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SOME'MODIFICATIONS 'TO THE CALCULATION METHOD FOR WINGS WITH
PART-SPANIEXTENDING-CHORD FLAPS GIVEN IN RAE TECHNICAL REPORT 69034

by

J. McKie

SUMMARY

A.method is.-given for the approximate solution of a version of Prandtl's
aerofoil equation for wings with an arbitrary number of discontinuities in chordi
or geometric angle of incidence., The method is an attempt to improve on an
earlier -one .given in RAE Technical Report 69034, For the example of a swept
wing of large aspect ratio with part-span, extending-chord flaps, the results
for 1ift; drag and vortex-drag factor by the improved method show no significantt
differences from those calculated by the earlier method. Comments are made on:

other factors affecting the accuracy of the solution.

* Replaces RAE Technical Report 71201 - ARC 33547
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1 INTRODUCTION

The RAE Standard Methodl, for the calculation of loadings on swept wings,
divides the vorticity distribution on the wing intoc chordwise and spanwise
distributions. It 1s implied that the downwash induced by the chordwise and
trailing vorticity is constant over the chord of the wing. This enables the
spanwise loading to be determined from an integral equation, which is a form of
Prandtl's classical aerofoil equation, modified to include sweepback and small-

aspect-ratio effects.

The customary way of solving this equation i1s by Multhopp's approximate
method of quadraturez, which uses a Fourier technique. This demands that cherd,
local 1lift slope and local angle of incidence are all continuous across the
span of the wing. Multhopp gave a modified solution2 for the case of
discontinuities in the distribution of angle of incidence, .and Weissinger has
extended this to include a single disc¢ontinuity in chord3. Weber4 has adapted
this method to make it suitable for swept wings of small aspect ratio, by
allowing the downwash factor and the sectional lift slope to vary across the
span of the wing. The approximation for the spanwise loading was chosen in
such a manner that the calculation of 1ts values a4t the Multhopp collecation

points was not affected by defining it at the additionmal point.

For wings with part-span, extending-chord flaps, there will usually be
more than one discontinuity i1n chord and angle of incidence. An approximate
way of dealing with this situation has been given by the author”. It was
supposed that the calculation could be carried out in an analogous manner to
that for the case of a single additional point. That 1is, the defining of the
loading at the additional points did not affect the calculation of the spanwise

load distribution at the Multhopp collocation points.

This Report describes a method whereby this assumption is removed and the
effect of the necessity of defining the loading at the extra points 1s taken
properly into account. An approximation for the spanwise loading has been
chosen which retains the Weber solution4 as a special case for a single extra
poeint with a possible discontinuity in chord or angle of incidence. With the
former kind of discontinuity, the magnitude of the jump 1n the induced angle
of incidence depends on the value of the loading at the discontinuity. It is,
therefore, important to find a good approximation to the loading at all the
additional points. In the next section, the solution of the spanwise loading

equation will be extended to include any number of extra collocation points,



whose spanwise position 1s arbitrary. In section 3, the results of the analysis
will be applied to the situation where discontinuities in chord and twist occur
at these extra points. The new method has been programmed for a computer, and

1n section 4 a comparison is made with the results of the earlier method, for a

typical wing.

2 ANALYSIS FOR EXTRA COLLOCATION POINTS

The nondimensional spanwise loading vy{(n) 1is given by the equation

vy = WO ey < oua ] (1)

The induced angle of incidence maio(n) is determined by the trailing vorticity,

which 1s 1tself a function of the spanwise load distribution. Hence <y({n) can

be found as a solution of the integral equation:-

+1
2b - oW dy(g) _dg
ametm YW = el -5 f & n-% (2)
-1

In these equations, n or & 1s the spanwise coordinate, *1 at the wing tips,

a{n) 1is the local 1lift slope, c¢{(n) the local wing chord, and a(n) the

local geometric angle of incidence. Multhopp solved equation (2) approx1mate1y2,

by using an interpolation function

N 2 m m
N = i
¥ (%) -7 ! ' ] sin W8 sin wd (3)
n=1 L=1
= v = v (& = nr . ,
where n cos and Yo ¥ ( n), 0n m 1 At the m collocation points

