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Two programmes are presented in I.C.L. FORTRAN, for the pressure distrlb~~t~on 
on the surface of an arbitary body of revolution 1x1 axisymmetric, incompressible 
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1. Introduction 

The incompressible, irrotational flow of a perfect fluid over a body 
of revolution whose axis is parallel to a uniform stream is considered. 
The method and programmes described give only the velocity distribution 
on the surface of the body and provide no information about the velocity 
field elsewhere. Landweber has shown (ref 1) that by applying Green's 
Theorem to the solution of the boundary value problem for velocity 
potential, an integral equation for the velocity on the body surface 
can be obtained. For problems in which only the surface distribution of 
velocity is required this integral equation can be solved more rapidly than 
other equations so far proposed. Agaln, Iandweber (ref 1) presents an 
iterative solution of the integral equation for closed bodies of revolution, 
making use of Gaussian quadrature as an accurate method of performing the 
numerical integration. This report presents a FORTRAN programme enabling 
the iterative solution to be computed. 

The solution of landweber is extended to deal with the case of an 
infinite parallel sided afterbody. Such a solution has two immediate 
applications:- 

(i) for comparison with low speed tunnel measurements of the pressure 
distribution on the forebody of a sting-mounted model 

(ii) for the calculation of the pressure distribution over a body of 
revolution in well-separated axisymmetric flow (A simple 
mathematical model for the solution of Laplace's equation in 
the region exterior to a body and wake is that of a fictitious 
body extending to infinity downstream) 

A FORTRAN Programme for the pressure distribution in the case of an 
infinite afterbody IS also presented. 

Since the integral equation for velocity is exact, the accuracy of 
any solution is governed by that of the numerical integration performed at 
each stage of the Iteration. With Gaussian quadrature, this is very good, 
especially if many abscissae are used. Both programmes show that there is 
no difficulty in obtaining convergence to any reasonable degree of accuracy. 
This is so even in the event of irregular body geometry, such as that of the 
three-stage rocket for which results are presented. In addition the 
programmes cope equally well with sharp and blunt nosed bodies. The 
body geometry required by the programmes is simply the body radius and 
surface slope at each Gaussian abscissa. These are supplied via a sub- 
routine, and not input as data , so as to simplify programme handling. 

The run times on The City University's I.C.L. 1905 computer are up 
to two minutes for each body. Most bodies, however are dealt with in a 
few seconds. 
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2. Dlscusslon of ~~orr~mne for the clocerl h+ 

The mtegral equatlon for surface velocity iref 1) derived m appendix A, 1S 

In appendix B the solution of the Integral eq&tlon 1s shown to be the 
lm1tmg form of un (as nj 00 ). 
error functions En are even by: 

The fmctlons Un wth correspondme 

U,lx) = (It k(o) corycx) - - - - - - - - - - -22. 

The quantltles contamcd m these expwssloni ire fully descrrh4 1n s?,nendlx 
B. 

TI1P 1ntfJga1s occurrmg 1n the exnresrLons for En(t) n & 1 must be 
reduced so Cat th?u 117slts are -1 to +l L? m-~cr to nzply Cnur~1-lrl 
quadrature. A linear transformation 



gives limits of -1 and +1 on xl corresponding to xc and xl on X. 

Substituting into the integrals and suppressing the dashes one obtains:- 

The programme for the solution of these four equations written in I.C.L. 
FORTRAN is listed in appendix C. 

Input arrangement and layout of results 

For a given body geometry, the accuracy of the solution depends upon 
two factors:- 

(i) the value of max{E,,(t))at which the computation is halted 

(ii) the order of the Gaussian quadratures. The first of these two is 
set as data to any required value (usually of the order of 10-3 to 104.) 
The second factor presents more of a problem regarding ease of programme hand- 
ling. Leaving the number of abscissae arbitary (i.e. to be set as data) 
requires a set of Gaussian weights and abscissae to be input, at each run, 
corresponding to that number. This is a rather cumbersome arrangement which 
would be overcome if the number of abscissae was kept constant. Sixteen point 
quadrature was thought by landweber to give good results for most bodies. 
In the case of bodies with regions of high curvature, this number could well 
be greater with advantage. For the form of the programme presented here 
it has been decided to keep the number of points fixed at 40 and to include 
the list of weights and abscissae in the programme. This number is sufficient 
for almost all body geometries and clearly will provide superfluous informa- 
tion for simple bodies. However, the Justification for fixing thin number so 
high is that run times evenvith 40 points are only of the order of seconds. 

