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SUMMARY

A method is described for caleculating the firat order effects
of a small conical thickness distribution on the separated flow past
uncambered, slender delta wings. An extension to the case of small camber
is possible, but this is not done here.

The flow model utilised is that of Brown and Michael?, but the
technique could be applied using more sophisticated representations of the
vortex sheets from the leading edges.

Results are presented giving the vortex-core positions and normal-
force coefficient curves for several wings with thin rhombic cross-sections
of various thickness ratios.

Comparison with a limited number of experimental results indicates
that although the theory is subject to the basic inaccuracies inherent in
the Brown and Michael treatment, some of the changes due to thickness pre-
dicted are fairly good. Thus, the spanwise shif't of the vortex due to
thickness at a given incidence and the change of normal-force coefficient due
to thickness are predicted fairly well, whereas the vertical core povements
calculated are very poor. Pressure distributions have been calculated 10
but these are not presented here as they exhibit similar unrealistic features
to those calculated by Brown and Michael? for zero thickness.
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1e Introduction

The calculation of the separated flow past thin, uncambered,
slender, delta wings at zero yaw has been considered by several authors
using mathematical models of the flow which vary in complexity (Refs. 1 to
4). A1l these authors assume conical flow; +that is, constant flow para-
meters along stiraight lines through the wing apex, since, for a slender un~
cambered, delta wing, this assumption is compatible with the wing geometry,
except very close to the trailing edge at subsonic speeds. Non-conical
effects and camber on thin wings have been considered in Refs. 5 and 6.

Smith7 has considered a conical delta wing with rhombic cross
sections. He uses the sophisticated flow model of Ref. 4 and treats the
cross-sectional effects by use of an exact transformation making no assump-
tion of small thickness/span ratio.

The present note develops a method of finding the effects of
conical thickness distributions on wings with small thickness/span ratios and
sharp leading edges but otherwise of any shape. The method could be extended
to include the effects of small camber but this has not been done here. The
flow model used is that of Brown and Michael 2, although the technigue could
be used with the more sophisticated models. The Brown and Michael method
replaces each rolled up vortex core by a single, concentrated point vortex,
and each feeding sheet by a cut in the two-dimensional,cross-flow field, whach
connects the isolated vortex and the leading edge, thereby rendering the
potential single valued. The conditions which are then applied to determine
the isolated vortex strength and position are that the flow separates from
the leading edge and that the sum of the forces on the feeding sheet and the
concentrated vortex should be zero. Despite the shortcomings of the Brown
and Michael results it is hoped that the present work will be adequate for
predicting some of the perturbations of the wing properties due to small
thickness, so that these could then be used together with more accurate
results for the~zero thickness-wing case, such as those of Ref. 4.

Notation/



Notation
Ao see equation (41).
Ay see equation (41).
Ag see equation (41).
A see equation (41).
bo(x) function of cross-sectional area distribution gnd
Mach number appearing in the slender-body potential.

GN normal~-force coefficient,

o o
f(—) any function of - .

x x
h{o) | see equations (18) to (20).
K tangent of wing apex semi-angle.
n(ys) source strength on cut in o3 plane. See equation (26).
r VN
s(x) wing cross-sectional area at x = x.
S'(x) derivative of wing cross-sectional area at x = x.
8 value of y at position of wing edge. Wing semi-span at x.
84 value of y, at position of wing edge.
T wing thickness function. See equation (2).
t centre-line half-thickness at station x.
U free-stream speed.
w(co) complex potential such that ¢, = Re W(o).
w (o) W at zero incidence

W)/



W (o) see equation (17)

w(o) part of W(o) due to inoidence.

XYy 8 Cartesian "body" co-ordinates.

Yo real part of o,

Js real part of oy .

y' integration variable corresponding to y.

¥ integration variable corresponding to ys.

Z.o imagingry part of L

2y imaginary part of o, .