9v (the Multhopp points), which are equispaced with respect to the ¢

o ‘
coordinate, v( v) Y,

Equation (3) enables an approximate value of y to be found at any point:
on the span of the wing. However, if there are discontinuities in chord at k
extra points 35, which are distributed arbitrarily across the span, then it is
desirable to find the values of the loading v(n) at these points by a better
approximation than 1s given by equation (3). A solution to equation (2) will be

sought, of the form



- k —_—
Y = y(® + sin (m+ 19) J a_ cos (r - 19) (4)
r=1

where the coefficients a_ are to be found. The second term on the right-hand
side vanishes at a Multhopp point, i.e.

Y(ﬂv) = Y(ﬂv) = v,

so that it could be considered as a 'correction' to the first approximation Y.

At the extra points

k
Y(ﬁs) = Y(ﬁs) + sin (m + lqg r£1 a_ cos (r - lﬂs) .

Thus the unknown coefficients a_ can be expressed
{a} = ¥ " {y =%} (5)

where ¥ is a square matrix of order k with the (s,r) element

sin (m + 1’5‘5) cos (r - 103)

and {a}, {YS - ;s} are column vectors of dimension k. Note that i1f one of

the extra points coincides with a Multhopp point, 1.e. ﬁs = ¢  then
n

{YS - ;s} has a null element and ¥ a row of zeros in the corresponding

.o -1 .
position. In this case V¥ is singular and {a} arbitrary. Consequently,
either a reduced set of equations should be used (this particular g is

dropped), or the set 0v must be changed by altering the value of m.

The induced angle of incidence can be written

m
- 1 dy dd'
uio(ﬂ) T 27 I d?' cos ¥ - cos ¥
0

If the approximate form of vy(¥) given by equation (4) is substituted into this

expression, then



. k . [
1 dy dé! 1 gin (m + rd) .
Cl10(3) T 2% J I Cos ¥ < cos 9 T % r£1 & (m + 1) sin U
]
sin (m + 2 - r¥)
+ (m+ 2 -1) ST D } +

where use has been made of the Glauert integral

m

f 305 nd 4o = g Sino ng
cos - cos ¢ sin ¥

0

An expression for ; has been given in equation (3). Hence the induced angle
of 1ncidence may be expressed in terms of fn, the spanwise loading at the

Multhopp points, and the coefficients a_ which are yet to be determined.-

m 1 m
0 = Yo ! d
rlo(a) % o T D S é 0 sin uﬂn sin WU + 8
n=1 =1
L, L % 4 2(m + 1) sin{m + 19) cos (r - 1) -
4 r=1 r sS1n s

[

gin ¢

£~

L1 % a, {2(r - 1) cos (m + 18) sin (r - 10)} .
=1

At the Multhopp points n,

sin (m + 10U) = 0 and cos (m + 13U) = (—l)v
Thus at these points, the induced angle of incidence reduces to
v k
1 (-1) .
v = - ! St - - 19 .
Ol10( v) bvvyv ) bvnYn *2 sin GU r£1 ar(r D) sin(x -1 v) (6)

. 2 .
Here, bvv and bvn are the usual Multhopp coefficients and Z' denotes summation

-

over all n except n = v. If there 1s only a single extra collocation point,

then the last term in equation (6) is zero, and the Weberé result is achieved,

‘a

that the calculation of y at the position n, is unaffected by 1ts calcula-

tion for the additional point ng- For more than one extra collocation point,



equation (6) indicates that 1f the spanwise load distribution 1s approximated
by the function (4), then the loading Ys at these extra points has to be

taken 1nto account when determining the loading at the Multhopp points.