A further simplification in handling the data is achieved by building in 
a simple subroutine to evaluate y and dy/dx at each of the 40 points on 
the body. It will be necessary for the user to write two or three lines of 
FORTRAN to form these two quantities at any position x on the particular 
body under investigation. 

The amount of data to be supplied now reduces to five numbers. 
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(1) 

(Ii) 

(111) 

(1”) 

(“1 

xxi - the maximum number of lteratlons perutted (used as 
a ?afqquard should convergence not !>e achieved or be slower 
than expected) 
A typlcsl value 19 100. 

f~le;,c;geye;ce aciueved only if \IRQg~E~L~~~ 
. 

A typical value is 0.0001 

XX0 - the nose absczssa, x0 

xx1 - the tall sbsclsse, x 1 

yNID - the value of y at the rmd-point of the body 
i.e. at x = 3(x, + x1) 

Example : - y = 0.2 x(1 - x), a IS/U thick parsbollc arc of revolution. 
The dnta card consists of the five numbers (the first bezng of type Integer, 
the other four being real) each separated by a space. 

IO0 0.000l 0.0 \.o o.oc 

The tmo lines of FOREST to be lintten to give y and dy/dx BMI- 

FB=o.‘l*%B$t (Lo- XB) 

FlB = 0.1 - 0.4 it xB 

These are placed in the SubroutIne BODY. 

The output 1s headed by a statement of the number of iterations and the 
maximum value of the error fun&Ion at the time the computation ceased. 
This is followed by five columns of LO numbers. These are x, y, dy/dx, 
IJ and Cp at the J+O abscissae. The surface velocity (non-dimensionalised 

by the velocity in the free stream) and the gre eFuTe coefflclent are given 
to 4 decunsl places. 

(Since none of the Gausslnn abscissae actually falls at x = x0 or 
x = XT FI body havmp an lnflnlte value of dy/dx, at the nose or tall 
preseits no problems. For such a blunt nosed body, the value of dy/dx, 

at the abscissa nearest the nose, would be large, but flnlte) 
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3. Discussion of prop;ramme for a body extending to infln1t.y 

The four equations for the lteratlve solution of Landmeber'e 
integral equation can be reduced to a form sutable for dealing 
with the type of body shown in fig2.Thls body consists of a forebody 
(with either a blunt or R sharp nose) over which the radius y varies 
from zero up to a certain=lue at the shoulder. The afterbody is the 
region downstream of the shoulder where the radius remans const,ant 
and equal to the value at the shoulder. See Fig. 2. 

ReferrIng to equations 22, 26, 30, 31, 33, and 36 III Appendix B, 
the limit as the tail abscissa, x1, tends to infinity 18 lnvestigeted. 

The expressxon g(x, t) 
body at x = t and colncldes 

( i.e. y2 for the ellipsoid which cuts the 
at x = x0 and xl) reduces to 

This is the equation of a paraboloid of revolution whose apex lies on 
the BXM at x = x0 and which cuts the body at x = t. 

The lenpth todlameter ratio,A, of this degenerate ellipsoid, tends 
to lnflnity es x1+00 (since It 1s then A paraboloid). Letting A 
tend to Infinity in the equation for the virtual mass coeficlents, 

ktl 1%) of the ellipsoid it 1s seen thqt 

?lmilarly, k 
J 

the virtual miss coefficient of the ellipsoid cutting 
the body at (x0 + x1) also tends to zero. 

