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SUMMARY i )

Two programmes are presented in I.C,L, FORTRAN, for the pressure distribution
on the surface of an arbitary body of revolution in axisymmetric, incompressible
flow. One programme evaluates the pressure distribution on an arbitary closed
body of revolution. The second deals with a body which has a parallel afterbody

extending to infinity downstream.
Listings for each programme are given in the Appendicies.

Results from both programmes are presented and their accuracy is demonstrated.
The range of bodies for which the programmes work a1s also shown.
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1. Introduction

The incompressible, irrotational flow of a perfect fluid over a body
of revolution whose axis 18 parsllel to a uniform stream is considered.
The method and programmes described give only the velocity distribution
on the surface of the body and provide no information about the velocity
field elsewhere. Landweber has shown (ref 1) that by applying Green's
Theorem to the solution of the boundary value problem for velocity
potential, an integral equation for the velocity on the body surface
can be obtained. For problems 1in which only the surface distribution of
velocity 1s required this integral equation can be solved more rapidly than
other equations so far proposed. Again, Landweber (ref 1) presents an
1terative solution of the integral equation for closed bodies of revolution,
making use of Gaussian quadrature as an accurate method of performing the
numerical integration. This report presents a FORTRAN programme enabling
the 1terative solution to be computed.

The solution of Landweber is extended to deal with the case of an
infinite parallel sided afterbody. Such a solution has two immediate
applications:-

(1) for comparison with low speed tunnel measurements of the pressure
distribution on the forebody of a sting-mounted model

(i1) for the calculation of the pressure distribution over a body of
revolution in well-separated axisymmetric flow (A simple
mathematical model for the solution of laplace's equation in
the region exterior to a body and wake 18 that of a factitious
body extending to infinity downstream)

A FORTRAN Programme for the pressure distribution in the ¢case of an
anfinite afterbody 1s alsc presented.

Since the integral equation for velocity 1s exact, the accuracy of
any solution is governed by that of the numerical integration performed at
each stage of the i1teration. With Gaussian guadrature, this 1s very good,
especially i1f many abscissae are used. Both programmes show that there is
no difficulty in obtaining convergence to any reasonable degree of accuracy.
This 18 80 even in the event of irregular body geometry, such as that of the
three-stage rocket for which results are presented. In addition the
programmes cope equally well with sharp and blunt nosed bodies. 'The
body geometry required by the programmes 1s simply the body radius and
surface slope at each Gaussian abscissa, These are supplied via a sub-
routine, and not input as data, so as to simplify programme handling.

The run times on The City University's I.C.L. 1905 computer are up
to two minutes for each body. Most bodies, however are dealt with in a
few seconds,



2. Discussion of nrosreamme for the clocsed brdy

The integral eguation for surface velocity {ref 1) derived in appendix A, 1s
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In appendix B the solution of the integral eqﬁatlon 15 shown to be the

limting form of U (asn-p @@ ). The functions U

n with corresponding
error functions En are given by:
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The quantitres conlained 1n these expressicns are fully described 1n =ppendix
Bl

The integrals occurring in the exnrescions for E“(t) n ) L must be
reduced so0 that iheair Jimats are -1 to +1 1n order to apply Causcian
quadrature., A linear transformation

X = Ak - (tetx,)
(X, = Xo)




gives limits of -1 and +1 on xl corresponding to X, and X, oOn X.

1

Substituting into the integrals and suppressing the dashes one obtains:-
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The programme for the solution of these four equations written in I.C.L.
FORTRAN is listed in appendix C.

Input arrangement and layout of results

For a given body geometry, the accuracy of the solution depends upon
two factors:-

(1) the value of max{E“(t)}at which the computation 1s halted

(ii) the order of the Gaussian quadratures, The first of these two 1s
set as data to any required value (usually of the order of 10-3 to 10‘“.)
The second factor presents more of a problem regarding ease of programme hand-
ling. Leaving the number of abscissae arbitary (1.e. to be set as data)
requires a set of Gaussian weaights and abscissae to be input, at each run,
corresponding to that number. This 18 a rather cumbersome arrangement which
would be overcome 1f the number of abscissae was kept constant. Sixteen point
quadrature was thought by Landweber to give good results for most hodies.
In the case of bodies with regions of high curvature, this number could well
be greater with advantage. For the form of the programme presented here
1t has been decided to keep the number of points fixed at 40 and to include
the list of weights and abscissae in the programme. Thas number 1s sufficient
for almost all body geometries and clearly will provide superfluous informa-
tion for simple bodies. However, the justification for fixing this number so
high is that run times even vith 4O points are only of the order of seconds.

A further saimplification in handling the data 1s achieved by building in
a simple subroutine to evaluate y and dy/dx at each of the 4O points on
the body. It will be necessary for the user to write two or three lines of
FORTRAN to form these two quantities at any position x on the particular
body under investigation.