At the additional points Ny the equation for the induced angle of

incirdence becomes

m m
1 . .
3 = v 9

0Lio( s) Z Tn (m + 1) sin ¥ Z ¥ osin n sin v s *
n=1 s u=1
sin (m + 1¢ ). k

Loxl S z a cos (r - 1% ) +
2 sin v 5 s

s r=1

cos (m + 18 )
N s

k
2 ar(r - 1) sin (r - 105)

J
2 s1n < 1

r

The second term on the right-hand side above may be replaced by (see equation

(4))

m+ 1 -
5_215_3; [Y(ﬁs) - Y(ﬂs)]

which, on substitution for vy from equation (3), becomes

m + 1 Y - 1 ? % sin u? sin ud®
2 sin 35 s sin U ¥ HYa s ’

s n=1 p=1

Thus at the extra collocation points Ngs the induced angle of incidence may

be written -

m cos (m + 138) k
a9 = b .y - n£1 b Yot T 7 rzl a (r-1) sin (r - 19) (7)

where the coefficients bSS and bsn are those given by Weberaz—



b = _m?_._l_.
S8 2 sin &
s
1 m
= _ '9 . 19
bsn (m + 1) sin ﬂs uzl (m + 1 - u) sin u o Sin o

a_ sin?
sn n

2
(m + 1) (cos 35 - cos ﬂn)

If there 1s only one extra point, then the last term of (7} 1s zero. Hence

Weber's result4 15 retained as the special case of k =1,

A major task now 1s to determine the coefficients a . Consider the value

of the approximation Y at g then from (3)

m m

- 2 . .
= G 9 .
Ys 1 Z Yn X sin wW_ sin S {8)
n=1 p=1
Write
m
T = I sin u? sin pd
=1 n 5
1 T 1 v
= = -9 - = &
2 Z cos U(ﬂn s) 2 Z cos k( at 58)
u=1 u=1
Now

= T T ou
}  cos ué R ) e = & ) 2

i¢

where '611' means the real part of a complex expression and z = e '.

LS

(1]

o

)



Therefore

L]

m 1 - m+1
} cos UG, R | = -
u= 1-z

sin ¢ sin(m + 14) _ 1 + cos (m + 1)
2{(1 - cos %) 2

Thus the sum T can be written

-3
fl
I P

Sln-(ﬁn - ﬁs) sin(m + 1 . 3n - 33) _sin (5n + 08) sin {m + 1 . ﬁn + ﬁs)
{1 - cos (Gn - 035] [1 - cos (Gn + st]

- %'{cos(m + 1. 0n - 35) ~cos (m+ 1. 0n + 05)}

therefore
T = - (_1f151 (m+19 Msin (9 =9 ) +sin (9 +9 ) ~sin (3 -0 ) cos (O 43 )
4D n s’ 18 n s n s n s n s
- 51n(§n+§s) cos(ﬂn—ﬁs);
where D = |[1 - cos(ﬂn - 03)]{1 - cos(ﬁn + 05)] = lcos 9n - cos 9512
therefore

gin{m + 1% ) sin ¢

T = (-1) s n
2(cos ¥ - cos O )
n s

Hence equation (8) may be written

_ m
Y. = ) c_¥ . (9)

where the m x k coefficients c,, are given by

— s
. i (_l)n sin(m + 1 S) sin ¢
sn m+ 1 cos U - cos ¥

n s

(10)
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If 35 coincides with one of the Multhopp points ﬂv’ then the coefficients
Con which, in equation (9), multiply the values of Yy at all the other

Multhopp points, are zero. To examine the value of cg,> Suppose

65 = Bv + e, where £ 1is small,
(_1)v (-1)U sin €e{m + 1) sin ﬂu
“sv ~ m+ 1 [cos &v - cos ﬂu cos € + sin 0v sin ef

*

Then as & tends to zero

e(m + 1) sin 0v

e sV e-0 (m + 1)[cos 6v 52/2 + £ sin ﬂv]

Thus as % +3v, the only term remaining on the right-hand side of equation (9)
o

1s Yv’ 1.e. YsﬁYv which 15 as 1t should he.