If dx, t) is now set equfll to 

the virtual mass ooefflcxnts set equal to zero, and x1 equal to 00 
in equations 22, 26, 33, and 36 It IS seen that 
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At this point it would be possible to transform the region 

and perform one Gaussian quadrature over the whole remon. Howver, 
due to the bunching of points near to the ends of the remon of 
InteRration there mill be very few points to define the region at 
the Junction of forebody and afterbody. With no restrlctlon we can 
say that the shoulder occur s at x = o and then we can split the 
integral up Into two parts, 

X.&%QQ md OIK6@ 

If then each part of the Integral is transformed Into the remon 
-I 4 Y’ 4 I the total integral can be found by two Gaussian 
quadratures, one foi the forebody and one for the nftsr body. In 
this way points at which pressure IS determined are bunched close to- 
gether near the nose, x = x0, and in the reg:lon of the shoulder, 

x 5 0, so deflnlng these regions better. 

The transformation for the forebody 1s Fivea by 

x’ s \- 9. (%I%,) 

and that for the afterbody is given by 

x ’ = I- tL/(r+x) 
Splittug up the Integrals, performing the transformations shown above, 
and then writing xl as x agaam, the expression for El(t) becomes 
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In a,slmllar way the expression for En+, b) becomes 

The pro@ame for the solution of these four equations 1s listed in Appendix D. 

Input arrangements and layout of results 

As In the case of the closed body, dealt with In the previous sectlon 
the number of Gaussian abscissa 1s kept constant in order to slmpllfy 
programme handlmg. It was decided to take the total number of abscissae 
over the whole body as bonith 30 on the forebody and 30 on the afterbody. 
It has been found necessary to use as many as 30 points on the afterbody. 
This provides a lot of points close to the Junction, but does not waste 
time by evaluating the velocity at a lot of points well downstream r.here 
pressure recovery to amblent 18 well established. The computation 1s 
halted when the maximum error function &CC) 18 less than prescribed value. 
Convergence is slightly slower in this programme than m that for the closed 
body. If the maximum value of the error function is l0-3then convergence 
mill be achieved in a very short time. A value of 104, on several of 
the bodies tested, caused run times to ccnvergence to be about one or two 
minutes. 

A subroutine has been built into the programme to evaluate y and 
dy/dx at each body abscissa , Just as for the closed body. 

The data to be supplied now consists of four numbers. 
(i) NALL- the maximum number of iterations permitted (used as a 

safeguard should convergence not be achieved or be slower than 
expected) 
A typical value 18 100. 

(ii) El3 - conveqence 1s achieved only If (max~Edk)\l 
is less than EFS. A typical value is 0.0005. 

(ni) xx0 - the nose abscissa, xc 

(iv) yAlT - the value of y on the afterbody. 

Example : - A hemisphere cylinder. Taking the sphere rddlus as unity, the 
data card consists of four numbers (the first belng of type mtqer, the other 
three being real), each separated by a space. 

\oo QOOI -LO 1.0 
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G&x Two lmes of FOETRAN are needed to form y and dx on the forebody. In this 
example they are 

These are placed in the subroutine BODY 

The output is identical in layout to that for the closed body, namely a 
statement of the number of iterations and maximum value of the error at 
the trme the computation ceased. This is followed by five columns of 60 
numbers, the values of x, y, dy/dx, U and C et the abscissae. The body 
geometry is output to 6 decimal places and the values of U and Cp are 
given to 4 places. 

A Note on scaling 

The distribution of points on the afterbody was given as 

% = (1+d)I( I-X’) 
where x 1 are the Gaussian abscissa given in -I 4 A+\ 
Ths, as seen earlier, causes x to lie in the ran&-z 

The transformation x- k (l+x’)( (l-x’) where k is a constant 

would also transform x1 in the range -ILX’L I to x in the range 
04s coo. The value of k used nil1 affect the distribution 
of values of x hetaeen o andao, that is the distribution of points on the 
afterbody. In the programme k is taken as unity. If the forebody length 
is taken to be unity this results in a similar distribution of points 
immediately on either side of the forebody/afterbody Junction. This is a 
desirable situation and scelin+r the forebody in this way (if necessery) is 
thus likely to give most accurate results in the shortest time. 
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Results 

a) Closed body programme 

Since the initial guess for the iterative solution of the integral 
equation should be exact for ellipsoids, a check ws first made to ensure 
that this was so. Three ellipsoids with axis ratios of 2, 1, $ were considered 
Theoe all converged to the required solution in one iteration when the 
appropriate expressions for virtual mass coefficients of ellipsoids broadside- 
on and end-on were incorporated. 

