*FLOAT(I-51)41,0

Pe 5 1=51,ND

RE(1)=RO

po & 1=14,N

IP(X(1)  EQ,0,0)RCCYI=R(I)

CONTINUE

pe 7 122,50

T=X1(1)

RECIY=0 5o (TERPINXsRITID1I+TERPIN.X,Rs~T,D1))
RETURN

END

2370
2380
2390
2400
2410
2420
2430

24640
2450
2460
2470
248D
2490
2500
2510
2520
2530
2540
2550
2360
2570
2580
25%0
2600
2610

sT



App.Alcont'd)

SUBROUTINE FORM(X, RNt VNG:VTGsPI,X0,RP.NT1.N2)
SETS UP MAIN MATRIX; I,E, {MS OF EQUATIONN
DIMENSTION X(NY R(NY,PICNT),VNGCNI)I.VTECNT1Y XP(N1),RP(NT)
CeMMON 816(90,90)

N3aNZ2=1

Baq.0

PY26=2, 0+#ATANL1,0)

D8 1 1a21,N1

L=1

IPCY.GE_N2)L=L*1
TAUSDIR(RC(L41YmROL) ;X CL*1 )X (L))

CALL ELECXPCIY+RPCI) e TAU X R N¢I,PT.B,N1eN2)Y
be 1 J=1,N1

B16CI,J)mPI(J)

beg 2 1=1,N1

BYIGCI,NT1+1)=yNG(])

TAURDIR(R(2)=R{1) ,X(2)=X(1))-pPI24

CALL ELE(XPC1YsRP(1) ) TAUSX,R,Ns1,PY.B,N4Y:N2)
PO 3 J=q, N1

BIGINTI¢§,J)a=pI(J)

TAU=DIR(R(N2)2R(N3) +X{(N2)=X(N3))mPr24

CALL ELECHP(NS) ;RPUNIY ;TAU X, ReN,NT,PT1 BaNT1:N2)
DO 4 J=q,M1

BIGINT+1,J)aBIGINY#Y,J)=PI{J)
BIG(NT1+1.,N1+1)maVTG(1)=VTG(N3)

RETURN

END

2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2810
2840
2850
28640
2870
2880

9¢
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App.Alcont'd)

SUBROUTINE ELE(XP,RP,TAU;X,RyNs1,P1,B9.N1,N4)
CALCULATES THE VELOCITY COMPONENTS pug TO THE
SURFACE SOURCE DISTRIBUTION

DIMENSION X(N)/R{(N) s MW (42),PI(NT)

REAL KK,LGS

P12=8 0+ATAN(T,0)

SETOSINC(TAL)

CST=COS(TAU)

B22B1#B1

Do & L=1,N1

J= L

IFCJ.GE.N&) =B J +1

ARTSQRT IR +1)=X(J))* w2+ (R{J+T)wREJIIR#2)
RSaSORT((XPaX(J))# 224 (RP7RCJII**2I$SARTI(XPeX(J+1)) 22+ (RP=R(J*1))
1%%2)

CCa0.2+16.0wRA/RS

NRODECC

NRD=Z2aNRD+1

TE(NRD.LT . IINRDS]

IP¢] . EQ_L)NRD=NRD#+Y
OXa(X(J+1)=XC(J))/PLOAT(NRD~Y)
DRE(R(I+1I=RCI)I/FLOAT(NRD=T)
S=SQRT(DR*DR+DN*DX)

0& 1 TRO=1,NRD

RRERCJYI+BR*FLOATC(IRD-Y)
XXa)X(Jy+DX*FLOATC(IRD=1)
XpX2a{Xp=XX)*{Xp=)XX)

AZRP*RP+RR¥RR+XpX2

B=2.0%RPwRR

AMBEA-B

APBaAsB

VK122 0«B/ApPB

APBaSQRT(APB)

CALL F4ELCT1¢V¥T,KK)

CALL FAELC2(VKY,EX)
WW(IRD)aCST#(RA*(KK~EK)/RP+2, 0*RR*({RPeRR)IEKXK/AMB) /(P12*APB%B1)=SNY
1%#2 0% RR*(XP=XX)*EK/(PIZ*AMB*APB*B2)
IP{1 . EQ.LYGO YO 2

PY{L)=SIMPSN(WW,T1,NRDS)

GO TO 3

N2auNRD/2

N3aN2+1
PYICL)=2SIMPSN(WW, 1/ N2,S)*SIMPSN(WWINS.NRDsS)