Having now determined the values of ; at the additional collocation points
in terms of Yy equation (4) enables Y to be written in terms of Y, and

the coefficients a -

k

i 9 - 19 .
S +sin{m + 1 S) rzl a_cos (r 1 S)

<
o

I
It ~19

n=1

Consequently, equation (5) for the functions a  can be rewritten as a funetion
of the spanwise loading <y at both the Multhopp and extra collocation points

(in matrix notation):-

{a} = v4r -17) (11)
8 A

where T; is a column vector of dimension k, with elements Ys

T; is a column vector of dimension m, with elements Y,

T is a rectangular matrix of order k x m, with elements €

Equation (4) can now no longer be used to define Yy 1n terms of known
quantities. However, equation (1) provides a better approximation, as it
involves the known quantities of chord, lift slope and geometric angle of

incidence, and only the induced angle of incidence must be estimated. Hence



a(ns)c(ns)

11

v, = ——5— letn) —wa, (W] .
In this equation, the values of the induced angle of incidence can be found
from equation (7), which 1n matrix form is:-
= 8T - ®T + M
{ulo } 3s 4y s{a}
S
Similarly, for the values at the Multhopp points
{o 1= BT -8 + M {a}
10 1w 2 v v
v
where {alo I 1s a column vector of dimension m, with elements alo
v v
{u } 113 18] (13 " L1 11" k, 11} " 0‘
10 10
s 5
i " " diagonal matrix of order m x m, " " b
1 v
‘92 n n Sqtla}'e tr " 1" m X m’ L] 11" b\)n
6’{3 n " dlagonal tr 11" r k x k’ 1" " bss
G{ e 4} 1t te " * tt (3}
3 rectangular k * m, bsn
ﬁf\\ L] n n 11 " tr m X k,
o sin (s - lﬁn)
4 I ¢ -
with (n,s) element [(-1) (s 1) .
n
Ms 15 a square matrix of order k = k,
sin (r - 103) cos (m + 105)
; i -
with (s,r) elemePt i(r - 1) Sin 85 .
so that

The vector of ar rmay be removed by substitution from equation (11),
1
the equation for the induced angle of incidence may finally be writte

of Yv and Ys.—

(R -&® - M v lryr « My lr
1 2 v v v s

—~—
el
.
(-
)]

. -1 -1
{a 1} (&, + MYTITIT 4 [+ MYTIT

n in terms

(12)

(13)
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3 SOLUTION WITH DISCONTINUITIES

Suppose that at each of the points Ny discontinuities exist 1n either
the chord ¢ or the angle of incidence o, or beth. Then the induced angle
of incidence at these points will also be discontinuous and the normal Fourier
analysis method of solution for Yoo Y cannot be carried out - equation (13)
1s not meaningful. The Multhopp-Weissinger-Weber method considers this

situation by dividing the loading Yy into two parts:-

y(n) = YI(n) + y*{n) . (14)

Both YI(n) and +¥*(n) are continucus; the former depends on the positions
and amounts of the discontinuities, the latter depends on a continuous
distribution of angle of incidence. YI(n) is a specially chosen analytic
function which produces a discontinuous distribution of angle of incidence
ulol(n). v*¥{n) 1s an approximate function of the form described in the
previous section, which induces a continuous distribution of angle of 1incidence
aio*(n)-

Consider the discontinuity point ng» where there occurs a jump in
geometric angle of incidence of amount T i.e.

Gs = a(nS + 0) - a(ns - 0) (15)

and also a jump 1in wing chord. Define

2b [ 1 1 }
T = — - . (16)
s a(ns) c_(nS 0) cln, + 0)
The spanwise loading y(n) must be continucus, hence at ns

y(ng +0) = vin, =0) = vy,
= a(ns)c(ns * 0 [a(n +0) - wa, (n + 0)]
2b s ic s
a(n ye(n, - 0}

= o [a(ns - 0) - waio(ns - 0] .

Consequently, at the discontinuity point Ng there occurs a jump in the value
of the induced angle of incidence:-

T + g
SYS

folls * O ~a (g =0 = S an
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If the function F(ﬂ,ﬁs) is defined as follows (see Multhoppz):-

_ 2 B} sin 3(® + ) ol
F(ﬁ,ﬁs) = - {}cos ¢ - cos 1) ln(;in T + ¢ sin ¥ » (18)
5=V
then the load distribution YI(n) formed by
k Yo Ts + ds
n® = L AR (19)

produces a discontinuous distribution of induced angle of incidence ulOI(ﬁ)

with a jump at each discontinuity of the required amount.