A 1Pb thick parabolic arc of revolution was next run. The solution 
converged with a maximum error of 10-5 in 20 seconds. The pressure 
distribution is given in fig 3. Results from linearised theory due to 
Spreiter reference 3 are also shown on the same figure. As is characteristic 
of linearised methods, the result of Spreiter underestimates the peak suction 
by a proportion roughly equal to the thickness/chord ratio of the body. 

It was decided to run the programme for a body having a slope 
discontinuity. A 1oDb thick diamond of revolution symmetrical fore end aft 
wa8 chosen. Fig 4 shows the pressure distribution for this body. The 
infinite suction predicted by potential theory at the slope discontinuity 
is, of course, never realized by a numerical scheme. However the tendency 
towards infinite suction can clearly be seen in the figure, 

The final closed body considered was one without fore and aft symmetry. 
This body, given incorrectly in reference 2, has the form 

It is 2077 thick and has a blunt nose and pointed tail.Fig 5 shows the 
chordwise variation of pressure coefficient obtained from the programme 
with a maximum error of 10-5 in 30 seconds. 

b) Infinite afterbody programme 

A body of revolution in the form of a three-stage rocket (eee Fig 6) 
presents geometry sufficiently challenging to test any suggested theoretical 
or computer solution. F’ig 7 shows the computed values of pressure coefficient 
over the region of interest obtained from the programme in 2& minutes with a 
maximum error of 10-4. Also shown are experimental values of C from 
reference 4. The agreement obtained may be said to be eupris&ly good. 

A further test was provided by considering a shape having a forebody 
fineness ratio less than thst of the 3-stage rocket, but of simpler geometry. 
Fig 8 shows the pressure distribution over such a body, namely sn ellipsoid 
cylinder of axis ratio (a/b) = 2. Convergence to a smooth result was again 
achieved in a computer time of 1 minute with a maximum error of 104. 





- 11 - 

The results of test runs of the two programmes have demonstrated their 
flexibility and range of application. The closed body programme is very fast 
and copes equally well with a blunt or pointed nose and tail. Fore and aft 
assymmetry also presenls no further problems. Indeed, since Landweber’s 
solution (ref 1) has been well established for several years, the tests carried 
out in the closed body case were mainly to check the accuracy of the computing. 
Test runs on the infinite afterbody programme demonstrated its capacity to deal 
with Severe body geometry. Bun times were somewhat longer than those of the 
closed body programme, but these could be reduced substantially with very little 
loss in accuracy. 

Both programmes have been designed so a8 to require very little data 
preparation, by keeping the order of the Gaussian quadrature fixed and 
by supplying body data via a subroutine. The two programme listings should 
prove useful since neither appears to be available in the current literature. 
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List of S,ymbols 

x 

Y body radius 

8 

x 
0 

5 

P 

U 

ko’kl 

f 

streamwlse co-ordinate with the origin at 
the body nose 

angle between tangent to body surface and 
the x BXIS 

distance around the body peruneter in a 
merldxn plane, measured from the nose 

nose abscissa 

tail abscx3se 
See fig I 

semi-perimeter In a meridian plane 

total fluld velocity on the body surface, 
non-dimenslonalised by free-stream veloolty 

vlrtusl mass coefflclents 

square of body radius (= y*) 

square of elllpsold radius 

length/diameter ratlo of ellipsoid 

the nth approxlmatlon for U 

the error in the nth spproxunatlon 

the local pressure coeft (- l- U*) 
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Appendix A - the internal equation 

Let S be the surface of a body of revolution with its axis allgned to the 
free stream. If V is the regwn exterxor to S andxls a vector quantity 
sinnle valued and continuous in V and on S then the Divexpnce theorem, 
ref 5, states 

S 
where dV is an element of volume V,and pS = gdS, with dS as an element of 
surface area of S and pas the outward unit normal to S 

1) PuttingB= #VW yields 

I 
$vw.d& = 

I[ 
$vbw + v@nJ dv- ---1. 