The amount of data to be supplied now reduces toc five numbers.



(1) WiaX - the maximum number of i1terations perurtted (used as
a =afeguard should convergence not lLe achieved or be slover
then expected)

A typical value a1s 100.

(21) EPS = convergence achieved only if lﬂ\ﬂ.t{Eanﬂ}'
18 less than EFS,
A typical value is 0.0001

(211) =xx0 - the nose abscissa, X,

(1v) =xx1 - the tai1l abscissa, x)

(v) yMID - the value of y at the mid-point of the body
i.e. at x = %(xo + xl)

Example:~ y = 0.2 x(1 - x), a 10% thick parabolic arc of revolution.
The dota card consists of the five numbers (the first being of type integer,
the other four being real) each separated by a space.

100 0.000] 0.0 \.0 0©.0¢

The two lines of FUORTRAN to be written to give y and dy/dx ares-

FBa301xxBx (Lo~ xR)

FIR= 02 - 0.4 *XB
These are placed in the Subroutine BODY.

The output 15 headed by a statement of the number of iterations and the
maximum value of the error function at the time the computation ceased.
This i=s followed by five columns of LO numbers. These are x, y, dy/dx,
U and Cp at the LO abscissae. The surface velocity {non-dimensionalised

by the velocity in the free stream) and the pressure coefficient are given
to 4 decimal places,

(S1nce none of the Gaussian ahscissae actually falls at x = X, OT

X = ¥y A body having an infinite value of dy/dx, at the nose or tail

presents no problems, For such a blunt nosed body, the value of dy/dx,
at the abscissa nearest the nose, would be large, but finite)



2. Discuszion of propramme for a body extending to infanity

The four equations for the i1terative solution of Landweber's
integral equation can be reduced to a form suitable for dealing
with the type of body shown in fig2,This body consists of a forebody
(with either a blunt or a sharp nose) over which the radius y varies
from zero up to a certainwlue at the shoulder. The afterbody is the
region downstream of the shoulder where the radius remains constant
and enual to the value at the shoulder. SHee Fig. 2.

Referring to equations 22, 26, 30, 31, 33, and 36 in Appendix B,
the limit as the tail abscissa, xl, tends to infinity 18 investigzated.

The expression g(x, t) (1.e. y2 for the ellipsoid which cuts the
body &t x = t and coincades at x = x _ and xl) reduces to

Y 2aue) > £ (X-ve)  as %>
(k-¥a)

This is the enuation of a paraboloid of revolution whose apex lies on
the axis at x = X, and which cuts the body at x = t.

The lensth todiameter ratio,A, of this demenerate ellipsoid, tends
to infinity as Xy -Poq (since 1t 1s then a paraboloid). Letting A
tend to infinity in the equation for the virtual mass coeficients,
X, (?) of the ellipsoid 1t i1s seen that

k(A = 0 68 A=> 90

Similarly, ke, the virtual mass coefficient of the ellipsoid cutting
the body at (xo + xl) also tends to zero.

If g(x, t) is now set equal to &u') LL-“O)
(b-¥e)

the virtual mass coefficients set ecual to zero, and Xy equal to @@
in equations 22, 26, 3%, and 36 1% 15 seen that

Vilw) = cesy(x)
? 1
E8 = —.\is Lkoun-K (e, dx
Xo

Ewi= B ER) 4 k(\,\-)‘:E“M - En[b)] dy

, (n21)
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Unal]) = U LK) +Cosy(y) £ E;L¥)

v
At this point it would be possable to transform the region

X, & X &0 ink -1 €x ¢\

wilh X 5 _%x=1% -l
%=1

and perform one Gaussian quadrature over the whole region. However,
due to the bunching of points near to the ends of the region of
integration there will be very few points to define the region at
the junction of forebody and afterbody. With no restriction we can
gay that the shoulder occurs at x = o and then we can split the
integral up into two parts,

If then each part of the integral is transformed into the region
-\6 N4} , the total integral can be found by two Gaussian
quadratures, one for the forebody and one for the after body. 1In
this way points at which pressure i1s determined are bunched close to-
gether near the nose, x = X and in the region of the shoulder,

X = 0, 20 defining these regions better,
The transformation for the forebody 1s given by

x = \- 1(‘(“\0)

and that for the afterbody is given by

X = |- 9.[(\4-&)

Splitting up the integrals, performing the transformations shown above,
and then writing x! as x again, the expression for El(t) hecomes

*l 3\

EH= ‘%, [\(u,t-\-k'[n ,i'\] dy = | | kly,b)- kﬁt-) dx

(1=x)*




In a_similar way the expression for En." U"\ becomes

4t H
Erl)SEEW 4 e 0,8 [Ent)- Eqlt]]dx - ktn,r)[&\%)}%@] dx
-| -

The programme for the solution of these four equations 1e listed in Appendix D.