( 0 for 0<¥<?
5
1
(t,v, *+ 0))/w § <9<
1 s1 1 Sy S, Sy
o (%) = ﬁ ‘ (20)
- 10; " + (TZY + 02)/uj ¢ <9 <9
s, S, 5, Sy
L etc.
Corresponding to the load distribution y¥* 1s the distribution of
induced angle of incidence azo, so that y* can be written
* - a(ne() - -2 _ ok
Y (n) 2b [G(T'I) A wuio (n) a(n)c(n) YI(T]) (.L)O‘.io(n)] (21)

I

where YI(n) 1s defined by equation (19) and aiol(n) by (20). From
equations (12) and (13), a:o at the points n, and ng 1s given by

{o* } = [® - & - Ay irpr*s noy7lp®

io 1 2 v v v s

* = - - -1 * M -1 *
{aios i 84 HS‘P I‘]TU + [1‘R3 + S‘P ]’T‘S

*

where Tv 1s a2 column vector of the m values of y* at the n, peositions, and
%

1; the vector of values at the k discontinuity points nge These two

equations may be substituted into matrix equivalents of equation (21), so

that at the Multhopp points there results:-
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- * -1 %
R -@ - My r a4 1T = A -a, -mylr*_wr : (22) :
1 2 v viow v io v s v Iv
Iv
In this equation, *
Av 15 a column vector of dimension m, with elements [a/w]v
A 1s a column vector of dimension m, with elements |a.
1¢C 10
Iv Ij ,
. . 2b
N 1s a diagonal matrix of order m x m with elements |—— .
v wac | v

For the discontinuity points Ng» there 1s a choice of evaluating equation (21)
at eilther side of the discontinuity: the (ns - 0) alternative is chosen here,.

Thus on substituting for {o* }:-

10g
- * - *
[® +M'?1+N]T = A - A + [) +Mw1F]T-NT (23)
3 S 5 s s 10 4 s v s Is
Is
where ﬂs 1s a column vector of dimension k, with elements [a/m]s_ *
A 1s a column vector of dimension k, with elements a.
10 io
Is Iig- 2
Ns 1s a diagonal matrix of order k x k with elements [ﬁg;i .
5=

*
The (m + k) equations (22) and (23) are coupled via Tv’ and through

o) and Yi» which are both functions of +v*. T_ 1is expressed in terms of
s

I
T by equation (19), which becomes in matrix notation

101

TI\) - ?\) [£1Ts * £2]
T}s B ;2[£11; * £2]
so that by equation (14},
TIs = 3;3'{1] }5[£1TS+ £2] (24)
_ _ =1,..% - -1
Iy = }\).fl[j }S:Cl] TS+ }U[iﬂl(.f }sﬁl) % +j]£2 . (25) -

Y
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In these equations

F, 15 a rectangular matrix of order m x k with (v,t) element F(ﬂv,ﬂt)

3, " " square oo wx k" (s,t) " F@ 00
j o unit " tr " "

f‘l T d1agonal " " " " "' elements [T/M]S

£, " " column vector of dimension k with elements [o/wl,

The loading T&v can now be eliminated from equation (22) thus
(R - R i O L G [A-M;(;;(J-}f,)“lga,j)ﬂl-
1 2 v v v v vivl 571 s 2

-1 -1 *
LM N F 2 (T FE)TIT - A - (26)

1o
Iv

*
F4 Fé
107y 15 dependent on 1’ 2 and T; through equations (20)

and (24), and the particular geometric relationship between the discontinuity

The vector A

poiats n and the Multhopp points n . Thus equation (26) represents m
% ) *
simultaneous equations for the loading Tb expressed in terms of TS and

geometric terms only.