« wing lncldence,

Yy strength of vortex on right-hand side.

e thickness parameter = t/s.

n integration variable corresponding to y/s.

v normal to wing cross-asection in a plane x = constant,
P density of free stream.

o = ¥+ iz,

Ty value of o at vortex on right-hand side.

Ty complex variable defined by transformation (18).
0'01 transformed value of o, in o, plane.

¢ perturbation potential,

1 part of slender-body potential. See equation (6).
¢h . = Re n(cr,,).

nlos)/



N(oy) value of W(o) in o, plane.
ﬂoﬁri) value of Wo(c) in o, plane.
w(oy ) value of w(o) in o, plane.

2. Formulation of the Problem

Consider a low-aspect-ratio uncambered delts wing, as shown in
Fig. 1, having a conical thickness distribution symmetrical about its mean
plane.

ILet O0x, Oy and 0z be a right-handed system of body axes
with origin at the wing apex, such that the x-y plane colncides with the
wing mean plane. Ox 1lies along the wing centre~line pointing towards the
tralling edge and Oy points to the starboard side, The oncoming air-
stream, with speed U and density p, 1is at incidence a to the mean
plane and is parallel to the z-x plane.

If the wing has a semi-apex angle tan"*K and its centre-line

half'-thickness and semi~span at distance x from the apex are t and s
respectively, then we may define a thickness parameter € by the equation

t = es = Kx. see (1)

For a slender wing, K << 1 and for a wing which is also thin e <<1
as well. The incidence a is O(K) (or less).

The conical form of the wing upper and lower surfaces may now
be defined by the eguation

= tt'l‘(%) = $Kex T(é) , ves (2)

where T 1is a general thickness function which must satisfy the
relationships

(1) = 0 and |T‘(.":1)| Ao

for sharp edges. We will assume port and starboard
sympretry, so that
J

() -l =),
e (3)
We/
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We now define a perturbation potentlal ¢ such that the complete
potential is equal to

(U cos a) x + ¢. cee (&)

Thus, at great distancesa from the wing

¢
— + Usina
J8

or, for small a,

o¢
— & Ua+ O(c). «se (5)
dz

¢ satisfies the usual linearised equation for compressible flow and for the ge
case of a slender wing we may make the well known slender-body approximations
80 that ¢ 1s found to be a solution of Laplace's equation in the two
dimensions y and £, with the co-ordinate x only entering as a parameter
through the boundary conditions. From the general, slender-body solutionB

we may write

¢ = ¢h*’b°(x) » e (6)

where ho is a function of cross-sectional area and Mach number only, given
in Ref. 8 and where the behaviour of the harmonic function ¢, for large

r=/22+3 1s given by

Us' (x)
Lim (¢h - Uaz - log r) = 0. ese (7)
r+*mw 2n

S'(x) 4s the wing cross-sectional area derivative so that, in this case,

3 8

s'(x) = 2 ;[ tT(%)dy
= 2 :::K'ex"-/‘T(ﬂ) dn
= LeK'x jLT('n) dn. «es (8)
- Since/

- - .
E de de v W W wm mm e e Mm up mm W e v e We P E A Em W SR e Se e _— e s as -, e

*Note that ¢ as defined by (4) is not the same perturbation potential as that
used in Ref., 8. The latter is equal to ¢ - (U sina)s 4in the present

notation.
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Since ¢h’ like ¢, 1s & harmonic function of y and z we
can write

¢, = ReW(o), cer (9)
where

g = y‘-l-iz. ewe (10)

The complex function W can depend on x through the boundary
conditions and in view of the conical nature of the flow it must be of the
form

o
W = xf( - ) . "o (11)
x
It follows that
oW W o oW
gx x X dc
K

OW
8 :Log

If v 4s the normal to a cross-section of the wing by a plane
x = constant, the wing surface tangency condition is that, at a point on
the surface,

eer (12)

o¢ a¢ dv
— =(Ucosa+ - ) -, ser (13)
v ¢x dx
dv
where — is the tangent of the angle between the local tangent plane and
dx

the positive x axis. It can be shown that, on both the upper and lower
wing surfaces,