Input arrangements and layout of results

As a1n the case of the closed body, dealt with in the previcus section
the number of Gaussian abscissa 18 kept constant in order to saimplify
programme handling. It was decided to tmke the total number of abscissae
over the whole body as bO with 30 on the forebody and 30 on the afterbody.
It has been found necessary to use as many as 30 points on the afterbody.
This provides a lot of points close to the junction, but does not waste
time by evaluating the velocity at a lot of points well downstream where
pressure recovery to ambient 1s well established. The computation 1s
halted when the maximum error function Ewl¥) 18 less than prescraibed value,
Convergence is slightly slower in thas programme than in that for the closed
body. If the maximum value of the error function is 10-3then convergence
will be achieved in a very short time. A value of 10=4, on several of
the bodies tested, caused run times to convergence to be about one or two
minutes.

A subroutine has been built into the programme to evaluate y and
dy/dx at each body abscissa, just as for the closed body.

The data to be supplied now consists of four numbers.
(i) NMAX- the maximum number of 1terations permitted (used as a
safeguard should convergence not be achieved or be slower than

expected )
A typacal value is 100,

(ii) EPS =~ convergence 1s achieved only 1f |N0!{En(l')}l
18 less than EPS. A typicel value is 0,0005.

{11i) xxo -~ the nose abscissa, X,
(iv) yAFT - the value of y on the afterbody.
Example:- A hemisphere cylinder. Taking the sphere radius as umity, the

data card consists of four numbers (the first being of type integer, the other
three being real), each separated by a space.

100 ©.00) -LO \.O



Two lines of FORTRAN are needed to form y and %i‘;- on the forebody. In thais
examnple they are

FR = SQRT (1.O—XBxXB)

FIR = -XB|FB

These are placed in the subroutine BODY

The output 1s identical in layocut to that for the closed body, namely a
statement of the number of iterations and maximum value of the error at
the time the computation ceased. This 1s followed by five columns of 60
numbers, the values of x, y, dy/dx, U and C_ at the abscissae. The bhody
geometry 18 output to 6 decimasl places and Ehe values of U and C_ are
given to 4 places. P

A Note on scaling

The distribution of points on the afterbody was given as

k= (ex)](1-x")

1 ) }
where X~ are the Gaussian abscissa given in = | & % £ ¥\
This, as seen earlier, causes x to lie in the range

O4LX L
The transformation AR= k (l‘b’&'), L\-x') where k is a constant

would also transform xl in the range =1 4 X' L\ to x 1n the range
O & %X &4, The value of k used will affect the distribution

of values of x betveen o ande®, that is the distribution of poants on the
afterbody. In the programme k 1s taken as unity. If the forebody length
is taken to be unity thas results in a similar distraibution of points
immediately on either side of the forebody/afterbody junction. This is a
desirable situation and scaling the forebody in this way (if necessary) is
thus likely to give most accurate results in the shortest time,



Results

a) Closed body programme

Sinceé the initial guess for the iterative solution of the integral
equation should be exact for ellipsoids, a check was first made to ensure
that this was so. Three ellipsoids with axis ratios of 2, 1, & were considered
Thege all converged to the required solution in one iteration when the
appropriate expressions for virtual mass coefficients of ellipsoids broadside-
on and end-on were incorporated.

A 10% thick parabolic arc of revolution was next run. The solution
converged with a maximum error of 10=2 in 20 seconds. The pressure
distribution is given in fig 3. Results from linearized theory due to
Spreiter reference 3 are also shown on the same figure. As is characteristic
of linearized methods, the result of Spreiter underestimates the peak suction
by a proportion roughly equal to the thickness/chord ratio of the body.

It was decided to run the programme for a body having a slope
discontinuity. 4 10%5 thick diamond of revolution symmetrical fore and aft
was chosen. Fig 4 shows the pressure distribution for this body. The
infinite suction predicted by potential theory at the slope discontinuity
is, of course, never realized by a numerical scheme, However the tendency
towarde infinite suction can clearly be seen in the figure,

The final closed body considered was one without fore and aft symmetry.
This body, given incorrectly in reference 2, has the form

y-—-% * (1-x)

It is 20% thick and has a blunt nose and pointed tail.Fig 5 shows the
chordwise variation of pressure coefficient obtzined from the programme
with a maximum error of 10-2 in 30 seconds.

b) Infinite afterbody programme

A body of revolution in the form of a three-stage rocket (see Fig 6)
presents geometry sufficiently challenging to test any suggerted theoretical
or computer solution. Fig 7 shows the computed values of pressure coefficient
over the region of interest obtained from the programme in 2% minutes with a
maximum error of 10=%, Also shown are experimental values of C_ from
reference 4. The agreement obtained may be said to be suprisingly good.