At the discontinulty points Ng> the angle of 1ncidence induced by the

loading T& may easily be expressed as a function of T; in matrix notation:-

Ay, = ST+ 2]
Is

where J& is a k x k square matrix formed from the unit matrix by making

*
all lower left elements unity. By adding ’Ps to either side of equation (24)

-1 *
T = U-F170T + 32,1

therefore

_ _ ~1ok _ -1
Aiols = LT - Fa ] T o+ L (- F2) TF TN,

If this is substituted back into equation (23), then
-1 NV
[(RB + (NS + j2£1) (5 }Sﬁl) + MS'P ]TS =

_ ~1 ek _ _ _ -1
= [® + HYTTIT + (A - GyE,) = (Gt + W) (I- L) FL, . @D
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Equations (26) and (27) form a set of m + k linear, simultaneous,
algebraic equations for the unknowns 1"t and 'T:. They may be solved by an
iterative process. Initially, assume Ti to be zero, and solve equation (26) -
for the m wvalues of Tt. These are then substituted into equation (27),
which 1s solved. to obtain a first estimate of Tﬁ. This 15 used to obtailn a
second set of 'T: from (26), and the cycle repeated till a consistent set of

*
values T is found. The spanwise loading T then follows from

- _ Sl L _ -1
Ts = (J ]Sf.l) TS + (5 _?Ssﬂl) }S.ﬂz (28)
T = e Fe (FoFe )y MM ez (-T2 g 4 )2 (29
v oo v 1( - 3; 1) sty l( " 1) 32 * 2 ' )
4 RESULTS

In the preceding two sections an approximate solution of the spanwise
loading equation (2} has been given, which enables the loading to be evaluated

at m spanwise c¢collocation peints n, and k discontinuity points N

i

(nS #:nv). This solution is, thecretically, an improvement on the earlier

methodS, which assumed that the calculation of the loading at the n, points

)

1s not affected by the defining of the lcading at the g points, and that at
each of these k points, @ , may be expressed in terms of the lcading at the
ny points and at that discontinuity point only. It was considered that this
method would be likely to give increasing errors as the distance between two
successive discontinuity points decreased, e.g. diminishing span of a cut-out

in a trailing-edge, extended-chord flap.

An example has been worked out to compare the results of the earlier
method with those by the method of this Report. Values of 1lift coefficient,
vortex drag coefficient and vortex drag factor have been caleculated for a wing
of aspect ratio 8.35, taper ratio 0.35, mid-chord angle of sweepback 26.4° and
angle of i1ncidence zero. Each half wing had two flaps (see Fig.l), the inner
running from the centreline to 507 of the semispan and the outer from 977 to a
range of positions between 607 and 507 of the semispan. All flaps extended the
local basic chord by 207, had a chord of 347 of the local extended chord, and

were deflected 15°.

The results are shown in Tables 1, 2 and 3. The vortex drag factor K

3]

18 defined as K = WACDV/CE. Mk.3 and Mk.4 refer, respectively, to versions of

a computer program based on the earlier and improved methods of calculating the
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spanwise loading. The numbers 31, 33, 45 refer to the value of m wused, the
number of Multhopp spanwise collocation points. It is immediately obvious

that the improved solution has not materially altered the results, at least for
this example. In fact, for the 1lift ceocefficient 1t has not been possible to
represent the differences on Fig.2. For vortex drag coefficient, Table 2
indicates some small differences and, where possible, these are shown on Fig.3.
Extra points are shown on this figure (computed by the earlier method) but are
not tabulated, in order to define the curves more exactly in the regions where
the curvatures change rapidly. Small differences are also apparent for vortex

drag factor (Table 3 and Fig.4).

It is quite clear from these three figures that the effect of m, the
number of collocation points, is greater than any improvements gained by the
use of the method described in this Report. Each of the three curves shown
on Fig.3 has one or more inflexions from a generally smooth curve. The centre
of one of these inflexions always corresponds to a spanwise distance between
the flaps which makes the inner tip of the outboard flap coincide with a
Multhopp collocation point. This situation 15 tolerated by the earlier method,
but with the improved method, leads to singularities in the analysis of
section 1 (viz. equation (5)). In the region of one of the inflexions in the
curves of Fig.3, convergence between equations (26) and (27) becomes very slow,
and the vector Y: cannot be determined very accurately. This leads to a
slight amount of 'waviness' in y(n) or oscillation about a smooth mean
distribution, over the outer parts of the wing. Nevertheless, the differences
between the results of the two methods still remain small, and the difficulty
cannot explain the reason for the inflexions in the results using the earlier

method.