2890
2900
29410
2920
2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
30690
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
35190
3200
3210
3220
3230
3240
3250
3240
3270
3280
32940
3300
3310

Lz
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App.Ajcont'd)

S=S/RP

SIGMASDIR(R(J+1I=RCI) e XCI+1Y=X{(J))

SNSaSINC(SIGMA)Y

CsS2C0S(SIGMA)

SNS2uSNS*#SNS

SKS4aSNS2*SNS2

LES*ALOG(S/16,0)

S2mS«S
PXc=SNS*CSS#Se(1,04(13,0/6,04LGS+SNS2)4S52/96.0)/P12
PRa=Sw*(SNS2+LGS~(3 0% ,0+LGS~SN82Y»2 O#SNSAI®S82/192 . .0)/P12
PI(LY=PI(L)+0,5¢(COSCSIGMA=TAU)»PXwSNY/B2+PR*(CST/B1)
CONTINUE

CONTINUE

RETURN

EnD

SUBROUTINE INVERT(N)
INVERTS NXN MAYRIX IN THE COMMON BLOCK
CEMMON A(90,90)

PO 1 I=s1,N

TEMP=A(Y,])

ACl,1)=1.0

bB 2 Jaq,N

Al )AL +J)/TEMP

& 1 Kmq,N

IF(K=133,1,3

TEMPEA(K, 1)

A(K,s1)s0.0

DEC & Ja1,N
A(K,J)aA(K,J)=TEMPRA(],J)
CONTINUE

RETURN

END

w "

3320
3330
3340
3350
3360
3370
3380
3390
3400
3410
3420
3430
3440
3450
3460

3470
3480
3490
3500
3310
3520
3530
3540
3550
3560
3570
3580
3590
3600
3610
3620
3630

s

87
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24

25
24

App.A{cont'd)

FUNCYION SEMPSNCFR,TA,N:H)

NUMERICAL INTEGRATION USING SIMPSONS RULE
DIMENSION FR(N)

L={N=1A)/2

NieN=1

IF{N=TA=2%|)21,22,21

s=0,0

DA 23 I1=1A/N1,2
SeS+HNe(FR{I)*4,0+FR(I+1)+FR(1+2))/3.0

Go YO 24

SEH® (S . O*FR(LIAY*B . QeFRITA+I)I=FRC(TIAM2))/12.0
DO 25 1slA+1,N1,2
ScS+Hu(FR(II*4L,0+FRC(I+1)*FR(1+2))/8.0
SIMPSN=S

REYURN

END

3640 .

3630
3660
3670
3680
3690
3700
3710
3720
3730
3740
3750
3760
3770
3780
3790

6¢
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App.A(cant'd)

FUNCTION PIRCDY.DX)
CALCULATES CORRECY SLOPE OF BODY SURFACE
PYwé OxATAN(T,0)
IF(DY.LE.0.0)60 T0 3
1s(DX.LE.D,0)G0 YO 1
DIAaATANCOY/DX)

RETURN

1F(DX%.LY.0,0)80 YO 2
DIR=p1 /2.0

RETURN
DIRmPI=ATAN(ABS(DY/DX))
RETURN

1e¢OY. LY. 0,00G0 YO 7
IF(OX.LE.O0,0)60 YO 4
DIR=Q.0

RETURN

IE¢OX.LY.0,0)60 YO &
WRITE(2.,5)
FERMATC(IHY ;10X 27NFUNCTION DIR INDEYERMINATE./?
DIR=(.0O

RETURN

DIR=pY

RETURN

IF(DX.LE.0,0)60 YO &
DIR=wATANCABSCDY/OX))
RETURN

IstpX.LY.0,0)60 YO 9
DiIRmepl/2,0

RETURN
DIRE=PI+AYAN(ABS(DY/DX))
RETURN

END

1L "

3800
3810
3820
5830
3840
3850
3860
5870
3880
3890
3900
3940
3920
3930
5940
3950
3940
3970
3%80
3990
4000
4010
4020
4030
4040
40590
4060
4070
4080
4090
4100
4110

o}

e

ot
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App.A.[concl’d)

FUNCTION TERPUN, X R,A(D)

LINEAR INTERPOLATICN FUNCTION
DIMENSTON X¢N)Y,R(N),TH(80)

LOGICAL D

I¥F(DYGO TO 2

N1aN=9

be 1 1=1,N1

TH(Iy=aX¢1)

TECX(T) GY . XC1eV))TH(I)mB=TH(T)
CGNTINUE

TH(N)Y=X{(N)