A further test was provided by considering a shape having a forebody
fineness ratio less than that of the 3-stage rocket, but of simpler geometry.
Fig 8 shows the pressure distribution over such a body, namely an ellipsoid
cylinder of axis ratio (a/b) = 2. (onvergence to a smooth result was again
achieved in a computer time of 1 minute with a maximum error of 107%.
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Neither of the two above bodies have regions where the surface slope is
negative. Fig 9 shows the pressure distribution over a configuration whose
forebody consists of two circular arcs, of the same radius, joining with
constant surface slope at 75% of the forebody length aft of the nose. A
smooth pressure variation was obtained with a maximum error of 10-% after
nearly 6 minutes of computer time. However had the solution been halted
earlier, a 2% minute run giving a maximum error of 5 x 103 would have

produced pressures which could not be plotted apart from those obtained in
the longer run.
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Conclusions

The results of test runs of the two programmes have demonstrated their
flexibility and range of application. The closed body programme is very fast
and copes equally well with a blunt or pointed nose and tail. Fore and aft
agsymmetry also presents no further preoblems., Indeed, since landweber's
solution (ref 1) has been well established for seversl years, the tests carried
out in the closed body case were mainly to check the accuracy of the computing.
Test runs on the infinite afterbody programme demonstrated i1ts capacity to deal
with severe body geometry. Run times were scmewhat longer than those of the
closed body programme, but these could be reduced substantially with very little
loss in accuracy.

Both programmes have been designed so as to requare very little data
preparation, by keeping the order of the Gaussian guadrature fixed and
by supplying body data via & subroutine., The two programme listings should
prove useful since neither appears to be available in the current literature.
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List of Symbols

streamwise co-ordinate with the origin at
the body nose

body radius

angle between tangent to body surface and
the x axis

distance arcund the body perimeter in a
meridian plane, measured from the nose

nose abscissa
See fig 1

tail abscissa

semi-perimeter 1n a meridian plane

total fluid velocaty on the bedy surface,

non~dimensionalised by free-stream velocity

virtvel mass coefficients

square of body radius (= y2)

square of ellipsoid radius
length/diameter ratio of ellipsoid
the nth approximation for U

the error in the nth approximation

the local pressure coeft (= 1- U2)






Appendix A - the integral eguation

Let S be the surface of a body of revolution waith its axis aligned to the
free stream. If V is the region exterzor to S and E 1s a vector quantity

single valued and continuous in V and on S then the Divemgence theorem,
ref 5, states

E.dS = [div_ﬁdv
S v

where AV is an element of volume V,and 4§ = pdS, with 4S as an element of
surface area of 8 and g as the ocutward unit normal to 8

1) Puttingh = @Vw yields

j¢Vw..d.S_ = [gsv"w + VPTN]dv- -
S Y;

2) Putting &= MV¢ yields

wVg.dS = [wV‘qﬁ +VwV¢] dv . ___\a.

S Y

Forming the difference of equations 1 and 2 one obtains

[#9w-uvg]ds = ((§Tw-wVB]dv_ 2,

Ii‘¢ and &0 are harmonic i1n V, then this leads to the result

[¢Vw ~ wV¢] d8=0
S

and since i& = ﬂ'ds thas becomes



- iji-

dS = dodS_ _ __ _ _ 4.
J¢g_v:: wa_g 4
S S

Considered here 18 a body of revolution moving with unit velocity in the neg-
ative x direction, If ¢Y is the potential from whaich the velocaties are
derived, then the boundary condition on the hody of zero relative normal

velocity is gaven by:

dfldn = =sny_ _ _ _ _ _ _ _ &

where ¥ is the angle between the tangent to the meridian curve and the x

axis.
The boundary corndition at infainity is ¢ = 0 since the fluid 1s at rest

there.
Also dS canbe expressed as

dS = Anyds __ _ ___ _ _ _&.

where 48 1s an element of the perimeter of the body.
Substituting equations 5 and b into equation 4 gives

L ?

'(¢yﬂ_bg.ds =~ |ywsinyds. _ ___ _n
n

L+

-]

where P 1s meridian plane semi-perimeter of the body.
Now W 15 an arbatrary harmonic function being continuous and single valued

in ¥V and on S. Ifw is set equal to some unspecified axisymmetric potential
function, then 1t will be related to the corresponding stream funeticn v

ygﬁ =ﬂ_¥_________s.

since n and s are orthogonal.