This reason, it is thought, lies in the nature of the numerical method
used for integrating the spanwise distributions of <y and Yo, to obtain
CL and CDV' Fig.5 shows values of Yoy computed using 31, 33 and 45
collocation points, for a gap between the flaps equal to 107 of the semispan.
Over the flaps Yoy o is positive, but across the gap it is negativé. To
integrate this function a new distribution is found, which 1s equal to Yo
plus, at all points n, the sum of the amounts of the discontinuities at
points g for which ng > n Thus, in the example shown on Fig.5, the points

between n = 0.5 and 0.6 are converted to positive values, and some adjustment

takes place to the values of Yaio over the inner flap, as the amounts of the
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discontinuities at the flap tips are not quite equal and opposite. This =
adjustment enables a continuous curve to be drawn through all points, as shown

on the figure. The integral of Yo o over the whole span thus equals the

»

tntegral of the new curve minus the sum of the products of the amounts of the

discontinuities at ns with (1 + ns).

Across the gap between the flaps the curvature of Yo o changes quite
rapidly, and just three possible curves are drawn on the figure. The cubic
spline method6 was used to integrate Yo o in the computer program, and a
characteristic of spline fitting 1s that curvatures tend to be minimised. The
inflexions in the curves of Figs.3,4 occur where there are changes in the number
of points included in the part of the curve across the gap between the flaps.

At these places two of the calculation points are almost coincitdent, thus
providing a locally strong constraint on the shape of the fitted curve, but
leaving the program a relatively large amount of freedom to fit a curve across

the whole of the gap.

1S

Although the inflexions i1n the curves drawn on Figs.3 and 4 appear to make
significant deviations from their general regular tremds, 1t should be noted
that the scales used for CDv and K are very large, and the deviations are, .
in fact, insignificant. Furthermore, 1t should be remembered that the linear,
small-deflection theory upon which these results are based, is approximate and

the values shown on the figures are not physically exact.

There 1s a further effect which must be considered when choosing the number
of collocation points for the calculation. It has been found that the
magnitude of the vortex drag factor on swept w1ngé-is affected by both the
parity and actual number of collocation points. Fig.6 shows this effect for
wings without flaps, of aspect ratio 8.0, taper ratio 0.8 and angles of sweep-
back of 0, 15 and 30 degrees. As the angle of sweepback 1ncreases, more
collocation points are required in order to maintain the same relative accuracy.
Fig.7 shows the effect of sweepback on the spanwise load distribution of these
wings, all three curves were calculated using m = 31. A major effect of sweep=-

back 1s the loss in lift in the region of the centre of the wing. For the wing

W

sweptback 300, values of vy at the collocation points for differing m are
shown on Fig.8. For m odd, one of the collocation points is on the centre-

line, so that the minimum value across the centreline is defined exactly. As

i*

m increases, the distribution of Yy changes quite markedly near the centre-
line. This effect 1s also apparent for the distribution of o. > shown on

Fig.9. For n > 0.4, there is very little difference between any of the



19

curves. Once again, the scale of K wused on Fig.6 is very large, so that as
long as at least 30, say, collocation points are used, the exact choice 1s not

greatly significant.
5 CONCLUSIONS

A method has been presented for the approximate solution of a version of
Prandtl's aerofoil equation for wings with an arbitrary number of discontinuities
in chord or geometric angle of incidence. The method is, theoretically, an
1mprovement on an earlier ones. A comparison has been made between the results
of the two methods, for the example of a sweptback, tapered wing with two
extending—chord flaps on each wing-half. For this example, there was no
significant improvement in the calculated values of lift and vortex drag
coefficients, even for very small gaps between the flaps. However, because of
limitations imposed by the numerical methods of the computer versions of the
two methods, care has to be taken in the choice of the number of ulthopp
collocation points. For a sweptback wing, this number should be odd and as
large as possible. Furthermore, 1t 1s best to arrange that a collocation point
does not come near to coinciding (within 17 of the semispan, say) with a flap