1 
5 v 

2) PuttmgJik= yielda 

wy?L& = I ~V#+vwv#]dv----a. 
f V 

Forming the difference of equatlone 1 and 2 one obtains 

If+ and W are harmonw m V, then this leads to the result 

and since & =ads this becomes 
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Superimposing on’ the flow field a unit velocity in the positive x direction 
will reduce the body to rest and produce a steady flow problem. Usmg 
the convention that velocities are given by the negative gradient of 
the potential, the steady velocity potintial, h. , can be written as 

Thus 

Ifu is the total velocity on the body surface in the steady flow (with 
a unit velocity free stream), then 

Also dx/dt = COr\ and hence 

Substituting for d fb Id 5 from equation 10 into equation 9 gives 

Since the left hand sides of equations 7 and 11 are equal, it follows that 

0 0 

Writing dX=drwt\ and dy= dssiny gives 
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Now smceU and yare corresponding axisymetrio potential and stream 
functions the followmg relations hold. 

Equation 13 can be satisfied by the introduction of a function & such 
that 

Thus we see that the integrand 
1s an exact differential aa. 

Cwdr-ywdy) occurrmg In equation 12 

When equations 15 and 16 are substituted into the relation UC., the result- 
ing equation for JL is 

which is the equation satisfied by Stokes stream function. 

Tnrlting equation 12 in terms of JL , sves 

Now settmg fi equal to a particular stream function, namely that of a 
source of unit strength situated at an arbitary point, t, on the axis of 
symmetry of the body 
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Substitutmng this into equation 18 gives 

Since y vanishes at s D o and s = P. 
Thus the integral equation for veluuty is given by 
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ADDendiX B - the iterative solution 

Successive approximations are used to solve the itegrai equation 

To obtain a first approximation, we make the polar transformation 

which reduces equation 19 to the form 

0 
Near x = t the integrand of equation 20 peaks sharply and so the majority 
of the contribution to the total integral occurs in this region. As a 
result of this,a reasonable first approximataon could be obtained by 
writing UlS) S U LC) . Also since xtll) will be small (except near the 
ends of the body) a further simplification is 

shL*-YCx\l & tin*cot#Lx~ S Sin* cos\dCt) 
Inserting the two approximations into equation 20 gives 

UCk) = cos t Cc) for each point t on the body. 

is a first approximation. 

An improved first approximation can be obtained as the velocity distribution 
over an ellipsoid of the same length and having a diameter equal to that of 
the body at its mid point. To justify this we must look at the relation between 
the virtual mass coefficient of a body and its velocity. For a body 
moving with unit velocity in the negative x direction the virtual mass 
equals twice the kinetic energy of the fluid. 

1.e. IT= K, b where Q 16 the volume of the body. 

and ko is the virtual mass coeft. 
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usmg equations 5 and 6. This 1s now integrated by parts. 

Consider a generallsatlon of the first approxuatlon of the form 

then on substitution into equation 19. 

i* U,(K) = (\+kJ) cos ‘but)-- ---w-s 21. 

which is a better approximation. 

However since k 1s not known for the body under consideration, 
the value for the el?ipsold, having the same length and dumeter as our 
body, is used. 

By virtue of the above reasoning we see that the improved first 
approximation equation 22 is exact for an ellipsoid. 

The position so far is that we wish to solve 

We have a first approxlmatlon w,,rlr) = (\ c k(o) coq~x\ 

in lteratlon formula of the following form suggests itself. 
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The error at the nth lteratlon 1s even by 

wnere x0 and x1 are the nosertail abscissae. 