Setting this expression for &w/dn in the left hand side of equation 7 gives

P

&

T

dwds = {¢d

Me‘ﬁ‘\s ¢£ds
o

-]

Integrating by parts yields

)

?
°¢Y§ﬁds = ‘_M-‘]: - Vdagds _— A,

0
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Superimposing on the flow field a unit velocity in the positive x direction
wi1ll reduce the body t0 rest and produce a steady flow problem. Using

the convention that velocities are given by the negative gradient of

the potential, the steady velocity potintial, ¢“._ y can be written as

¢sr =¢-K

Thus

dy = dg- dx

ds ds S

If U is the total velocity on the body surface in the steady flow (with
a unit veloeity free stream), then

Vs - d¢“,ds

Also dx/ds = €08  and hence

U=—dp|ds +cosy — - — - - —__ 10.

Substituting for d¢’d$ from equation 10 into equation 9 gives

S()ydwds ‘_gbw [V(cosg L)ds___u.

Since the left hand sides of equations 7 and 11 are equal, it follows that

*

?
- szinxds = vV]: - j’v (tosy- U) ds
o o

Writing dl-‘- dS u;sx and d\l = dS 'a\‘f\y gives
P v P P
=\ ywdy = [¢9J - \WYdx+ Y Yuds___1n,
-

o ° 0
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P P P
ie S YUds = S (lydx- ywdy) - [qb V_] SR |
o o ©

Now sinceW and W are corresponding axisymmetric potential and stream
functions the following relations hold.

Yow = -9¢ __ i oand YQw = 9@ __. . 4
ox oy oy oK

Equation 1% can be satisfied by the introduction of a function $L such
that

LN

Y= 23l ___15 and =yw=24
oX Y

Thus we see that the integrand (de-\/w dv) occurring in equation 12
15 an exact differential 4 .

When equations 15 and 16 are substituted into the relation l4., the result-
ing equation for JL is

?:ﬂ-_ +D.:él' =1L _______

ot oy* y oy

which is the equation satisfied by Stokes stream function.

Writing equation 12 in terms of ) , gaves

P
P
Vdlds =|L=-Qodr|__ _ _
5 X : [. ¢Ti' o - %

Now setting JL equal to a particular stream function, namely that of a
source of unit strength situated at an arbitary point, t, on the axis of
symmetry of the body

db = (x-t)|r=-1 wher r= [u't);* Y‘Ih

Thus

S

D&:i

A

X 3



Substituting this into equation 18 gives

i 4
4
UL y Lo ds -—-[.x-l' 1-0 ‘m] =9
§ \'iylh"} rinh) l r‘Y(t,H o

Since y vanishes at s = o and 8 = P.
Thus the integral eguation for veluvuaty is glven by

?

EQ_LQY':_(_!)_‘LS = 1 - _ — __ 1,
v (x,¥)

o
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Appendix B -~ the iterative scoluiion

Successive approximations are used to solve the 1tegral equation

?

VO yInds = ]
L ri(x,)

- G as s e —-'1!

©

To obtain a first approximation, we make the polar transformation

x=F = yix) cot &

which reduces equation 19 to the form

L]

v
X

Lsin[®- ¥

"

_—.— e - = =20,

0

Near x = t the integrand of equation 20 peaks sharply and so the majority
of the contribution to the total integral occurs in this region. As a
result of thisya reasonable first approximation could be obtained by
writing VLX) s U L¥) . Also since %{X) will be small (except near the
ends of the body) a further simplification is

dn[T-X()] Y sintreot¥ix) & sin® cos y(t)

Inserting the two approximations into eguation 20 gives

ulH) = cos \‘(t-) for each point t on the body.
ie. UK} = Cod X('&) is a first approximation.

An improved first approximation can be obtained as the velocity distribution
over an ellipsoid of the same length and having a diameter equal to that of

the body at its mid point. To Jjustify this we must look at the relation between
the virtual mass coefficlent of & body and its velocity. For a body

moving with unit velocity in the negative x direction the virtusl mamss

equals twice the kinetic energy of the fluid.

1e€ 1T = K, A where f} 1s the volume of the body.

and ko is the virtual mass coeft,

P
A=2T = ~ °pdS = 1N inyd
& e ¢5¢\ iply@sinyds

o
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using equations 5 and 6. This 1s now integrated by parts.

ssP ? ?
kb=Tp \pdiy) = Relgy*] -wp |y
|\i§¢ L;/) o] upoj‘y df ds.
W K B=-Tp Sy‘%gds = -'l'ipiy‘ (Cosy=U) ds
© P ©
k.8 = ﬁ@IUtx)y‘(%\c\s -4
° T

. ]
c. A (\4 k) ‘-'FQSU(u)y(:)ds_____m.
0
Consider a generalisation of the first approximation of the form

U(x) = Ceosxln)
then on substitution into equation 1.

C= ek,

s V() = (Leke) cosy)o _ _ _ __ _.n.

which is a better approximation.
However since k_ 18 not known for the body under consideration,

the value for the eliip501d, having the same length and diameter as our
body, is used.