_d_v - e(Kl‘-y/x'I‘) . easw (-m)

ax VDT

If a is small and the perturbation velocities are very much
less than U then, using (6) and ?14), equation {13) becomes

izl.l Ue (KT - y/x T')

dv J1 +e? T %

Ue (KT - y/x ) + O(Ke?), eer (45)

where the latter, approximate, form applies when the wing is thin,

l.es € << 1, The/



The flow pattern is to include two contra-rotating point vortices,
connected by cuts (which are not necessarily straight, as has been pointed
out in Ref. 5) to the wing Jeading edges; one of strength y anticlockwise
at o = %, Jjoined to the right-hand leading edge o = +3 and one of

strength -y at o = -66 Joined by & cut to ¢ = -3, if we assume port

and starboard symmetry.

These vortices are subject to the Brown and Michael condition
for zero net force on each vortex together with its cutza, which has the

form, in our present notation:

awW,y 20’0
(-——- - KU( - 1), -+ (16)
Ao a
g+
o
where W3 is that part of W excluding the potential of the vortex at
g, i.e.
o
iy
W1 = W+ — log (G-UO). see (17)
2n

In addition the flow must separate from the section at the edges
o = *s, which means that [PW/Ao| must be finite at these points,

We observe that, since there is no two-dimensiocnal vortex sheet
in the ¢ plane according to the Brown and Michael model, there is no
singularity in the flow close to the leading edge to make the separation
atreamline there in line with the wing lower surface, as it should be.
Instead, the separation streamline must form equal angles with the upper
and lower surfaces at the edge. It therefore appears that for a wing with
thickness, the Brown and Michael flow model is only really applicable when
the wing is thin, as in the present treatment.

The conditions (7), (15) and (16) with the separation condition
are sufficient to determine ¢h’ or its equivalent, W. The flow in the

o plane is illustrated in Fig. 2.

3. Approximate Conformsl Transformation of the Wing Cross-Sectional Profile

It is now required to transform the wing cross-sectional profile,
given by equation (2), into a cut along the real axis, whilst keeping the
distant parts of the plane unchanged.

If such a transformation is written as

o1 = o+ hio) «-o (18)
then h must have the properties

In/
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In hiy £ 1tT) LT, ~-s<y< s

Ia h(y)

Lim hio
|, (o)

if

1]
O

O 5 Iyi> s } vse (19)

Evidently the properties required for o, are the same as for
the complex potentisl of an acyclic flow past the cross-section profile in
the o plane, which, at great distances, becomes a uniform stream, parallel
to 0Oy, with unit velocity.

For a general shape of thin section this potential may be found
approximately by distributing sources of strength proportional to the local
rate of change of section thickness along the "chord line", that is the
real axis between y = -3 and y = 48, in the manner of thin aerofoil
theory. The resulit is

Oy = T+ d fsT'(£> log (o -~ ') d,y'-n-O(Ke’f
b, L)
-8
so that :
he) = i-_[sw (=) rosto-3) e e (20)
es 3 T(y'/s)
= — — &' i
x o -
A v )

where (3) has been used.

It may be verified that h as given by (20) satisfies the first
condition in (19) to the approximation shown and that the other two conditlons
are satisfied exactly. Henceforth, the symbol h will mean the approximate
form given in (20).

The firat two derivatives of h ars needed later and these are
given by

e 3 T(y'/s)
h'(o’) = "'"[ )
x og-Y
-8 eoe (21)
e vyt
and h“(g-) . fB T (Y/S) ay' ,
x (o =-5)"

where the generalised principal value9 is implied in the second equation.
We see that, normally, h is O(Ke), h' 1s Of(e) and h'' s 0(e/K).