The 
lJ),lY> 

Gven by _ - 

method of solution is as follows. Ootain a first a>proximatlon 
as given by equation 22. The corrisponding error etl*) will be 
24. c\(X) 1s then obtazned from &Us using 27, and U~\L) from 

26. Hspeated use of equations 26 and 27 will eventually produce terms 
so small as to be neglected. At this stage %tU) will be the velocity 
distribution to the designed degree of accuracy. 

In the evaluation of E,(X) (using equation 24) and of En(x) ( n%%, 
using equation 27) numsrlcal rntegratlons have to be performed. Neither of 
these two lntegrale is well suited to numerical integration as it stands 
(especially for elongated bodies), since y2/r3 has a sharp peak in the 
neighbourhood of x P t. In the evaluation of El(x) from eqoatlon 24 the 
difficulty 1s overcome by subtracting from the integrand an Integrable 
function which peaks in a similar way at x = t. The resulting integrand 1s 
then more easily treated numenoally. 

Set 

where k(x, t) is the kernel in equations 24 and 27 and f(x) = y2(x) 

The integrable kernel which 1s now subtracted is that of an ellipsoid 
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-- - --I?. 

where g(x, t) is the value of y* for an dlllpsold whose ends coincide with 
those of the body and which cuts the bo& at x = t, namely. 

Both kernels k(x, t) and k’(x, t) now peak at the same point, namely x = t, 
and peak to thti same value since by equa$lon 30 

Since Kl(x, t) is to be subtracted from ihe integrand a slmllar quantity must 
be added. This will now be evaluated. 

The length to diameter ratlo, 3 9 of the ellipsoid IS given from equation 
30 by 

and its virtual mass coefficients are @ven by! 
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Consider the evaluatmn of El(x) from u,(x) using equation 24. 

Now u,(X) * (\+k,) CO$ ‘d Cr) as given by equation 22, and so 

However, it ie known that w~lt)~ cosya) 
18 an exact solution of the integral Ion for the ellxpsoid g(x, t), 
therefore 

Substltutmg back Into equation 72 gives 
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To evaluste the functions En(t) for n%% from equation 27 one must 
subtract an udegrable function which peaks at the same position and by 
the same amount as does the existing zntsgranb Ttus 1s easily achieved 
by writing equation 27.in the form 

However from equation 24 with n = 1 and 
it follows that 

Thus 

XI 

I 
klr,kb dr = 

w, 

Substitute this back Into equation 

Xl 

which oan be written as 



Appendx C - hstmg of the programme for a closed body 

MASTER CLOSED BODY 
DIMENSION A (40),X(4O),F(40),Fl(40),E(40),E1(40),E2(40),1X1(40),U(40),CP(40),XK(40,40), 

F2(40) 
READ (1,l) NMAX,EPS,XXO,XXl,YMID 

1 FORMAT (I0,4FO 0) 
A(l)=0 0045212771 
A(2)=0 0104982845 
A(3)=0 0164210584 
A(4)=0 0222458492 
A(5)=0 0279370070 
A(6)=0 0334601953 
A(7)=00387821680 
A(g)=0 0438709082 
A(g)=0 0486958076 
A( 1 O)=O 0532278470 
A( 1 l)=O 057439769 1 
A(12)=0 0613062425 
A( 13)=0.0648040 135 
A(14)=00679120458 
A(15)=00706116474 
A(16)=0 0728865824 
A(17)=0 0747231691 
A(18)=00761103619 
A(l9)=00770398182 
A(20)=0 0775059480 
X(1)=-0 9982377097 
X(2)=-0 9907262387 
X(3)=-0 9772599500 
X(4)=-0 9579168192 
X(5)=-0 9328 128083 
X(6)=-0 9020988070 
X(7)=-0 8659595032 
X(8)=-0.8246122308 
X(9)=-0 77830565 14 
X(10)=-0 7273182552 
X(11)=-0 6719566846 
X(12)=-0 6125538897 
X(13)=-0 549467 125 1 
X(14)=-0 4830758017 
X(15)=-0 4137792044 
X(16)=-0 34 19940908 
X(17)=-0.2681521850 
X( 18)=-0.1926975807 
X( 19)=-0.1160840707 
X(20)=-0 0387724175 
DO 2 K=1,20 
KK=41 -K 
A(KK)=A(K) 