By virtue of the above reasoning we see that the improved first
approximation equation 22 is exact for an ellipsoad.

The position so far is that we wish to solve
A 2
gUmy(*)ds = |
° 20 (x, b

where ft(%,ﬁ s (kt) + Yzl *) ond x=x(%)
We have & first approximation U;‘,") = (\ \-ko) tos "(_Y.)

An 1teration formula of the following form suggests 1tself.
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?
Unul¥) =UqlH) + cos y(v) \— SUntt) Y‘(‘) ds | 1.
0 Zr"lm")

The error at the nth i1teration is given by

v

Entr) = | — Unl'&)\[‘(lllds e _ _24.
1‘.5 (ﬁ)t’)

e

Hence En(t) COSXU') = U“,.,|l"\ - Un“‘)__ S £
and  Uaul® = U LH) + cosy(d) Z Eolv) _ _ _

{3

— = - 2b.

Using equations 23 and 25 '
3
EnilH) =Calr) =L S €)Y (X gy__ _gn
z ‘0 f‘(";")

wnere X and x, are the nose»*tail abscissae.

The method of solution is as tollows. Optain a first approximation
V. L¥%) as given by equation 22. The corrisponding error E,\l®) will be
given by 24. Ba{¥) 1s then obtained from B4AR) using 27, and VUalR) from
26. Repeated use of equations 26 and 27 will eventually produce terms
so small as to be neglected. At this stage Un(®) will be the velocity
distribution to the designed degree of accuracy.

In the evaluation of By(X) (using equation 24) and of En(x) { 0 >,
using equation 27) numerical integrations have to be performed. Neither of
these two integrals is well suited to numerical integration as 4t stands
(especially for elongated bodies), since y2/r3 has a sharp peak in the
neighbourhood of x = t. In the evaluation of B, (x) from equation 24 the
difficulty 1s overcome by subtracting from the iIntegrand an integrable
function which peaks in a similar way at x = t. The resulting integrand 1s
then more easily treated numerically.

e k ‘. o *t‘) — e o — o _
o tut) LGe-t)* + L)) M= nd

where k(x, t) is the kernel in equations 24 and 27 and f(x) = y2(x)

The integrable kernel which 18 now subtracted is that of an ellipsoid
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k'te,b) = P 24
(-8 4 Ly ] V> T

where g(x, t) is the value of y2 for an §111p301d whose ends coincide with
those of the body and which cuts the body, at x = t, namely.

alyb)s $(W) (k=) (0=x) 4
CEEBIE S

Both kernels k(x, t) and k (x, t) now peak at the same point, namely x = t,
and peak to the same value since by equatlon 30

oler) = Ly

Since Kl(x, t) is to be subtracted from the integrand a similar guantity must
be added. This will now be evaluated.

The length to diameter ratio, 1% , of the ellipsoid 18 given from equation
30 by

= (t- %) (% -¥)
fu)

and 1ts virtual mass coefficients are given by:

Klla)gz_\.ﬁ__u__ﬂ'\ - \‘T r Al

‘- | -1|n11+¢i-—) *° )
X4} = of for A=) ?__‘.,
O L N0 b et R PO VTR0

TN e O IS Y



Consider the evaluation of El(x) from V), (x) using equation 2.

®? ?
e = | - Doy ods o) j Vi1 ket ds
o 2v(x,B) ]
Ld P
= | ~ | Uilw) - k! - U|l)k' 5\
Evy = | 5 5 [k(m) ktm)] g ‘z (%, cls

Now U‘l'l.) = (\*ko) cos “ L") as given by equation 22, and so

2

¥ 9
ELY) =\- (\_t_l&n) g‘_\(u,l-)-k'ln,t-)]dx - (\_%&)fk'lx,i-) dr ..,

1\0 1\.
However, it ie known that V(O 3 [ \+k, '-I.')] tos X X)

18 an exact solution of the integral equation for the ellipscid g(x, 1),
therefore

»
fL\w.ug_k'c;,a s x(x)ds = |
o 2
%
. g K,y = | ()
L

Substituting back into equation 32 gives

%,
= |~ {ir\x k! - ¥k
EW = k__i_) S[_klx,t-) kiy, l-)] dv ﬁ;ir; -

LYS



To evaluate the functions En(t) for A% from equation 27 one must
subtract an integrable function which peaks at the same position and by
the same amount as does the existing integrand

This 18 easily achieved
by writing equation 27.in the form
.Y
Enul¥) = Eal¥) -J-Sku,»)[_s,.u) - Eal¥)]dx - Enlt f K (3, dx 9,
Re l'

However from equation 24 with n = 1 and Ry Ax) & (\*ko) et ¥ Lx)
it follows that

%
e = | - jk(x,t-)dx
1
Yo
Thus
X |
gkh,t')dv- = 1(\'E\l*ﬂ_______3s.
. \+ Ko

Substitute this back into equation 34 giving

X,
€. =E. 1Y -.:ij ) [E.\ (W -Ea ll-)J dx~ Enl¥) [L:_f_.k_l.ﬂ_]
Xe
which can be written as
%
Enal = Eals) g\.%)::ﬁ] -1 fktu,a [Enta-Entn))dx__ __ .