Now/
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Now although the expression for h is valld everywhere to
first order if the section geometry is as specified earlier, the erpression
for h' is logarithmically singular at the section edges or at the spanwise
position of any sharp corner of the cross sectlion, so that it is invalid

within a distance O(e_1/%) of such a corner, whilst the expression for
h'' 418 invalid within a distance 0(3) of edpes or cornera. Further
differentiations increase the severity of the singularity.

To show the form of the singularities of h' at the edges
o = 8, for example, we write the first equation of (21) in the form

E 8 y! O+8 o-8 dy'

- f LT'(- ) - — T(4) + — T'(-1):J —

! 8 25 23 o-y'!
-9

[ g+8 O+8 g-3 g-8
. - [T'(‘l) . T'(—1)J( — log — - — 1log -—)

23 23 28 28

h* (o)

E o+3 g-8
+ - l:'r'(-1) log — - T'(1) log — |. see (22)
2s 28

The firat two terms on the right-hand side remain finite as o + %8, 80
that the last term gives the singularities of h' at o = %s,.

Calculations of vortex-core position described later seem, however,
to be affected by these singularities only extremely close to the edges.
For practical purposes the gap between the valid portion of the curve and the
edge itself, (which is known to be the ultimate position of the core at zero
incidence) is readily bridged by interpolation and so, in these calculations,
the singularities have been ignored.

However, if surface pressures are to be calculated from the present
solution, as has been done in Ref. 10, the singularities do cause difficulty
and techniques such as those described by Van Dyke1 must be used to find
expressions valid, to first order in e, right up to the edges or other
cormners,

4o Solution for the Slender-Body Potentiel

The transformation (18) now renders the slender-body problem as
posed in the o plane at the end of Section 2, into a simpler one in the
oy plane, which is illustrated in Fig. 3.

We are now required to solve for the flow past a flat plate in the
o1 plane which is at right-angles to an initially uniform stream and has
an appropriate pair of contra-rotating vortices, which are of the same
strength as in the o plane because the transformation (18) is conformal

at the points o =0, o = T, (corresponding, respectively, to oy = o,
and Oy = '6'0‘).

There/
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There are to be equal and opposite values of outward normal
velocity on the top and bottom of the plate with values which, from (15)
and (18§, are equal to

a¢h |a<r

= Ue(lﬂ‘ 22 T‘) + 0(Ke ®) eee (23)

v 60'1

at a point on the plate in the o, plane corresponding to position y on
the wing in the o plane.

If the potential in the oy plane is given by
- Re n O’ LN ]
¢h£ ( 1) (21‘-)

then, a8 o and o4 become identical at great distances (equation (19)),
the condition (7) becomes in the o; plane

Us'(x)

Lim (& -Uasg, -
101+ - hs

log Jy1'+ Zgn) = 0,
*ee (25)

g1 belng equal to ys + iz, .

The separation condition in the o plane must, in the absence of
a vortex sheet, correspond to a simple separation from the plate edges in
the o, plane so the value of | a)/dos] must be finite at o4 = #s3,4,
the wing-edge positions in the o4 plane,

Finally, the Brown and Michael force condition (equation (16)),
may be easily evaluated in terms of 0.

Evidently, the problem as now posed in the o4 plane is exactly
the same as Brown and Michael's with the addition of the discontinuity of
normal velocity across the wing “cut", which can be obtained by a source
diatribution on the cut of strength

a¢h do
n{ys) = 2 ( — ——)
dv 00y
= 2Ue (KT - f T')+ o(Ke *), «ee (26)

where y; 1s the position on the cut corresponding to the spanwise position
y on the wing cross section.

We therefore write
n(oy) = 0olos) + wlos) e (27)

where/
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where no is the potential of the sources and w 1s exactly of the same
form as Brown and Michael's solution (equation (7) of their paper) but

contains cross~sectional effects because of equation (18), which relates o
to the "physical® o plane. ’

W (o) = a(,) e (28)
ia seen to be the part of W{o) which is present at zero incidence and

w(o)

reprosents the effect of incidence,

H

wl(oy) vee (29)

We now have

1 1
N ((T) - —-—[ m(yii) 108 (cri - yt') dy’_' PR (30)
o' 1
2x
and
iy CARER = /0,0 -8
w{oy) = - — log

2x ( Joi® - 8,9 +/6'°: T

- and 0'1" 31". XY (31)

It is readily verified that in view of (30) and (31), (27) satisfies the
condition (25). Both w and W_ are of the form (11) and satisfy (12).