2 X(KK)=-X(K) 



DO 8 K=l,40 
X(K)=0 5*(X(K)*(XXI-XXO)tXXI+XXO) 
XB=X(K) 
CALL BODY (XB,FB,FlB) 
F(K)=FB 
Fl(K)=FlB 
FZ(K)=FlB 
Xl(K)=(X(K)-XXO)*(XXl-X(K)) 
Fl(K)=I.O/SQRT(I C+Fl(K)*Fl(K)) 

8 F(K)=F(K)*F(K) 
XKO=XKl((XXl -XX0)/(2.0*YMID)) 
DO 3 I=140 
FOFT=F(I)/X 1 (I) 
XL=SQRT( 1 O/FOFT) 
XK2=( 1 .OtXKO)/( 1 O+XK 1 (XL)) 
SUM=O.O 
DO45=1,40 
XDIF=(X(J)-X(I))*(X(J)-X(I)) 
XK(I,J)=F(J)/SQRT((XDIF+F(J))**3) 
GXT=FOFT*XI(J) 
XKDASH=CXT/SQRT((XDIF+GXT)**3) 

4 SUM=SUMtA(J)*(XK(I,J)-XKDASH) 
E(I)=1 O-O 25*(I OtXKO)*SUM*(XXl-XXO)LXK2 
El (I)=(E(I)tXKO)/( 1 O+XKO) 

3 U(l)=(l OtXKO)*Fl(I) 
N=O 

5 N=N+ I 
DO 6 I=1,40 
U(I)=U(I)+Fl(I)*E(I) 
SUM=0 0 
DO 7 J=l,40 

7 SUM=SUM+A(J)*XK(I,J)*(E(J)-E(1)) 
6 E2(1)=E1(1)*E(I)--0.25*SUM*(XXl-XXO) 

DO 13 K=l,40 
13 E(K)=EZ(K) 

EMAX=ABS(E(l)) 
DO2K=1,40 
IF (ABS(E(K)) GT. EMAX) EMAX=ABS(E(K)) 

12 CONTINUE 
IF (EMAX GT EPS AND N LT NMAX) GO TO 5 
WRITE (2,14) N,EMAX 

14 FORMAT (20H NO OF ITERATIONS =,13,lOX,i3H MAX ERROR =,E15 7//) 
DO 9 K=l,40 
F(K)=SQRT(F(K)) 

9 CP(K)=l 0-U(K)*U(K) 
WRITE (2,15) 

15 FORMAT (6X,2H X,1 3X,2H Y,l2X,6H DY/DX,7X,9H VELOCITY,3X, 114H PRESS COEFT ) 
WRITE (2,16) (X(K),F(K),F2(K),U(K),CP(K),K=l,40) 

16 FORMAT (FlO 6,6X,FlO 6,6X,FlO 6,6X,F8 4,6X.F8 4) 
END 



FUNCTION XKl(B) 
IF (B GT. I 0001) GO TO I 
IF (B LT 0 9999) GO TO 2 
XKl=O 5 
RETURN 

1 C=B*B 
D=SQRT(C- 1 0) 
E=ALOG(B+D)*B 
XKI=(E-D)/(C*D-E) 
RETURN 

2 C=B*B 
D=SQRT( 1 O-C) 
E=ALOG(( 1 O+D)/B)*C 
XKl=(D-E)/(Z O*D*D*D-D+E) 
RETURN 
END 

SUBROUTINE BODY (XB,FB,F 1 B) 

RETURN 
END 

FINISH 



XVI 

Appendix D - hstmg of the pro&mme for an mfmlte afterbody 

MASTER INFINITE AFTERBODY 
DIMENSION A(60),X(60),F1(60),E(60),E1(60).~2(60), lU(6O),F(60),CP(60),F2(60),XK(60,60) 
READ (I ,l) NMAX,EPS,XXO,YAFT 