L
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Appendix C — histing of the programme for a closed body

MASTER CLOSED BODY
DIMENSION A (40),X(40),F(40).F 1(40) E(40),E1(40),E2(40),1 X 1(40),U(40) ,CP(40),XK(40,40),
F2(40)
READ (1,1) NMAX,EPS,XX0,XX1,YMID

1 FORMAT (I0,4F0 0)
A(1)=0 0045212771
A(2)=0 0104982845
A(3)=0 0164210584
A(4)=0 0222458492
A(5)=0 0279370070
A(6)=0 0334601953
A(7)=0 0387821680
A(8)=0 0438709082
A(9)=0 0486958076
A(10)=0 0532278470
A(11)=0 0574397691
A(12)=0 0613062425
A(13)=0.0648040135
A(14)=0 0679120458
A(15)=0 0706116474
A(16)=0 0728865824
A(17)=0 0747231691
A(18)=0 0761103619
A(19)=0 0770398182
A(20)=0 0775059480
X(1)=—0 9982377097
X(2)=—0 9907262387
X(3)=—0 9772599500
X(4)=—0 9579168192
X(5)=—0 9328128083
X(6)=—0 9020988070
X(7)=—0 8659595032
X(8)=—0.8246122308
X(9)=—0 7783056514
X(10)=—0 7273182552
X(11)=—0 6719566846
X(12)=-0 6125538897
X(13)=—0 5494671251
X(14)=—0 4830758017
X(15)=—0 4137792044
X(16)=-0 3419940908
X(17)=—0.2681521850
X(18)=—0.1926975807
X(19)=—0.1160840707
X(20)=—0 0387724175
DO 2 K=1,20
KK=41-K
AKK)=A(K)

2 X(KK)=—X(K)
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DO 8 K=1,40
X(K)=0 5*(X(Ky*(XX1-XXO0)XX1+XXO0)
XB=X(K)
CALL BODY (XB,FB F1B)
F(K)=FB
FI(K)FIB
F2(K)=F1B
X1(K)=(X(K)-XX0)*(XX1-X(K))
F1(K)=1.0/SQRT(]1 0+F 1(K)*F1(K))
8 F(K)=F(K)*F(K)
XKO=XK({(XX1-XX0)/(2.0*YMID))
DO 3 I=1,40
FOFT=F(1)/X1(I)
XL=SQRT(! O/FOFT)
XK2=(1.0+XKO)/(1 0+XKI1(XL))
SUM=0.0
DO 4 J=1,40
XDIF=(X(1)—X({1))*(X{1)—-X(1))
XK(I,=F(J)/SQRT((XDIF+F(1))**3)
GXT=FOFT*XI{J) :
XKDASH=GXT/SQRT((XDIF+GXT)**3)
4 SUM=SUM+A()*(XK(1,J)~XKDASH)
E(1)=1 0—0 25*(1 0+XKO*SUM*(XX ! —-XX0)—XK2
E1(D=(ED+XKO0)/(1 0+XKO0)
3 U(D)=(1 0+XKOY*F 1(1)
N=0
5 N=N+1
DO 6 1=1,40
U(D)=U()+F 1{1)*E(I)
SUM=0 0
DO 7 J=1,40
7 SUM=SUM+A (1)*XK(I . H*(E(J)—E(D))
6 E2(D=E1(I)*E(I)-0.25*SUM*(XX 1 -XX0)
DO 13 K=1,40
13 E(K)=E2(K)
EMAX=ABS(E(1))
DO 2 K=1,40
IF (ABS(E(K)) .GT. EMAX) EMAX=ABS(E(K))
12 CONTINUE .
IF (EMAX GT EPS AND N LT NMAX)GO TO S
WRITE (2,14) N EMAX ,
14 FORMAT (20H NO OF ITERATIONS =,13,10X,13H MAX ERROR =E15 7//)
DO 9 K=1,40
F(K)=SQRT(F(K))
9 CP(K)=1 0—U(K)*U(K)
WRITE (2,15)
15 FORMAT (6X,2H X,13X,2H Y,12X ,6H DY/DX,7X,9H VELOCITY 3X, 114H PRESS COEFT)
WRITE (2,16) (X(K),F(K),F2(K),U(K),CP(K) K=1,40)
16 FORMAT (F10 6,6X,F10 6,6X,F10 6,6X,F8 4, 6X F8 4)
END
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FUNCTION XK 1(B)
IF (B GT. 1 0001) GO TO |
IF (B LT 09999) GO TO 2
XK1=0 5
RETURN