5. Application of the Condition for Separation and Brown and Michael's
Force Condition

Since the potential WO(O') represents a velocity field with

symmetry about the y axis it cannot affect the condition for separation,
which 18 really one imposing local symmetry about the y axis at the tips
0 = *s. The fact that the expression we derive below for awo/ao-,

using our approximationa to the source strength etc., exhibits a singularity
at the tips is irrelevant to the above argument, since this is not true of
the correct “inner® solution valid near the tips.

Thus, in the o, plane, only w(oy) is involved in this
condition, which must therefore be of exgctly the same form there as Brown
and Michael's equation (8), so that 41t becomes, in our case

2xUa 1 1 cee (32)

. = + .
2
1

]
Y

Y Oy, = B1 5,° -5

Cross-sectional effects are again present by virtue of eguation (18).
(32) shows that y 1is 0{(aK), 1.e. O(K") at most.

To/
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To apply the force condition (16) we require the quantity
(aw‘/ao-)o,*% .

Using (17) and (27)

an 0 1y

o 00y
= ( . . )
304 304 2x (o -O'Oi) 3o

iY 4 4 ad'g,
+ —— ( - ) . se e (53)
2K g - cr0 oy - cro1 T2

From (30) and (26)

600 1 81 m(y;')
j — 4y

30'1 2

—a‘

o1 = ¥4!

1 ° 2ue [KT(y'/s) - K y*/6 T'(y'/8)] &y
2x j -y

+ 0(Ke?)

1
+ — M{(y'/s)
-y s

KUe ,° [T(y'/s)

x
-8

- Z M ]dy' + 0(Ke®)

B oa-y

E {h(o‘) -o’h'(o’)] + 0(Ke?), eee (34)

where use has been made of (3), (20) and (21).

From/
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From (31) and (32)

ow i)’ Oy

301 2% (

o4~ 318+J (o - 312)(56 : -54%)

Oy

o %~ 87 = 'f(o'ﬁ..‘ﬂ 19)(0’0: -84 )

0y Oy

) - . e (35)
J(Ty,_’..si”)(o-o:-sﬂ) /(0'1“-51")(3'019“31'))

(34) and (35) may be inserted in (33) and the limit of the bracket
which multiplies 30y /3o found with little difficulty. The last ternm
shown in (33), however, requires some care to obtain the limit. Thus,
using L'Hospital's rule

6“0'1
1 1 3, - (owo,) fry
Lz | — ~ ——) = Lin ( — )
- 1
o‘-o‘o 0’-0'0 o1 0‘01 90 o= o‘o gi=0 + (o‘-o‘ ) —
01 °" e
590'1
- -1 -
003
o
o= a,
= -i—h"(cro)+0(e'/x) . ces (36)
If {16) is first multiplied throughout by
30'1 -1
(—-) = 1-n(0) + 0(e)
3o /
o= q
and the above substitutions are made, we find the result
1y

2%
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2’ { %0, 0'01
2 0'0: - 8" +J(°'°:— 84") (30:" 8:") /(0'0:' 84") (3'0: -3,")
- ob‘ + 54’ - h”(‘:’-o) ]
Uo:' 81" 20‘01(0‘0:-51’) 2
KU
- — {ﬁé-s-h(o'o)-r h'(a‘o)(s+0'°-26'°)}+ o(Ke®) . cee (37)

The first four terms in the bracket on the left-hand side may
now be regarded as a function of tha three variables

88 = 8 + h(s)
oy, = T, + o) e (38)
and 5, =5, + h(ﬁ'o) ,

‘ where, in the last equation, we have used the fact, which can be deduced
from (20), that