DO 3 1’1!"1

TFCA . GY.TH(I) ,AND,A,LE, TH(1+4))G0 TO 4
GO 710 3
TERP=R{(IV*(R(I+1)=RCI) ) (A=TH(I))/CYKCI+1)nTH(]))
RETURN

CORNTINUE

RETURN

END

FUNCTION VR(VI,AM)

CALCULATES VELOCITY RATIO FROM CORRESPONDING MASS FLOW RATIO

AzQ,2%AM

NE=t

VéaV]

Yavo#(Aw(1,0=V0sVO)+1,0)2+2 5Sevy]

YIisl4d OnAsVooey0+Asy 0)aCA2(1 0=Vorvadel 0)%at, 5
bym=y/¥1

VnsVosDY

IFCABS (DY), LT,0,0000001)60 TO 1

VeaaVy

NCaNC+1

IF(NC_GT,100)G0 10O 3

Gg YO 2

WRITE(2.,4)

FORMAY (tHO/,25HVR FUNCTION NOY CONVERGED)
VReYN

RETURN

END

4120
4130
4140
4150
4140
4170
4180
4190
4200
4210
4220
4230
4240
4250
4260
4270
4280
4290
4300

4310
4320
4330
4340
4350
4360
4370
43s0
4390
4400
4410
4420
4430
4640
4450
4460
4470
4480
4490

1¢
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Aggendix B

LIST OF THE MAIN VARIABLES USED IN THE MASTER SEGMENT

There follows a list of the main variables and arrays used in the MASTER

segment of the mogram with the physical quantity represented by each.

Variable or array

AOAT
Ccr

NC
NPNC
NPNC2

PI

SOL
TAU

[=1

VNF, VIF

VNG, VIG

VRG, VXG

X, R
X1, RC
XP, RP

Physical quantity

Specified mass flow ratio.

Pressure coefficient.

Strength of the 'fan' vortex.

Strength of the 'Kutta' vortex.

Number of aerofoil ordinates specified.
Number of centrebody ordinates specified.
Total number of ordinates specified.
Number of control points.

Velocities induced at a control point by
the complete set of surface elements.

Surface source strengths.
Surface slope.
Tangential velocity.

Axial velocities evaluated across the face
of the aerofoil.

Normal and tangential velocities induced
by the 'fan' vortex.

Normal and tangential velocities induced
by the 'Rutta' vortex.

Radial and axial velocities induced by
the 'fan' vortex.

Radial and axial velocities induced by
the 'Kutta' vortex.

Aerofoil and centrebody ordinates.
Ordinates of the camber surface.

Ordinates of the control points.
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Appendix C
INPUT DATA

The input data and format is summarised below.

Program variable

or array
CASEN, TEXT

N
X, R
NC
1if NC #0
X, R (continued), RD

NF1
R, CHORD, MACH, AOAI

Data

format

1048

15
BF10.6
15

8F10:6

It
&F10.5

Physical quantity

CASEN=Case number {8 characters)
TEXT=Case description (72 characters)

Number of aerofoil ordinates.
Aerofoil ordinates (N pairs).

Number of centrebody ordinates.

Centrebody ordinates (NC pairs).
RD=Radius of the centrebody at the
leading edge of the aerofoil.

Number of mass flow ratios.

RO=Trailing edge radius of the
aerofoil.

CHORD=Chord length of the aerofeil.
MACH=Mach number.

AOAT=Mass flow ratios (NF1 values).
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SYMBOLS

cowl or aerofoil chord length

pressure coefficient

a prescribed normal velocity boundary condition at the ith control
point

cowl forebody length

Mach number
number of ordinates specified on the aerofoil surface
number of ordinates specified on the centrebody surface

source strength on the jth element

radial ordinate

inlet veloecity ratio
free stream velocity

normal and tangential velocity components induced by the 'Kutta'
vortex at the ith control point
normal and tangential velocity components induced by the 'fan' vortex

at the ith control point

the normal and tangential velocity components induced at the ith

control point by the source density on the jth surface element
total tangential velocity at the ith contrel point
axial and radial velocity components

axial ordinate
2

1 -M

strength of the 'fan' vortex distribution
strength of the 'Kutta' vortex distribution
surface slope at the ith control point

value of the stream function at the trailing edge

mass flow ratio
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+ control points {1)to (N+NC-2)

N =Number of body points
NC=Number of centre body points
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N+NC-1 N+NC
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(N+NC-2)

—C)

Y AL centreling

Fig.l1 Specification of the body geometry
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