1 FORMAT (10,3FO.O) 
A( l)=O 007968 1925 
A(2)=0.0184664683 
A(3)=0 0287847079 
A(4)=0.0387991926 
A(S)=0 0484026728 
A(6)=0 057493 1562 
A(7)=0.0659742299 
A(8)=0 0737559747 
A(9)=0 0807558952 
A( IO)=0 0868997872 
A(1 I)=0 0921225222 
A( 12)=0 0963687372 
A( 13)=0 0995934206 
A(l4)=0 1017623897 
A(l5)=0.3028526529 
X(1)=-0 9968934841 
X(2)=-0 983668 1233 
X(3)=-0 9600218650 
X(4)=-0 9262000474 
X(5)=-0 8825605358 
X(6)=-0.8295657624 
X(7)=-0.7677774321 
X(8)=-0.6978504948 
X(9)=-0 6205261830 
X(10)=-0 5366241481 
X(1 1)=-O&70337695 
X(12)=-0.3527047255 
X( 13)=-0.2546369262 
X(14)=-0 1538699136 
X(15)=-00514718426 
DO2K=1,15 
KK=3 1 -K 
A(KK)=A(K) 

2 X(KK)=-X(K) 
DO 17 K=1,30 
KK=3O+K 
A(KK)=A(K) 

I7 X(KK)=X(K) 
DO 8 K=1,30 
X(K)=0 5 *XXO*( 1 O-X(K)) 
XB=X(K) 
CALL BODY (XB,FB,FlB) 
F(K)=FB*FB 
Fl(K)=I O/SQRT(l O+FlB*FlB) 
F2(K)=F 1 B 

8 A(K)=0 25*XXO*A(K) 
DO 14 K=31,60 
X(K)=( 1 .O+X(K))/( 1 O-X(K)) 
F(K)=YAFT*YAFT 



Fl(K)=I 0 
F2(K)=O 0 

14 A(K)=-0 25*( 1 O+X(K))*( 1 O+X(K))*A(K) 
DO 3 ]=I,60 
FOFT=F(I)/(X(I)-XXO) 
E(I)=0 0 
DO 4 J=l,60 
XDIF=(X(J)-X(I))*(X(J)-X(I)) 
XK(I,J)=F(J)/SQRT((XDIF+F(J))**3) 
GXT=FOFT*(X(J)-XXO) 
XKDASH=GXT/SQRT((XDIF+GXT)**3) 

4 E(I)=E(l)+A(J)*(XK(I,J)-XKDASH) 
E 1 (I)=E(I) 

3 U(I)=Fl(I) 
N=O 

5 N=N+l 
DO 6 1=1,60 
U(I)=U(I)+FI(I)*E(I) 
E2(1)=El(I)*E(I) 
DO 7 J=l,60 

7 E2(I)=E2(I)+A(J)*XK(I,J)*(E(J)-E(I)) 
6 CONTINUE 

DO 13 K=1,60 
13 E(K)=EZ(K) 

EMAX=ABS(E( 1)) 
DO 12K=1,60 
IF (ABS(E(K)) CT EMAX) EMAX=ABS(E(K)) 

12 CONTINUE 
IF (EMAX GT. EPS AND N LT NMAX ) GO TO 5 
WRITE (2,IO) N,EMAX 

10 FORMAT (20H NO OF ITERATIONS =,13,lOX,l3H MAX. ERROR =,ElS 7//) 
DO 11 K=1,60 
F(K)=SQRT(F(K)) 

II CP(K)=l 0-U(K)*U(K) 
WRITE (2,15) 

15 FORMAT (6X,2H X,13X,2H Y,l2X,6H DY/DX,7X,9H VELOCITY,3X,l14H PRESS COEFT ) 
WRITE (2,16) (X(K),F(K),F2(K),U(K),CP(K),K=l,60) 

16 FORMAT (FlO 5,6X,FlO 6,6X,Fl0.6,6X,F8 4,6X,F8 4) 
END 

SUBROUTINE BODY (XB,FB,FlB) 

RETURN 
END 

FINISH 
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