B(c‘ro) e h(5,). <o+ (39)

Expansion of this funotion as far as the linear terms yields, with the same
error as in (37):

1 h''(o,)
—2:‘-'- [Ao + Azh(c'o) + Ash(a'o) + A, h(s) - -——;—-— ]

] Kj [2(-7'-0- B = h(O’o) * h'(O’o)(B + ('.)'o - 25’0 ) } + O(KS.), e (1;0)
where
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o o o 5%

_ o i o 0

o o2-tel @r-)o2-)  [or-d)er-#) ) o ) 26 (5.2~ )

\ 89 1 1 . o o

o (/(a;-s')(a;'-s') ) )(fdo‘—5‘+/c’ro°-—s‘> ' (c - )" ) 253 (o 2 - )
v, T, 1 1

Ag =

[a2d)G2 &) {6‘;—3" ) (/0‘0’-3' Jaoﬂ-e) ]
and 8o 32

o -
BT (a;:a)ﬂ [1 ’ (&o"—s‘) ]

Equation (40) ylelds two equations for the vortex co-ordinates,
¥, and e (the real and imaginary parts of o, respectively) when real

=oe (41)

and imaginary parts are taken. These are solved numerically by the method
of Brown and Michael? which consists of adjusting Yo for a fixed z,

until two values of the ratio y/2xKUs derived from the two equations,
are as close to each other as required. The corresponding value of a/K
is then calculated from an expansion of (32) in the form

a y 2s 230
- = [Re ——— - Re¢ ——u=L . ., Re h(O'O)
K 2xKUs 0-09 - (0—09 —g® )Jl 8
&
2s o, 28
+ Im ——’—-3—,’ « Im h(o’o) + Re ﬁ - h(s)] + 0(53)’
(c2-&) (o2 -s*)

e (42)

h(s) beirg entirely real.

When the function h 1s zero, equations (40) and (42) reduce,
respectively, to equations (11) and (8) of Ref. 2.

6. Normal-Force Coefficient

The normal-force coefficient may he evaluated from the pressure
distribution (see Ref. 10), or by application of the momentum theorem as in
Ward's gencral slender body method® , the latter leading to s contour

integral which yields the result

Oy

Kll




- 17 -

CN [+ li-‘ﬁ. s 25 Sg‘
e =_(—"»/°'o°"31’ 5'0“-81" - - "'—+21t-—).
K® K s¥® 1 1 sK g® g®

ses (I_'.S)

The pressure distribution method, as given in Ref. 10, yields substantially
the same results as equation (435 in the case of the rhombic cross section,
(see below), even though the singularities in pressure at the edges have
there been removed in the manner of Ref. 11, as previously mentioned.

7- Comparison of the Theory with Experiment for Wings of Rhombic
Cross-Section

If the delta wing being considered has cross-sections which are
similar rhombuses, then the equation for T is

y y
*(2) =l cee (1)
5 8
s0 that, from equation (20), we have
2s€ T+ 8 o+ 8 o-8 o =8
h(c) = ( log + log
x 28 2s 2s 23
o o
- = 1°g - 4 sae ()+5)
8 28
Hence
€ O+ 8 o a8 o
h' (0.) = = (108 + lOg - 2 log — L XX ] (#6)
b4 28 2s 28
and
1 1 2
h"(o’) = "‘( + - - ) - s ()‘_7)
XK\NO+ 8 g -8 o
Equation (43) becomes
8
84
EN" = (—; /o‘ot Be /601 81 a®
x’ K ® ose (1‘_8)

These equations have been used to evaluate the vortex-core
position and CN?I‘(", as described above, over a range of a/K  for three

'y
velues of g . corresponding to three experimental models. The values o
t were 0-031', 0176 and 0+268 (the corresponding wings being respectively

referred/
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referred to as models 031, 176 and 268 on the accompanying graphs).
Results for e = O were also found, so that they could be checked against
those of Brown and Michael? and this check proved entirely satisfactory.
(N.B. In Fig. 4 theoretical results are also shown for & = 0088,
corre5p§nding to a proposed fourth model which was not tested owing to lack
of time).