1 C=B*B
D=SQRT(C-1 0)
E=ALOG(B+D)*B
XK 1=(E—-D)/(C*D—E)
RETURN

2 C=B*B
D=SQRT(1 0-C)
E=ALOG((1 0+D)/B)*C
XK1=(D-E)/(2 0*D*D*D--D+E)
RETURN
END

SUBROUTINE BODY (XB,FB,F1B)

RETURN
END

FINISH
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Appendix D — listing of the programme for an infinite afterbody

MASTER INFINITE AFTERBODY |
DIMENSION A(60),X(60),F 1(60),E(60),E1(60).E2(60), 1U(60),F(60),CP(60),F2(60) XK(60,60)
READ (1,1) NMAX,EPS XXO,YAFT
FORMAT (10,3F0.0)
A(1)=0 0079681925
A(2)=0.0184664683
A(3)=0 0287847079
A(4)=0.0387991926
A(5)=0 0484026728
A(6)=0 0574931562
A(7)=0.0659742299
A(8)=0 0737559747
A(9)=0 0807558952
A(10)=0 0868997872
A(11)=0 0921225222
A(12)=0 0963687372
A(13)=0 0995934206
A(14)=0 1017623897
A(15)=0.1028526529
X(1)=—0 9968934841
X(2)=—0 9836681233
X(3)=—0 9600218650
X(4)=—0 9262000474
X(5)=—0 8825605358
X(6)=—0.8295657624
X(7)=—0.7677774321
X(8)=—0.6978504948
X(9)=—0 6205261830
X(10)=—0 5366241481
X(11)=—0.4470337695
X(12)=—0.3527047255
X(13)=—0.2546369262
X(14)=—0 1538699136
X(15)=—0 0514718426
DO 2 K=1,15
KK=31-K
A(KK)=A(K)
2 X(KK)=—X(K)

DO 17 K=1,30

KK=30+K

A(KK)=AK)
17 X(KK)=X(K)

DO 8 K=1,30

X(K)=0 $*XX0*(1 0—X(K))

XB=X(K)

CALL BODY (XB,FB,F1B)

F(K)=FB*FB

F1(K)=1 0/SQRT(1 0+F1B*F1B)

F2(K)=F1B
8 A(K)=0 25*XX0*A(K)

DO 14 K=31,60

X(K)=(1.0+X(K))/(1 0—-X(K))

F(K)=YAFT*YAFT

[a—
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FI(K)=10
F2(K)=0 0
14 A(K)=—0 25%(1 0+X(K))*(1 0+X(K))*A(K)
DO 3 I=1,60
FOFT=F(1)/(X(1)-XX0)
E(1)=0 0
DO 4 J=1,60
XDIF=(X(J)-X{D)*(XI)-X(I))
XK(1,)=F(J)/SQRT(XDIF+E(J))**3)
GXT=FOFT*(X(J)—XXO0)
XKDASH=GXT/SQRT((XDIF+GXT)**3)
4 E(D=E(1)+A(J)*(XK(1,J)~XKDASH)
E1(D)=E(D)
3 UD=F (1)
N=0
5 N=N+1
DO 6 I=1,60
U)=U)+F 1(1)*E()
E2(D=E1(D*E()
DO 7 J=1,60
7 E2()=E2(+AJ)*XK( 1) *(E())—E(D)
6 CONTINUE
DO 13 K=1,60
13 E(K)=E2(K)
EMAX=ABS(E(1))
DO 12 K=1,60
IF (ABS(E(K)) GT EMAX) EMAX=ABS(E(K))
12 CONTINUE
IF (EMAX GT.EPS AND N LT NMAX)GOTO 5
WRITE (2,10) N,EMAX
10 FORMAT (20H NO OF ITERATIONS =13,10X,13H MAX. ERROR =E15 7//)
DO 11 K=1,60
F(K)=SQRT(F(K))
11 CP(K)=1 0—UK)*U(K)
WRITE (2,15)

15 FORMAT (6X,2H X,13X,2H Y,12X,6H DY/DX,7X,9H VELOCITY 3X,1 14H PRESS COEFT )
WRITE (2,16) (X(K),F(K),F2(K),U(K),CP(K) K=1,60)
16 FORMAT (F10 5,6X,F10 6,6X F10.6,6X,F8 4 6X F8 4)

END

SUBROUTINE BODY (XB,FB,F1B)

RETURN
END

FINISH
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Closed body
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Body extending to infinity downstream
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Fig.7
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