tip.
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Table 1

LIFT COEFFICIENT

31 points 33 points 45 points
Z gap

Mk.3 Mk. 4 Mk.3 Mk. 4 Mk.3

0 0.93896 0.93896 0.93938 0.93938 0.94083

1 0.92663 0.92663 0.92742 0.92743 0.92907

2 0.91482 0.91482 0.91685 0.91703

3 0.90339 0.90338 0,90749 0.90795 v.90772

4 0.89236 0.89243 0.89621 0.89640 0.89639

5 0.88197 0.88207 0.88504 0.88512 0.88511

6 0.87236 0.87249 0.87387 0.87393 0.87395

7 0.86202 0.86204 0.86278 0.86282 0.86299

8 0.85156 0.85158 0.85183 0.85185 0.85266
10 0.83060 0.83060 0.83036 0.83027 0.83251

Table 2
VORTEX DRAG COEFFICIENT
31 points 33 points 45 points
Z gap

Mk.3 Mk. 4 Mk.3 Mk. 4 Mk.3
0 0.033879 0.033879 0.033910 0.033909 0.034002
1 0.033234 | 0.033240 | 0.033232 | 0.033219 0.033311

2 0.032730 | ©.032727 | 0.032626 | 0.032611

3 0.032307 0.032307 0.031843 0.031796 0.032227
4 0.031976 0.032048 0.031620 0.031651 0.031926
5 0.031731 0.031770 0.031383 0.031424 0.031691
6 (0.031375 | 0.031416 | 0.031194 | 0.031226 0.031515
7 0.03111e 0.031134 | 0.031054 0.031075 0.031395
8 (.0303906 0.030918 0.030957 0.030970 0.031250
L4,10 0.030602 0.030606 0.030637 0.031005 0.030814

)

i»)



Table 3
VORTEX DRAG FACTOR
31 points 33 points 45 points
% gap
Mk.3 Mk.4 Mk. 3 Mk. 4 Mk. 3
0 1.00814 1.00814 1.00816 | 1.00815 1.00778
1 1.01545 1.01565 1.01367 1.01323 1.01248
2 1.02571 1.02593 1.01827 1.01737
3 1.03856 1.03857 1.01443 1.01189 1.02614
4 1.05350 | 1.05571 | 1.03283 | 1.03341 1.04241
5 1.07022 | 1.07128 1.05112 | 1.05232 1.06128
6 1.08162 | 1.08272 | 1.07166 | 1.07263 1.08250
7 1.09861 1.09918 | 1.09446 | 1.09512 1.10596
"8 1.11818 | 1.11855 | 1.11931 | 1.11970 1.12765
10 1.16374 1.16388 1.17714 1.17999 1.16645

21



22

o w

> H K 0

-

@ w3

N
ﬂl, ﬁz, 83,

SYMBOLS

sectional 1i1ft slope

wing span

local wing chord

number of discontinuities in induced angle of incidence

number of spanwise Multhopp points

vector of values of angle of incidence induced by the spanwise

loading Y1

function used to generate Y1
geometric angle of incidence

induced angle of incidence on wings of large aspect ratio

nondimensional spanwise load distribution
approximation to ¥y

load distribution that induces a discontinuous distribution of
angle of 1ncidence

Yo~ YI
spanwise coordinates, n = cos g, fnl 1

jump in the value of the geometric angle of incidence at N
quantity associated with the discontinuity in chord at Ng

downwash factor

matrix that couples ?S to v,

matrix concerned with the error between Ys and Ys

vector of values of a/w
vector of values of vy

matriXx with elements F(ﬂ,as)

unit matrix

matrix used to evaluate A,
o,

matrix formed from Ts/m5

vector formed from cs/r.u5

—~

matrices used in the evaluation of aio

diagonal matrices with elements equal to 2b/wac

/8, matrices of Multhopp coefficients
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SYMBOLS (Contd)

subscripts denoting evaluation at the discontinuity points and
Multhopp points, respectively

suffices denoting a relationship to * and i
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