The models were each 23 inches long with a leading edge sweepback
of 80° (corresponding to K = 0-176) and they were tested over a suitable
range of values of a/K at a speed of about 60 £t sec® in the 2:75 ft
X 3*75 £t low-speed wind tunnel at the University of Salford, Department of
Mechanical Engineering.

The vortex-core positions were defined as positions of minimum
total head and were found using a remotely-controlled,five-tube probe.
Surface pressures were also measured on one of the four faces of the rhombic-
cross-sectioned wing, use being made of the wing symmetry to obtain upper
and lower surface pressures from the same tappings. Near the sharp leading
edges, pressures were measured by cutting a shallow groove in the surface
which was comnected at its inboard end to a tube which passed out of the model
in the normal way. This groove was covered with thin adhesive tape which
was plerced, using a jig, at the desired pressure measuring station. Surface
flow patterns established that the tape did not seriously affect the flow,
that the boundary layer was laminar at the secondary separation and also that
the flow was effectively conical over at least 70% of the model length from
the apex. All flow surveys and pressure measurements were made at the 60%
station. Full details of the models and the experiments are given in Ref. 10.

In Pig. 4 theoretical and experimentally-found, vortex-core positions
are plotted along with Smith's theoretical results for a flat plate (Ref. 4).
Because the number of experimental points was so low (3 per incidence) results
obtained from other sources have been superimposed.

Fink and Taylor (Ref. 12) used a model of aspect ratio 0+705

having a flat upper surface and a lower surface with a constant chamfer
arallel to the leading edge. In the plane where the cores were examined
41+ 7% roat chord) the cross-section was a truncated triangle, but from the
apex to 36% chord the section was an isosceles triangle with an edge angle

of 4=75°. It is reasonable to assume that the vortices formed at the tra-
versing section will not be very different from those which would be found
if the wing was conical up to the traversing section. Further, Maskell
(Ref. 15) bas suggested and Kirkpatrick (Ref. 13) has demonstrated that a
change of a few degrees in the anhedral of the leading—edge bisector would not
greatly aeffect the position of the vortices relative to axes in the direction
of the leading-edge bisector and normel to this. Por the purposes of this
paper these rotated axes have been taken as the y,z axes. The model of
Ref. 12 can therefore be identified with € = O+O4i. The core centre was
again found as the point of total-head minimum, using a Kiel tube. Core
positiona corresponding to specific values of a/XK were interpolated from
the published results,

Eirkpatrick and Kirkpatrick and Field {Refs. 13 and 14) slso used
a Kiel tube in their investigations of rhombic-cross-sectioned wings, which
included models with & equal to 0+132 and 0¢268. The core position
was estimated from the total head values of three selected points in the
neighbourhood of the vortex core, assuming the total-head contours to be

circular./
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circular. There seems to be a consiatent and significant difference in
the results for € = 0°268 as found in Ref. 14 and the present tests.
These differences may possibly be due to a slight yaw angle being present
in the rigging of either the model of Ref'« 14 or in that of the present
model, or in both, but with different magnitudes.

It can be seen that the vertical distance of the vortex core
above the wing surface found experimentally on the thinnest model tested
agrees well with both Smith (Ref. 4) and the present theoretical predic-
tions for & = O (which corresponds to the results of Brown and Michael
(Ref. 2)). However, the spanwise position of the core is much more inboard
than Ref. 2 suggests and slightly more inboard than Ref. 4. The present
theory predicts fairly well the spanwise vortex shift due to thickness, but
totally faile to account for the vertical core movements. At low a«/K
values (about 0+5) this vertical shift is almost equal to the spanwise
movement and at higher a/K values it can be twice as much. However,
the normal-force coefficlents shown on Fig. 5 show the same variations due
to thickness as the present theory suggests.
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